1/*! \file */
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22   the Altix.  Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30#define KMP_WEIGHTED_ITERATIONS_SUPPORTED                                      \
31  (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED &&                       \
32   (KMP_ARCH_X86 || KMP_ARCH_X86_64))
33
34#define TASK_CURRENT_NOT_QUEUED 0
35#define TASK_CURRENT_QUEUED 1
36
37#ifdef BUILD_TIED_TASK_STACK
38#define TASK_STACK_EMPTY 0 // entries when the stack is empty
39#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
40// Number of entries in each task stack array
41#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
42// Mask for determining index into stack block
43#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
44#endif // BUILD_TIED_TASK_STACK
45
46#define TASK_NOT_PUSHED 1
47#define TASK_SUCCESSFULLY_PUSHED 0
48#define TASK_TIED 1
49#define TASK_UNTIED 0
50#define TASK_EXPLICIT 1
51#define TASK_IMPLICIT 0
52#define TASK_PROXY 1
53#define TASK_FULL 0
54#define TASK_DETACHABLE 1
55#define TASK_UNDETACHABLE 0
56
57#define KMP_CANCEL_THREADS
58#define KMP_THREAD_ATTR
59
60// Android does not have pthread_cancel.  Undefine KMP_CANCEL_THREADS if being
61// built on Android
62#if defined(__ANDROID__)
63#undef KMP_CANCEL_THREADS
64#endif
65
66// Some WASI targets (e.g., wasm32-wasi-threads) do not support thread
67// cancellation.
68#if KMP_OS_WASI
69#undef KMP_CANCEL_THREADS
70#endif
71
72#if !KMP_OS_WASI
73#include <signal.h>
74#endif
75#include <stdarg.h>
76#include <stddef.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <string.h>
80#include <limits>
81#include <type_traits>
82/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
83   Microsoft library. Some macros provided below to replace these functions  */
84#ifndef __ABSOFT_WIN
85#include <sys/types.h>
86#endif
87#include <limits.h>
88#include <time.h>
89
90#include <errno.h>
91
92#include "kmp_os.h"
93
94#include "kmp_safe_c_api.h"
95
96#if KMP_STATS_ENABLED
97class kmp_stats_list;
98#endif
99
100#if KMP_USE_HIER_SCHED
101// Only include hierarchical scheduling if affinity is supported
102#undef KMP_USE_HIER_SCHED
103#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
104#endif
105
106#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
107#include "hwloc.h"
108#ifndef HWLOC_OBJ_NUMANODE
109#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
110#endif
111#ifndef HWLOC_OBJ_PACKAGE
112#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
113#endif
114#endif
115
116#if KMP_ARCH_X86 || KMP_ARCH_X86_64
117#include <xmmintrin.h>
118#endif
119
120// The below has to be defined before including "kmp_barrier.h".
121#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
122#define KMP_INTERNAL_FREE(p) free(p)
123#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
124#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
125
126#include "kmp_debug.h"
127#include "kmp_lock.h"
128#include "kmp_version.h"
129#include "kmp_barrier.h"
130#if USE_DEBUGGER
131#include "kmp_debugger.h"
132#endif
133#include "kmp_i18n.h"
134
135#define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS)
136
137#include "kmp_wrapper_malloc.h"
138#if KMP_OS_UNIX
139#include <unistd.h>
140#if !defined NSIG && defined _NSIG
141#define NSIG _NSIG
142#endif
143#endif
144
145#if KMP_OS_LINUX
146#pragma weak clock_gettime
147#endif
148
149#if OMPT_SUPPORT
150#include "ompt-internal.h"
151#endif
152
153#if OMPD_SUPPORT
154#include "ompd-specific.h"
155#endif
156
157#ifndef UNLIKELY
158#define UNLIKELY(x) (x)
159#endif
160
161// Affinity format function
162#include "kmp_str.h"
163
164// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
165// 3 - fast allocation using sync, non-sync free lists of any size, non-self
166// free lists of limited size.
167#ifndef USE_FAST_MEMORY
168#define USE_FAST_MEMORY 3
169#endif
170
171#ifndef KMP_NESTED_HOT_TEAMS
172#define KMP_NESTED_HOT_TEAMS 0
173#define USE_NESTED_HOT_ARG(x)
174#else
175#if KMP_NESTED_HOT_TEAMS
176#define USE_NESTED_HOT_ARG(x) , x
177#else
178#define USE_NESTED_HOT_ARG(x)
179#endif
180#endif
181
182// Assume using BGET compare_exchange instruction instead of lock by default.
183#ifndef USE_CMP_XCHG_FOR_BGET
184#define USE_CMP_XCHG_FOR_BGET 1
185#endif
186
187// Test to see if queuing lock is better than bootstrap lock for bget
188// #ifndef USE_QUEUING_LOCK_FOR_BGET
189// #define USE_QUEUING_LOCK_FOR_BGET
190// #endif
191
192#define KMP_NSEC_PER_SEC 1000000000L
193#define KMP_USEC_PER_SEC 1000000L
194#define KMP_NSEC_PER_USEC 1000L
195
196/*!
197@ingroup BASIC_TYPES
198@{
199*/
200
201/*!
202Values for bit flags used in the ident_t to describe the fields.
203*/
204enum {
205  /*! Use trampoline for internal microtasks */
206  KMP_IDENT_IMB = 0x01,
207  /*! Use c-style ident structure */
208  KMP_IDENT_KMPC = 0x02,
209  /* 0x04 is no longer used */
210  /*! Entry point generated by auto-parallelization */
211  KMP_IDENT_AUTOPAR = 0x08,
212  /*! Compiler generates atomic reduction option for kmpc_reduce* */
213  KMP_IDENT_ATOMIC_REDUCE = 0x10,
214  /*! To mark a 'barrier' directive in user code */
215  KMP_IDENT_BARRIER_EXPL = 0x20,
216  /*! To Mark implicit barriers. */
217  KMP_IDENT_BARRIER_IMPL = 0x0040,
218  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
219  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
220  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
221
222  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
223  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
224
225  /*! To mark a static loop in OMPT callbacks */
226  KMP_IDENT_WORK_LOOP = 0x200,
227  /*! To mark a sections directive in OMPT callbacks */
228  KMP_IDENT_WORK_SECTIONS = 0x400,
229  /*! To mark a distribute construct in OMPT callbacks */
230  KMP_IDENT_WORK_DISTRIBUTE = 0x800,
231  /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
232      not currently used. If one day we need more bits, then we can use
233      an invalid combination of hints to mean that another, larger field
234      should be used in a different flag. */
235  KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
236  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
237  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
238  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
239  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
240  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
241};
242
243/*!
244 * The ident structure that describes a source location.
245 */
246typedef struct ident {
247  kmp_int32 reserved_1; /**<  might be used in Fortran; see above  */
248  kmp_int32 flags; /**<  also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
249                      identifies this union member  */
250  kmp_int32 reserved_2; /**<  not really used in Fortran any more; see above */
251#if USE_ITT_BUILD
252/*  but currently used for storing region-specific ITT */
253/*  contextual information. */
254#endif /* USE_ITT_BUILD */
255  kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++  */
256  char const *psource; /**< String describing the source location.
257                       The string is composed of semi-colon separated fields
258                       which describe the source file, the function and a pair
259                       of line numbers that delimit the construct. */
260  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
261  kmp_int32 get_openmp_version() {
262    return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
263  }
264} ident_t;
265/*!
266@}
267*/
268
269// Some forward declarations.
270typedef union kmp_team kmp_team_t;
271typedef struct kmp_taskdata kmp_taskdata_t;
272typedef union kmp_task_team kmp_task_team_t;
273typedef union kmp_team kmp_team_p;
274typedef union kmp_info kmp_info_p;
275typedef union kmp_root kmp_root_p;
276
277template <bool C = false, bool S = true> class kmp_flag_32;
278template <bool C = false, bool S = true> class kmp_flag_64;
279template <bool C = false, bool S = true> class kmp_atomic_flag_64;
280class kmp_flag_oncore;
281
282#ifdef __cplusplus
283extern "C" {
284#endif
285
286/* ------------------------------------------------------------------------ */
287
288/* Pack two 32-bit signed integers into a 64-bit signed integer */
289/* ToDo: Fix word ordering for big-endian machines. */
290#define KMP_PACK_64(HIGH_32, LOW_32)                                           \
291  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
292
293// Generic string manipulation macros. Assume that _x is of type char *
294#define SKIP_WS(_x)                                                            \
295  {                                                                            \
296    while (*(_x) == ' ' || *(_x) == '\t')                                      \
297      (_x)++;                                                                  \
298  }
299#define SKIP_DIGITS(_x)                                                        \
300  {                                                                            \
301    while (*(_x) >= '0' && *(_x) <= '9')                                       \
302      (_x)++;                                                                  \
303  }
304#define SKIP_TOKEN(_x)                                                         \
305  {                                                                            \
306    while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
307           (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_')                     \
308      (_x)++;                                                                  \
309  }
310#define SKIP_TO(_x, _c)                                                        \
311  {                                                                            \
312    while (*(_x) != '\0' && *(_x) != (_c))                                     \
313      (_x)++;                                                                  \
314  }
315
316/* ------------------------------------------------------------------------ */
317
318#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
319#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
320
321/* ------------------------------------------------------------------------ */
322/* Enumeration types */
323
324enum kmp_state_timer {
325  ts_stop,
326  ts_start,
327  ts_pause,
328
329  ts_last_state
330};
331
332enum dynamic_mode {
333  dynamic_default,
334#ifdef USE_LOAD_BALANCE
335  dynamic_load_balance,
336#endif /* USE_LOAD_BALANCE */
337  dynamic_random,
338  dynamic_thread_limit,
339  dynamic_max
340};
341
342/* external schedule constants, duplicate enum omp_sched in omp.h in order to
343 * not include it here */
344#ifndef KMP_SCHED_TYPE_DEFINED
345#define KMP_SCHED_TYPE_DEFINED
346typedef enum kmp_sched {
347  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
348  // Note: need to adjust __kmp_sch_map global array in case enum is changed
349  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked           (33)
350  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked          (35)
351  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked           (36)
352  kmp_sched_auto = 4, // mapped to kmp_sch_auto                     (38)
353  kmp_sched_upper_std = 5, // upper bound for standard schedules
354  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
355  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
356#if KMP_STATIC_STEAL_ENABLED
357  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
358#endif
359  kmp_sched_upper,
360  kmp_sched_default = kmp_sched_static, // default scheduling
361  kmp_sched_monotonic = 0x80000000
362} kmp_sched_t;
363#endif
364
365/*!
366 @ingroup WORK_SHARING
367 * Describes the loop schedule to be used for a parallel for loop.
368 */
369enum sched_type : kmp_int32 {
370  kmp_sch_lower = 32, /**< lower bound for unordered values */
371  kmp_sch_static_chunked = 33,
372  kmp_sch_static = 34, /**< static unspecialized */
373  kmp_sch_dynamic_chunked = 35,
374  kmp_sch_guided_chunked = 36, /**< guided unspecialized */
375  kmp_sch_runtime = 37,
376  kmp_sch_auto = 38, /**< auto */
377  kmp_sch_trapezoidal = 39,
378
379  /* accessible only through KMP_SCHEDULE environment variable */
380  kmp_sch_static_greedy = 40,
381  kmp_sch_static_balanced = 41,
382  /* accessible only through KMP_SCHEDULE environment variable */
383  kmp_sch_guided_iterative_chunked = 42,
384  kmp_sch_guided_analytical_chunked = 43,
385  /* accessible only through KMP_SCHEDULE environment variable */
386  kmp_sch_static_steal = 44,
387
388  /* static with chunk adjustment (e.g., simd) */
389  kmp_sch_static_balanced_chunked = 45,
390  kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
391  kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
392
393  /* accessible only through KMP_SCHEDULE environment variable */
394  kmp_sch_upper, /**< upper bound for unordered values */
395
396  kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
397  kmp_ord_static_chunked = 65,
398  kmp_ord_static = 66, /**< ordered static unspecialized */
399  kmp_ord_dynamic_chunked = 67,
400  kmp_ord_guided_chunked = 68,
401  kmp_ord_runtime = 69,
402  kmp_ord_auto = 70, /**< ordered auto */
403  kmp_ord_trapezoidal = 71,
404  kmp_ord_upper, /**< upper bound for ordered values */
405
406  /* Schedules for Distribute construct */
407  kmp_distribute_static_chunked = 91, /**< distribute static chunked */
408  kmp_distribute_static = 92, /**< distribute static unspecialized */
409
410  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
411     single iteration/chunk, even if the loop is serialized. For the schedule
412     types listed above, the entire iteration vector is returned if the loop is
413     serialized. This doesn't work for gcc/gcomp sections. */
414  kmp_nm_lower = 160, /**< lower bound for nomerge values */
415
416  kmp_nm_static_chunked =
417      (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
418  kmp_nm_static = 162, /**< static unspecialized */
419  kmp_nm_dynamic_chunked = 163,
420  kmp_nm_guided_chunked = 164, /**< guided unspecialized */
421  kmp_nm_runtime = 165,
422  kmp_nm_auto = 166, /**< auto */
423  kmp_nm_trapezoidal = 167,
424
425  /* accessible only through KMP_SCHEDULE environment variable */
426  kmp_nm_static_greedy = 168,
427  kmp_nm_static_balanced = 169,
428  /* accessible only through KMP_SCHEDULE environment variable */
429  kmp_nm_guided_iterative_chunked = 170,
430  kmp_nm_guided_analytical_chunked = 171,
431  kmp_nm_static_steal =
432      172, /* accessible only through OMP_SCHEDULE environment variable */
433
434  kmp_nm_ord_static_chunked = 193,
435  kmp_nm_ord_static = 194, /**< ordered static unspecialized */
436  kmp_nm_ord_dynamic_chunked = 195,
437  kmp_nm_ord_guided_chunked = 196,
438  kmp_nm_ord_runtime = 197,
439  kmp_nm_ord_auto = 198, /**< auto */
440  kmp_nm_ord_trapezoidal = 199,
441  kmp_nm_upper, /**< upper bound for nomerge values */
442
443  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
444     we need to distinguish the three possible cases (no modifier, monotonic
445     modifier, nonmonotonic modifier), we need separate bits for each modifier.
446     The absence of monotonic does not imply nonmonotonic, especially since 4.5
447     says that the behaviour of the "no modifier" case is implementation defined
448     in 4.5, but will become "nonmonotonic" in 5.0.
449
450     Since we're passing a full 32 bit value, we can use a couple of high bits
451     for these flags; out of paranoia we avoid the sign bit.
