1/*
2 * Copyright 2012-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * This file has no dependencies on the rest of libssl because it is shared
12 * with the providers. It contains functions for low level MAC calculations.
13 * Responsibility for this lies with the HMAC implementation in the
14 * providers. However there are legacy code paths in libssl which also need to
15 * do this. In time those legacy code paths can be removed and this file can be
16 * moved out of libssl.
17 */
18
19
20/*
21 * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
22 * internal use.
23 */
24#include "internal/deprecated.h"
25
26#include "internal/constant_time.h"
27#include "internal/cryptlib.h"
28
29#include <openssl/evp.h>
30#ifndef FIPS_MODULE
31# include <openssl/md5.h>
32#endif
33#include <openssl/sha.h>
34
35char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
36int ssl3_cbc_digest_record(const EVP_MD *md,
37                           unsigned char *md_out,
38                           size_t *md_out_size,
39                           const unsigned char *header,
40                           const unsigned char *data,
41                           size_t data_size,
42                           size_t data_plus_mac_plus_padding_size,
43                           const unsigned char *mac_secret,
44                           size_t mac_secret_length, char is_sslv3);
45
46# define l2n(l,c)        (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
47                         *((c)++)=(unsigned char)(((l)>>16)&0xff), \
48                         *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
49                         *((c)++)=(unsigned char)(((l)    )&0xff))
50
51# define l2n6(l,c)       (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
52                         *((c)++)=(unsigned char)(((l)>>32)&0xff), \
53                         *((c)++)=(unsigned char)(((l)>>24)&0xff), \
54                         *((c)++)=(unsigned char)(((l)>>16)&0xff), \
55                         *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
56                         *((c)++)=(unsigned char)(((l)    )&0xff))
57
58# define l2n8(l,c)       (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
59                         *((c)++)=(unsigned char)(((l)>>48)&0xff), \
60                         *((c)++)=(unsigned char)(((l)>>40)&0xff), \
61                         *((c)++)=(unsigned char)(((l)>>32)&0xff), \
62                         *((c)++)=(unsigned char)(((l)>>24)&0xff), \
63                         *((c)++)=(unsigned char)(((l)>>16)&0xff), \
64                         *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
65                         *((c)++)=(unsigned char)(((l)    )&0xff))
66
67/*
68 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
69 * length field. (SHA-384/512 have 128-bit length.)
70 */
71#define MAX_HASH_BIT_COUNT_BYTES 16
72
73/*
74 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
75 * Currently SHA-384/512 has a 128-byte block size and that's the largest
76 * supported by TLS.)
77 */
78#define MAX_HASH_BLOCK_SIZE 128
79
80#ifndef FIPS_MODULE
81/*
82 * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
83 * little-endian order. The value of p is advanced by four.
84 */
85# define u32toLE(n, p) \
86         (*((p)++)=(unsigned char)(n), \
87          *((p)++)=(unsigned char)(n>>8), \
88          *((p)++)=(unsigned char)(n>>16), \
89          *((p)++)=(unsigned char)(n>>24))
90
91/*
92 * These functions serialize the state of a hash and thus perform the
93 * standard "final" operation without adding the padding and length that such
94 * a function typically does.
95 */
96static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
97{
98    MD5_CTX *md5 = ctx;
99    u32toLE(md5->A, md_out);
100    u32toLE(md5->B, md_out);
101    u32toLE(md5->C, md_out);
102    u32toLE(md5->D, md_out);
103}
104#endif /* FIPS_MODULE */
105
106static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
107{
108    SHA_CTX *sha1 = ctx;
109    l2n(sha1->h0, md_out);
110    l2n(sha1->h1, md_out);
111    l2n(sha1->h2, md_out);
112    l2n(sha1->h3, md_out);
113    l2n(sha1->h4, md_out);
114}
115
116static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
117{
118    SHA256_CTX *sha256 = ctx;
119    unsigned i;
120
121    for (i = 0; i < 8; i++) {
122        l2n(sha256->h[i], md_out);
123    }
124}
125
126static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
127{
128    SHA512_CTX *sha512 = ctx;
129    unsigned i;
130
131    for (i = 0; i < 8; i++) {
132        l2n8(sha512->h[i], md_out);
133    }
134}
135
136#undef  LARGEST_DIGEST_CTX
137#define LARGEST_DIGEST_CTX SHA512_CTX
138
139/*-
140 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
141 * record.
