1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#ifndef _GNU_SOURCE
11# define _GNU_SOURCE
12#endif
13#include "../e_os.h"
14#include <stdio.h>
15#include "internal/cryptlib.h"
16#include <openssl/rand.h>
17#include <openssl/crypto.h>
18#include "crypto/rand_pool.h"
19#include "crypto/rand.h"
20#include <stdio.h>
21#include "internal/dso.h"
22#include "prov/seeding.h"
23
24#ifdef __linux
25# include <sys/syscall.h>
26# ifdef DEVRANDOM_WAIT
27#  include <sys/shm.h>
28#  include <sys/utsname.h>
29# endif
30#endif
31#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
32# include <sys/types.h>
33# include <sys/sysctl.h>
34# include <sys/param.h>
35#endif
36#if defined(__OpenBSD__)
37# include <sys/param.h>
38#endif
39#if defined(__DragonFly__)
40# include <sys/param.h>
41# include <sys/random.h>
42#endif
43
44#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
45     || defined(__DJGPP__)
46# include <sys/types.h>
47# include <sys/stat.h>
48# include <fcntl.h>
49# include <unistd.h>
50# include <sys/time.h>
51
52static uint64_t get_time_stamp(void);
53static uint64_t get_timer_bits(void);
54
55/* Macro to convert two thirty two bit values into a sixty four bit one */
56# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
57
58/*
59 * Check for the existence and support of POSIX timers.  The standard
60 * says that the _POSIX_TIMERS macro will have a positive value if they
61 * are available.
62 *
63 * However, we want an additional constraint: that the timer support does
64 * not require an extra library dependency.  Early versions of glibc
65 * require -lrt to be specified on the link line to access the timers,
66 * so this needs to be checked for.
67 *
68 * It is worse because some libraries define __GLIBC__ but don't
69 * support the version testing macro (e.g. uClibc).  This means
70 * an extra check is needed.
71 *
72 * The final condition is:
73 *      "have posix timers and either not glibc or glibc without -lrt"
74 *
75 * The nested #if sequences are required to avoid using a parameterised
76 * macro that might be undefined.
77 */
78# undef OSSL_POSIX_TIMER_OKAY
79/* On some systems, _POSIX_TIMERS is defined but empty.
80 * Subtracting by 0 when comparing avoids an error in this case. */
81# if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
82#  if defined(__GLIBC__)
83#   if defined(__GLIBC_PREREQ)
84#    if __GLIBC_PREREQ(2, 17)
85#     define OSSL_POSIX_TIMER_OKAY
86#    endif
87#   endif
88#  else
89#   define OSSL_POSIX_TIMER_OKAY
90#  endif
91# endif
92#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
93          || defined(__DJGPP__) */
94
95#if defined(OPENSSL_RAND_SEED_NONE)
96/* none means none. this simplifies the following logic */
97# undef OPENSSL_RAND_SEED_OS
98# undef OPENSSL_RAND_SEED_GETRANDOM
99# undef OPENSSL_RAND_SEED_LIBRANDOM
100# undef OPENSSL_RAND_SEED_DEVRANDOM
101# undef OPENSSL_RAND_SEED_RDTSC
102# undef OPENSSL_RAND_SEED_RDCPU
103# undef OPENSSL_RAND_SEED_EGD
104#endif
105
106#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
107# error "UEFI only supports seeding NONE"
108#endif
109
110#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
111    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
112    || defined(OPENSSL_SYS_UEFI))
113
114# if defined(OPENSSL_SYS_VOS)
115
116#  ifndef OPENSSL_RAND_SEED_OS
117#   error "Unsupported seeding method configured; must be os"
118#  endif
119
120#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
121#   error "Unsupported HP-PA and IA32 at the same time."
122#  endif
123#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
124#   error "Must have one of HP-PA or IA32"
125#  endif
126
127/*
128 * The following algorithm repeatedly samples the real-time clock (RTC) to
129 * generate a sequence of unpredictable data.  The algorithm relies upon the
130 * uneven execution speed of the code (due to factors such as cache misses,
131 * interrupts, bus activity, and scheduling) and upon the rather large
132 * relative difference between the speed of the clock and the rate at which
133 * it can be read.  If it is ported to an environment where execution speed
134 * is more constant or where the RTC ticks at a much slower rate, or the
135 * clock can be read with fewer instructions, it is likely that the results
136 * would be far more predictable.  This should only be used for legacy
137 * platforms.