452
453     These modifiers can be or-ed into non-static schedules by the compiler to
454     pass the additional information. They will be stripped early in the
455     processing in __kmp_dispatch_init when setting up schedules, so most of the
456     code won't ever see schedules with these bits set.  */
457  kmp_sch_modifier_monotonic =
458      (1 << 29), /**< Set if the monotonic schedule modifier was present */
459  kmp_sch_modifier_nonmonotonic =
460      (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
461
462#define SCHEDULE_WITHOUT_MODIFIERS(s)                                          \
463  (enum sched_type)(                                                           \
464      (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
465#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
466#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
467#define SCHEDULE_HAS_NO_MODIFIERS(s)                                           \
468  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
469#define SCHEDULE_GET_MODIFIERS(s)                                              \
470  ((enum sched_type)(                                                          \
471      (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
472#define SCHEDULE_SET_MODIFIERS(s, m)                                           \
473  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
474#define SCHEDULE_NONMONOTONIC 0
475#define SCHEDULE_MONOTONIC 1
476
477  kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
478};
479
480// Apply modifiers on internal kind to standard kind
481static inline void
482__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
483                               enum sched_type internal_kind) {
484  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
485    *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
486  }
487}
488
489// Apply modifiers on standard kind to internal kind
490static inline void
491__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
492                               enum sched_type *internal_kind) {
493  if ((int)kind & (int)kmp_sched_monotonic) {
494    *internal_kind = (enum sched_type)((int)*internal_kind |
495                                       (int)kmp_sch_modifier_monotonic);
496  }
497}
498
499// Get standard schedule without modifiers
500static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
501  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
502}
503
504/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
505typedef union kmp_r_sched {
506  struct {
507    enum sched_type r_sched_type;
508    int chunk;
509  };
510  kmp_int64 sched;
511} kmp_r_sched_t;
512
513extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
514// internal schedule types
515
516enum library_type {
517  library_none,
518  library_serial,
519  library_turnaround,
520  library_throughput
521};
522
523#if KMP_OS_LINUX
524enum clock_function_type {
525  clock_function_gettimeofday,
526  clock_function_clock_gettime
527};
528#endif /* KMP_OS_LINUX */
529
530#if KMP_MIC_SUPPORTED
531enum mic_type { non_mic, mic1, mic2, mic3, dummy };
532#endif
533
534/* -- fast reduction stuff ------------------------------------------------ */
535
536#undef KMP_FAST_REDUCTION_BARRIER
537#define KMP_FAST_REDUCTION_BARRIER 1
538
539#undef KMP_FAST_REDUCTION_CORE_DUO
540#if KMP_ARCH_X86 || KMP_ARCH_X86_64
541#define KMP_FAST_REDUCTION_CORE_DUO 1
542#endif
543
544enum _reduction_method {
545  reduction_method_not_defined = 0,
546  critical_reduce_block = (1 << 8),
547  atomic_reduce_block = (2 << 8),
548  tree_reduce_block = (3 << 8),
549  empty_reduce_block = (4 << 8)
550};
551
552// Description of the packed_reduction_method variable:
553// The packed_reduction_method variable consists of two enum types variables
554// that are packed together into 0-th byte and 1-st byte:
555// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
556// barrier that will be used in fast reduction: bs_plain_barrier or
557// bs_reduction_barrier
558// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
559// be used in fast reduction;
560// Reduction method is of 'enum _reduction_method' type and it's defined the way
561// so that the bits of 0-th byte are empty, so no need to execute a shift
562// instruction while packing/unpacking
563
564#if KMP_FAST_REDUCTION_BARRIER
565#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
566  ((reduction_method) | (barrier_type))
567
568#define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
569  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
570
571#define UNPACK_REDUCTION_BARRIER(packed_reduction_method)                      \
572  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
573#else
574#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
575  (reduction_method)
576
577#define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
578  (packed_reduction_method)
579
580#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
581#endif
582
583#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block)  \
584  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) ==                       \
585   (which_reduction_block))
586
587#if KMP_FAST_REDUCTION_BARRIER
588#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER                               \
589  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
590
591#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER                                   \
592  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
593#endif
594
595typedef int PACKED_REDUCTION_METHOD_T;
596
597/* -- end of fast reduction stuff ----------------------------------------- */
598
599#if KMP_OS_WINDOWS
600#define USE_CBLKDATA
601#if KMP_MSVC_COMPAT
602#pragma warning(push)
603#pragma warning(disable : 271 310)
604#endif
605#include <windows.h>
606#if KMP_MSVC_COMPAT
607#pragma warning(pop)
608#endif
609#endif
610
611#if KMP_OS_UNIX
612#if !KMP_OS_WASI
613#include <dlfcn.h>
614#endif
615#include <pthread.h>
616#endif
617
618enum kmp_hw_t : int {
619  KMP_HW_UNKNOWN = -1,
620  KMP_HW_SOCKET = 0,
621  KMP_HW_PROC_GROUP,
622  KMP_HW_NUMA,
623  KMP_HW_DIE,
624  KMP_HW_LLC,
625  KMP_HW_L3,
626  KMP_HW_TILE,
627  KMP_HW_MODULE,
628  KMP_HW_L2,
629  KMP_HW_L1,
630  KMP_HW_CORE,
631  KMP_HW_THREAD,
632  KMP_HW_LAST
633};
634
635typedef enum kmp_hw_core_type_t {
636  KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
637#if KMP_ARCH_X86 || KMP_ARCH_X86_64
638  KMP_HW_CORE_TYPE_ATOM = 0x20,
639  KMP_HW_CORE_TYPE_CORE = 0x40,
640  KMP_HW_MAX_NUM_CORE_TYPES = 3,
641#else
642  KMP_HW_MAX_NUM_CORE_TYPES = 1,
643#endif
644} kmp_hw_core_type_t;
645
646#define KMP_HW_MAX_NUM_CORE_EFFS 8
647
648#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type)                                   \
649  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
650#define KMP_ASSERT_VALID_HW_TYPE(type)                                         \
651  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
652
653#define KMP_FOREACH_HW_TYPE(type)                                              \
654  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST;                        \
655       type = (kmp_hw_t)((int)type + 1))
656
657const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
658const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
659const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
660
661/* Only Linux* OS and Windows* OS support thread affinity. */
662#if KMP_AFFINITY_SUPPORTED
663
664// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
665#if KMP_OS_WINDOWS
666#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
667typedef struct GROUP_AFFINITY {
668  KAFFINITY Mask;
669  WORD Group;
670  WORD Reserved[3];
671} GROUP_AFFINITY;
672#endif /* _MSC_VER < 1600 */
673#if KMP_GROUP_AFFINITY
674extern int __kmp_num_proc_groups;
675#else
676static const int __kmp_num_proc_groups = 1;
677#endif /* KMP_GROUP_AFFINITY */
678typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
679extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
680
681typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
682extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
683
684typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
685extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
686
687typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
688                                             GROUP_AFFINITY *);
689extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
690#endif /* KMP_OS_WINDOWS */
691
692#if KMP_USE_HWLOC
693extern hwloc_topology_t __kmp_hwloc_topology;
694extern int __kmp_hwloc_error;
695#endif
696
697extern size_t __kmp_affin_mask_size;
698#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
699#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
700#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
701#define KMP_CPU_SET_ITERATE(i, mask)                                           \
702  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
703#define KMP_CPU_SET(i, mask) (mask)->set(i)
704#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
705#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
706#define KMP_CPU_ZERO(mask) (mask)->zero()
707#define KMP_CPU_ISEMPTY(mask) (mask)->empty()
708#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
709#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
710#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
711#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
712#define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
713#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
714#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
715#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
716#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
717#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
718#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
719#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
720#define KMP_CPU_ALLOC_ARRAY(arr, n)                                            \
721  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
722#define KMP_CPU_FREE_ARRAY(arr, n)                                             \
723  __kmp_affinity_dispatch->deallocate_mask_array(arr)
724#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
725#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
726#define __kmp_get_system_affinity(mask, abort_bool)                            \
727  (mask)->get_system_affinity(abort_bool)
728#define __kmp_set_system_affinity(mask, abort_bool)                            \
729  (mask)->set_system_affinity(abort_bool)
730#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
731
732class KMPAffinity {
733public:
734  class Mask {
735  public:
736    void *operator new(size_t n);
737    void operator delete(void *p);
738    void *operator new[](size_t n);
739    void operator delete[](void *p);
740    virtual ~Mask() {}
741    // Set bit i to 1
742    virtual void set(int i) {}
743    // Return bit i
744    virtual bool is_set(int i) const { return false; }
745    // Set bit i to 0
746    virtual void clear(int i) {}
747    // Zero out entire mask
748    virtual void zero() {}
749    // Check whether mask is empty
750    virtual bool empty() const { return true; }
751    // Copy src into this mask
752    virtual void copy(const Mask *src) {}
753    // this &= rhs
754    virtual void bitwise_and(const Mask *rhs) {}
755    // this |= rhs
756    virtual void bitwise_or(const Mask *rhs) {}
757    // this = ~this
758    virtual void bitwise_not() {}
759    // this == rhs
760    virtual bool is_equal(const Mask *rhs) const { return false; }
761    // API for iterating over an affinity mask
762    // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
763    virtual int begin() const { return 0; }
764    virtual int end() const { return 0; }
765    virtual int next(int previous) const { return 0; }
766#if KMP_OS_WINDOWS
767    virtual int set_process_affinity(bool abort_on_error) const { return -1; }
768#endif
769    // Set the system's affinity to this affinity mask's value
770    virtual int set_system_affinity(bool abort_on_error) const { return -1; }
771    // Set this affinity mask to the current system affinity
772    virtual int get_system_affinity(bool abort_on_error) { return -1; }
773    // Only 1 DWORD in the mask should have any procs set.
774    // Return the appropriate index, or -1 for an invalid mask.
775    virtual int get_proc_group() const { return -1; }
776    int get_max_cpu() const {
777      int cpu;
778      int max_cpu = -1;
779      KMP_CPU_SET_ITERATE(cpu, this) {
780        if (cpu > max_cpu)
781          max_cpu = cpu;
782      }
783      return max_cpu;
784    }
785  };
786  void *operator new(size_t n);
787  void operator delete(void *p);
788  // Need virtual destructor
789  virtual ~KMPAffinity() = default;
790  // Determine if affinity is capable
791  virtual void determine_capable(const char *env_var) {}
792  // Bind the current thread to os proc
793  virtual void bind_thread(int proc) {}
794  // Factory functions to allocate/deallocate a mask
795  virtual Mask *allocate_mask() { return nullptr; }
796  virtual void deallocate_mask(Mask *m) {}
797  virtual Mask *allocate_mask_array(int num) { return nullptr; }
798  virtual void deallocate_mask_array(Mask *m) {}
799  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
800  static void pick_api();
801  static void destroy_api();
802  enum api_type {
803    NATIVE_OS
804#if KMP_USE_HWLOC
805    ,
806    HWLOC
807#endif
808  };
809  virtual api_type get_api_type() const {
810    KMP_ASSERT(0);
811    return NATIVE_OS;
812  }
813
814private:
815  static bool picked_api;
816};
817
818typedef KMPAffinity::Mask kmp_affin_mask_t;
819extern KMPAffinity *__kmp_affinity_dispatch;
820
821#ifndef KMP_OS_AIX
822class kmp_affinity_raii_t {
823  kmp_affin_mask_t *mask;
824  bool restored;
825
826public:
827  kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
828      : restored(false) {
829    if (KMP_AFFINITY_CAPABLE()) {
830      KMP_CPU_ALLOC(mask);
831      KMP_ASSERT(mask != NULL);
832      __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
833      if (new_mask)
834        __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
835    }
836  }
837  void restore() {
838    if (!restored && KMP_AFFINITY_CAPABLE()) {
839      __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
840      KMP_CPU_FREE(mask);
841    }
842    restored = true;
843  }
844  ~kmp_affinity_raii_t() { restore(); }
845};
846#endif // !KMP_OS_AIX
847
848// Declare local char buffers with this size for printing debug and info
849// messages, using __kmp_affinity_print_mask().
850#define KMP_AFFIN_MASK_PRINT_LEN 1024
851
852enum affinity_type {
853  affinity_none = 0,
854  affinity_physical,
855  affinity_logical,
856  affinity_compact,
857  affinity_scatter,
858  affinity_explicit,
859  affinity_balanced,
860  affinity_disabled, // not used outsize the env var parser
861  affinity_default
862};
863
864enum affinity_top_method {
865  affinity_top_method_all = 0, // try all (supported) methods, in order
866#if KMP_ARCH_X86 || KMP_ARCH_X86_64
867  affinity_top_method_apicid,
868  affinity_top_method_x2apicid,
869  affinity_top_method_x2apicid_1f,
870#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
871  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
872#if KMP_GROUP_AFFINITY
873  affinity_top_method_group,
874#endif /* KMP_GROUP_AFFINITY */
875  affinity_top_method_flat,
876#if KMP_USE_HWLOC
877  affinity_top_method_hwloc,
878#endif
879  affinity_top_method_default
880};
881
882#define affinity_respect_mask_default (2)
883
884typedef struct kmp_affinity_flags_t {
885  unsigned dups : 1;
886  unsigned verbose : 1;
887  unsigned warnings : 1;
888  unsigned respect : 2;
889  unsigned reset : 1;
890  unsigned initialized : 1;
891  unsigned core_types_gran : 1;
892  unsigned core_effs_gran : 1;
893  unsigned omp_places : 1;
894  unsigned reserved : 22;
895} kmp_affinity_flags_t;
896KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
897
898typedef struct kmp_affinity_ids_t {
899  int os_id;
900  int ids[KMP_HW_LAST];
901} kmp_affinity_ids_t;
902
903typedef struct kmp_affinity_attrs_t {
904  int core_type : 8;
905  int core_eff : 8;
906  unsigned valid : 1;
907  unsigned reserved : 15;
908} kmp_affinity_attrs_t;
909#define KMP_AFFINITY_ATTRS_UNKNOWN                                             \
910  { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
911
912typedef struct kmp_affinity_t {
913  char *proclist;
914  enum affinity_type type;
915  kmp_hw_t gran;
916  int gran_levels;
917  kmp_affinity_attrs_t core_attr_gran;
918  int compact;
919  int offset;
920  kmp_affinity_flags_t flags;
921  unsigned num_masks;
922  kmp_affin_mask_t *masks;
923  kmp_affinity_ids_t *ids;
924  kmp_affinity_attrs_t *attrs;
925  unsigned num_os_id_masks;
926  kmp_affin_mask_t *os_id_masks;
927  const char *env_var;
928} kmp_affinity_t;
929
930#define KMP_AFFINITY_INIT(env)                                                 \
931  {                                                                            \
932    nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
933        0, 0,                                                                  \
934        {TRUE,  FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE,      \
935         FALSE, FALSE, FALSE},                                                 \
936        0, nullptr, nullptr, nullptr, 0, nullptr, env                          \
937  }
938
939extern enum affinity_top_method __kmp_affinity_top_method;
940extern kmp_affinity_t __kmp_affinity;
941extern kmp_affinity_t __kmp_hh_affinity;
942extern kmp_affinity_t *__kmp_affinities[2];
943
944extern void __kmp_affinity_bind_thread(int which);
945
946extern kmp_affin_mask_t *__kmp_affin_fullMask;
947extern kmp_affin_mask_t *__kmp_affin_origMask;
948extern char *__kmp_cpuinfo_file;
949
950#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
951extern int __kmp_first_osid_with_ecore;
952#endif
953
954#endif /* KMP_AFFINITY_SUPPORTED */
955
956// This needs to be kept in sync with the values in omp.h !!!
957typedef enum kmp_proc_bind_t {
958  proc_bind_false = 0,
959  proc_bind_true,
960  proc_bind_primary,
961  proc_bind_close,
962  proc_bind_spread,
963  proc_bind_intel, // use KMP_AFFINITY interface
964  proc_bind_default
965} kmp_proc_bind_t;
966
967typedef struct kmp_nested_proc_bind_t {
968  kmp_proc_bind_t *bind_types;
969  int size;
970  int used;
971} kmp_nested_proc_bind_t;
972
973extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
974extern kmp_proc_bind_t __kmp_teams_proc_bind;
975
976extern int __kmp_display_affinity;
977extern char *__kmp_affinity_format;
978static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
979#if OMPT_SUPPORT
980extern int __kmp_tool;
981extern char *__kmp_tool_libraries;
982#endif // OMPT_SUPPORT
983
984#if KMP_AFFINITY_SUPPORTED
985#define KMP_PLACE_ALL (-1)
986#define KMP_PLACE_UNDEFINED (-2)
987// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
988#define KMP_AFFINITY_NON_PROC_BIND                                             \
989  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false ||                 \
990    __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) &&                \
991   (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
992#endif /* KMP_AFFINITY_SUPPORTED */
993
994extern int __kmp_affinity_num_places;
995
996typedef enum kmp_cancel_kind_t {
997  cancel_noreq = 0,
998  cancel_parallel = 1,
999  cancel_loop = 2,
1000  cancel_sections = 3,
1001  cancel_taskgroup = 4
1002} kmp_cancel_kind_t;
1003
1004// KMP_HW_SUBSET support:
1005typedef struct kmp_hws_item {
1006  int num;
1007  int offset;
1008} kmp_hws_item_t;
1009
1010extern kmp_hws_item_t __kmp_hws_socket;
1011extern kmp_hws_item_t __kmp_hws_die;
1012extern kmp_hws_item_t __kmp_hws_node;
1013extern kmp_hws_item_t __kmp_hws_tile;
1014extern kmp_hws_item_t __kmp_hws_core;
1015extern kmp_hws_item_t __kmp_hws_proc;
1016extern int __kmp_hws_requested;
1017extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1018
1019/* ------------------------------------------------------------------------ */
1020
1021#define KMP_PAD(type, sz)                                                      \
1022  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1023
1024// We need to avoid using -1 as a GTID as +1 is added to the gtid
1025// when storing it in a lock, and the value 0 is reserved.
1026#define KMP_GTID_DNE (-2) /* Does not exist */
1027#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1028#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1029#define KMP_GTID_UNKNOWN (-5) /* Is not known */
1030#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1031
1032/* OpenMP 5.0 Memory Management support */
1033
1034#ifndef __OMP_H
1035// Duplicate type definitions from omp.h
1036typedef uintptr_t omp_uintptr_t;
1037
1038typedef enum {
1039  omp_atk_sync_hint = 1,
1040  omp_atk_alignment = 2,
1041  omp_atk_access = 3,
1042  omp_atk_pool_size = 4,
1043  omp_atk_fallback = 5,
1044  omp_atk_fb_data = 6,
1045  omp_atk_pinned = 7,
1046  omp_atk_partition = 8
1047} omp_alloctrait_key_t;
1048
1049typedef enum {
1050  omp_atv_false = 0,
1051  omp_atv_true = 1,
1052  omp_atv_contended = 3,
1053  omp_atv_uncontended = 4,
1054  omp_atv_serialized = 5,
1055  omp_atv_sequential = omp_atv_serialized, // (deprecated)
1056  omp_atv_private = 6,
1057  omp_atv_all = 7,
1058  omp_atv_thread = 8,
1059  omp_atv_pteam = 9,
1060  omp_atv_cgroup = 10,
1061  omp_atv_default_mem_fb = 11,
1062  omp_atv_null_fb = 12,
1063  omp_atv_abort_fb = 13,
1064  omp_atv_allocator_fb = 14,
1065  omp_atv_environment = 15,
1066  omp_atv_nearest = 16,
1067  omp_atv_blocked = 17,
1068  omp_atv_interleaved = 18
1069} omp_alloctrait_value_t;
1070#define omp_atv_default ((omp_uintptr_t)-1)
1071
1072typedef void *omp_memspace_handle_t;
1073extern omp_memspace_handle_t const omp_default_mem_space;
1074extern omp_memspace_handle_t const omp_large_cap_mem_space;
1075extern omp_memspace_handle_t const omp_const_mem_space;
1076extern omp_memspace_handle_t const omp_high_bw_mem_space;
1077extern omp_memspace_handle_t const omp_low_lat_mem_space;
1078extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1079extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1080extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1081
1082typedef struct {
1083  omp_alloctrait_key_t key;
1084  omp_uintptr_t value;
1085} omp_alloctrait_t;
1086
1087typedef void *omp_allocator_handle_t;
1088extern omp_allocator_handle_t const omp_null_allocator;
1089extern omp_allocator_handle_t const omp_default_mem_alloc;
1090extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1091extern omp_allocator_handle_t const omp_const_mem_alloc;
1092extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1093extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1094extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1095extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1096extern omp_allocator_handle_t const omp_thread_mem_alloc;
1097extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1098extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1099extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1100extern omp_allocator_handle_t const kmp_max_mem_alloc;
1101extern omp_allocator_handle_t __kmp_def_allocator;
1102
1103// end of duplicate type definitions from omp.h
1104#endif
1105
1106extern int __kmp_memkind_available;
1107
1108typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1109
1110typedef struct kmp_allocator_t {
1111  omp_memspace_handle_t memspace;
1112  void **memkind; // pointer to memkind
1113  size_t alignment;
1114  omp_alloctrait_value_t fb;
1115  kmp_allocator_t *fb_data;
1116  kmp_uint64 pool_size;
1117  kmp_uint64 pool_used;
1118  bool pinned;
1119} kmp_allocator_t;
1120
1121extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1122                                                    omp_memspace_handle_t,
1123                                                    int ntraits,
1124                                                    omp_alloctrait_t traits[]);
1125extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1126extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1127extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1128// external interfaces, may be used by compiler
1129extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1130extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1131                                  omp_allocator_handle_t al);
1132extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1133                           omp_allocator_handle_t al);
1134extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1135                            omp_allocator_handle_t al,
1136                            omp_allocator_handle_t free_al);
1137extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1138// internal interfaces, contain real implementation
1139extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1140                         omp_allocator_handle_t al);
1141extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1142                          omp_allocator_handle_t al);
1143extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1144                           omp_allocator_handle_t al,
1145                           omp_allocator_handle_t free_al);
1146extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1147
1148extern void __kmp_init_memkind();
1149extern void __kmp_fini_memkind();
1150extern void __kmp_init_target_mem();
1151
1152/* ------------------------------------------------------------------------ */
1153
1154#if ENABLE_LIBOMPTARGET
1155extern void __kmp_init_target_task();
1156#endif
1157
1158/* ------------------------------------------------------------------------ */
1159
1160#define KMP_UINT64_MAX                                                         \
1161  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1162
1163#define KMP_MIN_NTH 1
1164
1165#ifndef KMP_MAX_NTH
1166#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1167#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1168#else
1169#ifdef __ve__
1170// VE's pthread supports only up to 64 threads per a VE process.
1171// Please check p. 14 of following documentation for more details.
1172// https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1173#define KMP_MAX_NTH 64
1174#else
1175#define KMP_MAX_NTH INT_MAX
1176#endif
1177#endif
1178#endif /* KMP_MAX_NTH */
1179
1180#ifdef PTHREAD_STACK_MIN
1181#define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1182#else
1183#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1184#endif
1185
1186#if KMP_OS_AIX && KMP_ARCH_PPC
1187#define KMP_MAX_STKSIZE 0x10000000 /* 256Mb max size on 32-bit AIX */
1188#else
1189#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1190#endif
1191
1192#if KMP_ARCH_X86
1193#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1194#elif KMP_ARCH_X86_64
1195#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1196#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1197#elif KMP_ARCH_VE
1198// Minimum stack size for pthread for VE is 4MB.
