1/*
2 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include "internal/cryptlib.h"
11#include "bn_local.h"
12
13/*
14 * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
15 * not contain branches that may leak sensitive information.
16 *
17 * This is a static function, we ensure all callers in this file pass valid
18 * arguments: all passed pointers here are non-NULL.
19 */
20static ossl_inline
21BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
22                                 const BIGNUM *a, const BIGNUM *n,
23                                 BN_CTX *ctx, int *pnoinv)
24{
25    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
26    BIGNUM *ret = NULL;
27    int sign;
28
29    bn_check_top(a);
30    bn_check_top(n);
31
32    BN_CTX_start(ctx);
33    A = BN_CTX_get(ctx);
34    B = BN_CTX_get(ctx);
35    X = BN_CTX_get(ctx);
36    D = BN_CTX_get(ctx);
37    M = BN_CTX_get(ctx);
38    Y = BN_CTX_get(ctx);
39    T = BN_CTX_get(ctx);
40    if (T == NULL)
41        goto err;
42
43    if (in == NULL)
44        R = BN_new();
45    else
46        R = in;
47    if (R == NULL)
48        goto err;
49
50    if (!BN_one(X))
51        goto err;
52    BN_zero(Y);
53    if (BN_copy(B, a) == NULL)
54        goto err;
55    if (BN_copy(A, n) == NULL)
56        goto err;
57    A->neg = 0;
58
59    if (B->neg || (BN_ucmp(B, A) >= 0)) {
60        /*
61         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
62         * BN_div_no_branch will be called eventually.
63         */
64         {
65            BIGNUM local_B;
66            bn_init(&local_B);
67            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
68            if (!BN_nnmod(B, &local_B, A, ctx))
69                goto err;
70            /* Ensure local_B goes out of scope before any further use of B */
71        }
72    }
73    sign = -1;
74    /*-
75     * From  B = a mod |n|,  A = |n|  it follows that
76     *
77     *      0 <= B < A,
78     *     -sign*X*a  ==  B   (mod |n|),
79     *      sign*Y*a  ==  A   (mod |n|).
80     */
81
82    while (!BN_is_zero(B)) {
83        BIGNUM *tmp;
84
85        /*-
86         *      0 < B < A,
87         * (*) -sign*X*a  ==  B   (mod |n|),
88         *      sign*Y*a  ==  A   (mod |n|)
89         */
90
91        /*
92         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
93         * BN_div_no_branch will be called eventually.
94         */
95        {
96            BIGNUM local_A;
97            bn_init(&local_A);
98            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
99
100            /* (D, M) := (A/B, A%B) ... */
101            if (!BN_div(D, M, &local_A, B, ctx))
102                goto err;
103            /* Ensure local_A goes out of scope before any further use of A */
104        }
105
106        /*-
107         * Now
108         *      A = D*B + M;
109         * thus we have
110         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
111         */
112
113        tmp = A;                /* keep the BIGNUM object, the value does not
114                                 * matter */
115
116        /* (A, B) := (B, A mod B) ... */
117        A = B;
118        B = M;
119        /* ... so we have  0 <= B < A  again */
120
121        /*-
122         * Since the former  M  is now  B  and the former  B  is now  A,
123         * (**) translates into
124         *       sign*Y*a  ==  D*A + B    (mod |n|),
125         * i.e.
126         *       sign*Y*a - D*A  ==  B    (mod |n|).
127         * Similarly, (*) translates into
128         *      -sign*X*a  ==  A          (mod |n|).
129         *
130         * Thus,
131         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
132         * i.e.
133         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
134         *
135         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
136         *      -sign*X*a  ==  B   (mod |n|),
137         *       sign*Y*a  ==  A   (mod |n|).
138         * Note that  X  and  Y  stay non-negative all the time.
139         */
140
141        if (!BN_mul(tmp, D, X, ctx))
142            goto err;
143        if (!BN_add(tmp, tmp, Y))
144            goto err;
145
146        M = Y;                  /* keep the BIGNUM object, the value does not
147                                 * matter */
148        Y = X;
149        X = tmp;
150        sign = -sign;
151    }
152
153    /*-
154     * The while loop (Euclid's algorithm) ends when
155     *      A == gcd(a,n);
156     * we have
157     *       sign*Y*a  ==  A  (mod |n|),
158     * where  Y  is non-negative.