138 *
139 * As a precaution, we assume only 2 bits of entropy per byte.
140 */
141size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
142{
143    short int code;
144    int i, k;
145    size_t bytes_needed;
146    struct timespec ts;
147    unsigned char v;
148#  ifdef OPENSSL_SYS_VOS_HPPA
149    long duration;
150    extern void s$sleep(long *_duration, short int *_code);
151#  else
152    long long duration;
153    extern void s$sleep2(long long *_duration, short int *_code);
154#  endif
155
156    bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
157
158    for (i = 0; i < bytes_needed; i++) {
159        /*
160         * burn some cpu; hope for interrupts, cache collisions, bus
161         * interference, etc.
162         */
163        for (k = 0; k < 99; k++)
164            ts.tv_nsec = random();
165
166#  ifdef OPENSSL_SYS_VOS_HPPA
167        /* sleep for 1/1024 of a second (976 us).  */
168        duration = 1;
169        s$sleep(&duration, &code);
170#  else
171        /* sleep for 1/65536 of a second (15 us).  */
172        duration = 1;
173        s$sleep2(&duration, &code);
174#  endif
175
176        /* Get wall clock time, take 8 bits. */
177        clock_gettime(CLOCK_REALTIME, &ts);
178        v = (unsigned char)(ts.tv_nsec & 0xFF);
179        ossl_rand_pool_add(pool, arg, &v, sizeof(v) , 2);
180    }
181    return ossl_rand_pool_entropy_available(pool);
182}
183
184void ossl_rand_pool_cleanup(void)
185{
186}
187
188void ossl_rand_pool_keep_random_devices_open(int keep)
189{
190}
191
192# else
193
194#  if defined(OPENSSL_RAND_SEED_EGD) && \
195        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
196#   error "Seeding uses EGD but EGD is turned off or no device given"
197#  endif
198
199#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
200#   error "Seeding uses urandom but DEVRANDOM is not configured"
201#  endif
202
203#  if defined(OPENSSL_RAND_SEED_OS)
204#   if !defined(DEVRANDOM)
205#    error "OS seeding requires DEVRANDOM to be configured"
206#   endif
207#   define OPENSSL_RAND_SEED_GETRANDOM
208#   define OPENSSL_RAND_SEED_DEVRANDOM
209#  endif
210
211#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
212#   error "librandom not (yet) supported"
213#  endif
214
215#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
216/*
217 * sysctl_random(): Use sysctl() to read a random number from the kernel
218 * Returns the number of bytes returned in buf on success, -1 on failure.
219 */
220static ssize_t sysctl_random(char *buf, size_t buflen)
221{
222    int mib[2];
223    size_t done = 0;
224    size_t len;
225
226    /*
227     * Note: sign conversion between size_t and ssize_t is safe even
228     * without a range check, see comment in syscall_random()
229     */
230
231    /*
232     * On FreeBSD old implementations returned longs, newer versions support
233     * variable sizes up to 256 byte. The code below would not work properly
234     * when the sysctl returns long and we want to request something not a
235     * multiple of longs, which should never be the case.
236     */
237#if   defined(__FreeBSD__)
238    if (!ossl_assert(buflen % sizeof(long) == 0)) {
239        errno = EINVAL;
240        return -1;
241    }
242#endif
243
244    /*
245     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
246     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
247     * it returns a variable number of bytes with the current version supporting
248     * up to 256 bytes.
249     * Just return an error on older NetBSD versions.
