1/*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <assert.h>
11#include <openssl/bn.h>
12#include "internal/cryptlib.h"
13#include "bn_local.h"
14
15/* The old slow way */
16#if 0
17int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
18           BN_CTX *ctx)
19{
20    int i, nm, nd;
21    int ret = 0;
22    BIGNUM *D;
23
24    bn_check_top(m);
25    bn_check_top(d);
26    if (BN_is_zero(d)) {
27        ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
28        return 0;
29    }
30
31    if (BN_ucmp(m, d) < 0) {
32        if (rem != NULL) {
33            if (BN_copy(rem, m) == NULL)
34                return 0;
35        }
36        if (dv != NULL)
37            BN_zero(dv);
38        return 1;
39    }
40
41    BN_CTX_start(ctx);
42    D = BN_CTX_get(ctx);
43    if (dv == NULL)
44        dv = BN_CTX_get(ctx);
45    if (rem == NULL)
46        rem = BN_CTX_get(ctx);
47    if (D == NULL || dv == NULL || rem == NULL)
48        goto end;
49
50    nd = BN_num_bits(d);
51    nm = BN_num_bits(m);
52    if (BN_copy(D, d) == NULL)
53        goto end;
54    if (BN_copy(rem, m) == NULL)
55        goto end;
56
57    /*
58     * The next 2 are needed so we can do a dv->d[0]|=1 later since
59     * BN_lshift1 will only work once there is a value :-)
60     */
61    BN_zero(dv);
62    if (bn_wexpand(dv, 1) == NULL)
63        goto end;
64    dv->top = 1;
65
66    if (!BN_lshift(D, D, nm - nd))
67        goto end;
68    for (i = nm - nd; i >= 0; i--) {
69        if (!BN_lshift1(dv, dv))
70            goto end;
71        if (BN_ucmp(rem, D) >= 0) {
72            dv->d[0] |= 1;
73            if (!BN_usub(rem, rem, D))
74                goto end;
75        }
76/* CAN IMPROVE (and have now :=) */
77        if (!BN_rshift1(D, D))
78            goto end;
79    }
80    rem->neg = BN_is_zero(rem) ? 0 : m->neg;
81    dv->neg = m->neg ^ d->neg;
82    ret = 1;
83 end:
84    BN_CTX_end(ctx);
85    return ret;
86}
87
88#else
89
90# if defined(BN_DIV3W)
91BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
92# elif 0
93/*
94 * This is #if-ed away, because it's a reference for assembly implementations,
95 * where it can and should be made constant-time. But if you want to test it,
96 * just replace 0 with 1.
97 */
98#  if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
99#   undef BN_ULLONG
100#   define BN_ULLONG uint128_t
101#   define BN_LLONG
102#  endif
103
104#  ifdef BN_LLONG
105#   define BN_DIV3W
106/*
107 * Interface is somewhat quirky, |m| is pointer to most significant limb,
108 * and less significant limb is referred at |m[-1]|. This means that caller
109 * is responsible for ensuring that |m[-1]| is valid. Second condition that
110 * has to be met is that |d0|'s most significant bit has to be set. Or in
111 * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top
112 * does all this. The subroutine considers four limbs, two of which are
113 * "overlapping," hence the name...
114 */
115static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
116{
117    BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1];
118    BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1;
119    BN_ULONG Q = 0, mask;
120    int i;
121
122    for (i = 0; i < BN_BITS2; i++) {
123        Q <<= 1;
124        if (R >= D) {
125            Q |= 1;
126            R -= D;
127        }
128        D >>= 1;
129    }
130
131    mask = 0 - (Q >> (BN_BITS2 - 1));   /* does it overflow? */
132
133    Q <<= 1;
134    Q |= (R >= D);
135
136    return (Q | mask) & BN_MASK2;
137}
138#  endif
139# endif
140
141static int bn_left_align(BIGNUM *num)
142{
143    BN_ULONG *d = num->d, n, m, rmask;
144    int top = num->top;
145    int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
146
147    lshift = BN_BITS2 - rshift;
148    rshift %= BN_BITS2;            /* say no to undefined behaviour */
149    rmask = (BN_ULONG)0 - rshift;  /* rmask = 0 - (rshift != 0) */
150    rmask |= rmask >> 8;
151
152    for (i = 0, m = 0; i < top; i++) {
153        n = d[i];
154        d[i] = ((n << lshift) | m) & BN_MASK2;
155        m = (n >> rshift) & rmask;
156    }
157
158    return lshift;
159}
160
161# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
162    && !defined(PEDANTIC) && !defined(BN_DIV3W)
163#  if defined(__GNUC__) && __GNUC__>=2
164#   if defined(__i386) || defined (__i386__)
165   /*-
166    * There were two reasons for implementing this template:
167    * - GNU C generates a call to a function (__udivdi3 to be exact)
168    *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
169    *   understand why...);
170    * - divl doesn't only calculate quotient, but also leaves
171    *   remainder in %edx which we can definitely use here:-)
172    */
173#    undef bn_div_words
174#    define bn_div_words(n0,n1,d0)                \
175        ({  asm volatile (                      \
176                "divl   %4"                     \
177                : "=a"(q), "=d"(rem)            \
178                : "a"(n1), "d"(n0), "r"(d0)     \
179                : "cc");                        \
180            q;                                  \
181        })
182#    define REMAINDER_IS_ALREADY_CALCULATED
183#   elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
184   /*
185    * Same story here, but it's 128-bit by 64-bit division. Wow!