159     */
160
161    if (sign < 0) {
162        if (!BN_sub(Y, n, Y))
163            goto err;
164    }
165    /* Now  Y*a  ==  A  (mod |n|).  */
166
167    if (BN_is_one(A)) {
168        /* Y*a == 1  (mod |n|) */
169        if (!Y->neg && BN_ucmp(Y, n) < 0) {
170            if (!BN_copy(R, Y))
171                goto err;
172        } else {
173            if (!BN_nnmod(R, Y, n, ctx))
174                goto err;
175        }
176    } else {
177        *pnoinv = 1;
178        /* caller sets the BN_R_NO_INVERSE error */
179        goto err;
180    }
181
182    ret = R;
183    *pnoinv = 0;
184
185 err:
186    if ((ret == NULL) && (in == NULL))
187        BN_free(R);
188    BN_CTX_end(ctx);
189    bn_check_top(ret);
190    return ret;
191}
192
193/*
194 * This is an internal function, we assume all callers pass valid arguments:
195 * all pointers passed here are assumed non-NULL.
196 */
197BIGNUM *int_bn_mod_inverse(BIGNUM *in,
198                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
199                           int *pnoinv)
200{
201    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
202    BIGNUM *ret = NULL;
203    int sign;
204
205    /* This is invalid input so we don't worry about constant time here */
206    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
207        *pnoinv = 1;
208        return NULL;
209    }
210
211    *pnoinv = 0;
212
213    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
214        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
215        return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
216    }
217
218    bn_check_top(a);
219    bn_check_top(n);
220
221    BN_CTX_start(ctx);
222    A = BN_CTX_get(ctx);
223    B = BN_CTX_get(ctx);
224    X = BN_CTX_get(ctx);
225    D = BN_CTX_get(ctx);
226    M = BN_CTX_get(ctx);
227    Y = BN_CTX_get(ctx);
228    T = BN_CTX_get(ctx);
229    if (T == NULL)
230        goto err;
231
232    if (in == NULL)
233        R = BN_new();
234    else
235        R = in;
236    if (R == NULL)
237        goto err;
238
239    if (!BN_one(X))
240        goto err;
241    BN_zero(Y);
242    if (BN_copy(B, a) == NULL)
243        goto err;
244    if (BN_copy(A, n) == NULL)
245        goto err;
246    A->neg = 0;
247    if (B->neg || (BN_ucmp(B, A) >= 0)) {
248        if (!BN_nnmod(B, B, A, ctx))
249            goto err;
250    }
251    sign = -1;
252    /*-
253     * From  B = a mod |n|,  A = |n|  it follows that
254     *
255     *      0 <= B < A,
256     *     -sign*X*a  ==  B   (mod |n|),
257     *      sign*Y*a  ==  A   (mod |n|).
258     */
259
260    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
261        /*
262         * Binary inversion algorithm; requires odd modulus. This is faster
263         * than the general algorithm if the modulus is sufficiently small
264         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
265         * systems)
266         */
267        int shift;
268
269        while (!BN_is_zero(B)) {
270            /*-
271             *      0 < B < |n|,
272             *      0 < A <= |n|,
273             * (1) -sign*X*a  ==  B   (mod |n|),
274             * (2)  sign*Y*a  ==  A   (mod |n|)
275             */
276
277            /*
278             * Now divide B by the maximum possible power of two in the
279             * integers, and divide X by the same value mod |n|. When we're
280             * done, (1) still holds.
281             */
282            shift = 0;
283            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
284                shift++;
285
286                if (BN_is_odd(X)) {
287                    if (!BN_uadd(X, X, n))
288                        goto err;
289                }
290                /*
291                 * now X is even, so we can easily divide it by two
292                 */
293                if (!BN_rshift1(X, X))
294                    goto err;
295            }
296            if (shift > 0) {
297                if (!BN_rshift(B, B, shift))
298                    goto err;
299            }
300
301            /*
302             * Same for A and Y.  Afterwards, (2) still holds.
303             */
304            shift = 0;
305            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
306                shift++;
307
308                if (BN_is_odd(Y)) {
309                    if (!BN_uadd(Y, Y, n))
310                        goto err;
311                }
312                /* now Y is even */
313                if (!BN_rshift1(Y, Y))
314                    goto err;
315            }
316            if (shift > 0) {
317                if (!BN_rshift(A, A, shift))
318                    goto err;
319            }
320
321            /*-
322             * We still have (1) and (2).
323             * Both  A  and  B  are odd.
324             * The following computations ensure that
325             *
326             *     0 <= B < |n|,
327             *      0 < A < |n|,
328             * (1) -sign*X*a  ==  B   (mod |n|),
329             * (2)  sign*Y*a  ==  A   (mod |n|),
330             *
331             * and that either  A  or  B  is even in the next iteration.