250     */
251#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
252    errno = ENOSYS;
253    return -1;
254#endif
255
256    mib[0] = CTL_KERN;
257    mib[1] = KERN_ARND;
258
259    do {
260        len = buflen > 256 ? 256 : buflen;
261        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
262            return done > 0 ? done : -1;
263        done += len;
264        buf += len;
265        buflen -= len;
266    } while (buflen > 0);
267
268    return done;
269}
270#  endif
271
272#  if defined(OPENSSL_RAND_SEED_GETRANDOM)
273
274#   if defined(__linux) && !defined(__NR_getrandom)
275#    if defined(__arm__)
276#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
277#    elif defined(__i386__)
278#     define __NR_getrandom    355
279#    elif defined(__x86_64__)
280#     if defined(__ILP32__)
281#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
282#     else
283#      define __NR_getrandom   318
284#     endif
285#    elif defined(__xtensa__)
286#     define __NR_getrandom    338
287#    elif defined(__s390__) || defined(__s390x__)
288#     define __NR_getrandom    349
289#    elif defined(__bfin__)
290#     define __NR_getrandom    389
291#    elif defined(__powerpc__)
292#     define __NR_getrandom    359
293#    elif defined(__mips__) || defined(__mips64)
294#     if _MIPS_SIM == _MIPS_SIM_ABI32
295#      define __NR_getrandom   (__NR_Linux + 353)
296#     elif _MIPS_SIM == _MIPS_SIM_ABI64
297#      define __NR_getrandom   (__NR_Linux + 313)
298#     elif _MIPS_SIM == _MIPS_SIM_NABI32
299#      define __NR_getrandom   (__NR_Linux + 317)
300#     endif
301#    elif defined(__hppa__)
302#     define __NR_getrandom    (__NR_Linux + 339)
303#    elif defined(__sparc__)
304#     define __NR_getrandom    347
305#    elif defined(__ia64__)
306#     define __NR_getrandom    1339
307#    elif defined(__alpha__)
308#     define __NR_getrandom    511
309#    elif defined(__sh__)
310#     if defined(__SH5__)
311#      define __NR_getrandom   373
312#     else
313#      define __NR_getrandom   384
314#     endif
315#    elif defined(__avr32__)
316#     define __NR_getrandom    317
317#    elif defined(__microblaze__)
318#     define __NR_getrandom    385
319#    elif defined(__m68k__)
320#     define __NR_getrandom    352
321#    elif defined(__cris__)
322#     define __NR_getrandom    356
323#    elif defined(__aarch64__)
324#     define __NR_getrandom    278
325#    else /* generic */
326#     define __NR_getrandom    278
327#    endif
328#   endif
329
330/*
331 * syscall_random(): Try to get random data using a system call
332 * returns the number of bytes returned in buf, or < 0 on error.
333 */
334static ssize_t syscall_random(void *buf, size_t buflen)
335{
336    /*
337     * Note: 'buflen' equals the size of the buffer which is used by the
338     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
339     *
340     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
341     *
342     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
343     * between size_t and ssize_t is safe even without a range check.
344     */
345
346    /*
347     * Do runtime detection to find getentropy().
348     *
349     * Known OSs that should support this:
350     * - Darwin since 16 (OSX 10.12, IOS 10.0).
351     * - Solaris since 11.3
352     * - OpenBSD since 5.6
353     * - Linux since 3.17 with glibc 2.25
354     * - FreeBSD since 12.0 (1200061)
355     *
356     * Note: Sometimes getentropy() can be provided but not implemented
357     * internally. So we need to check errno for ENOSYS
358     */
359#  if !defined(__DragonFly__) && !defined(__NetBSD__)
360#    if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
361    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
362
363    if (getentropy != NULL) {
364        if (getentropy(buf, buflen) == 0)
365            return (ssize_t)buflen;
366        if (errno != ENOSYS)
367            return -1;
368    }
369#    elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
370
371    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
372	    return (ssize_t)buflen;
373
374    return -1;
375#    else
376    union {
377        void *p;
378        int (*f)(void *buffer, size_t length);
379    } p_getentropy;
380
381    /*
382     * We could cache the result of the lookup, but we normally don't
383     * call this function often.
384     */
385    ERR_set_mark();
386    p_getentropy.p = DSO_global_lookup("getentropy");
387    ERR_pop_to_mark();
388    if (p_getentropy.p != NULL)
389        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
390#    endif
391#  endif /* !__DragonFly__ */
392
393    /* Linux supports this since version 3.17 */
394#  if defined(__linux) && defined(__NR_getrandom)
395    return syscall(__NR_getrandom, buf, buflen, 0);
396#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
397    return sysctl_random(buf, buflen);
398#  elif (defined(__DragonFly__)  && __DragonFly_version >= 500700) \
399     || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
400    return getrandom(buf, buflen, 0);
401#  else
402    errno = ENOSYS;
403    return -1;
404#  endif
405}
406#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
407
408#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
409static const char *random_device_paths[] = { DEVRANDOM };
410static struct random_device {
411    int fd;
412    dev_t dev;
413    ino_t ino;
414    mode_t mode;
415    dev_t rdev;
416} random_devices[OSSL_NELEM(random_device_paths)];
417static int keep_random_devices_open = 1;
418
419#   if defined(__linux) && defined(DEVRANDOM_WAIT) \
420       && defined(OPENSSL_RAND_SEED_GETRANDOM)
421static void *shm_addr;
422
423static void cleanup_shm(void)
424{
425    shmdt(shm_addr);
426}
427
428/*
429 * Ensure that the system randomness source has been adequately seeded.