1199//   https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1200#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1201#elif KMP_OS_AIX
1202// The default stack size for worker threads on AIX is 4MB.
1203#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1204#else
1205#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1206#endif
1207
1208#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1209#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1210#define KMP_MAX_MALLOC_POOL_INCR                                               \
1211  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1212
1213#define KMP_MIN_STKOFFSET (0)
1214#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1215#if KMP_OS_DARWIN
1216#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1217#else
1218#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1219#endif
1220
1221#define KMP_MIN_STKPADDING (0)
1222#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1223
1224#define KMP_BLOCKTIME_MULTIPLIER                                               \
1225  (1000000) /* number of blocktime units per second */
1226#define KMP_MIN_BLOCKTIME (0)
1227#define KMP_MAX_BLOCKTIME                                                      \
1228  (INT_MAX) /* Must be this for "infinite" setting the work */
1229
1230/* __kmp_blocktime is in microseconds */
1231#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1232
1233#if KMP_USE_MONITOR
1234#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1235#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1236#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1237
1238/* Calculate new number of monitor wakeups for a specific block time based on
1239   previous monitor_wakeups. Only allow increasing number of wakeups */
1240#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups)                 \
1241  (((blocktime) == KMP_MAX_BLOCKTIME)   ? (monitor_wakeups)                    \
1242   : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS              \
1243   : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime)))            \
1244       ? (monitor_wakeups)                                                     \
1245       : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1246
1247/* Calculate number of intervals for a specific block time based on
1248   monitor_wakeups */
1249#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups)               \
1250  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) /        \
1251   (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1252#else
1253#define KMP_BLOCKTIME(team, tid)                                               \
1254  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1255#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1256// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1257extern kmp_uint64 __kmp_ticks_per_msec;
1258extern kmp_uint64 __kmp_ticks_per_usec;
1259#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1260#define KMP_NOW() ((kmp_uint64)_rdtsc())
1261#else
1262#define KMP_NOW() __kmp_hardware_timestamp()
1263#endif
1264#define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1265  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1266#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1267#else
1268// System time is retrieved sporadically while blocking.
1269extern kmp_uint64 __kmp_now_nsec();
1270#define KMP_NOW() __kmp_now_nsec()
1271#define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1272  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1273#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1274#endif
1275#endif // KMP_USE_MONITOR
1276
1277#define KMP_MIN_STATSCOLS 40
1278#define KMP_MAX_STATSCOLS 4096
1279#define KMP_DEFAULT_STATSCOLS 80
1280
1281#define KMP_MIN_INTERVAL 0
1282#define KMP_MAX_INTERVAL (INT_MAX - 1)
1283#define KMP_DEFAULT_INTERVAL 0
1284
1285#define KMP_MIN_CHUNK 1
1286#define KMP_MAX_CHUNK (INT_MAX - 1)
1287#define KMP_DEFAULT_CHUNK 1
1288
1289#define KMP_MIN_DISP_NUM_BUFF 1
1290#define KMP_DFLT_DISP_NUM_BUFF 7
1291#define KMP_MAX_DISP_NUM_BUFF 4096
1292
1293#define KMP_MAX_ORDERED 8
1294
1295#define KMP_MAX_FIELDS 32
1296
1297#define KMP_MAX_BRANCH_BITS 31
1298
1299#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1300
1301#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1302
1303#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1304
1305/* Minimum number of threads before switch to TLS gtid (experimentally
1306   determined) */
1307/* josh TODO: what about OS X* tuning? */
1308#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1309#define KMP_TLS_GTID_MIN 5
1310#else
1311#define KMP_TLS_GTID_MIN INT_MAX
1312#endif
1313
1314#define KMP_MASTER_TID(tid) (0 == (tid))
1315#define KMP_WORKER_TID(tid) (0 != (tid))
1316
1317#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1318#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1319#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1320
1321#ifndef TRUE
1322#define FALSE 0
1323#define TRUE (!FALSE)
1324#endif
1325
1326/* NOTE: all of the following constants must be even */
1327
1328#if KMP_OS_WINDOWS
1329#define KMP_INIT_WAIT 64U /* initial number of spin-tests   */
1330#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1331#elif KMP_OS_LINUX
1332#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1333#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1334#elif KMP_OS_DARWIN
1335/* TODO: tune for KMP_OS_DARWIN */
1336#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1337#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1338#elif KMP_OS_DRAGONFLY
1339/* TODO: tune for KMP_OS_DRAGONFLY */
1340#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1341#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1342#elif KMP_OS_FREEBSD
1343/* TODO: tune for KMP_OS_FREEBSD */
1344#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1345#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1346#elif KMP_OS_NETBSD
1347/* TODO: tune for KMP_OS_NETBSD */
1348#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1349#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1350#elif KMP_OS_OPENBSD
1351/* TODO: tune for KMP_OS_OPENBSD */
1352#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1353#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1354#elif KMP_OS_HURD
1355/* TODO: tune for KMP_OS_HURD */
1356#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1357#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1358#elif KMP_OS_SOLARIS
1359/* TODO: tune for KMP_OS_SOLARIS */
1360#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1361#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1362#elif KMP_OS_WASI
1363/* TODO: tune for KMP_OS_WASI */
1364#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1365#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1366#elif KMP_OS_AIX
1367/* TODO: tune for KMP_OS_AIX */
1368#define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1369#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1370#endif
1371
1372#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1373typedef struct kmp_cpuid {
1374  kmp_uint32 eax;
1375  kmp_uint32 ebx;
1376  kmp_uint32 ecx;
1377  kmp_uint32 edx;
1378} kmp_cpuid_t;
1379
1380typedef struct kmp_cpuinfo_flags_t {
1381  unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1382  unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1383  unsigned hybrid : 1;
1384  unsigned reserved : 29; // Ensure size of 32 bits
1385} kmp_cpuinfo_flags_t;
1386
1387typedef struct kmp_cpuinfo {
1388  int initialized; // If 0, other fields are not initialized.
1389  int signature; // CPUID(1).EAX
1390  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1391  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1392  // Model << 4 ) + Model)
1393  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1394  kmp_cpuinfo_flags_t flags;
1395  int apic_id;
1396  int physical_id;
1397  int logical_id;
1398  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1399  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1400} kmp_cpuinfo_t;
1401
1402extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1403
1404#if KMP_OS_UNIX
1405// subleaf is only needed for cache and topology discovery and can be set to
1406// zero in most cases
1407static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1408  __asm__ __volatile__("cpuid"
1409                       : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1410                       : "a"(leaf), "c"(subleaf));
1411}
1412// Load p into FPU control word
1413static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1414  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1415}
1416// Store FPU control word into p
1417static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1418  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1419}
1420static inline void __kmp_clear_x87_fpu_status_word() {
1421#if KMP_MIC
1422  // 32-bit protected mode x87 FPU state
1423  struct x87_fpu_state {
1424    unsigned cw;
1425    unsigned sw;
1426    unsigned tw;
1427    unsigned fip;
1428    unsigned fips;
1429    unsigned fdp;
1430    unsigned fds;
1431  };
1432  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1433  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1434                       "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1435                       "fldenv %0\n\t" // load FP env back
1436                       : "+m"(fpu_state), "+m"(fpu_state.sw));
1437#else
1438  __asm__ __volatile__("fnclex");
1439#endif // KMP_MIC
1440}
1441#if __SSE__
1442static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1443static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1444#else
1445static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1446static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1447#endif
1448#else
1449// Windows still has these as external functions in assembly file
1450extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1451extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1452extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1453extern void __kmp_clear_x87_fpu_status_word();
1454static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1455static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1456#endif // KMP_OS_UNIX
1457
1458#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1459
1460// User-level Monitor/Mwait
1461#if KMP_HAVE_UMWAIT
1462// We always try for UMWAIT first
1463#if KMP_HAVE_WAITPKG_INTRINSICS
1464#if KMP_HAVE_IMMINTRIN_H
1465#include <immintrin.h>
1466#elif KMP_HAVE_INTRIN_H
1467#include <intrin.h>
1468#endif
1469#endif // KMP_HAVE_WAITPKG_INTRINSICS
1470
1471KMP_ATTRIBUTE_TARGET_WAITPKG
1472static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1473#if !KMP_HAVE_WAITPKG_INTRINSICS
1474  uint32_t timeHi = uint32_t(counter >> 32);
1475  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1476  char flag;
1477  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1478                   "setb   %0"
1479                   // The "=q" restraint means any register accessible as rl
1480                   //   in 32-bit mode: a, b, c, and d;
1481                   //   in 64-bit mode: any integer register
1482                   : "=q"(flag)
1483                   : "a"(timeLo), "d"(timeHi), "c"(hint)
1484                   :);
1485  return flag;
1486#else
1487  return _tpause(hint, counter);
1488#endif
1489}
1490KMP_ATTRIBUTE_TARGET_WAITPKG
1491static inline void __kmp_umonitor(void *cacheline) {
1492#if !KMP_HAVE_WAITPKG_INTRINSICS
1493  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1494                   :
1495                   : "a"(cacheline)
1496                   :);
1497#else
1498  _umonitor(cacheline);
1499#endif
1500}
1501KMP_ATTRIBUTE_TARGET_WAITPKG
1502static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1503#if !KMP_HAVE_WAITPKG_INTRINSICS
1504  uint32_t timeHi = uint32_t(counter >> 32);
1505  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1506  char flag;
1507  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1508                   "setb   %0"
1509                   // The "=q" restraint means any register accessible as rl
1510                   //   in 32-bit mode: a, b, c, and d;
1511                   //   in 64-bit mode: any integer register
1512                   : "=q"(flag)
1513                   : "a"(timeLo), "d"(timeHi), "c"(hint)
1514                   :);
1515  return flag;
1516#else
1517  return _umwait(hint, counter);
1518#endif
1519}
1520#elif KMP_HAVE_MWAIT
1521#if KMP_OS_UNIX
1522#include <pmmintrin.h>
1523#else
1524#include <intrin.h>
1525#endif
1526#if KMP_OS_UNIX
1527__attribute__((target("sse3")))
1528#endif
1529static inline void
1530__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1531  _mm_monitor(cacheline, extensions, hints);
1532}
1533#if KMP_OS_UNIX
1534__attribute__((target("sse3")))
1535#endif
1536static inline void
1537__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1538  _mm_mwait(extensions, hints);
1539}
1540#endif // KMP_HAVE_UMWAIT
1541
1542#if KMP_ARCH_X86
1543extern void __kmp_x86_pause(void);
1544#elif KMP_MIC
1545// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1546// regression after removal of extra PAUSE from spin loops. Changing
1547// the delay from 100 to 300 showed even better performance than double PAUSE
1548// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1549static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1550#else
1551static inline void __kmp_x86_pause(void) { _mm_pause(); }
1552#endif
1553#define KMP_CPU_PAUSE() __kmp_x86_pause()
1554#elif KMP_ARCH_PPC64
1555#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1556#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1557#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1558#define KMP_CPU_PAUSE()                                                        \
1559  do {                                                                         \
1560    KMP_PPC64_PRI_LOW();                                                       \
1561    KMP_PPC64_PRI_MED();                                                       \
1562    KMP_PPC64_PRI_LOC_MB();                                                    \
1563  } while (0)
1564#else
1565#define KMP_CPU_PAUSE() /* nothing to do */
1566#endif
1567
1568#define KMP_INIT_YIELD(count)                                                  \
1569  { (count) = __kmp_yield_init; }
1570
1571#define KMP_INIT_BACKOFF(time)                                                 \
1572  { (time) = __kmp_pause_init; }
1573
1574#define KMP_OVERSUBSCRIBED                                                     \
1575  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1576
1577#define KMP_TRY_YIELD                                                          \
1578  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1579
1580#define KMP_TRY_YIELD_OVERSUB                                                  \
1581  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1582
1583#define KMP_YIELD(cond)                                                        \
1584  {                                                                            \
1585    KMP_CPU_PAUSE();                                                           \
1586    if ((cond) && (KMP_TRY_YIELD))                                             \
1587      __kmp_yield();                                                           \
1588  }
1589
1590#define KMP_YIELD_OVERSUB()                                                    \
1591  {                                                                            \
1592    KMP_CPU_PAUSE();                                                           \
1593    if ((KMP_TRY_YIELD_OVERSUB))                                               \
1594      __kmp_yield();                                                           \
1595  }
1596
1597// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1598// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1599#define KMP_YIELD_SPIN(count)                                                  \
1600  {                                                                            \
1601    KMP_CPU_PAUSE();                                                           \
1602    if (KMP_TRY_YIELD) {                                                       \
1603      (count) -= 2;                                                            \
1604      if (!(count)) {                                                          \
1605        __kmp_yield();                                                         \
1606        (count) = __kmp_yield_next;                                            \
1607      }                                                                        \
1608    }                                                                          \
1609  }
1610
1611// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1612// (C0.2) state, which improves performance of other SMT threads on the same
1613// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1614// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1615// available, fall back to the regular CPU pause and yield combination.
1616#if KMP_HAVE_UMWAIT
1617#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1618#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time)                               \
1619  {                                                                            \
1620    if (__kmp_tpause_enabled) {                                                \
1621      if (KMP_OVERSUBSCRIBED) {                                                \
1622        __kmp_tpause(0, (time));                                               \
1623      } else {                                                                 \
1624        __kmp_tpause(__kmp_tpause_hint, (time));                               \
1625      }                                                                        \
1626      (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK;                          \
1627    } else {                                                                   \
1628      KMP_CPU_PAUSE();                                                         \
1629      if ((KMP_TRY_YIELD_OVERSUB)) {                                           \
1630        __kmp_yield();                                                         \
1631      } else if (__kmp_use_yield == 1) {                                       \
1632        (count) -= 2;                                                          \
1633        if (!(count)) {                                                        \
1634          __kmp_yield();                                                       \
1635          (count) = __kmp_yield_next;                                          \
1636        }                                                                      \
1637      }                                                                        \
1638    }                                                                          \
1639  }
1640#else
1641#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time)                               \
1642  {                                                                            \
1643    KMP_CPU_PAUSE();                                                           \
1644    if ((KMP_TRY_YIELD_OVERSUB))                                               \
1645      __kmp_yield();                                                           \
1646    else if (__kmp_use_yield == 1) {                                           \
1647      (count) -= 2;                                                            \
1648      if (!(count)) {                                                          \
1649        __kmp_yield();                                                         \
1650        (count) = __kmp_yield_next;                                            \
1651      }                                                                        \
1652    }                                                                          \
1653  }
1654#endif // KMP_HAVE_UMWAIT
1655
1656/* ------------------------------------------------------------------------ */
1657/* Support datatypes for the orphaned construct nesting checks.             */
1658/* ------------------------------------------------------------------------ */
1659
1660/* When adding to this enum, add its corresponding string in cons_text_c[]
1661 * array in kmp_error.cpp */
1662enum cons_type {
1663  ct_none,
1664  ct_parallel,
1665  ct_pdo,
1666  ct_pdo_ordered,
1667  ct_psections,
1668  ct_psingle,
1669  ct_critical,
1670  ct_ordered_in_parallel,
1671  ct_ordered_in_pdo,
1672  ct_master,
1673  ct_reduce,
1674  ct_barrier,
1675  ct_masked
1676};
1677
1678#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1679
1680struct cons_data {
1681  ident_t const *ident;
1682  enum cons_type type;
1683  int prev;
1684  kmp_user_lock_p
1685      name; /* address exclusively for critical section name comparison */
1686};
1687
1688struct cons_header {
1689  int p_top, w_top, s_top;
1690  int stack_size, stack_top;
1691  struct cons_data *stack_data;
1692};
1693
1694struct kmp_region_info {
1695  char *text;
1696  int offset[KMP_MAX_FIELDS];
1697  int length[KMP_MAX_FIELDS];
1698};
1699
1700/* ---------------------------------------------------------------------- */
1701/* ---------------------------------------------------------------------- */
1702
1703#if KMP_OS_WINDOWS
1704typedef HANDLE kmp_thread_t;
1705typedef DWORD kmp_key_t;
1706#endif /* KMP_OS_WINDOWS */
1707
1708#if KMP_OS_UNIX
1709typedef pthread_t kmp_thread_t;
1710typedef pthread_key_t kmp_key_t;
1711#endif
1712
1713extern kmp_key_t __kmp_gtid_threadprivate_key;
1714
1715typedef struct kmp_sys_info {
1716  long maxrss; /* the maximum resident set size utilized (in kilobytes)     */
1717  long minflt; /* the number of page faults serviced without any I/O        */
1718  long majflt; /* the number of page faults serviced that required I/O      */
1719  long nswap; /* the number of times a process was "swapped" out of memory */
1720  long inblock; /* the number of times the file system had to perform input  */
1721  long oublock; /* the number of times the file system had to perform output */
1722  long nvcsw; /* the number of times a context switch was voluntarily      */
1723  long nivcsw; /* the number of times a context switch was forced           */
1724} kmp_sys_info_t;
1725
1726#if USE_ITT_BUILD
1727// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1728// required type here. Later we will check the type meets requirements.
1729typedef int kmp_itt_mark_t;
1730#define KMP_ITT_DEBUG 0
1731#endif /* USE_ITT_BUILD */
1732
1733typedef kmp_int32 kmp_critical_name[8];
1734
1735/*!
1736@ingroup PARALLEL
1737The type for a microtask which gets passed to @ref __kmpc_fork_call().
1738The arguments to the outlined function are
1739@param global_tid the global thread identity of the thread executing the
1740function.
1741@param bound_tid  the local identity of the thread executing the function
1742@param ... pointers to shared variables accessed by the function.
1743*/
1744typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1745typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1746                                 ...);
1747
1748/*!
1749@ingroup THREADPRIVATE
1750@{
1751*/
1752/* ---------------------------------------------------------------------------
1753 */
1754/* Threadprivate initialization/finalization function declarations */
1755
1756/*  for non-array objects:  __kmpc_threadprivate_register()  */
1757
1758/*!
1759 Pointer to the constructor function.
1760 The first argument is the <tt>this</tt> pointer
1761*/
1762typedef void *(*kmpc_ctor)(void *);
1763
1764/*!
1765 Pointer to the destructor function.
1766 The first argument is the <tt>this</tt> pointer
1767*/
1768typedef void (*kmpc_dtor)(
1769    void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1770                              compiler */
1771/*!
1772 Pointer to an alternate constructor.
1773 The first argument is the <tt>this</tt> pointer.
1774*/
1775typedef void *(*kmpc_cctor)(void *, void *);
1776
1777/* for array objects: __kmpc_threadprivate_register_vec() */
1778/* First arg: "this" pointer */
1779/* Last arg: number of array elements */
1780/*!
1781 Array constructor.
1782 First argument is the <tt>this</tt> pointer
1783 Second argument the number of array elements.
1784*/
1785typedef void *(*kmpc_ctor_vec)(void *, size_t);
1786/*!