142 *
143 *   ctx: the EVP_MD_CTX from which we take the hash function.
144 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
145 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
146 *   md_out_size: if non-NULL, the number of output bytes is written here.
147 *   header: the 13-byte, TLS record header.
148 *   data: the record data itself, less any preceding explicit IV.
149 *   data_size: the secret, reported length of the data once the MAC and padding
150 *              has been removed.
151 *   data_plus_mac_plus_padding_size: the public length of the whole
152 *     record, including MAC and padding.
153 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
154 *
155 * On entry: we know that data is data_plus_mac_plus_padding_size in length
156 * Returns 1 on success or 0 on error
157 */
158int ssl3_cbc_digest_record(const EVP_MD *md,
159                           unsigned char *md_out,
160                           size_t *md_out_size,
161                           const unsigned char *header,
162                           const unsigned char *data,
163                           size_t data_size,
164                           size_t data_plus_mac_plus_padding_size,
165                           const unsigned char *mac_secret,
166                           size_t mac_secret_length, char is_sslv3)
167{
168    union {
169        OSSL_UNION_ALIGN;
170        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
171    } md_state;
172    void (*md_final_raw) (void *ctx, unsigned char *md_out);
173    void (*md_transform) (void *ctx, const unsigned char *block);
174    size_t md_size, md_block_size = 64;
175    size_t sslv3_pad_length = 40, header_length, variance_blocks,
176        len, max_mac_bytes, num_blocks,
177        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
178    size_t bits;          /* at most 18 bits */
179    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
180    /* hmac_pad is the masked HMAC key. */
181    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
182    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
183    unsigned char mac_out[EVP_MAX_MD_SIZE];
184    size_t i, j;
185    unsigned md_out_size_u;
186    EVP_MD_CTX *md_ctx = NULL;
187    /*
188     * mdLengthSize is the number of bytes in the length field that
189     * terminates * the hash.
190     */
191    size_t md_length_size = 8;
192    char length_is_big_endian = 1;
193    int ret = 0;
194
195    /*
196     * This is a, hopefully redundant, check that allows us to forget about
197     * many possible overflows later in this function.
198     */
199    if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
200        return 0;
201
202    if (EVP_MD_is_a(md, "MD5")) {
203#ifdef FIPS_MODULE
204        return 0;
205#else
206        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
207            return 0;
208        md_final_raw = tls1_md5_final_raw;
209        md_transform =
210            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
211        md_size = 16;
212        sslv3_pad_length = 48;
213        length_is_big_endian = 0;
214#endif
215    } else if (EVP_MD_is_a(md, "SHA1")) {
216        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
217            return 0;
218        md_final_raw = tls1_sha1_final_raw;
219        md_transform =
220            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
221        md_size = 20;
222    } else if (EVP_MD_is_a(md, "SHA2-224")) {
223        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
224            return 0;
225        md_final_raw = tls1_sha256_final_raw;
226        md_transform =
227            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
228        md_size = 224 / 8;
229     } else if (EVP_MD_is_a(md, "SHA2-256")) {
230        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
231            return 0;
232        md_final_raw = tls1_sha256_final_raw;
233        md_transform =
234            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
235        md_size = 32;
236     } else if (EVP_MD_is_a(md, "SHA2-384")) {
237        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
238            return 0;
239        md_final_raw = tls1_sha512_final_raw;
240        md_transform =
241            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
242        md_size = 384 / 8;
243        md_block_size = 128;
244        md_length_size = 16;
245    } else if (EVP_MD_is_a(md, "SHA2-512")) {
246        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
247            return 0;
248        md_final_raw = tls1_sha512_final_raw;
249        md_transform =
250            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
251        md_size = 64;
252        md_block_size = 128;
253        md_length_size = 16;
254    } else {
255        /*
256         * ssl3_cbc_record_digest_supported should have been called first to
257         * check that the hash function is supported.