430 * This is done by having the first start of libcrypto, wait until the device
431 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
432 * of the library and later reseedings do not need to do this.
433 */
434static int wait_random_seeded(void)
435{
436    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
437    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
438    int kernel[2];
439    int shm_id, fd, r;
440    char c, *p;
441    struct utsname un;
442    fd_set fds;
443
444    if (!seeded) {
445        /* See if anything has created the global seeded indication */
446        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
447            /*
448             * Check the kernel's version and fail if it is too recent.
449             *
450             * Linux kernels from 4.8 onwards do not guarantee that
451             * /dev/urandom is properly seeded when /dev/random becomes
452             * readable.  However, such kernels support the getentropy(2)
453             * system call and this should always succeed which renders
454             * this alternative but essentially identical source moot.
455             */
456            if (uname(&un) == 0) {
457                kernel[0] = atoi(un.release);
458                p = strchr(un.release, '.');
459                kernel[1] = p == NULL ? 0 : atoi(p + 1);
460                if (kernel[0] > kernel_version[0]
461                    || (kernel[0] == kernel_version[0]
462                        && kernel[1] >= kernel_version[1])) {
463                    return 0;
464                }
465            }
466            /* Open /dev/random and wait for it to be readable */
467            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
468                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
469                    FD_ZERO(&fds);
470                    FD_SET(fd, &fds);
471                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
472                           && errno == EINTR);
473                } else {
474                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
475                }
476                close(fd);
477                if (r == 1) {
478                    seeded = 1;
479                    /* Create the shared memory indicator */
480                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
481                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
482                }
483            }
484        }
485        if (shm_id != -1) {
486            seeded = 1;
487            /*
488             * Map the shared memory to prevent its premature destruction.
489             * If this call fails, it isn't a big problem.
490             */
491            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
492            if (shm_addr != (void *)-1)
493                OPENSSL_atexit(&cleanup_shm);
494        }
495    }
496    return seeded;
497}
498#   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
499static int wait_random_seeded(void)
500{
501    return 1;
502}
503#   endif
504
505/*
506 * Verify that the file descriptor associated with the random source is
507 * still valid. The rationale for doing this is the fact that it is not
508 * uncommon for daemons to close all open file handles when daemonizing.
509 * So the handle might have been closed or even reused for opening
510 * another file.
511 */
512static int check_random_device(struct random_device * rd)
513{
514    struct stat st;
515
516    return rd->fd != -1
517           && fstat(rd->fd, &st) != -1
518           && rd->dev == st.st_dev
519           && rd->ino == st.st_ino
520           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
521           && rd->rdev == st.st_rdev;
522}
523
524/*
525 * Open a random device if required and return its file descriptor or -1 on error
526 */
527static int get_random_device(size_t n)
528{
529    struct stat st;
530    struct random_device * rd = &random_devices[n];
531
532    /* reuse existing file descriptor if it is (still) valid */
533    if (check_random_device(rd))
534        return rd->fd;
535
536    /* open the random device ... */
537    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
538        return rd->fd;
539
540    /* ... and cache its relevant stat(2) data */
541    if (fstat(rd->fd, &st) != -1) {
542        rd->dev = st.st_dev;
543        rd->ino = st.st_ino;
544        rd->mode = st.st_mode;
545        rd->rdev = st.st_rdev;
546    } else {
547        close(rd->fd);
548        rd->fd = -1;
549    }
550
551    return rd->fd;
552}
553
554/*
555 * Close a random device making sure it is a random device
556 */
557static void close_random_device(size_t n)
558{
559    struct random_device * rd = &random_devices[n];
560
561    if (check_random_device(rd))
562        close(rd->fd);
563    rd->fd = -1;
564}
565
566int ossl_rand_pool_init(void)
567{
568    size_t i;
569
570    for (i = 0; i < OSSL_NELEM(random_devices); i++)
571        random_devices[i].fd = -1;
572
573    return 1;
574}
575
576void ossl_rand_pool_cleanup(void)
577{
578    size_t i;
579
580    for (i = 0; i < OSSL_NELEM(random_devices); i++)
581        close_random_device(i);
582}
583
584void ossl_rand_pool_keep_random_devices_open(int keep)
585{
586    if (!keep)
587        ossl_rand_pool_cleanup();
588
589    keep_random_devices_open = keep;
590}
591
592#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
593
594int ossl_rand_pool_init(void)
595{
596    return 1;
597}
598
599void ossl_rand_pool_cleanup(void)
600{
601}
602
603void ossl_rand_pool_keep_random_devices_open(int keep)
604{
605}
606
607#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
608
609/*
610 * Try the various seeding methods in turn, exit when successful.