1787 Pointer to the array destructor function.
1788 The first argument is the <tt>this</tt> pointer
1789 Second argument the number of array elements.
1790*/
1791typedef void (*kmpc_dtor_vec)(void *, size_t);
1792/*!
1793 Array constructor.
1794 First argument is the <tt>this</tt> pointer
1795 Third argument the number of array elements.
1796*/
1797typedef void *(*kmpc_cctor_vec)(void *, void *,
1798                                size_t); /* function unused by compiler */
1799
1800/*!
1801@}
1802*/
1803
1804/* keeps tracked of threadprivate cache allocations for cleanup later */
1805typedef struct kmp_cached_addr {
1806  void **addr; /* address of allocated cache */
1807  void ***compiler_cache; /* pointer to compiler's cache */
1808  void *data; /* pointer to global data */
1809  struct kmp_cached_addr *next; /* pointer to next cached address */
1810} kmp_cached_addr_t;
1811
1812struct private_data {
1813  struct private_data *next; /* The next descriptor in the list      */
1814  void *data; /* The data buffer for this descriptor  */
1815  int more; /* The repeat count for this descriptor */
1816  size_t size; /* The data size for this descriptor    */
1817};
1818
1819struct private_common {
1820  struct private_common *next;
1821  struct private_common *link;
1822  void *gbl_addr;
1823  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1824  size_t cmn_size;
1825};
1826
1827struct shared_common {
1828  struct shared_common *next;
1829  struct private_data *pod_init;
1830  void *obj_init;
1831  void *gbl_addr;
1832  union {
1833    kmpc_ctor ctor;
1834    kmpc_ctor_vec ctorv;
1835  } ct;
1836  union {
1837    kmpc_cctor cctor;
1838    kmpc_cctor_vec cctorv;
1839  } cct;
1840  union {
1841    kmpc_dtor dtor;
1842    kmpc_dtor_vec dtorv;
1843  } dt;
1844  size_t vec_len;
1845  int is_vec;
1846  size_t cmn_size;
1847};
1848
1849#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1850#define KMP_HASH_TABLE_SIZE                                                    \
1851  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1852#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1853#define KMP_HASH(x)                                                            \
1854  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1855
1856struct common_table {
1857  struct private_common *data[KMP_HASH_TABLE_SIZE];
1858};
1859
1860struct shared_table {
1861  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1862};
1863
1864/* ------------------------------------------------------------------------ */
1865
1866#if KMP_USE_HIER_SCHED
1867// Shared barrier data that exists inside a single unit of the scheduling
1868// hierarchy
1869typedef struct kmp_hier_private_bdata_t {
1870  kmp_int32 num_active;
1871  kmp_uint64 index;
1872  kmp_uint64 wait_val[2];
1873} kmp_hier_private_bdata_t;
1874#endif
1875
1876typedef struct kmp_sched_flags {
1877  unsigned ordered : 1;
1878  unsigned nomerge : 1;
1879  unsigned contains_last : 1;
1880  unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code
1881  unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code
1882  unsigned unused : 27;
1883} kmp_sched_flags_t;
1884
1885KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1886
1887#if KMP_STATIC_STEAL_ENABLED
1888typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1889  kmp_int32 count;
1890  kmp_int32 ub;
1891  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1892  kmp_int32 lb;
1893  kmp_int32 st;
1894  kmp_int32 tc;
1895  kmp_lock_t *steal_lock; // lock used for chunk stealing
1896
1897  kmp_uint32 ordered_lower;
1898  kmp_uint32 ordered_upper;
1899
1900  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1901  //    a) parm3 is properly aligned and
1902  //    b) all parm1-4 are on the same cache line.
1903  // Because of parm1-4 are used together, performance seems to be better
1904  // if they are on the same cache line (not measured though).
1905
1906  struct KMP_ALIGN(32) {
1907    kmp_int32 parm1;
1908    kmp_int32 parm2;
1909    kmp_int32 parm3;
1910    kmp_int32 parm4;
1911  };
1912
1913#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1914  kmp_uint32 pchunks;
1915  kmp_uint32 num_procs_with_pcore;
1916  kmp_int32 first_thread_with_ecore;
1917#endif
1918#if KMP_OS_WINDOWS
1919  kmp_int32 last_upper;
1920#endif /* KMP_OS_WINDOWS */
1921} dispatch_private_info32_t;
1922
1923#if CACHE_LINE <= 128
1924KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128);
1925#endif
1926
1927typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1928  kmp_int64 count; // current chunk number for static & static-steal scheduling
1929  kmp_int64 ub; /* upper-bound */
1930  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1931  kmp_int64 lb; /* lower-bound */
1932  kmp_int64 st; /* stride */
1933  kmp_int64 tc; /* trip count (number of iterations) */
1934  kmp_lock_t *steal_lock; // lock used for chunk stealing
1935
1936  kmp_uint64 ordered_lower;
1937  kmp_uint64 ordered_upper;
1938  /* parm[1-4] are used in different ways by different scheduling algorithms */
1939
1940  // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on )
1941  //    a) parm3 is properly aligned and
1942  //    b) all parm1-4 are in the same cache line.
1943  // Because of parm1-4 are used together, performance seems to be better
1944  // if they are in the same line (not measured though).
1945  struct KMP_ALIGN(32) {
1946    kmp_int64 parm1;
1947    kmp_int64 parm2;
1948    kmp_int64 parm3;
1949    kmp_int64 parm4;
1950  };
1951
1952#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1953  kmp_uint64 pchunks;
1954  kmp_uint64 num_procs_with_pcore;
1955  kmp_int64 first_thread_with_ecore;
1956#endif
1957
1958#if KMP_OS_WINDOWS
1959  kmp_int64 last_upper;
1960#endif /* KMP_OS_WINDOWS */
1961} dispatch_private_info64_t;
1962
1963#if CACHE_LINE <= 128
1964KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128);
1965#endif
1966
1967#else /* KMP_STATIC_STEAL_ENABLED */
1968typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1969  kmp_int32 lb;
1970  kmp_int32 ub;
1971  kmp_int32 st;
1972  kmp_int32 tc;
1973
1974  kmp_int32 parm1;
1975  kmp_int32 parm2;
1976  kmp_int32 parm3;
1977  kmp_int32 parm4;
1978
1979  kmp_int32 count;
1980
1981  kmp_uint32 ordered_lower;
1982  kmp_uint32 ordered_upper;
1983#if KMP_OS_WINDOWS
1984  kmp_int32 last_upper;
1985#endif /* KMP_OS_WINDOWS */
1986} dispatch_private_info32_t;
1987
1988typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1989  kmp_int64 lb; /* lower-bound */
1990  kmp_int64 ub; /* upper-bound */
1991  kmp_int64 st; /* stride */
1992  kmp_int64 tc; /* trip count (number of iterations) */
1993
1994  /* parm[1-4] are used in different ways by different scheduling algorithms */
1995  kmp_int64 parm1;
1996  kmp_int64 parm2;
1997  kmp_int64 parm3;
1998  kmp_int64 parm4;
1999
2000  kmp_int64 count; /* current chunk number for static scheduling */
2001
2002  kmp_uint64 ordered_lower;
2003  kmp_uint64 ordered_upper;
2004#if KMP_OS_WINDOWS
2005  kmp_int64 last_upper;
2006#endif /* KMP_OS_WINDOWS */
2007} dispatch_private_info64_t;
2008#endif /* KMP_STATIC_STEAL_ENABLED */
2009
2010typedef struct KMP_ALIGN_CACHE dispatch_private_info {
2011  union private_info {
2012    dispatch_private_info32_t p32;
2013    dispatch_private_info64_t p64;
2014  } u;
2015  enum sched_type schedule; /* scheduling algorithm */
2016  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
2017  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
2018  kmp_int32 ordered_bumped;
2019  // Stack of buffers for nest of serial regions
2020  struct dispatch_private_info *next;
2021  kmp_int32 type_size; /* the size of types in private_info */
2022#if KMP_USE_HIER_SCHED
2023  kmp_int32 hier_id;
2024  void *parent; /* hierarchical scheduling parent pointer */
2025#endif
2026  enum cons_type pushed_ws;
2027} dispatch_private_info_t;
2028
2029typedef struct dispatch_shared_info32 {
2030  /* chunk index under dynamic, number of idle threads under static-steal;
2031     iteration index otherwise */
2032  volatile kmp_uint32 iteration;
2033  volatile kmp_int32 num_done;
2034  volatile kmp_uint32 ordered_iteration;
2035  // Dummy to retain the structure size after making ordered_iteration scalar
2036  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
2037} dispatch_shared_info32_t;
2038
2039typedef struct dispatch_shared_info64 {
2040  /* chunk index under dynamic, number of idle threads under static-steal;
2041     iteration index otherwise */
2042  volatile kmp_uint64 iteration;
2043  volatile kmp_int64 num_done;
2044  volatile kmp_uint64 ordered_iteration;
2045  // Dummy to retain the structure size after making ordered_iteration scalar
2046  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
2047} dispatch_shared_info64_t;
2048
2049typedef struct dispatch_shared_info {
2050  union shared_info {
2051    dispatch_shared_info32_t s32;
2052    dispatch_shared_info64_t s64;
2053  } u;
2054  volatile kmp_uint32 buffer_index;
2055  volatile kmp_int32 doacross_buf_idx; // teamwise index
2056  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2057  kmp_int32 doacross_num_done; // count finished threads
2058#if KMP_USE_HIER_SCHED
2059  void *hier;
2060#endif
2061#if KMP_USE_HWLOC
2062  // When linking with libhwloc, the ORDERED EPCC test slows down on big
2063  // machines (> 48 cores). Performance analysis showed that a cache thrash
2064  // was occurring and this padding helps alleviate the problem.
2065  char padding[64];
2066#endif
2067} dispatch_shared_info_t;
2068
2069typedef struct kmp_disp {
2070  /* Vector for ORDERED SECTION */
2071  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2072  /* Vector for END ORDERED SECTION */
2073  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2074
2075  dispatch_shared_info_t *th_dispatch_sh_current;
2076  dispatch_private_info_t *th_dispatch_pr_current;
2077
2078  dispatch_private_info_t *th_disp_buffer;
2079  kmp_uint32 th_disp_index;
2080  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2081  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2082  kmp_int64 *th_doacross_info; // info on loop bounds
2083#if KMP_USE_INTERNODE_ALIGNMENT
2084  char more_padding[INTERNODE_CACHE_LINE];
2085#endif
2086} kmp_disp_t;
2087
2088/* ------------------------------------------------------------------------ */
2089/* Barrier stuff */
2090
2091/* constants for barrier state update */
2092#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2093#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2094#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2095#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2096
2097#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2098#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2099#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2100
2101#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2102#error "Barrier sleep bit must be smaller than barrier bump bit"
2103#endif
2104#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2105#error "Barrier unused bit must be smaller than barrier bump bit"
2106#endif
2107
2108// Constants for release barrier wait state: currently, hierarchical only
2109#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2110#define KMP_BARRIER_OWN_FLAG                                                   \
2111  1 // Normal state; worker waiting on own b_go flag in release
2112#define KMP_BARRIER_PARENT_FLAG                                                \
2113  2 // Special state; worker waiting on parent's b_go flag in release
2114#define KMP_BARRIER_SWITCH_TO_OWN_FLAG                                         \
2115  3 // Special state; tells worker to shift from parent to own b_go
2116#define KMP_BARRIER_SWITCHING                                                  \
2117  4 // Special state; worker resets appropriate flag on wake-up
2118
2119#define KMP_NOT_SAFE_TO_REAP                                                   \
2120  0 // Thread th_reap_state: not safe to reap (tasking)
2121#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2122
2123// The flag_type describes the storage used for the flag.
2124enum flag_type {
2125  flag32, /**< atomic 32 bit flags */
2126  flag64, /**< 64 bit flags */
2127  atomic_flag64, /**< atomic 64 bit flags */
2128  flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */
2129  flag_unset
2130};
2131
2132enum barrier_type {
2133  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2134                           barriers if enabled) */
2135  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2136#if KMP_FAST_REDUCTION_BARRIER
2137  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2138#endif // KMP_FAST_REDUCTION_BARRIER
2139  bs_last_barrier /* Just a placeholder to mark the end */
2140};
2141
2142// to work with reduction barriers just like with plain barriers
2143#if !KMP_FAST_REDUCTION_BARRIER
2144#define bs_reduction_barrier bs_plain_barrier
2145#endif // KMP_FAST_REDUCTION_BARRIER
2146
2147typedef enum kmp_bar_pat { /* Barrier communication patterns */
2148                           bp_linear_bar =
2149                               0, /* Single level (degenerate) tree */
2150                           bp_tree_bar =
2151                               1, /* Balanced tree with branching factor 2^n */
2152                           bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2153                                                branching factor 2^n */
2154                           bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2155                           bp_dist_bar = 4, /* Distributed barrier */
2156                           bp_last_bar /* Placeholder to mark the end */
2157} kmp_bar_pat_e;
2158
2159#define KMP_BARRIER_ICV_PUSH 1
2160
2161/* Record for holding the values of the internal controls stack records */
2162typedef struct kmp_internal_control {
2163  int serial_nesting_level; /* corresponds to the value of the
2164                               th_team_serialized field */
2165  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2166                       thread) */
2167  kmp_int8
2168      bt_set; /* internal control for whether blocktime is explicitly set */
2169  int blocktime; /* internal control for blocktime */
2170#if KMP_USE_MONITOR
2171  int bt_intervals; /* internal control for blocktime intervals */
2172#endif
2173  int nproc; /* internal control for #threads for next parallel region (per
2174                thread) */
2175  int thread_limit; /* internal control for thread-limit-var */
2176  int task_thread_limit; /* internal control for thread-limit-var of a task*/
2177  int max_active_levels; /* internal control for max_active_levels */
2178  kmp_r_sched_t
2179      sched; /* internal control for runtime schedule {sched,chunk} pair */
2180  kmp_proc_bind_t proc_bind; /* internal control for affinity  */
2181  kmp_int32 default_device; /* internal control for default device */
2182  struct kmp_internal_control *next;
2183} kmp_internal_control_t;
2184
2185static inline void copy_icvs(kmp_internal_control_t *dst,
2186                             kmp_internal_control_t *src) {
2187  *dst = *src;
2188}
2189
2190/* Thread barrier needs volatile barrier fields */
2191typedef struct KMP_ALIGN_CACHE kmp_bstate {
2192  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2193  // uses of it). It is not explicitly aligned below, because we *don't* want
2194  // it to be padded -- instead, we fit b_go into the same cache line with
2195  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2196  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2197  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2198  // same NGO store
2199  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2200  KMP_ALIGN_CACHE volatile kmp_uint64
2201      b_arrived; // STATE => task reached synch point.
2202  kmp_uint32 *skip_per_level;
2203  kmp_uint32 my_level;
2204  kmp_int32 parent_tid;
2205  kmp_int32 old_tid;
2206  kmp_uint32 depth;
2207  struct kmp_bstate *parent_bar;
2208  kmp_team_t *team;
2209  kmp_uint64 leaf_state;
2210  kmp_uint32 nproc;
2211  kmp_uint8 base_leaf_kids;
2212  kmp_uint8 leaf_kids;
2213  kmp_uint8 offset;
2214  kmp_uint8 wait_flag;
2215  kmp_uint8 use_oncore_barrier;
2216#if USE_DEBUGGER
2217  // The following field is intended for the debugger solely. Only the worker
2218  // thread itself accesses this field: the worker increases it by 1 when it
2219  // arrives to a barrier.
2220  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2221#endif /* USE_DEBUGGER */
2222} kmp_bstate_t;
2223
2224union KMP_ALIGN_CACHE kmp_barrier_union {
2225  double b_align; /* use worst case alignment */
2226  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2227  kmp_bstate_t bb;
2228};
2229
2230typedef union kmp_barrier_union kmp_balign_t;
2231
2232/* Team barrier needs only non-volatile arrived counter */
2233union KMP_ALIGN_CACHE kmp_barrier_team_union {
2234  double b_align; /* use worst case alignment */
2235  char b_pad[CACHE_LINE];
2236  struct {
2237    kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2238#if USE_DEBUGGER
2239    // The following two fields are indended for the debugger solely. Only
2240    // primary thread of the team accesses these fields: the first one is
2241    // increased by 1 when the primary thread arrives to a barrier, the second
2242    // one is increased by one when all the threads arrived.
2243    kmp_uint b_master_arrived;
2244    kmp_uint b_team_arrived;
2245#endif
2246  };
2247};
2248
2249typedef union kmp_barrier_team_union kmp_balign_team_t;
2250
2251/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2252   threads when a condition changes.  This is to workaround an NPTL bug where
2253   padding was added to pthread_cond_t which caused the initialization routine
2254   to write outside of the structure if compiled on pre-NPTL threads.  */
2255#if KMP_OS_WINDOWS
2256typedef struct kmp_win32_mutex {
2257  /* The Lock */
2258  CRITICAL_SECTION cs;
2259} kmp_win32_mutex_t;
2260
2261typedef struct kmp_win32_cond {
2262  /* Count of the number of waiters. */
2263  int waiters_count_;
2264
2265  /* Serialize access to <waiters_count_> */
2266  kmp_win32_mutex_t waiters_count_lock_;
2267
2268  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2269  int release_count_;
2270
2271  /* Keeps track of the current "generation" so that we don't allow */
2272  /* one thread to steal all the "releases" from the broadcast. */
2273  int wait_generation_count_;
2274
2275  /* A manual-reset event that's used to block and release waiting threads. */
2276  HANDLE event_;
2277} kmp_win32_cond_t;
2278#endif
2279
2280#if KMP_OS_UNIX
2281
2282union KMP_ALIGN_CACHE kmp_cond_union {
2283  double c_align;
2284  char c_pad[CACHE_LINE];
2285  pthread_cond_t c_cond;
2286};
2287
2288typedef union kmp_cond_union kmp_cond_align_t;
2289
2290union KMP_ALIGN_CACHE kmp_mutex_union {
2291  double m_align;
2292  char m_pad[CACHE_LINE];
2293  pthread_mutex_t m_mutex;
2294};
2295
2296typedef union kmp_mutex_union kmp_mutex_align_t;
2297
2298#endif /* KMP_OS_UNIX */
2299
2300typedef struct kmp_desc_base {
2301  void *ds_stackbase;
2302  size_t ds_stacksize;
2303  int ds_stackgrow;
2304  kmp_thread_t ds_thread;
2305  volatile int ds_tid;
2306  int ds_gtid;
2307#if KMP_OS_WINDOWS
2308  volatile int ds_alive;
2309  DWORD ds_thread_id;
2310/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2311   However, debugger support (libomp_db) cannot work with handles, because they
2312   uncomparable. For example, debugger requests info about thread with handle h.
2313   h is valid within debugger process, and meaningless within debugee process.