332             */
333            if (BN_ucmp(B, A) >= 0) {
334                /* -sign*(X + Y)*a == B - A  (mod |n|) */
335                if (!BN_uadd(X, X, Y))
336                    goto err;
337                /*
338                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
339                 * actually makes the algorithm slower
340                 */
341                if (!BN_usub(B, B, A))
342                    goto err;
343            } else {
344                /*  sign*(X + Y)*a == A - B  (mod |n|) */
345                if (!BN_uadd(Y, Y, X))
346                    goto err;
347                /*
348                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
349                 */
350                if (!BN_usub(A, A, B))
351                    goto err;
352            }
353        }
354    } else {
355        /* general inversion algorithm */
356
357        while (!BN_is_zero(B)) {
358            BIGNUM *tmp;
359
360            /*-
361             *      0 < B < A,
362             * (*) -sign*X*a  ==  B   (mod |n|),
363             *      sign*Y*a  ==  A   (mod |n|)
364             */
365
366            /* (D, M) := (A/B, A%B) ... */
367            if (BN_num_bits(A) == BN_num_bits(B)) {
368                if (!BN_one(D))
369                    goto err;
370                if (!BN_sub(M, A, B))
371                    goto err;
372            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
373                /* A/B is 1, 2, or 3 */
374                if (!BN_lshift1(T, B))
375                    goto err;
376                if (BN_ucmp(A, T) < 0) {
377                    /* A < 2*B, so D=1 */
378                    if (!BN_one(D))
379                        goto err;
380                    if (!BN_sub(M, A, B))
381                        goto err;
382                } else {
383                    /* A >= 2*B, so D=2 or D=3 */
384                    if (!BN_sub(M, A, T))
385                        goto err;
386                    if (!BN_add(D, T, B))
387                        goto err; /* use D (:= 3*B) as temp */
388                    if (BN_ucmp(A, D) < 0) {
389                        /* A < 3*B, so D=2 */
390                        if (!BN_set_word(D, 2))
391                            goto err;
392                        /*
393                         * M (= A - 2*B) already has the correct value
394                         */
395                    } else {
396                        /* only D=3 remains */
397                        if (!BN_set_word(D, 3))
398                            goto err;
399                        /*
400                         * currently M = A - 2*B, but we need M = A - 3*B
401                         */
402                        if (!BN_sub(M, M, B))
403                            goto err;
404                    }
405                }
406            } else {
407                if (!BN_div(D, M, A, B, ctx))
408                    goto err;
409            }
410
411            /*-
412             * Now
413             *      A = D*B + M;
414             * thus we have
415             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
416             */
417
418            tmp = A;    /* keep the BIGNUM object, the value does not matter */
419
420            /* (A, B) := (B, A mod B) ... */
421            A = B;
422            B = M;
423            /* ... so we have  0 <= B < A  again */
424
425            /*-
426             * Since the former  M  is now  B  and the former  B  is now  A,
427             * (**) translates into
428             *       sign*Y*a  ==  D*A + B    (mod |n|),
429             * i.e.
430             *       sign*Y*a - D*A  ==  B    (mod |n|).
431             * Similarly, (*) translates into
432             *      -sign*X*a  ==  A          (mod |n|).
433             *
434             * Thus,
435             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
436             * i.e.
437             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
438             *
439             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
440             *      -sign*X*a  ==  B   (mod |n|),
441             *       sign*Y*a  ==  A   (mod |n|).
442             * Note that  X  and  Y  stay non-negative all the time.
443             */
444
445            /*
446             * most of the time D is very small, so we can optimize tmp := D*X+Y
447             */
448            if (BN_is_one(D)) {
449                if (!BN_add(tmp, X, Y))
450                    goto err;
451            } else {
452                if (BN_is_word(D, 2)) {
453                    if (!BN_lshift1(tmp, X))
454                        goto err;
455                } else if (BN_is_word(D, 4)) {
456                    if (!BN_lshift(tmp, X, 2))
457                        goto err;
458                } else if (D->top == 1) {
459                    if (!BN_copy(tmp, X))
460                        goto err;
461                    if (!BN_mul_word(tmp, D->d[0]))
462                        goto err;
463                } else {
464                    if (!BN_mul(tmp, D, X, ctx))
465                        goto err;
466                }
467                if (!BN_add(tmp, tmp, Y))
468                    goto err;
469            }
470
471            M = Y;      /* keep the BIGNUM object, the value does not matter */
472            Y = X;
473            X = tmp;
474            sign = -sign;
475        }
476    }
477
478    /*-
479     * The while loop (Euclid's algorithm) ends when
480     *      A == gcd(a,n);
481     * we have
482     *       sign*Y*a  ==  A  (mod |n|),
483     * where  Y  is non-negative.
