1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36/*
37 * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
38 * section 4.3.1, pp. 257--259.
39 */
40
41#include "quad.h"
42
43#define	B	(1L << HALF_BITS)	/* digit base */
44
45/* Combine two `digits' to make a single two-digit number. */
46#define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
47
48/* select a type for digits in base B: use unsigned short if they fit */
49#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
50typedef unsigned short digit;
51#else
52typedef u_long digit;
53#endif
54
55/*
56 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
57 * `fall out' the left (there never will be any such anyway).
58 * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
59 */
60static void
61shl(digit *p, int len, int sh)
62{
63	int i;
64
65	for (i = 0; i < len; i++)
66		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
67	p[i] = LHALF(p[i] << sh);
68}
69
70/*
71 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
72 *
73 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
74 * fit within u_long.  As a consequence, the maximum length dividend and
75 * divisor are 4 `digits' in this base (they are shorter if they have
76 * leading zeros).
77 */
78u_quad_t
79__qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
80{
81	union uu tmp;
82	digit *u, *v, *q;
83	digit v1, v2;
84	u_long qhat, rhat, t;
85	int m, n, d, j, i;
86	digit uspace[5], vspace[5], qspace[5];
87
88	/*
89	 * Take care of special cases: divide by zero, and u < v.
90	 */
91	if (__predict_false(vq == 0)) {
92		/* divide by zero. */
93		static volatile const unsigned int zero = 0;
94
95		tmp.ul[H] = tmp.ul[L] = 1 / zero;
96		if (arq)
97			*arq = uq;
98		return (tmp.q);
99	}
100	if (uq < vq) {
101		if (arq)
102			*arq = uq;
103		return (0);
104	}
105	u = &uspace[0];
106	v = &vspace[0];
107	q = &qspace[0];
108
109	/*
110	 * Break dividend and divisor into digits in base B, then
111	 * count leading zeros to determine m and n.  When done, we
112	 * will have:
113	 *	u = (u[1]u[2]...u[m+n]) sub B
114	 *	v = (v[1]v[2]...v[n]) sub B
115	 *	v[1] != 0
116	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
117	 *	m >= 0 (otherwise u < v, which we already checked)
118	 *	m + n = 4
119	 * and thus
120	 *	m = 4 - n <= 2
121	 */
122	tmp.uq = uq;
123	u[0] = 0;
124	u[1] = HHALF(tmp.ul[H]);
125	u[2] = LHALF(tmp.ul[H]);
126	u[3] = HHALF(tmp.ul[L]);
127	u[4] = LHALF(tmp.ul[L]);
128	tmp.uq = vq;
129	v[1] = HHALF(tmp.ul[H]);
130	v[2] = LHALF(tmp.ul[H]);
131	v[3] = HHALF(tmp.ul[L]);
132	v[4] = LHALF(tmp.ul[L]);
133	for (n = 4; v[1] == 0; v++) {
134		if (--n == 1) {
135			u_long rbj;	/* r*B+u[j] (not root boy jim) */
136			digit q1, q2, q3, q4;
137
138			/*
139			 * Change of plan, per exercise 16.
140			 *	r = 0;
141			 *	for j = 1..4:
142			 *		q[j] = floor((r*B + u[j]) / v),
143			 *		r = (r*B + u[j]) % v;
144			 * We unroll this completely here.
145			 */
146			t = v[2];	/* nonzero, by definition */
147			q1 = u[1] / t;
148			rbj = COMBINE(u[1] % t, u[2]);
149			q2 = rbj / t;
150			rbj = COMBINE(rbj % t, u[3]);
151			q3 = rbj / t;
152			rbj = COMBINE(rbj % t, u[4]);
153			q4 = rbj / t;
154			if (arq)
155				*arq = rbj % t;
156			tmp.ul[H] = COMBINE(q1, q2);
157			tmp.ul[L] = COMBINE(q3, q4);
158			return (tmp.q);
159		}
160	}
161
162	/*
163	 * By adjusting q once we determine m, we can guarantee that
164	 * there is a complete four-digit quotient at &qspace[1] when
165	 * we finally stop.
166	 */
167	for (m = 4 - n; u[1] == 0; u++)
168		m--;
169	for (i = 4 - m; --i >= 0;)
170		q[i] = 0;
171	q += 4 - m;
172
173	/*
174	 * Here we run Program D, translated from MIX to C and acquiring
175	 * a few minor changes.
176	 *
177	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
178	 */
179	d = 0;
180	for (t = v[1]; t < B / 2; t <<= 1)
181		d++;
182	if (d > 0) {
183		shl(&u[0], m + n, d);		/* u <<= d */
184		shl(&v[1], n - 1, d);		/* v <<= d */
185	}
186	/*
187	 * D2: j = 0.
188	 */
189	j = 0;
190	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
191	v2 = v[2];	/* for D3 */
192	do {
193		digit uj0, uj1, uj2;
194
195		/*
196		 * D3: Calculate qhat (\^q, in TeX notation).
197		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
198		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
199		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
200		 * decrement qhat and increase rhat correspondingly.
201		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
202		 */
203		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
204		uj1 = u[j + 1];	/* for D3 only */
205		uj2 = u[j + 2];	/* for D3 only */
206		if (uj0 == v1) {
207			qhat = B;
208			rhat = uj1;
209			goto qhat_too_big;
210		} else {
211			u_long n = COMBINE(uj0, uj1);
212			qhat = n / v1;
213			rhat = n % v1;
214		}
215		while (v2 * qhat > COMBINE(rhat, uj2)) {
216	qhat_too_big:
217			qhat--;
218			if ((rhat += v1) >= B)
219				break;
220		}
221		/*
222		 * D4: Multiply and subtract.
223		 * The variable `t' holds any borrows across the loop.
224		 * We split this up so that we do not require v[0] = 0,
225		 * and to eliminate a final special case.
226		 */
227		for (t = 0, i = n; i > 0; i--) {
228			t = u[i + j] - v[i] * qhat - t;
229			u[i + j] = LHALF(t);
230			t = (B - HHALF(t)) & (B - 1);
231		}
232		t = u[j] - t;
233		u[j] = LHALF(t);
234		/*
235		 * D5: test remainder.
236		 * There is a borrow if and only if HHALF(t) is nonzero;
237		 * in that (rare) case, qhat was too large (by exactly 1).
238		 * Fix it by adding v[1..n] to u[j..j+n].
239		 */
240		if (HHALF(t)) {
241			qhat--;
242			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
243				t += u[i + j] + v[i];
244				u[i + j] = LHALF(t);
245				t = HHALF(t);
246			}
247			u[j] = LHALF(u[j] + t);
248		}
249		q[j] = qhat;
250	} while (++j <= m);		/* D7: loop on j. */
251
252	/*
253	 * If caller wants the remainder, we have to calculate it as
254	 * u[m..m+n] >> d (this is at most n digits and thus fits in
255	 * u[m+1..m+n], but we may need more source digits).
256	 */
257	if (arq) {
258		if (d) {
259			for (i = m + n; i > m; --i)
260				u[i] = (u[i] >> d) |
261				    LHALF(u[i - 1] << (HALF_BITS - d));
262			u[i] = 0;
263		}
264		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
265		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
266		*arq = tmp.q;
267	}
268
269	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
270	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
271	return (tmp.q);
272}
273