2314   Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2315   within debugee process, but it is a *new* handle which does *not* equal to
2316   any other handle in debugee... The only way to compare handles is convert
2317   them to system-wide ids. GetThreadId() function is available only in
2318   Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2319   on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2320   thread id by call to GetCurrentThreadId() from within the thread and save it
2321   to let libomp_db identify threads.  */
2322#endif /* KMP_OS_WINDOWS */
2323} kmp_desc_base_t;
2324
2325typedef union KMP_ALIGN_CACHE kmp_desc {
2326  double ds_align; /* use worst case alignment */
2327  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2328  kmp_desc_base_t ds;
2329} kmp_desc_t;
2330
2331typedef struct kmp_local {
2332  volatile int this_construct; /* count of single's encountered by thread */
2333  void *reduce_data;
2334#if KMP_USE_BGET
2335  void *bget_data;
2336  void *bget_list;
2337#if !USE_CMP_XCHG_FOR_BGET
2338#ifdef USE_QUEUING_LOCK_FOR_BGET
2339  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2340#else
2341  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2342// bootstrap lock so we can use it at library
2343// shutdown.
2344#endif /* USE_LOCK_FOR_BGET */
2345#endif /* ! USE_CMP_XCHG_FOR_BGET */
2346#endif /* KMP_USE_BGET */
2347
2348  PACKED_REDUCTION_METHOD_T
2349  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2350                              __kmpc_end_reduce*() */
2351
2352} kmp_local_t;
2353
2354#define KMP_CHECK_UPDATE(a, b)                                                 \
2355  if ((a) != (b))                                                              \
2356  (a) = (b)
2357#define KMP_CHECK_UPDATE_SYNC(a, b)                                            \
2358  if ((a) != (b))                                                              \
2359  TCW_SYNC_PTR((a), (b))
2360
2361#define get__blocktime(xteam, xtid)                                            \
2362  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2363#define get__bt_set(xteam, xtid)                                               \
2364  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2365#if KMP_USE_MONITOR
2366#define get__bt_intervals(xteam, xtid)                                         \
2367  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2368#endif
2369
2370#define get__dynamic_2(xteam, xtid)                                            \
2371  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2372#define get__nproc_2(xteam, xtid)                                              \
2373  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2374#define get__sched_2(xteam, xtid)                                              \
2375  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2376
2377#define set__blocktime_team(xteam, xtid, xval)                                 \
2378  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) =     \
2379       (xval))
2380
2381#if KMP_USE_MONITOR
2382#define set__bt_intervals_team(xteam, xtid, xval)                              \
2383  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) =  \
2384       (xval))
2385#endif
2386
2387#define set__bt_set_team(xteam, xtid, xval)                                    \
2388  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2389
2390#define set__dynamic(xthread, xval)                                            \
2391  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2392#define get__dynamic(xthread)                                                  \
2393  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2394
2395#define set__nproc(xthread, xval)                                              \
2396  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2397
2398#define set__thread_limit(xthread, xval)                                       \
2399  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2400
2401#define set__max_active_levels(xthread, xval)                                  \
2402  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2403
2404#define get__max_active_levels(xthread)                                        \
2405  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2406
2407#define set__sched(xthread, xval)                                              \
2408  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2409
2410#define set__proc_bind(xthread, xval)                                          \
2411  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2412#define get__proc_bind(xthread)                                                \
2413  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2414
2415// OpenMP tasking data structures
2416
2417typedef enum kmp_tasking_mode {
2418  tskm_immediate_exec = 0,
2419  tskm_extra_barrier = 1,
2420  tskm_task_teams = 2,
2421  tskm_max = 2
2422} kmp_tasking_mode_t;
2423
2424extern kmp_tasking_mode_t
2425    __kmp_tasking_mode; /* determines how/when to execute tasks */
2426extern int __kmp_task_stealing_constraint;
2427extern int __kmp_enable_task_throttling;
2428extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2429// specified, defaults to 0 otherwise
2430// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2431extern kmp_int32 __kmp_max_task_priority;
2432// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2433extern kmp_uint64 __kmp_taskloop_min_tasks;
2434
2435/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2436   taskdata first */
2437#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2438#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2439
2440// The tt_found_tasks flag is a signal to all threads in the team that tasks
2441// were spawned and queued since the previous barrier release.
2442#define KMP_TASKING_ENABLED(task_team)                                         \
2443  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2444/*!
2445@ingroup BASIC_TYPES
2446@{
2447*/
2448
2449/*!
2450 */
2451typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2452
2453typedef union kmp_cmplrdata {
2454  kmp_int32 priority; /**< priority specified by user for the task */
2455  kmp_routine_entry_t
2456      destructors; /* pointer to function to invoke deconstructors of
2457                      firstprivate C++ objects */
2458  /* future data */
2459} kmp_cmplrdata_t;
2460
2461/*  sizeof_kmp_task_t passed as arg to kmpc_omp_task call  */
2462/*!
2463 */
2464typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2465  void *shareds; /**< pointer to block of pointers to shared vars   */
2466  kmp_routine_entry_t
2467      routine; /**< pointer to routine to call for executing task */
2468  kmp_int32 part_id; /**< part id for the task                          */
2469  kmp_cmplrdata_t
2470      data1; /* Two known optional additions: destructors and priority */
2471  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2472  /* future data */
2473  /*  private vars  */
2474} kmp_task_t;
2475
2476/*!
2477@}
2478*/
2479
2480typedef struct kmp_taskgroup {
2481  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2482  std::atomic<kmp_int32>
2483      cancel_request; // request for cancellation of this taskgroup
2484  struct kmp_taskgroup *parent; // parent taskgroup
2485  // Block of data to perform task reduction
2486  void *reduce_data; // reduction related info
2487  kmp_int32 reduce_num_data; // number of data items to reduce
2488  uintptr_t *gomp_data; // gomp reduction data
2489} kmp_taskgroup_t;
2490
2491// forward declarations
2492typedef union kmp_depnode kmp_depnode_t;
2493typedef struct kmp_depnode_list kmp_depnode_list_t;
2494typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2495
2496// macros for checking dep flag as an integer
2497#define KMP_DEP_IN 0x1
2498#define KMP_DEP_OUT 0x2
2499#define KMP_DEP_INOUT 0x3
2500#define KMP_DEP_MTX 0x4
2501#define KMP_DEP_SET 0x8
2502#define KMP_DEP_ALL 0x80
2503// Compiler sends us this info. Note: some test cases contain an explicit copy
2504// of this struct and should be in sync with any changes here.
2505typedef struct kmp_depend_info {
2506  kmp_intptr_t base_addr;
2507  size_t len;
2508  union {
2509    kmp_uint8 flag; // flag as an unsigned char
2510    struct { // flag as a set of 8 bits
2511#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2512      /* Same fields as in the #else branch, but in reverse order */
2513      unsigned all : 1;
2514      unsigned unused : 3;
2515      unsigned set : 1;
2516      unsigned mtx : 1;
2517      unsigned out : 1;
2518      unsigned in : 1;
2519#else
2520      unsigned in : 1;
2521      unsigned out : 1;
2522      unsigned mtx : 1;
2523      unsigned set : 1;
2524      unsigned unused : 3;
2525      unsigned all : 1;
2526#endif
2527    } flags;
2528  };
2529} kmp_depend_info_t;
2530
2531// Internal structures to work with task dependencies:
2532struct kmp_depnode_list {
2533  kmp_depnode_t *node;
2534  kmp_depnode_list_t *next;
2535};
2536
2537// Max number of mutexinoutset dependencies per node
2538#define MAX_MTX_DEPS 4
2539
2540typedef struct kmp_base_depnode {
2541  kmp_depnode_list_t *successors; /* used under lock */
2542  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2543  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2544  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2545  kmp_lock_t lock; /* guards shared fields: task, successors */
2546#if KMP_SUPPORT_GRAPH_OUTPUT
2547  kmp_uint32 id;
2548#endif
2549  std::atomic<kmp_int32> npredecessors;
2550  std::atomic<kmp_int32> nrefs;
2551} kmp_base_depnode_t;
2552
2553union KMP_ALIGN_CACHE kmp_depnode {
2554  double dn_align; /* use worst case alignment */
2555  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2556  kmp_base_depnode_t dn;
2557};
2558
2559struct kmp_dephash_entry {
2560  kmp_intptr_t addr;
2561  kmp_depnode_t *last_out;
2562  kmp_depnode_list_t *last_set;
2563  kmp_depnode_list_t *prev_set;
2564  kmp_uint8 last_flag;
2565  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2566  kmp_dephash_entry_t *next_in_bucket;
2567};
2568
2569typedef struct kmp_dephash {
2570  kmp_dephash_entry_t **buckets;
2571  size_t size;
2572  kmp_depnode_t *last_all;
2573  size_t generation;
2574  kmp_uint32 nelements;
2575  kmp_uint32 nconflicts;
2576} kmp_dephash_t;
2577
2578typedef struct kmp_task_affinity_info {
2579  kmp_intptr_t base_addr;
2580  size_t len;
2581  struct {
2582    bool flag1 : 1;
2583    bool flag2 : 1;
2584    kmp_int32 reserved : 30;
2585  } flags;
2586} kmp_task_affinity_info_t;
2587
2588typedef enum kmp_event_type_t {
2589  KMP_EVENT_UNINITIALIZED = 0,
2590  KMP_EVENT_ALLOW_COMPLETION = 1
2591} kmp_event_type_t;
2592
2593typedef struct {
2594  kmp_event_type_t type;
2595  kmp_tas_lock_t lock;
2596  union {
2597    kmp_task_t *task;
2598  } ed;
2599} kmp_event_t;
2600
2601#if OMPX_TASKGRAPH
2602// Initial number of allocated nodes while recording
2603#define INIT_MAPSIZE 50
2604
2605typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2606  unsigned nowait : 1;
2607  unsigned re_record : 1;
2608  unsigned reserved : 30;
2609} kmp_taskgraph_flags_t;
2610
2611/// Represents a TDG node
2612typedef struct kmp_node_info {
2613  kmp_task_t *task; // Pointer to the actual task
2614  kmp_int32 *successors; // Array of the succesors ids
2615  kmp_int32 nsuccessors; // Number of succesors of the node
2616  std::atomic<kmp_int32>
2617      npredecessors_counter; // Number of predessors on the fly
2618  kmp_int32 npredecessors; // Total number of predecessors
2619  kmp_int32 successors_size; // Number of allocated succesors ids
2620  kmp_taskdata_t *parent_task; // Parent implicit task
2621} kmp_node_info_t;
2622
2623/// Represent a TDG's current status
2624typedef enum kmp_tdg_status {
2625  KMP_TDG_NONE = 0,
2626  KMP_TDG_RECORDING = 1,
2627  KMP_TDG_READY = 2
2628} kmp_tdg_status_t;
2629
2630/// Structure that contains a TDG
2631typedef struct kmp_tdg_info {
2632  kmp_int32 tdg_id; // Unique idenfifier of the TDG
2633  kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2634  kmp_int32 map_size; // Number of allocated TDG nodes
2635  kmp_int32 num_roots; // Number of roots tasks int the TDG
2636  kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2637  kmp_node_info_t *record_map; // Array of TDG nodes
2638  kmp_tdg_status_t tdg_status =
2639      KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2640  std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2641  kmp_bootstrap_lock_t
2642      graph_lock; // Protect graph attributes when updated via taskloop_recur
2643  // Taskloop reduction related
2644  void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2645                          // __kmpc_taskred_init
2646  kmp_int32 rec_num_taskred;
2647} kmp_tdg_info_t;
2648
2649extern int __kmp_tdg_dot;
2650extern kmp_int32 __kmp_max_tdgs;
2651extern kmp_tdg_info_t **__kmp_global_tdgs;
2652extern kmp_int32 __kmp_curr_tdg_idx;
2653extern kmp_int32 __kmp_successors_size;
2654extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2655extern kmp_int32 __kmp_num_tdg;
2656#endif
2657
2658#ifdef BUILD_TIED_TASK_STACK
2659
2660/* Tied Task stack definitions */
2661typedef struct kmp_stack_block {
2662  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2663  struct kmp_stack_block *sb_next;
2664  struct kmp_stack_block *sb_prev;
2665} kmp_stack_block_t;
2666
2667typedef struct kmp_task_stack {
2668  kmp_stack_block_t ts_first_block; // first block of stack entries
2669  kmp_taskdata_t **ts_top; // pointer to the top of stack
2670  kmp_int32 ts_entries; // number of entries on the stack
2671} kmp_task_stack_t;
2672
2673#endif // BUILD_TIED_TASK_STACK
2674
2675typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2676#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2677  /* Same fields as in the #else branch, but in reverse order */
2678#if OMPX_TASKGRAPH
2679  unsigned reserved31 : 6;
2680  unsigned onced : 1;
2681#else
2682  unsigned reserved31 : 7;
2683#endif
2684  unsigned native : 1;
2685  unsigned freed : 1;
2686  unsigned complete : 1;
2687  unsigned executing : 1;
2688  unsigned started : 1;
2689  unsigned team_serial : 1;
2690  unsigned tasking_ser : 1;
2691  unsigned task_serial : 1;
2692  unsigned tasktype : 1;
2693  unsigned reserved : 8;
2694  unsigned hidden_helper : 1;
2695  unsigned detachable : 1;
2696  unsigned priority_specified : 1;
2697  unsigned proxy : 1;
2698  unsigned destructors_thunk : 1;
2699  unsigned merged_if0 : 1;
2700  unsigned final : 1;
2701  unsigned tiedness : 1;
2702#else
2703  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2704  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2705  unsigned final : 1; /* task is final(1) so execute immediately */
2706  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2707                              code path */
2708  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2709                                     invoke destructors from the runtime */
2710  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2711                         context of the RTL) */
2712  unsigned priority_specified : 1; /* set if the compiler provides priority
2713                                      setting for the task */
2714  unsigned detachable : 1; /* 1 == can detach */
2715  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2716  unsigned reserved : 8; /* reserved for compiler use */
2717
2718  /* Library flags */ /* Total library flags must be 16 bits */
2719  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2720  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2721  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2722  // (1) or may be deferred (0)
2723  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2724  // (0) [>= 2 threads]
2725  /* If either team_serial or tasking_ser is set, task team may be NULL */
2726  /* Task State Flags: */
2727  unsigned started : 1; /* 1==started, 0==not started     */
2728  unsigned executing : 1; /* 1==executing, 0==not executing */
2729  unsigned complete : 1; /* 1==complete, 0==not complete   */
2730  unsigned freed : 1; /* 1==freed, 0==allocated        */
2731  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2732#if OMPX_TASKGRAPH
2733  unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2734  unsigned reserved31 : 6; /* reserved for library use */
2735#else
2736  unsigned reserved31 : 7; /* reserved for library use */
2737#endif
2738#endif
2739} kmp_tasking_flags_t;
2740
2741typedef struct kmp_target_data {
2742  void *async_handle; // libomptarget async handle for task completion query
2743} kmp_target_data_t;
2744
2745struct kmp_taskdata { /* aligned during dynamic allocation       */
2746  kmp_int32 td_task_id; /* id, assigned by debugger                */
2747  kmp_tasking_flags_t td_flags; /* task flags                              */
2748  kmp_team_t *td_team; /* team for this task                      */
2749  kmp_info_p *td_alloc_thread; /* thread that allocated data structures   */
2750  /* Currently not used except for perhaps IDB */
2751  kmp_taskdata_t *td_parent; /* parent task                             */
2752  kmp_int32 td_level; /* task nesting level                      */
2753  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2754  ident_t *td_ident; /* task identifier                         */
2755  // Taskwait data.
2756  ident_t *td_taskwait_ident;
2757  kmp_uint32 td_taskwait_counter;
2758  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2759  KMP_ALIGN_CACHE kmp_internal_control_t
2760      td_icvs; /* Internal control variables for the task */
2761  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2762      td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2763                                   deallocated */
2764  std::atomic<kmp_int32>
2765      td_incomplete_child_tasks; /* Child tasks not yet complete */
2766  kmp_taskgroup_t
2767      *td_taskgroup; // Each task keeps pointer to its current taskgroup
2768  kmp_dephash_t
2769      *td_dephash; // Dependencies for children tasks are tracked from here
2770  kmp_depnode_t
2771      *td_depnode; // Pointer to graph node if this task has dependencies
2772  kmp_task_team_t *td_task_team;
2773  size_t td_size_alloc; // Size of task structure, including shareds etc.
2774#if defined(KMP_GOMP_COMPAT)
2775  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2776  kmp_int32 td_size_loop_bounds;
2777#endif
2778  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2779#if defined(KMP_GOMP_COMPAT)
2780  // GOMP sends in a copy function for copy constructors
2781  void (*td_copy_func)(void *, void *);
2782#endif
2783  kmp_event_t td_allow_completion_event;
2784#if OMPT_SUPPORT
2785  ompt_task_info_t ompt_task_info;
2786#endif
2787#if OMPX_TASKGRAPH
2788  bool is_taskgraph = 0; // whether the task is within a TDG
2789  kmp_tdg_info_t *tdg; // used to associate task with a TDG
2790#endif
2791  kmp_target_data_t td_target_data;
2792}; // struct kmp_taskdata
2793
2794// Make sure padding above worked
2795KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2796
2797// Data for task team but per thread
2798typedef struct kmp_base_thread_data {
2799  kmp_info_p *td_thr; // Pointer back to thread info
2800  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2801  // queued?
2802  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2803  kmp_taskdata_t *
2804      *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2805  kmp_int32 td_deque_size; // Size of deck
2806  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2807  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2808  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2809  // GEH: shouldn't this be volatile since used in while-spin?
2810  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2811#ifdef BUILD_TIED_TASK_STACK
2812  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2813// scheduling constraint
2814#endif // BUILD_TIED_TASK_STACK
2815} kmp_base_thread_data_t;
2816
2817#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2818#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2819
2820#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2821#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2822
2823typedef union KMP_ALIGN_CACHE kmp_thread_data {
2824  kmp_base_thread_data_t td;
2825  double td_align; /* use worst case alignment */
2826  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2827} kmp_thread_data_t;
2828
2829typedef struct kmp_task_pri {
2830  kmp_thread_data_t td;
2831  kmp_int32 priority;
2832  kmp_task_pri *next;
2833} kmp_task_pri_t;
2834
2835// Data for task teams which are used when tasking is enabled for the team
2836typedef struct kmp_base_task_team {
2837  kmp_bootstrap_lock_t
2838      tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2839  /* must be bootstrap lock since used at library shutdown*/
2840
2841  // TODO: check performance vs kmp_tas_lock_t
2842  kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2843  kmp_task_pri_t *tt_task_pri_list;
2844
2845  kmp_task_team_t *tt_next; /* For linking the task team free list */
2846  kmp_thread_data_t
2847      *tt_threads_data; /* Array of per-thread structures for task team */
2848  /* Data survives task team deallocation */
2849  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2850                               executing this team? */
2851  /* TRUE means tt_threads_data is set up and initialized */
2852  kmp_int32 tt_nproc; /* #threads in team           */
2853  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2854  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2855  kmp_int32 tt_untied_task_encountered;
2856  std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2857  // There is hidden helper thread encountered in this task team so that we must
2858  // wait when waiting on task team
2859  kmp_int32 tt_hidden_helper_task_encountered;
2860
2861  KMP_ALIGN_CACHE
2862  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2863
2864  KMP_ALIGN_CACHE
2865  volatile kmp_uint32
2866      tt_active; /* is the team still actively executing tasks */
2867} kmp_base_task_team_t;
2868
2869union KMP_ALIGN_CACHE kmp_task_team {
2870  kmp_base_task_team_t tt;
2871  double tt_align; /* use worst case alignment */
2872  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2873};
2874
2875#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2876// Free lists keep same-size free memory slots for fast memory allocation
2877// routines
2878typedef struct kmp_free_list {
2879  void *th_free_list_self; // Self-allocated tasks free list
2880  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2881  // threads
2882  void *th_free_list_other; // Non-self free list (to be returned to owner's
2883  // sync list)
2884} kmp_free_list_t;
2885#endif
2886#if KMP_NESTED_HOT_TEAMS
2887// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2888// are not put in teams pool, and they don't put threads in threads pool.