258         */
259        if (md_out_size != NULL)
260            *md_out_size = 0;
261        return ossl_assert(0);
262    }
263
264    if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
265            || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
266            || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
267        return 0;
268
269    header_length = 13;
270    if (is_sslv3) {
271        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
272                                                                  * number */  +
273            1 /* record type */  +
274            2 /* record length */ ;
275    }
276
277    /*
278     * variance_blocks is the number of blocks of the hash that we have to
279     * calculate in constant time because they could be altered by the
280     * padding value. In SSLv3, the padding must be minimal so the end of
281     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
282     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
283     * of hash termination (0x80 + 64-bit length) don't fit in the final
284     * block, we say that the final two blocks can vary based on the padding.
285     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
286     * required to be minimal. Therefore we say that the final |variance_blocks|
287     * blocks can
288     * vary based on the padding. Later in the function, if the message is
289     * short and there obviously cannot be this many blocks then
290     * variance_blocks can be reduced.
291     */
292    variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
293    /*
294     * From now on we're dealing with the MAC, which conceptually has 13
295     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
296     * (SSLv3)
297     */
298    len = data_plus_mac_plus_padding_size + header_length;
299    /*
300     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
301     * including * |header|, assuming that there's no padding.
302     */
303    max_mac_bytes = len - md_size - 1;
304    /* num_blocks is the maximum number of hash blocks. */
305    num_blocks =
306        (max_mac_bytes + 1 + md_length_size + md_block_size -
307         1) / md_block_size;
308    /*
309     * In order to calculate the MAC in constant time we have to handle the
310     * final blocks specially because the padding value could cause the end
311     * to appear somewhere in the final |variance_blocks| blocks and we can't
312     * leak where. However, |num_starting_blocks| worth of data can be hashed
313     * right away because no padding value can affect whether they are
314     * plaintext.
315     */
316    num_starting_blocks = 0;
317    /*
318     * k is the starting byte offset into the conceptual header||data where
319     * we start processing.
320     */
321    k = 0;
322    /*
323     * mac_end_offset is the index just past the end of the data to be MACed.
324     */
325    mac_end_offset = data_size + header_length;
326    /*
327     * c is the index of the 0x80 byte in the final hash block that contains
328     * application data.
329     */
330    c = mac_end_offset % md_block_size;
331    /*
332     * index_a is the hash block number that contains the 0x80 terminating
333     * value.
334     */
335    index_a = mac_end_offset / md_block_size;
336    /*
337     * index_b is the hash block number that contains the 64-bit hash length,
338     * in bits.
339     */
340    index_b = (mac_end_offset + md_length_size) / md_block_size;
341    /*
342     * bits is the hash-length in bits. It includes the additional hash block
343     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
344     */
345
346    /*
347     * For SSLv3, if we're going to have any starting blocks then we need at
348     * least two because the header is larger than a single block.
349     */
350    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
351        num_starting_blocks = num_blocks - variance_blocks;
352        k = md_block_size * num_starting_blocks;
353    }
354
355    bits = 8 * mac_end_offset;
356    if (!is_sslv3) {
357        /*
358         * Compute the initial HMAC block. For SSLv3, the padding and secret
359         * bytes are included in |header| because they take more than a
360         * single block.