186    */
187#    undef bn_div_words
188#    define bn_div_words(n0,n1,d0)                \
189        ({  asm volatile (                      \
190                "divq   %4"                     \
191                : "=a"(q), "=d"(rem)            \
192                : "a"(n1), "d"(n0), "r"(d0)     \
193                : "cc");                        \
194            q;                                  \
195        })
196#    define REMAINDER_IS_ALREADY_CALCULATED
197#   endif                       /* __<cpu> */
198#  endif                        /* __GNUC__ */
199# endif                         /* OPENSSL_NO_ASM */
200
201/*-
202 * BN_div computes  dv := num / divisor, rounding towards
203 * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
204 * Thus:
205 *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
206 *     rm->neg == num->neg                 (unless the remainder is zero)
207 * If 'dv' or 'rm' is NULL, the respective value is not returned.
208 */
209int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
210           BN_CTX *ctx)
211{
212    int ret;
213
214    if (BN_is_zero(divisor)) {
215        ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
216        return 0;
217    }
218
219    /*
220     * Invalid zero-padding would have particularly bad consequences so don't
221     * just rely on bn_check_top() here (bn_check_top() works only for
222     * BN_DEBUG builds)
223     */
224    if (divisor->d[divisor->top - 1] == 0) {
225        ERR_raise(ERR_LIB_BN, BN_R_NOT_INITIALIZED);
226        return 0;
227    }
228
229    ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
230
231    if (ret) {
232        if (dv != NULL)
233            bn_correct_top(dv);
234        if (rm != NULL)
235            bn_correct_top(rm);
236    }
237
238    return ret;
239}
240
241/*
242 * It's argued that *length* of *significant* part of divisor is public.
243 * Even if it's private modulus that is. Again, *length* is assumed
244 * public, but not *value*. Former is likely to be pre-defined by
245 * algorithm with bit granularity, though below subroutine is invariant
246 * of limb length. Thanks to this assumption we can require that |divisor|
247 * may not be zero-padded, yet claim this subroutine "constant-time"(*).
248 * This is because zero-padded dividend, |num|, is tolerated, so that
249 * caller can pass dividend of public length(*), but with smaller amount
250 * of significant limbs. This naturally means that quotient, |dv|, would
251 * contain correspongly less significant limbs as well, and will be zero-
252 * padded accordingly. Returned remainder, |rm|, will have same bit length
253 * as divisor, also zero-padded if needed. These actually leave sign bits
254 * in ambiguous state. In sense that we try to avoid negative zeros, while
255 * zero-padded zeros would retain sign.
256 *
257 * (*) "Constant-time-ness" has two pre-conditions:
258 *
259 *     - availability of constant-time bn_div_3_words;
260 *     - dividend is at least as "wide" as divisor, limb-wise, zero-padded
261 *       if so required, which shouldn't be a privacy problem, because
262 *       divisor's length is considered public;
263 */
264int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
265                     const BIGNUM *divisor, BN_CTX *ctx)
266{
267    int norm_shift, i, j, loop;
268    BIGNUM *tmp, *snum, *sdiv, *res;
269    BN_ULONG *resp, *wnum, *wnumtop;
270    BN_ULONG d0, d1;
271    int num_n, div_n, num_neg;
272
273    assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
274
275    bn_check_top(num);
276    bn_check_top(divisor);
277    bn_check_top(dv);
278    bn_check_top(rm);
279
280    BN_CTX_start(ctx);
281    res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
282    tmp = BN_CTX_get(ctx);
283    snum = BN_CTX_get(ctx);
284    sdiv = BN_CTX_get(ctx);
285    if (sdiv == NULL)
286        goto err;
287
288    /* First we normalise the numbers */
289    if (!BN_copy(sdiv, divisor))
290        goto err;
291    norm_shift = bn_left_align(sdiv);
292    sdiv->neg = 0;
293    /*
294     * Note that bn_lshift_fixed_top's output is always one limb longer
295     * than input, even when norm_shift is zero. This means that amount of
296     * inner loop iterations is invariant of dividend value, and that one
297     * doesn't need to compare dividend and divisor if they were originally
298     * of the same bit length.