2889typedef struct kmp_hot_team_ptr {
2890  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2891  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2892} kmp_hot_team_ptr_t;
2893#endif
2894typedef struct kmp_teams_size {
2895  kmp_int32 nteams; // number of teams in a league
2896  kmp_int32 nth; // number of threads in each team of the league
2897} kmp_teams_size_t;
2898
2899// This struct stores a thread that acts as a "root" for a contention
2900// group. Contention groups are rooted at kmp_root threads, but also at
2901// each primary thread of each team created in the teams construct.
2902// This struct therefore also stores a thread_limit associated with
2903// that contention group, and a counter to track the number of threads
2904// active in that contention group. Each thread has a list of these: CG
2905// root threads have an entry in their list in which cg_root refers to
2906// the thread itself, whereas other workers in the CG will have a
2907// single entry where cg_root is same as the entry containing their CG
2908// root. When a thread encounters a teams construct, it will add a new
2909// entry to the front of its list, because it now roots a new CG.
2910typedef struct kmp_cg_root {
2911  kmp_info_p *cg_root; // "root" thread for a contention group
2912  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2913  // thread_limit clause for teams primary threads
2914  kmp_int32 cg_thread_limit;
2915  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2916  struct kmp_cg_root *up; // pointer to higher level CG root in list
2917} kmp_cg_root_t;
2918
2919// OpenMP thread data structures
2920
2921typedef struct KMP_ALIGN_CACHE kmp_base_info {
2922  /* Start with the readonly data which is cache aligned and padded. This is
2923     written before the thread starts working by the primary thread. Uber
2924     masters may update themselves later. Usage does not consider serialized
2925     regions.  */
2926  kmp_desc_t th_info;
2927  kmp_team_p *th_team; /* team we belong to */
2928  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2929  kmp_info_p *th_next_pool; /* next available thread in the pool */
2930  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2931  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2932
2933  /* The following are cached from the team info structure */
2934  /* TODO use these in more places as determined to be needed via profiling */
2935  int th_team_nproc; /* number of threads in a team */
2936  kmp_info_p *th_team_master; /* the team's primary thread */
2937  int th_team_serialized; /* team is serialized */
2938  microtask_t th_teams_microtask; /* save entry address for teams construct */
2939  int th_teams_level; /* save initial level of teams construct */
2940/* it is 0 on device but may be any on host */
2941
2942/* The blocktime info is copied from the team struct to the thread struct */
2943/* at the start of a barrier, and the values stored in the team are used  */
2944/* at points in the code where the team struct is no longer guaranteed    */
2945/* to exist (from the POV of worker threads).                             */
2946#if KMP_USE_MONITOR
2947  int th_team_bt_intervals;
2948  int th_team_bt_set;
2949#else
2950  kmp_uint64 th_team_bt_intervals;
2951#endif
2952
2953#if KMP_AFFINITY_SUPPORTED
2954  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2955  kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2956  kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2957#endif
2958  omp_allocator_handle_t th_def_allocator; /* default allocator */
2959  /* The data set by the primary thread at reinit, then R/W by the worker */
2960  KMP_ALIGN_CACHE int
2961      th_set_nproc; /* if > 0, then only use this request for the next fork */
2962#if KMP_NESTED_HOT_TEAMS
2963  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2964#endif
2965  kmp_proc_bind_t
2966      th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2967  kmp_teams_size_t
2968      th_teams_size; /* number of teams/threads in teams construct */
2969#if KMP_AFFINITY_SUPPORTED
2970  int th_current_place; /* place currently bound to */
2971  int th_new_place; /* place to bind to in par reg */
2972  int th_first_place; /* first place in partition */
2973  int th_last_place; /* last place in partition */
2974#endif
2975  int th_prev_level; /* previous level for affinity format */
2976  int th_prev_num_threads; /* previous num_threads for affinity format */
2977#if USE_ITT_BUILD
2978  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2979  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2980  kmp_uint64 th_frame_time; /* frame timestamp */
2981#endif /* USE_ITT_BUILD */
2982  kmp_local_t th_local;
2983  struct private_common *th_pri_head;
2984
2985  /* Now the data only used by the worker (after initial allocation) */
2986  /* TODO the first serial team should actually be stored in the info_t
2987     structure.  this will help reduce initial allocation overhead */
2988  KMP_ALIGN_CACHE kmp_team_p
2989      *th_serial_team; /*serialized team held in reserve*/
2990
2991#if OMPT_SUPPORT
2992  ompt_thread_info_t ompt_thread_info;
2993#endif
2994
2995  /* The following are also read by the primary thread during reinit */
2996  struct common_table *th_pri_common;
2997
2998  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2999  /* while awaiting queuing lock acquire */
3000
3001  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
3002  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
3003
3004  ident_t *th_ident;
3005  unsigned th_x; // Random number generator data
3006  unsigned th_a; // Random number generator data
3007
3008  /* Tasking-related data for the thread */
3009  kmp_task_team_t *th_task_team; // Task team struct
3010  kmp_taskdata_t *th_current_task; // Innermost Task being executed
3011  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
3012  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
3013  // at nested levels
3014  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
3015  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
3016  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
3017  // tasking, thus safe to reap
3018
3019  /* More stuff for keeping track of active/sleeping threads (this part is
3020     written by the worker thread) */
3021  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
3022  int th_active; // ! sleeping; 32 bits for TCR/TCW
3023  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
3024  // 0 = not used in team; 1 = used in team;
3025  // 2 = transitioning to not used in team; 3 = transitioning to used in team
3026  struct cons_header *th_cons; // used for consistency check
3027#if KMP_USE_HIER_SCHED
3028  // used for hierarchical scheduling
3029  kmp_hier_private_bdata_t *th_hier_bar_data;
3030#endif
3031
3032  /* Add the syncronizing data which is cache aligned and padded. */
3033  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
3034
3035  KMP_ALIGN_CACHE volatile kmp_int32
3036      th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
3037
3038#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
3039#define NUM_LISTS 4
3040  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
3041// allocation routines
3042#endif
3043
3044#if KMP_OS_WINDOWS
3045  kmp_win32_cond_t th_suspend_cv;
3046  kmp_win32_mutex_t th_suspend_mx;
3047  std::atomic<int> th_suspend_init;
3048#endif
3049#if KMP_OS_UNIX
3050  kmp_cond_align_t th_suspend_cv;
3051  kmp_mutex_align_t th_suspend_mx;
3052  std::atomic<int> th_suspend_init_count;
3053#endif
3054
3055#if USE_ITT_BUILD
3056  kmp_itt_mark_t th_itt_mark_single;
3057// alignment ???
3058#endif /* USE_ITT_BUILD */
3059#if KMP_STATS_ENABLED
3060  kmp_stats_list *th_stats;
3061#endif
3062#if KMP_OS_UNIX
3063  std::atomic<bool> th_blocking;
3064#endif
3065  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
3066} kmp_base_info_t;
3067
3068typedef union KMP_ALIGN_CACHE kmp_info {
3069  double th_align; /* use worst case alignment */
3070  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
3071  kmp_base_info_t th;
3072} kmp_info_t;
3073
3074// OpenMP thread team data structures
3075
3076typedef struct kmp_base_data {
3077  volatile kmp_uint32 t_value;
3078} kmp_base_data_t;
3079
3080typedef union KMP_ALIGN_CACHE kmp_sleep_team {
3081  double dt_align; /* use worst case alignment */
3082  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3083  kmp_base_data_t dt;
3084} kmp_sleep_team_t;
3085
3086typedef union KMP_ALIGN_CACHE kmp_ordered_team {
3087  double dt_align; /* use worst case alignment */
3088  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3089  kmp_base_data_t dt;
3090} kmp_ordered_team_t;
3091
3092typedef int (*launch_t)(int gtid);
3093
3094/* Minimum number of ARGV entries to malloc if necessary */
3095#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3096
3097// Set up how many argv pointers will fit in cache lines containing
3098// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3099// larger value for more space between the primary write/worker read section and
3100// read/write by all section seems to buy more performance on EPCC PARALLEL.
3101#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3102#define KMP_INLINE_ARGV_BYTES                                                  \
3103  (4 * CACHE_LINE -                                                            \
3104   ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) +               \
3105     sizeof(kmp_int16) + sizeof(kmp_uint32)) %                                 \
3106    CACHE_LINE))
3107#else
3108#define KMP_INLINE_ARGV_BYTES                                                  \
3109  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3110#endif
3111#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3112
3113typedef struct KMP_ALIGN_CACHE kmp_base_team {
3114  // Synchronization Data
3115  // ---------------------------------------------------------------------------
3116  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3117  kmp_balign_team_t t_bar[bs_last_barrier];
3118  std::atomic<int> t_construct; // count of single directive encountered by team
3119  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3120
3121  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3122  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3123  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3124
3125  // Primary thread only
3126  // ---------------------------------------------------------------------------
3127  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3128  int t_master_this_cons; // "this_construct" single counter of primary thread
3129  // in parent team
3130  ident_t *t_ident; // if volatile, have to change too much other crud to
3131  // volatile too
3132  kmp_team_p *t_parent; // parent team
3133  kmp_team_p *t_next_pool; // next free team in the team pool
3134  kmp_disp_t *t_dispatch; // thread's dispatch data
3135  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3136  kmp_proc_bind_t t_proc_bind; // bind type for par region
3137#if USE_ITT_BUILD
3138  kmp_uint64 t_region_time; // region begin timestamp
3139#endif /* USE_ITT_BUILD */
3140
3141  // Primary thread write, workers read
3142  // --------------------------------------------------------------------------
3143  KMP_ALIGN_CACHE void **t_argv;
3144  int t_argc;
3145  int t_nproc; // number of threads in team
3146  microtask_t t_pkfn;
3147  launch_t t_invoke; // procedure to launch the microtask
3148
3149#if OMPT_SUPPORT
3150  ompt_team_info_t ompt_team_info;
3151  ompt_lw_taskteam_t *ompt_serialized_team_info;
3152#endif
3153
3154#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3155  kmp_int8 t_fp_control_saved;
3156  kmp_int8 t_pad2b;
3157  kmp_int16 t_x87_fpu_control_word; // FP control regs
3158  kmp_uint32 t_mxcsr;
3159#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3160
3161  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3162
3163  KMP_ALIGN_CACHE kmp_info_t **t_threads;
3164  kmp_taskdata_t
3165      *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3166  int t_level; // nested parallel level
3167
3168  KMP_ALIGN_CACHE int t_max_argc;
3169  int t_max_nproc; // max threads this team can handle (dynamically expandable)
3170  int t_serialized; // levels deep of serialized teams
3171  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3172  int t_id; // team's id, assigned by debugger.
3173  int t_active_level; // nested active parallel level
3174  kmp_r_sched_t t_sched; // run-time schedule for the team
3175#if KMP_AFFINITY_SUPPORTED
3176  int t_first_place; // first & last place in parent thread's partition.
3177  int t_last_place; // Restore these values to primary thread after par region.
3178#endif // KMP_AFFINITY_SUPPORTED
3179  int t_display_affinity;
3180  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3181  // omp_set_num_threads() call
3182  omp_allocator_handle_t t_def_allocator; /* default allocator */
3183
3184// Read/write by workers as well
3185#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3186  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3187  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3188  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3189  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3190  char dummy_padding[1024];
3191#endif
3192  // Internal control stack for additional nested teams.
3193  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3194  // for SERIALIZED teams nested 2 or more levels deep
3195  // typed flag to store request state of cancellation
3196  std::atomic<kmp_int32> t_cancel_request;
3197  int t_master_active; // save on fork, restore on join
3198  void *t_copypriv_data; // team specific pointer to copyprivate data array
3199#if KMP_OS_WINDOWS
3200  std::atomic<kmp_uint32> t_copyin_counter;
3201#endif
3202#if USE_ITT_BUILD
3203  void *t_stack_id; // team specific stack stitching id (for ittnotify)
3204#endif /* USE_ITT_BUILD */
3205  distributedBarrier *b; // Distributed barrier data associated with team
3206} kmp_base_team_t;
3207
3208union KMP_ALIGN_CACHE kmp_team {
3209  kmp_base_team_t t;
3210  double t_align; /* use worst case alignment */
3211  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3212};
3213
3214typedef union KMP_ALIGN_CACHE kmp_time_global {
3215  double dt_align; /* use worst case alignment */
3216  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3217  kmp_base_data_t dt;
3218} kmp_time_global_t;
3219
3220typedef struct kmp_base_global {
3221  /* cache-aligned */
3222  kmp_time_global_t g_time;
3223
3224  /* non cache-aligned */
3225  volatile int g_abort;
3226  volatile int g_done;
3227
3228  int g_dynamic;
3229  enum dynamic_mode g_dynamic_mode;
3230} kmp_base_global_t;
3231
3232typedef union KMP_ALIGN_CACHE kmp_global {
3233  kmp_base_global_t g;
3234  double g_align; /* use worst case alignment */
3235  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3236} kmp_global_t;
3237
3238typedef struct kmp_base_root {
3239  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3240  // (r_in_parallel>= 0)
3241  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3242  // the synch overhead or keeping r_active
3243  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3244  // keeps a count of active parallel regions per root
3245  std::atomic<int> r_in_parallel;
3246  // GEH: This is misnamed, should be r_active_levels
3247  kmp_team_t *r_root_team;
3248  kmp_team_t *r_hot_team;
3249  kmp_info_t *r_uber_thread;
3250  kmp_lock_t r_begin_lock;
3251  volatile int r_begin;
3252  int r_blocktime; /* blocktime for this root and descendants */
3253#if KMP_AFFINITY_SUPPORTED
3254  int r_affinity_assigned;
3255#endif // KMP_AFFINITY_SUPPORTED
3256} kmp_base_root_t;
3257
3258typedef union KMP_ALIGN_CACHE kmp_root {
3259  kmp_base_root_t r;
3260  double r_align; /* use worst case alignment */
3261  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3262} kmp_root_t;
3263
3264struct fortran_inx_info {
3265  kmp_int32 data;
3266};
3267
3268// This list type exists to hold old __kmp_threads arrays so that
3269// old references to them may complete while reallocation takes place when
3270// expanding the array. The items in this list are kept alive until library
3271// shutdown.
3272typedef struct kmp_old_threads_list_t {
3273  kmp_info_t **threads;
3274  struct kmp_old_threads_list_t *next;
3275} kmp_old_threads_list_t;
3276
3277/* ------------------------------------------------------------------------ */
3278
3279extern int __kmp_settings;
3280extern int __kmp_duplicate_library_ok;
3281#if USE_ITT_BUILD
3282extern int __kmp_forkjoin_frames;
3283extern int __kmp_forkjoin_frames_mode;
3284#endif
3285extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3286extern int __kmp_determ_red;
3287
3288#ifdef KMP_DEBUG
3289extern int kmp_a_debug;
3290extern int kmp_b_debug;
3291extern int kmp_c_debug;
3292extern int kmp_d_debug;
3293extern int kmp_e_debug;
3294extern int kmp_f_debug;
3295#endif /* KMP_DEBUG */
3296
3297/* For debug information logging using rotating buffer */
3298#define KMP_DEBUG_BUF_LINES_INIT 512
3299#define KMP_DEBUG_BUF_LINES_MIN 1
3300
3301#define KMP_DEBUG_BUF_CHARS_INIT 128
3302#define KMP_DEBUG_BUF_CHARS_MIN 2
3303
3304extern int
3305    __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3306extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3307extern int
3308    __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3309extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3310                                      entry pointer */
3311
3312extern char *__kmp_debug_buffer; /* Debug buffer itself */
3313extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3314                                              printed in buffer so far */
3315extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3316                                          recommended in warnings */
3317/* end rotating debug buffer */
3318
3319#ifdef KMP_DEBUG
3320extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3321
3322#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3323extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3324#define KMP_PAR_RANGE_FILENAME_LEN 1024
3325extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3326extern int __kmp_par_range_lb;
3327extern int __kmp_par_range_ub;
3328#endif
3329
3330/* For printing out dynamic storage map for threads and teams */
3331extern int
3332    __kmp_storage_map; /* True means print storage map for threads and teams */
3333extern int __kmp_storage_map_verbose; /* True means storage map includes
3334                                         placement info */
3335extern int __kmp_storage_map_verbose_specified;
3336
3337#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3338extern kmp_cpuinfo_t __kmp_cpuinfo;
3339static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3340#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3341static inline bool __kmp_is_hybrid_cpu() { return true; }
3342#else
3343static inline bool __kmp_is_hybrid_cpu() { return false; }
3344#endif
3345
3346extern volatile int __kmp_init_serial;
3347extern volatile int __kmp_init_gtid;
3348extern volatile int __kmp_init_common;
3349extern volatile int __kmp_need_register_serial;
3350extern volatile int __kmp_init_middle;
3351extern volatile int __kmp_init_parallel;
3352#if KMP_USE_MONITOR
3353extern volatile int __kmp_init_monitor;
3354#endif
3355extern volatile int __kmp_init_user_locks;
3356extern volatile int __kmp_init_hidden_helper_threads;
3357extern int __kmp_init_counter;
3358extern int __kmp_root_counter;
3359extern int __kmp_version;
3360
3361/* list of address of allocated caches for commons */
3362extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3363
3364/* Barrier algorithm types and options */
3365extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3366extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3367extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3368extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3369extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3370extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3371extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3372extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3373extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3374extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3375extern char const *__kmp_barrier_type_name[bs_last_barrier];
3376extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3377
3378/* Global Locks */
3379extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3380extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3381extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3382extern kmp_bootstrap_lock_t
3383    __kmp_exit_lock; /* exit() is not always thread-safe */
3384#if KMP_USE_MONITOR
3385extern kmp_bootstrap_lock_t
3386    __kmp_monitor_lock; /* control monitor thread creation */
3387#endif
3388extern kmp_bootstrap_lock_t
3389    __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3390                             __kmp_threads expansion to co-exist */
3391
3392extern kmp_lock_t __kmp_global_lock; /* control OS/global access  */
3393extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access  */
3394extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3395
3396extern enum library_type __kmp_library;
3397
3398extern enum sched_type __kmp_sched; /* default runtime scheduling */
3399extern enum sched_type __kmp_static; /* default static scheduling method */
3400extern enum sched_type __kmp_guided; /* default guided scheduling method */
3401extern enum sched_type __kmp_auto; /* default auto scheduling method */
3402extern int __kmp_chunk; /* default runtime chunk size */
3403extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3404
3405extern size_t __kmp_stksize; /* stack size per thread         */
3406#if KMP_USE_MONITOR
3407extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3408#endif
3409extern size_t __kmp_stkoffset; /* stack offset per thread       */
3410extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3411
3412extern size_t
3413    __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3414extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3415extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3416extern int __kmp_env_checks; /* was KMP_CHECKS specified?    */
3417extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3418extern int __kmp_generate_warnings; /* should we issue warnings? */
3419extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3420
3421#ifdef DEBUG_SUSPEND
3422extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3423#endif
3424
3425extern kmp_int32 __kmp_use_yield;
3426extern kmp_int32 __kmp_use_yield_exp_set;
3427extern kmp_uint32 __kmp_yield_init;
3428extern kmp_uint32 __kmp_yield_next;
3429extern kmp_uint64 __kmp_pause_init;
3430
3431/* ------------------------------------------------------------------------- */
3432extern int __kmp_allThreadsSpecified;
3433
3434extern size_t __kmp_align_alloc;
3435/* following data protected by initialization routines */
3436extern int __kmp_xproc; /* number of processors in the system */
3437extern int __kmp_avail_proc; /* number of processors available to the process */
3438extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3439extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3440// maximum total number of concurrently-existing threads on device
3441extern int __kmp_max_nth;
3442// maximum total number of concurrently-existing threads in a contention group
3443extern int __kmp_cg_max_nth;
3444extern int __kmp_task_max_nth; // max threads used in a task
3445extern int __kmp_teams_max_nth; // max threads used in a teams construct
3446extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3447                                      __kmp_root */
3448extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3449                                   region a la OMP_NUM_THREADS */
3450extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3451                                      initialization */
3452extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3453                                 used (fixed) */
3454extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3455                               (__kmpc_threadprivate_cached()) */
3456extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3457                                    blocking (env setting) */
3458extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3459extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3460
3461// Convert raw blocktime from ms to us if needed.