361         */
362        bits += 8 * md_block_size;
363        memset(hmac_pad, 0, md_block_size);
364        if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
365            return 0;
366        memcpy(hmac_pad, mac_secret, mac_secret_length);
367        for (i = 0; i < md_block_size; i++)
368            hmac_pad[i] ^= 0x36;
369
370        md_transform(md_state.c, hmac_pad);
371    }
372
373    if (length_is_big_endian) {
374        memset(length_bytes, 0, md_length_size - 4);
375        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
376        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
377        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
378        length_bytes[md_length_size - 1] = (unsigned char)bits;
379    } else {
380        memset(length_bytes, 0, md_length_size);
381        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
382        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
383        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
384        length_bytes[md_length_size - 8] = (unsigned char)bits;
385    }
386
387    if (k > 0) {
388        if (is_sslv3) {
389            size_t overhang;
390
391            /*
392             * The SSLv3 header is larger than a single block. overhang is
393             * the number of bytes beyond a single block that the header
394             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
395             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
396             * therefore we can be confident that the header_length will be
397             * greater than |md_block_size|. However we add a sanity check just
398             * in case
399             */
400            if (header_length <= md_block_size) {
401                /* Should never happen */
402                return 0;
403            }
404            overhang = header_length - md_block_size;
405            md_transform(md_state.c, header);
406            memcpy(first_block, header + md_block_size, overhang);
407            memcpy(first_block + overhang, data, md_block_size - overhang);
408            md_transform(md_state.c, first_block);
409            for (i = 1; i < k / md_block_size - 1; i++)
410                md_transform(md_state.c, data + md_block_size * i - overhang);
411        } else {
412            /* k is a multiple of md_block_size. */
413            memcpy(first_block, header, 13);
414            memcpy(first_block + 13, data, md_block_size - 13);
415            md_transform(md_state.c, first_block);
416            for (i = 1; i < k / md_block_size; i++)
417                md_transform(md_state.c, data + md_block_size * i - 13);
418        }
419    }
420
421    memset(mac_out, 0, sizeof(mac_out));
422
423    /*
424     * We now process the final hash blocks. For each block, we construct it
425     * in constant time. If the |i==index_a| then we'll include the 0x80
426     * bytes and zero pad etc. For each block we selectively copy it, in
427     * constant time, to |mac_out|.
428     */
429    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
430         i++) {
431        unsigned char block[MAX_HASH_BLOCK_SIZE];
432        unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
433        unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
434        for (j = 0; j < md_block_size; j++) {
435            unsigned char b = 0, is_past_c, is_past_cp1;
436            if (k < header_length)
437                b = header[k];
438            else if (k < data_plus_mac_plus_padding_size + header_length)
439                b = data[k - header_length];
440            k++;
441
442            is_past_c = is_block_a & constant_time_ge_8_s(j, c);
443            is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
444            /*
445             * If this is the block containing the end of the application
446             * data, and we are at the offset for the 0x80 value, then
447             * overwrite b with 0x80.
448             */
449            b = constant_time_select_8(is_past_c, 0x80, b);
450            /*
451             * If this block contains the end of the application data
452             * and we're past the 0x80 value then just write zero.
453             */
454            b = b & ~is_past_cp1;
455            /*
456             * If this is index_b (the final block), but not index_a (the end
457             * of the data), then the 64-bit length didn't fit into index_a
458             * and we're having to add an extra block of zeros.
459             */
460            b &= ~is_block_b | is_block_a;
461
462            /*
463             * The final bytes of one of the blocks contains the length.
464             */
465            if (j >= md_block_size - md_length_size) {
466                /* If this is index_b, write a length byte. */
467                b = constant_time_select_8(is_block_b,
468                                           length_bytes[j -
469                                                        (md_block_size -
470                                                         md_length_size)], b);
471            }
472            block[j] = b;
473        }
474
475        md_transform(md_state.c, block);
476        md_final_raw(md_state.c, block);
477        /* If this is index_b, copy the hash value to |mac_out|. */
478        for (j = 0; j < md_size; j++)
479            mac_out[j] |= block[j] & is_block_b;
480    }
481
482    md_ctx = EVP_MD_CTX_new();
483    if (md_ctx == NULL)
484        goto err;
485
486    if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
487        goto err;
488    if (is_sslv3) {
489        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
490        memset(hmac_pad, 0x5c, sslv3_pad_length);
491
492        if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
493            || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
494            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
495            goto err;
496    } else {
497        /* Complete the HMAC in the standard manner. */
498        for (i = 0; i < md_block_size; i++)
499            hmac_pad[i] ^= 0x6a;
500
501        if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
502            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
503            goto err;
504    }
505    ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
506    if (ret && md_out_size)
507        *md_out_size = md_out_size_u;
508
509    ret = 1;
510 err:
511    EVP_MD_CTX_free(md_ctx);
512    return ret;
513}
514