299     */
300    if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
301        goto err;
302
303    div_n = sdiv->top;
304    num_n = snum->top;
305
306    if (num_n <= div_n) {
307        /* caller didn't pad dividend -> no constant-time guarantee... */
308        if (bn_wexpand(snum, div_n + 1) == NULL)
309            goto err;
310        memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
311        snum->top = num_n = div_n + 1;
312    }
313
314    loop = num_n - div_n;
315    /*
316     * Lets setup a 'window' into snum This is the part that corresponds to
317     * the current 'area' being divided
318     */
319    wnum = &(snum->d[loop]);
320    wnumtop = &(snum->d[num_n - 1]);
321
322    /* Get the top 2 words of sdiv */
323    d0 = sdiv->d[div_n - 1];
324    d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
325
326    /* Setup quotient */
327    if (!bn_wexpand(res, loop))
328        goto err;
329    num_neg = num->neg;
330    res->neg = (num_neg ^ divisor->neg);
331    res->top = loop;
332    res->flags |= BN_FLG_FIXED_TOP;
333    resp = &(res->d[loop]);
334
335    /* space for temp */
336    if (!bn_wexpand(tmp, (div_n + 1)))
337        goto err;
338
339    for (i = 0; i < loop; i++, wnumtop--) {
340        BN_ULONG q, l0;
341        /*
342         * the first part of the loop uses the top two words of snum and sdiv
343         * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
344         */
345# if defined(BN_DIV3W)
346        q = bn_div_3_words(wnumtop, d1, d0);
347# else
348        BN_ULONG n0, n1, rem = 0;
349
350        n0 = wnumtop[0];
351        n1 = wnumtop[-1];
352        if (n0 == d0)
353            q = BN_MASK2;
354        else {                  /* n0 < d0 */
355            BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
356#  ifdef BN_LLONG
357            BN_ULLONG t2;
358
359#   if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
360            q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0);
361#   else
362            q = bn_div_words(n0, n1, d0);
363#   endif
364
365#   ifndef REMAINDER_IS_ALREADY_CALCULATED
366            /*
367             * rem doesn't have to be BN_ULLONG. The least we
368             * know it's less that d0, isn't it?
369             */
370            rem = (n1 - q * d0) & BN_MASK2;
371#   endif
372            t2 = (BN_ULLONG) d1 *q;
373
374            for (;;) {
375                if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2))
376                    break;
377                q--;
378                rem += d0;
379                if (rem < d0)
380                    break;      /* don't let rem overflow */
381                t2 -= d1;
382            }
383#  else                         /* !BN_LLONG */
384            BN_ULONG t2l, t2h;
385
386            q = bn_div_words(n0, n1, d0);
387#   ifndef REMAINDER_IS_ALREADY_CALCULATED
388            rem = (n1 - q * d0) & BN_MASK2;
389#   endif
390
391#   if defined(BN_UMULT_LOHI)
392            BN_UMULT_LOHI(t2l, t2h, d1, q);
393#   elif defined(BN_UMULT_HIGH)
394            t2l = d1 * q;
395            t2h = BN_UMULT_HIGH(d1, q);
396#   else
397            {
398                BN_ULONG ql, qh;
399                t2l = LBITS(d1);
400                t2h = HBITS(d1);
401                ql = LBITS(q);
402                qh = HBITS(q);
403                mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
404            }
405#   endif
406
407            for (;;) {
408                if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
409                    break;
410                q--;
411                rem += d0;
412                if (rem < d0)
413                    break;      /* don't let rem overflow */
414                if (t2l < d1)
415                    t2h--;
416                t2l -= d1;
417            }
418#  endif                        /* !BN_LLONG */
419        }
420# endif                         /* !BN_DIV3W */
421
422        l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
423        tmp->d[div_n] = l0;
424        wnum--;
425        /*
426         * ignore top values of the bignums just sub the two BN_ULONG arrays
427         * with bn_sub_words
428         */
429        l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
430        q -= l0;
431        /*
432         * Note: As we have considered only the leading two BN_ULONGs in
433         * the calculation of q, sdiv * q might be greater than wnum (but
434         * then (q-1) * sdiv is less or equal than wnum)
435         */
436        for (l0 = 0 - l0, j = 0; j < div_n; j++)
437            tmp->d[j] = sdiv->d[j] & l0;
438        l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
439        (*wnumtop) += l0;
440        assert((*wnumtop) == 0);
441
442        /* store part of the result */
443        *--resp = q;
444    }
445    /* snum holds remainder, it's as wide as divisor */
446    snum->neg = num_neg;
447    snum->top = div_n;
448    snum->flags |= BN_FLG_FIXED_TOP;
449
450    if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0)
451        goto err;
452
453    BN_CTX_end(ctx);
454    return 1;
455 err:
456    bn_check_top(rm);
457    BN_CTX_end(ctx);
458    return 0;
459}
460#endif
461