3462static inline void __kmp_aux_convert_blocktime(int *bt) {
3463  if (__kmp_blocktime_units == 'm') {
3464    if (*bt > INT_MAX / 1000) {
3465      *bt = INT_MAX / 1000;
3466      KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3467    }
3468    *bt = *bt * 1000;
3469  }
3470}
3471
3472#if KMP_USE_MONITOR
3473extern int
3474    __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3475extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3476                                  blocking */
3477#endif
3478#ifdef KMP_ADJUST_BLOCKTIME
3479extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3480#endif /* KMP_ADJUST_BLOCKTIME */
3481#ifdef KMP_DFLT_NTH_CORES
3482extern int __kmp_ncores; /* Total number of cores for threads placement */
3483#endif
3484/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3485extern int __kmp_abort_delay;
3486
3487extern int __kmp_need_register_atfork_specified;
3488extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3489                                          to install fork handler */
3490extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3491                               0 - not set, will be set at runtime
3492                               1 - using stack search
3493                               2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3494                                   X*) or TlsGetValue(Windows* OS))
3495                               3 - static TLS (__declspec(thread) __kmp_gtid),
3496                                   Linux* OS .so only.  */
3497extern int
3498    __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3499#ifdef KMP_TDATA_GTID
3500extern KMP_THREAD_LOCAL int __kmp_gtid;
3501#endif
3502extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3503extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3504#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3505extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3506extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3507extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3508#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3509
3510// max_active_levels for nested parallelism enabled by default via
3511// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3512extern int __kmp_dflt_max_active_levels;
3513// Indicates whether value of __kmp_dflt_max_active_levels was already
3514// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3515extern bool __kmp_dflt_max_active_levels_set;
3516extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3517                                          concurrent execution per team */
3518#if KMP_NESTED_HOT_TEAMS
3519extern int __kmp_hot_teams_mode;
3520extern int __kmp_hot_teams_max_level;
3521#endif
3522
3523#if KMP_OS_LINUX
3524extern enum clock_function_type __kmp_clock_function;
3525extern int __kmp_clock_function_param;
3526#endif /* KMP_OS_LINUX */
3527
3528#if KMP_MIC_SUPPORTED
3529extern enum mic_type __kmp_mic_type;
3530#endif
3531
3532#ifdef USE_LOAD_BALANCE
3533extern double __kmp_load_balance_interval; // load balance algorithm interval
3534#endif /* USE_LOAD_BALANCE */
3535
3536// OpenMP 3.1 - Nested num threads array
3537typedef struct kmp_nested_nthreads_t {
3538  int *nth;
3539  int size;
3540  int used;
3541} kmp_nested_nthreads_t;
3542
3543extern kmp_nested_nthreads_t __kmp_nested_nth;
3544
3545#if KMP_USE_ADAPTIVE_LOCKS
3546
3547// Parameters for the speculative lock backoff system.
3548struct kmp_adaptive_backoff_params_t {
3549  // Number of soft retries before it counts as a hard retry.
3550  kmp_uint32 max_soft_retries;
3551  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3552  // the right
3553  kmp_uint32 max_badness;
3554};
3555
3556extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3557
3558#if KMP_DEBUG_ADAPTIVE_LOCKS
3559extern const char *__kmp_speculative_statsfile;
3560#endif
3561
3562#endif // KMP_USE_ADAPTIVE_LOCKS
3563
3564extern int __kmp_display_env; /* TRUE or FALSE */
3565extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3566extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3567extern int __kmp_nteams;
3568extern int __kmp_teams_thread_limit;
3569
3570/* ------------------------------------------------------------------------- */
3571
3572/* the following are protected by the fork/join lock */
3573/* write: lock  read: anytime */
3574extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3575/* Holds old arrays of __kmp_threads until library shutdown */
3576extern kmp_old_threads_list_t *__kmp_old_threads_list;
3577/* read/write: lock */
3578extern volatile kmp_team_t *__kmp_team_pool;
3579extern volatile kmp_info_t *__kmp_thread_pool;
3580extern kmp_info_t *__kmp_thread_pool_insert_pt;
3581
3582// total num threads reachable from some root thread including all root threads
3583extern volatile int __kmp_nth;
3584/* total number of threads reachable from some root thread including all root
3585   threads, and those in the thread pool */
3586extern volatile int __kmp_all_nth;
3587extern std::atomic<int> __kmp_thread_pool_active_nth;
3588
3589extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3590/* end data protected by fork/join lock */
3591/* ------------------------------------------------------------------------- */
3592
3593#define __kmp_get_gtid() __kmp_get_global_thread_id()
3594#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3595#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3596#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3597#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3598
3599// AT: Which way is correct?
3600// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3601// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3602#define __kmp_get_team_num_threads(gtid)                                       \
3603  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3604
3605static inline bool KMP_UBER_GTID(int gtid) {
3606  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3607  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3608  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3609          __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3610}
3611
3612static inline int __kmp_tid_from_gtid(int gtid) {
3613  KMP_DEBUG_ASSERT(gtid >= 0);
3614  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3615}
3616
3617static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3618  KMP_DEBUG_ASSERT(tid >= 0 && team);
3619  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3620}
3621
3622static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3623  KMP_DEBUG_ASSERT(thr);
3624  return thr->th.th_info.ds.ds_gtid;
3625}
3626
3627static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3628  KMP_DEBUG_ASSERT(gtid >= 0);
3629  return __kmp_threads[gtid];
3630}
3631
3632static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3633  KMP_DEBUG_ASSERT(gtid >= 0);
3634  return __kmp_threads[gtid]->th.th_team;
3635}
3636
3637static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3638  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3639    KMP_FATAL(ThreadIdentInvalid);
3640}
3641
3642#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3643extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3644extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3645extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3646extern int __kmp_mwait_hints; // Hints to pass in to mwait
3647#endif
3648
3649#if KMP_HAVE_UMWAIT
3650extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3651extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3652extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3653extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3654#endif
3655
3656/* ------------------------------------------------------------------------- */
3657
3658extern kmp_global_t __kmp_global; /* global status */
3659
3660extern kmp_info_t __kmp_monitor;
3661// For Debugging Support Library
3662extern std::atomic<kmp_int32> __kmp_team_counter;
3663// For Debugging Support Library
3664extern std::atomic<kmp_int32> __kmp_task_counter;
3665
3666#if USE_DEBUGGER
3667#define _KMP_GEN_ID(counter)                                                   \
3668  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3669#else
3670#define _KMP_GEN_ID(counter) (~0)
3671#endif /* USE_DEBUGGER */
3672
3673#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3674#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3675
3676/* ------------------------------------------------------------------------ */
3677
3678extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3679                                         size_t size, char const *format, ...);
3680
3681extern void __kmp_serial_initialize(void);
3682extern void __kmp_middle_initialize(void);
3683extern void __kmp_parallel_initialize(void);
3684
3685extern void __kmp_internal_begin(void);
3686extern void __kmp_internal_end_library(int gtid);
3687extern void __kmp_internal_end_thread(int gtid);
3688extern void __kmp_internal_end_atexit(void);
3689extern void __kmp_internal_end_dtor(void);
3690extern void __kmp_internal_end_dest(void *);
3691
3692extern int __kmp_register_root(int initial_thread);
3693extern void __kmp_unregister_root(int gtid);
3694extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3695
3696extern int __kmp_ignore_mppbeg(void);
3697extern int __kmp_ignore_mppend(void);
3698
3699extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3700extern void __kmp_exit_single(int gtid);
3701
3702extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3703extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3704
3705#ifdef USE_LOAD_BALANCE
3706extern int __kmp_get_load_balance(int);
3707#endif
3708
3709extern int __kmp_get_global_thread_id(void);
3710extern int __kmp_get_global_thread_id_reg(void);
3711extern void __kmp_exit_thread(int exit_status);
3712extern void __kmp_abort(char const *format, ...);
3713extern void __kmp_abort_thread(void);
3714KMP_NORETURN extern void __kmp_abort_process(void);
3715extern void __kmp_warn(char const *format, ...);
3716
3717extern void __kmp_set_num_threads(int new_nth, int gtid);
3718
3719extern bool __kmp_detect_shm();
3720extern bool __kmp_detect_tmp();
3721
3722// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3723// registered.
3724static inline kmp_info_t *__kmp_entry_thread() {
3725  int gtid = __kmp_entry_gtid();
3726
3727  return __kmp_threads[gtid];
3728}
3729
3730extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3731extern int __kmp_get_max_active_levels(int gtid);
3732extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3733extern int __kmp_get_team_size(int gtid, int level);
3734extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3735extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3736
3737extern unsigned short __kmp_get_random(kmp_info_t *thread);
3738extern void __kmp_init_random(kmp_info_t *thread);
3739
3740extern kmp_r_sched_t __kmp_get_schedule_global(void);
3741extern void __kmp_adjust_num_threads(int new_nproc);
3742extern void __kmp_check_stksize(size_t *val);
3743
3744extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3745extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3746extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3747#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3748#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3749#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3750
3751#if USE_FAST_MEMORY
3752extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3753                                  size_t size KMP_SRC_LOC_DECL);
3754extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3755extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3756extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3757#define __kmp_fast_allocate(this_thr, size)                                    \
3758  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3759#define __kmp_fast_free(this_thr, ptr)                                         \
3760  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3761#endif
3762
3763extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3764extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3765                                  size_t elsize KMP_SRC_LOC_DECL);
3766extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3767                                   size_t size KMP_SRC_LOC_DECL);
3768extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3769#define __kmp_thread_malloc(th, size)                                          \
3770  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3771#define __kmp_thread_calloc(th, nelem, elsize)                                 \
3772  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3773#define __kmp_thread_realloc(th, ptr, size)                                    \
3774  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3775#define __kmp_thread_free(th, ptr)                                             \
3776  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3777
3778extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3779
3780extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3781                                 kmp_proc_bind_t proc_bind);
3782extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3783                                 int num_threads);
3784extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3785                                    int num_teams_ub, int num_threads);
3786
3787extern void __kmp_yield();
3788
3789extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3790                                   enum sched_type schedule, kmp_int32 lb,
3791                                   kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3792extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3793                                    enum sched_type schedule, kmp_uint32 lb,
3794                                    kmp_uint32 ub, kmp_int32 st,
3795                                    kmp_int32 chunk);
3796extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3797                                   enum sched_type schedule, kmp_int64 lb,
3798                                   kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3799extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3800                                    enum sched_type schedule, kmp_uint64 lb,
3801                                    kmp_uint64 ub, kmp_int64 st,
3802                                    kmp_int64 chunk);
3803
3804extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3805                                  kmp_int32 *p_last, kmp_int32 *p_lb,
3806                                  kmp_int32 *p_ub, kmp_int32 *p_st);
3807extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3808                                   kmp_int32 *p_last, kmp_uint32 *p_lb,
3809                                   kmp_uint32 *p_ub, kmp_int32 *p_st);
3810extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3811                                  kmp_int32 *p_last, kmp_int64 *p_lb,
3812                                  kmp_int64 *p_ub, kmp_int64 *p_st);
3813extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3814                                   kmp_int32 *p_last, kmp_uint64 *p_lb,
3815                                   kmp_uint64 *p_ub, kmp_int64 *p_st);
3816
3817extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3818extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3819extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3820extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3821
3822#ifdef KMP_GOMP_COMPAT
3823
3824extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3825                                      enum sched_type schedule, kmp_int32 lb,
3826                                      kmp_int32 ub, kmp_int32 st,
3827                                      kmp_int32 chunk, int push_ws);
3828extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3829                                       enum sched_type schedule, kmp_uint32 lb,
3830                                       kmp_uint32 ub, kmp_int32 st,
3831                                       kmp_int32 chunk, int push_ws);
3832extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3833                                      enum sched_type schedule, kmp_int64 lb,
3834                                      kmp_int64 ub, kmp_int64 st,
3835                                      kmp_int64 chunk, int push_ws);
3836extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3837                                       enum sched_type schedule, kmp_uint64 lb,
3838                                       kmp_uint64 ub, kmp_int64 st,
3839                                       kmp_int64 chunk, int push_ws);
3840extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3841extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3842extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3843extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3844
3845#endif /* KMP_GOMP_COMPAT */
3846
3847extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3848extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3849extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3850extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3851extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3852extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3853                               kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3854                               void *obj);
3855extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3856                             kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3857
3858extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3859                          int final_spin
3860#if USE_ITT_BUILD
3861                          ,
3862                          void *itt_sync_obj
3863#endif
3864);
3865extern void __kmp_release_64(kmp_flag_64<> *flag);
3866
3867extern void __kmp_infinite_loop(void);
3868
3869extern void __kmp_cleanup(void);
3870
3871#if KMP_HANDLE_SIGNALS
3872extern int __kmp_handle_signals;
3873extern void __kmp_install_signals(int parallel_init);
3874extern void __kmp_remove_signals(void);
3875#endif
3876
3877extern void __kmp_clear_system_time(void);
3878extern void __kmp_read_system_time(double *delta);
3879
3880extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3881
3882extern void __kmp_expand_host_name(char *buffer, size_t size);
3883extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3884
3885#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3886extern void
3887__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3888#endif
3889
3890extern void
3891__kmp_runtime_initialize(void); /* machine specific initialization */
3892extern void __kmp_runtime_destroy(void);
3893
3894#if KMP_AFFINITY_SUPPORTED
3895extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3896                                       kmp_affin_mask_t *mask);
3897extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3898                                                  kmp_affin_mask_t *mask);
3899extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3900extern void __kmp_affinity_uninitialize(void);
3901extern void __kmp_affinity_set_init_mask(
3902    int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3903void __kmp_affinity_bind_init_mask(int gtid);
3904extern void __kmp_affinity_bind_place(int gtid);
3905extern void __kmp_affinity_determine_capable(const char *env_var);
3906extern int __kmp_aux_set_affinity(void **mask);
3907extern int __kmp_aux_get_affinity(void **mask);
3908extern int __kmp_aux_get_affinity_max_proc();
3909extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3910extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3911extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3912extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3913#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
3914extern int __kmp_get_first_osid_with_ecore(void);
3915#endif
3916#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX
3917extern int kmp_set_thread_affinity_mask_initial(void);
3918#endif
3919static inline void __kmp_assign_root_init_mask() {
3920  int gtid = __kmp_entry_gtid();
3921  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3922  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3923    __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3924    __kmp_affinity_bind_init_mask(gtid);
3925    r->r.r_affinity_assigned = TRUE;
3926  }
3927}
3928static inline void __kmp_reset_root_init_mask(int gtid) {
3929  if (!KMP_AFFINITY_CAPABLE())
3930    return;
3931  kmp_info_t *th = __kmp_threads[gtid];
3932  kmp_root_t *r = th->th.th_root;
3933  if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3934    __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3935    KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3936    r->r.r_affinity_assigned = FALSE;
3937  }
3938}
3939#else /* KMP_AFFINITY_SUPPORTED */
3940#define __kmp_assign_root_init_mask() /* Nothing */
3941static inline void __kmp_reset_root_init_mask(int gtid) {}
3942#endif /* KMP_AFFINITY_SUPPORTED */
3943// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3944// format string is for affinity, so platforms that do not support
3945// affinity can still use the other fields, e.g., %n for num_threads
3946extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3947                                         kmp_str_buf_t *buffer);
3948extern void __kmp_aux_display_affinity(int gtid, const char *format);
3949
3950extern void __kmp_cleanup_hierarchy();
3951extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3952
3953#if KMP_USE_FUTEX
3954
3955extern int __kmp_futex_determine_capable(void);
3956
3957#endif // KMP_USE_FUTEX
3958
3959extern void __kmp_gtid_set_specific(int gtid);
3960extern int __kmp_gtid_get_specific(void);
3961
3962extern double __kmp_read_cpu_time(void);
3963
3964extern int __kmp_read_system_info(struct kmp_sys_info *info);
3965
3966#if KMP_USE_MONITOR
3967extern void __kmp_create_monitor(kmp_info_t *th);
3968#endif
3969
3970extern void *__kmp_launch_thread(kmp_info_t *thr);
3971
3972extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3973
3974#if KMP_OS_WINDOWS
3975extern int __kmp_still_running(kmp_info_t *th);
3976extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3977extern void __kmp_free_handle(kmp_thread_t tHandle);
3978#endif
3979
3980#if KMP_USE_MONITOR
3981extern void __kmp_reap_monitor(kmp_info_t *th);
3982#endif
3983extern void __kmp_reap_worker(kmp_info_t *th);
3984extern void __kmp_terminate_thread(int gtid);
3985
3986extern int __kmp_try_suspend_mx(kmp_info_t *th);
3987extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3988extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3989
3990extern void __kmp_elapsed(double *);
3991extern void __kmp_elapsed_tick(double *);
3992
3993extern void __kmp_enable(int old_state);
3994extern void __kmp_disable(int *old_state);
3995
3996extern void __kmp_thread_sleep(int millis);
3997
3998extern void __kmp_common_initialize(void);
3999extern void __kmp_common_destroy(void);
4000extern void __kmp_common_destroy_gtid(int gtid);
4001
4002#if KMP_OS_UNIX
4003extern void __kmp_register_atfork(void);
4004#endif
4005extern void __kmp_suspend_initialize(void);
4006extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
4007extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
4008
4009extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4010                                         int tid);
4011extern kmp_team_t *
4012__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4013#if OMPT_SUPPORT
4014                    ompt_data_t ompt_parallel_data,
4015#endif
4016                    kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
4017                    int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
4018extern void __kmp_free_thread(kmp_info_t *);
4019extern void __kmp_free_team(kmp_root_t *,
4020                            kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
4021extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
4022
4023/* ------------------------------------------------------------------------ */
4024
4025extern void __kmp_initialize_bget(kmp_info_t *th);
4026extern void __kmp_finalize_bget(kmp_info_t *th);
4027
4028KMP_EXPORT void *kmpc_malloc(size_t size);
4029KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
4030KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
4031KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
4032KMP_EXPORT void kmpc_free(void *ptr);
4033
4034/* declarations for internal use */
4035
4036extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
4037                         size_t reduce_size, void *reduce_data,
4038                         void (*reduce)(void *, void *));
4039extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
4040extern int __kmp_barrier_gomp_cancel(int gtid);
4041
4042/*!