484     */
485
486    if (sign < 0) {
487        if (!BN_sub(Y, n, Y))
488            goto err;
489    }
490    /* Now  Y*a  ==  A  (mod |n|).  */
491
492    if (BN_is_one(A)) {
493        /* Y*a == 1  (mod |n|) */
494        if (!Y->neg && BN_ucmp(Y, n) < 0) {
495            if (!BN_copy(R, Y))
496                goto err;
497        } else {
498            if (!BN_nnmod(R, Y, n, ctx))
499                goto err;
500        }
501    } else {
502        *pnoinv = 1;
503        goto err;
504    }
505    ret = R;
506 err:
507    if ((ret == NULL) && (in == NULL))
508        BN_free(R);
509    BN_CTX_end(ctx);
510    bn_check_top(ret);
511    return ret;
512}
513
514/* solves ax == 1 (mod n) */
515BIGNUM *BN_mod_inverse(BIGNUM *in,
516                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
517{
518    BN_CTX *new_ctx = NULL;
519    BIGNUM *rv;
520    int noinv = 0;
521
522    if (ctx == NULL) {
523        ctx = new_ctx = BN_CTX_new_ex(NULL);
524        if (ctx == NULL) {
525            ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
526            return NULL;
527        }
528    }
529
530    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
531    if (noinv)
532        ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);
533    BN_CTX_free(new_ctx);
534    return rv;
535}
536
537/*-
538 * This function is based on the constant-time GCD work by Bernstein and Yang:
539 * https://eprint.iacr.org/2019/266
540 * Generalized fast GCD function to allow even inputs.
541 * The algorithm first finds the shared powers of 2 between
542 * the inputs, and removes them, reducing at least one of the
543 * inputs to an odd value. Then it proceeds to calculate the GCD.
544 * Before returning the resulting GCD, we take care of adding
545 * back the powers of two removed at the beginning.
546 * Note 1: we assume the bit length of both inputs is public information,
547 * since access to top potentially leaks this information.
548 */
549int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
550{
551    BIGNUM *g, *temp = NULL;
552    BN_ULONG mask = 0;
553    int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
554
555    /* Note 2: zero input corner cases are not constant-time since they are
556     * handled immediately. An attacker can run an attack under this
557     * assumption without the need of side-channel information. */
558    if (BN_is_zero(in_b)) {
559        ret = BN_copy(r, in_a) != NULL;
560        r->neg = 0;
561        return ret;
562    }
563    if (BN_is_zero(in_a)) {
564        ret = BN_copy(r, in_b) != NULL;
565        r->neg = 0;
566        return ret;
567    }
568
569    bn_check_top(in_a);
570    bn_check_top(in_b);
571
572    BN_CTX_start(ctx);
573    temp = BN_CTX_get(ctx);
574    g = BN_CTX_get(ctx);
575
576    /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
577    if (g == NULL
578        || !BN_lshift1(g, in_b)
579        || !BN_lshift1(r, in_a))
580        goto err;
581
582    /* find shared powers of two, i.e. "shifts" >= 1 */
583    for (i = 0; i < r->dmax && i < g->dmax; i++) {
584        mask = ~(r->d[i] | g->d[i]);
585        for (j = 0; j < BN_BITS2; j++) {
586            bit &= mask;
587            shifts += bit;
588            mask >>= 1;
589        }
590    }
591
592    /* subtract shared powers of two; shifts >= 1 */
593    if (!BN_rshift(r, r, shifts)
594        || !BN_rshift(g, g, shifts))
595        goto err;
596
597    /* expand to biggest nword, with room for a possible extra word */
598    top = 1 + ((r->top >= g->top) ? r->top : g->top);
599    if (bn_wexpand(r, top) == NULL
600        || bn_wexpand(g, top) == NULL
601        || bn_wexpand(temp, top) == NULL)
602        goto err;
603
604    /* re arrange inputs s.t. r is odd */
605    BN_consttime_swap((~r->d[0]) & 1, r, g, top);
606
607    /* compute the number of iterations */
608    rlen = BN_num_bits(r);
609    glen = BN_num_bits(g);
610    m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
611
612    for (i = 0; i < m; i++) {
613        /* conditionally flip signs if delta is positive and g is odd */
614        cond = ((unsigned int)-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
615            /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
616            & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1)));
617        delta = (-cond & -delta) | ((cond - 1) & delta);
618        r->neg ^= cond;
619        /* swap */
620        BN_consttime_swap(cond, r, g, top);
621
622        /* elimination step */
623        delta++;
624        if (!BN_add(temp, g, r))
625            goto err;
626        BN_consttime_swap(g->d[0] & 1 /* g is odd */
627                /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
628                & (~((unsigned int)(g->top - 1) >> (sizeof(g->top) * 8 - 1))),
629                g, temp, top);
630        if (!BN_rshift1(g, g))
631            goto err;
632    }
633
634    /* remove possible negative sign */
635    r->neg = 0;
636    /* add powers of 2 removed, then correct the artificial shift */
637    if (!BN_lshift(r, r, shifts)
638        || !BN_rshift1(r, r))
639        goto err;
640
641    ret = 1;
642
643 err:
644    BN_CTX_end(ctx);
645    bn_check_top(r);
646    return ret;
647}
648