611 *
612 * If more than one entropy source is available, is it
613 * preferable to stop as soon as enough entropy has been collected
614 * (as favored by @rsalz) or should one rather be defensive and add
615 * more entropy than requested and/or from different sources?
616 *
617 * Currently, the user can select multiple entropy sources in the
618 * configure step, yet in practice only the first available source
619 * will be used. A more flexible solution has been requested, but
620 * currently it is not clear how this can be achieved without
621 * overengineering the problem. There are many parameters which
622 * could be taken into account when selecting the order and amount
623 * of input from the different entropy sources (trust, quality,
624 * possibility of blocking).
625 */
626size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
627{
628#  if defined(OPENSSL_RAND_SEED_NONE)
629    return ossl_rand_pool_entropy_available(pool);
630#  else
631    size_t entropy_available = 0;
632
633    (void)entropy_available;    /* avoid compiler warning */
634
635#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
636    {
637        size_t bytes_needed;
638        unsigned char *buffer;
639        ssize_t bytes;
640        /* Maximum allowed number of consecutive unsuccessful attempts */
641        int attempts = 3;
642
643        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
644        while (bytes_needed != 0 && attempts-- > 0) {
645            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
646            bytes = syscall_random(buffer, bytes_needed);
647            if (bytes > 0) {
648                ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
649                bytes_needed -= bytes;
650                attempts = 3; /* reset counter after successful attempt */
651            } else if (bytes < 0 && errno != EINTR) {
652                break;
653            }
654        }
655    }
656    entropy_available = ossl_rand_pool_entropy_available(pool);
657    if (entropy_available > 0)
658        return entropy_available;
659#   endif
660
661#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
662    {
663        /* Not yet implemented. */
664    }
665#   endif
666
667#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
668    if (wait_random_seeded()) {
669        size_t bytes_needed;
670        unsigned char *buffer;
671        size_t i;
672
673        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
674        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
675             i++) {
676            ssize_t bytes = 0;
677            /* Maximum number of consecutive unsuccessful attempts */
678            int attempts = 3;
679            const int fd = get_random_device(i);
680
681            if (fd == -1)
682                continue;
683
684            while (bytes_needed != 0 && attempts-- > 0) {
685                buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
686                bytes = read(fd, buffer, bytes_needed);
687
688                if (bytes > 0) {
689                    ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
690                    bytes_needed -= bytes;
691                    attempts = 3; /* reset counter on successful attempt */
692                } else if (bytes < 0 && errno != EINTR) {
693                    break;
694                }
695            }
696            if (bytes < 0 || !keep_random_devices_open)
697                close_random_device(i);
698
699            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
700        }
701        entropy_available = ossl_rand_pool_entropy_available(pool);
702        if (entropy_available > 0)
703            return entropy_available;
704    }
705#   endif
706
707#   if defined(OPENSSL_RAND_SEED_RDTSC)
708    entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
709    if (entropy_available > 0)
710        return entropy_available;
711#   endif
712
713#   if defined(OPENSSL_RAND_SEED_RDCPU)
714    entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
715    if (entropy_available > 0)
716        return entropy_available;
717#   endif
718
719#   if defined(OPENSSL_RAND_SEED_EGD)
720    {
721        static const char *paths[] = { DEVRANDOM_EGD, NULL };
722        size_t bytes_needed;
723        unsigned char *buffer;
724        int i;
725
726        bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
727        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
728            size_t bytes = 0;
729            int num;
730
731            buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
732            num = RAND_query_egd_bytes(paths[i],
733                                       buffer, (int)bytes_needed);
734            if (num == (int)bytes_needed)
735                bytes = bytes_needed;
736
737            ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
738            bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
739        }
740        entropy_available = ossl_rand_pool_entropy_available(pool);
741        if (entropy_available > 0)
742            return entropy_available;
743    }
744#   endif
745
746    return ossl_rand_pool_entropy_available(pool);
747#  endif
748}
749# endif
750#endif
751
752#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
753     || defined(__DJGPP__)
754int ossl_pool_add_nonce_data(RAND_POOL *pool)
755{
756    struct {
757        pid_t pid;
758        CRYPTO_THREAD_ID tid;
759        uint64_t time;
760    } data;
761
762    /* Erase the entire structure including any padding */
763    memset(&data, 0, sizeof(data));
764
765    /*
766     * Add process id, thread id, and a high resolution timestamp to
767     * ensure that the nonce is unique with high probability for
768     * different process instances.
769     */
770    data.pid = getpid();
771    data.tid = CRYPTO_THREAD_get_current_id();
772    data.time = get_time_stamp();
773
774    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
775}
776
777int ossl_rand_pool_add_additional_data(RAND_POOL *pool)
778{
779    struct {
780        int fork_id;
781        CRYPTO_THREAD_ID tid;
782        uint64_t time;
783    } data;
784
785    /* Erase the entire structure including any padding */
786    memset(&data, 0, sizeof(data));
787
788    /*
789     * Add some noise from the thread id and a high resolution timer.
790     * The fork_id adds some extra fork-safety.
791     * The thread id adds a little randomness if the drbg is accessed
792     * concurrently (which is the case for the <master> drbg).
793     */
794    data.fork_id = openssl_get_fork_id();
795    data.tid = CRYPTO_THREAD_get_current_id();
796    data.time = get_timer_bits();
797
798    return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
799}
800
801
802/*
803 * Get the current time with the highest possible resolution
804 *
805 * The time stamp is added to the nonce, so it is optimized for not repeating.
806 * The current time is ideal for this purpose, provided the computer's clock
807 * is synchronized.
808 */
809static uint64_t get_time_stamp(void)
810{
811# if defined(OSSL_POSIX_TIMER_OKAY)
812    {
813        struct timespec ts;
814
815        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
816            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
817    }
818# endif
819# if defined(__unix__) \
820     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
821    {
822        struct timeval tv;
823
824        if (gettimeofday(&tv, NULL) == 0)
825            return TWO32TO64(tv.tv_sec, tv.tv_usec);
826    }
827# endif
828    return time(NULL);
829}
830
831/*
832 * Get an arbitrary timer value of the highest possible resolution
833 *
834 * The timer value is added as random noise to the additional data,
835 * which is not considered a trusted entropy sourec, so any result
836 * is acceptable.
837 */
838static uint64_t get_timer_bits(void)
839{
840    uint64_t res = OPENSSL_rdtsc();
841
842    if (res != 0)
843        return res;
844
845# if defined(__sun) || defined(__hpux)
846    return gethrtime();
847# elif defined(_AIX)
848    {
849        timebasestruct_t t;
850
851        read_wall_time(&t, TIMEBASE_SZ);
852        return TWO32TO64(t.tb_high, t.tb_low);
853    }
854# elif defined(OSSL_POSIX_TIMER_OKAY)
855    {
856        struct timespec ts;
857
858#  ifdef CLOCK_BOOTTIME
859#   define CLOCK_TYPE CLOCK_BOOTTIME
860#  elif defined(_POSIX_MONOTONIC_CLOCK)
861#   define CLOCK_TYPE CLOCK_MONOTONIC
862#  else
863#   define CLOCK_TYPE CLOCK_REALTIME
864#  endif
865
866        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
867            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
868    }
869# endif
870# if defined(__unix__) \
871     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
872    {
873        struct timeval tv;
874
875        if (gettimeofday(&tv, NULL) == 0)
876            return TWO32TO64(tv.tv_sec, tv.tv_usec);
877    }
878# endif
879    return time(NULL);
880}
881#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
882          || defined(__DJGPP__) */
883