4043 * Tell the fork call which compiler generated the fork call, and therefore how
4044 * to deal with the call.
4045 */
4046enum fork_context_e {
4047  fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
4048                       microtask internally. */
4049  fork_context_intel, /**< Called from Intel generated code.  */
4050  fork_context_last
4051};
4052extern int __kmp_fork_call(ident_t *loc, int gtid,
4053                           enum fork_context_e fork_context, kmp_int32 argc,
4054                           microtask_t microtask, launch_t invoker,
4055                           kmp_va_list ap);
4056
4057extern void __kmp_join_call(ident_t *loc, int gtid
4058#if OMPT_SUPPORT
4059                            ,
4060                            enum fork_context_e fork_context
4061#endif
4062                            ,
4063                            int exit_teams = 0);
4064
4065extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
4066extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
4067extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
4068extern int __kmp_invoke_task_func(int gtid);
4069extern void __kmp_run_before_invoked_task(int gtid, int tid,
4070                                          kmp_info_t *this_thr,
4071                                          kmp_team_t *team);
4072extern void __kmp_run_after_invoked_task(int gtid, int tid,
4073                                         kmp_info_t *this_thr,
4074                                         kmp_team_t *team);
4075
4076// should never have been exported
4077KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
4078extern int __kmp_invoke_teams_master(int gtid);
4079extern void __kmp_teams_master(int gtid);
4080extern int __kmp_aux_get_team_num();
4081extern int __kmp_aux_get_num_teams();
4082extern void __kmp_save_internal_controls(kmp_info_t *thread);
4083extern void __kmp_user_set_library(enum library_type arg);
4084extern void __kmp_aux_set_library(enum library_type arg);
4085extern void __kmp_aux_set_stacksize(size_t arg);
4086extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
4087extern void __kmp_aux_set_defaults(char const *str, size_t len);
4088
4089/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
4090void kmpc_set_blocktime(int arg);
4091void ompc_set_nested(int flag);
4092void ompc_set_dynamic(int flag);
4093void ompc_set_num_threads(int arg);
4094
4095extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4096                                              kmp_team_t *team, int tid);
4097extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4098extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4099                                    kmp_tasking_flags_t *flags,
4100                                    size_t sizeof_kmp_task_t,
4101                                    size_t sizeof_shareds,
4102                                    kmp_routine_entry_t task_entry);
4103extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4104                                     kmp_team_t *team, int tid,
4105                                     int set_curr_task);
4106extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4107extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4108
4109extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4110                                                       int gtid,
4111                                                       kmp_task_t *task);
4112extern void __kmp_fulfill_event(kmp_event_t *event);
4113
4114extern void __kmp_free_task_team(kmp_info_t *thread,
4115                                 kmp_task_team_t *task_team);
4116extern void __kmp_reap_task_teams(void);
4117extern void __kmp_wait_to_unref_task_teams(void);
4118extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
4119                                  int always);
4120extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4121extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4122#if USE_ITT_BUILD
4123                                 ,
4124                                 void *itt_sync_obj
4125#endif /* USE_ITT_BUILD */
4126                                 ,
4127                                 int wait = 1);
4128extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4129                                  int gtid);
4130
4131extern int __kmp_is_address_mapped(void *addr);
4132extern kmp_uint64 __kmp_hardware_timestamp(void);
4133
4134#if KMP_OS_UNIX
4135extern int __kmp_read_from_file(char const *path, char const *format, ...);
4136#endif
4137
4138/* ------------------------------------------------------------------------ */
4139//
4140// Assembly routines that have no compiler intrinsic replacement
4141//
4142
4143extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4144                                  void *argv[]
4145#if OMPT_SUPPORT
4146                                  ,
4147                                  void **exit_frame_ptr
4148#endif
4149);
4150
4151/* ------------------------------------------------------------------------ */
4152
4153KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4154KMP_EXPORT void __kmpc_end(ident_t *);
4155
4156KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4157                                                  kmpc_ctor_vec ctor,
4158                                                  kmpc_cctor_vec cctor,
4159                                                  kmpc_dtor_vec dtor,
4160                                                  size_t vector_length);
4161KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4162                                              kmpc_ctor ctor, kmpc_cctor cctor,
4163                                              kmpc_dtor dtor);
4164KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4165                                      void *data, size_t size);
4166
4167KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4168KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4169KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4170KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4171
4172KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4173KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4174                                 kmpc_micro microtask, ...);
4175KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4176                                    kmpc_micro microtask, kmp_int32 cond,
4177                                    void *args);
4178
4179KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4180KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4181
4182KMP_EXPORT void __kmpc_flush(ident_t *);
4183KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4184KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4185KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4186KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4187                                   kmp_int32 filter);
4188KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4189KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4190KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4191KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4192                                kmp_critical_name *);
4193KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4194                                    kmp_critical_name *);
4195KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4196                                          kmp_critical_name *, uint32_t hint);
4197
4198KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4199KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4200
4201KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4202                                                  kmp_int32 global_tid);
4203
4204KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4205KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4206
4207KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4208KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4209                                         kmp_int32 numberOfSections);
4210KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4211
4212KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4213                                     kmp_int32 schedtype, kmp_int32 *plastiter,
4214                                     kmp_int *plower, kmp_int *pupper,
4215                                     kmp_int *pstride, kmp_int incr,
4216                                     kmp_int chunk);
4217
4218KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4219
4220KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4221                                   size_t cpy_size, void *cpy_data,
4222                                   void (*cpy_func)(void *, void *),
4223                                   kmp_int32 didit);
4224
4225KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4226                                          void *cpy_data);
4227
4228extern void KMPC_SET_NUM_THREADS(int arg);
4229extern void KMPC_SET_DYNAMIC(int flag);
4230extern void KMPC_SET_NESTED(int flag);
4231
4232/* OMP 3.0 tasking interface routines */
4233KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4234                                     kmp_task_t *new_task);
4235KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4236                                             kmp_int32 flags,
4237                                             size_t sizeof_kmp_task_t,
4238                                             size_t sizeof_shareds,
4239                                             kmp_routine_entry_t task_entry);
4240KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4241    ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4242    size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4243KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4244                                          kmp_task_t *task);
4245KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4246                                             kmp_task_t *task);
4247KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4248                                           kmp_task_t *new_task);
4249KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4250KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4251                                          int end_part);
4252
4253#if TASK_UNUSED
4254void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4255void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4256                              kmp_task_t *task);
4257#endif // TASK_UNUSED
4258
4259/* ------------------------------------------------------------------------ */
4260
4261KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4262KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4263
4264KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4265    ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4266    kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4267    kmp_depend_info_t *noalias_dep_list);
4268
4269KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task);
4270
4271KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task);
4272
4273KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4274                                     kmp_int32 ndeps,
4275                                     kmp_depend_info_t *dep_list,
4276                                     kmp_int32 ndeps_noalias,
4277                                     kmp_depend_info_t *noalias_dep_list);
4278/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4279 *                               Placeholder for taskwait with nowait clause.*/
4280KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4281                                            kmp_int32 ndeps,
4282                                            kmp_depend_info_t *dep_list,
4283                                            kmp_int32 ndeps_noalias,
4284                                            kmp_depend_info_t *noalias_dep_list,
4285                                            kmp_int32 has_no_wait);
4286
4287extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4288                                bool serialize_immediate);
4289
4290KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4291                                   kmp_int32 cncl_kind);
4292KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4293                                              kmp_int32 cncl_kind);
4294KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4295KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4296
4297KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4298KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4299KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4300                                kmp_int32 if_val, kmp_uint64 *lb,
4301                                kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4302                                kmp_int32 sched, kmp_uint64 grainsize,
4303                                void *task_dup);
4304KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4305                                  kmp_task_t *task, kmp_int32 if_val,
4306                                  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4307                                  kmp_int32 nogroup, kmp_int32 sched,
4308                                  kmp_uint64 grainsize, kmp_int32 modifier,
4309                                  void *task_dup);
4310KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4311KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4312KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4313KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4314                                                     int is_ws, int num,
4315                                                     void *data);
4316KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4317                                              int num, void *data);
4318KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4319                                                    int is_ws);
4320KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4321    ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4322    kmp_task_affinity_info_t *affin_list);
4323KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4324KMP_EXPORT int __kmp_get_max_teams(void);
4325KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4326KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4327
4328/* Interface target task integration */
4329KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4330KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4331
4332/* Lock interface routines (fast versions with gtid passed in) */
4333KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4334                                 void **user_lock);
4335KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4336                                      void **user_lock);
4337KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4338                                    void **user_lock);
4339KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4340                                         void **user_lock);
4341KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4342KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4343                                     void **user_lock);
4344KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4345                                  void **user_lock);
4346KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4347                                       void **user_lock);
4348KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4349KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4350                                     void **user_lock);
4351
4352KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4353                                           void **user_lock, uintptr_t hint);
4354KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4355                                                void **user_lock,
4356                                                uintptr_t hint);
4357
4358#if OMPX_TASKGRAPH
4359// Taskgraph's Record & Replay mechanism
4360// __kmp_tdg_is_recording: check whether a given TDG is recording
4361// status: the tdg's current status
4362static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4363  return status == KMP_TDG_RECORDING;
4364}
4365
4366KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4367                                              kmp_int32 input_flags,
4368                                              kmp_int32 tdg_id);
4369KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4370                                       kmp_int32 input_flags, kmp_int32 tdg_id);
4371#endif
4372/* Interface to fast scalable reduce methods routines */
4373
4374KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4375    ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4376    void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4377    kmp_critical_name *lck);
4378KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4379                                         kmp_critical_name *lck);
4380KMP_EXPORT kmp_int32 __kmpc_reduce(
4381    ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4382    void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4383    kmp_critical_name *lck);
4384KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4385                                  kmp_critical_name *lck);
4386
4387/* Internal fast reduction routines */
4388
4389extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4390    ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4391    void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4392    kmp_critical_name *lck);
4393
4394// this function is for testing set/get/determine reduce method
4395KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4396
4397KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4398KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4399
4400// C++ port
4401// missing 'extern "C"' declarations
4402
4403KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4404KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4405KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4406                                        kmp_int32 num_threads);
4407
4408KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4409                                      int proc_bind);
4410KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4411                                      kmp_int32 num_teams,
4412                                      kmp_int32 num_threads);
4413KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4414                                        kmp_int32 thread_limit);
4415/* Function for OpenMP 5.1 num_teams clause */
4416KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4417                                         kmp_int32 num_teams_lb,
4418                                         kmp_int32 num_teams_ub,
4419                                         kmp_int32 num_threads);
4420KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4421                                  kmpc_micro microtask, ...);
4422struct kmp_dim { // loop bounds info casted to kmp_int64
4423  kmp_int64 lo; // lower
4424  kmp_int64 up; // upper
4425  kmp_int64 st; // stride
4426};
4427KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4428                                     kmp_int32 num_dims,
4429                                     const struct kmp_dim *dims);
4430KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4431                                     const kmp_int64 *vec);
4432KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4433                                     const kmp_int64 *vec);
4434KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4435
4436KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4437                                             void *data, size_t size,
4438                                             void ***cache);
4439
4440// The routines below are not exported.
4441// Consider making them 'static' in corresponding source files.
4442void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4443                                           void *data_addr, size_t pc_size);
4444struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4445                                                void *data_addr,
4446                                                size_t pc_size);
4447void __kmp_threadprivate_resize_cache(int newCapacity);
4448void __kmp_cleanup_threadprivate_caches();
4449
4450// ompc_, kmpc_ entries moved from omp.h.
4451#if KMP_OS_WINDOWS
4452#define KMPC_CONVENTION __cdecl
4453#else
4454#define KMPC_CONVENTION
4455#endif
4456
4457#ifndef __OMP_H
4458typedef enum omp_sched_t {
4459  omp_sched_static = 1,
4460  omp_sched_dynamic = 2,
4461  omp_sched_guided = 3,
4462  omp_sched_auto = 4
4463} omp_sched_t;
4464typedef void *kmp_affinity_mask_t;
4465#endif
4466
4467KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4468KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4469KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4470KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4471KMP_EXPORT int KMPC_CONVENTION
4472kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4473KMP_EXPORT int KMPC_CONVENTION
4474kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4475KMP_EXPORT int KMPC_CONVENTION
4476kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4477
4478KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4479KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4480KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4481KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4482KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4483void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4484size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4485void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4486size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4487                                              char const *format);
4488
4489enum kmp_target_offload_kind {
4490  tgt_disabled = 0,
4491  tgt_default = 1,
4492  tgt_mandatory = 2
4493};
4494typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4495// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4496extern kmp_target_offload_kind_t __kmp_target_offload;
4497extern int __kmpc_get_target_offload();
4498
4499// Constants used in libomptarget
4500#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4501#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4502
4503// OMP Pause Resource
4504
4505// The following enum is used both to set the status in __kmp_pause_status, and
4506// as the internal equivalent of the externally-visible omp_pause_resource_t.
4507typedef enum kmp_pause_status_t {
4508  kmp_not_paused = 0, // status is not paused, or, requesting resume
4509  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4510  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4511} kmp_pause_status_t;
4512
4513// This stores the pause state of the runtime
4514extern kmp_pause_status_t __kmp_pause_status;
4515extern int __kmpc_pause_resource(kmp_pause_status_t level);
4516extern int __kmp_pause_resource(kmp_pause_status_t level);
4517// Soft resume sets __kmp_pause_status, and wakes up all threads.
4518extern void __kmp_resume_if_soft_paused();
4519// Hard resume simply resets the status to not paused. Library will appear to
4520// be uninitialized after hard pause. Let OMP constructs trigger required
4521// initializations.
4522static inline void __kmp_resume_if_hard_paused() {
4523  if (__kmp_pause_status == kmp_hard_paused) {
4524    __kmp_pause_status = kmp_not_paused;
4525  }
4526}
4527
4528extern void __kmp_omp_display_env(int verbose);
4529
4530// 1: it is initializing hidden helper team
4531extern volatile int __kmp_init_hidden_helper;
4532// 1: the hidden helper team is done
4533extern volatile int __kmp_hidden_helper_team_done;
4534// 1: enable hidden helper task
4535extern kmp_int32 __kmp_enable_hidden_helper;
4536// Main thread of hidden helper team
4537extern kmp_info_t *__kmp_hidden_helper_main_thread;
4538// Descriptors for the hidden helper threads
4539extern kmp_info_t **__kmp_hidden_helper_threads;
4540// Number of hidden helper threads
4541extern kmp_int32 __kmp_hidden_helper_threads_num;
4542// Number of hidden helper tasks that have not been executed yet
4543extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4544
4545extern void __kmp_hidden_helper_initialize();
4546extern void __kmp_hidden_helper_threads_initz_routine();
4547extern void __kmp_do_initialize_hidden_helper_threads();
4548extern void __kmp_hidden_helper_threads_initz_wait();
4549extern void __kmp_hidden_helper_initz_release();
4550extern void __kmp_hidden_helper_threads_deinitz_wait();
4551extern void __kmp_hidden_helper_threads_deinitz_release();
4552extern void __kmp_hidden_helper_main_thread_wait();
4553extern void __kmp_hidden_helper_worker_thread_wait();
4554extern void __kmp_hidden_helper_worker_thread_signal();
4555extern void __kmp_hidden_helper_main_thread_release();
4556
4557// Check whether a given thread is a hidden helper thread
4558#define KMP_HIDDEN_HELPER_THREAD(gtid)                                         \
4559  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4560
4561#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid)                                  \
4562  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4563
4564#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)                                    \
4565  ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4566
4567#define KMP_HIDDEN_HELPER_TEAM(team)                                           \
4568  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4569
4570// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4571// main thread, is skipped.
4572#define KMP_GTID_TO_SHADOW_GTID(gtid)                                          \
4573  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4574
4575// Return the adjusted gtid value by subtracting from gtid the number
4576// of hidden helper threads. This adjusted value is the gtid the thread would
4577// have received if there were no hidden helper threads.
4578static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4579  int adjusted_gtid = gtid;
4580  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4581      gtid - __kmp_hidden_helper_threads_num >= 0) {
4582    adjusted_gtid -= __kmp_hidden_helper_threads_num;
4583  }
4584  return adjusted_gtid;
4585}
4586
4587// Support for error directive
4588typedef enum kmp_severity_t {
4589  severity_warning = 1,
4590  severity_fatal = 2
4591} kmp_severity_t;
4592extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4593
4594// Support for scope directive
4595KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4596KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4597
4598#ifdef __cplusplus
4599}
4600#endif
4601
4602template <bool C, bool S>
4603extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4604template <bool C, bool S>
4605extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4606template <bool C, bool S>
4607extern void __kmp_atomic_suspend_64(int th_gtid,
4608                                    kmp_atomic_flag_64<C, S> *flag);
4609extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4610#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4611template <bool C, bool S>
4612extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4613template <bool C, bool S>
4614extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4615template <bool C, bool S>
4616extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4617extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4618#endif
4619template <bool C, bool S>
4620extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4621template <bool C, bool S>
4622extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4623template <bool C, bool S>
4624extern void __kmp_atomic_resume_64(int target_gtid,
4625                                   kmp_atomic_flag_64<C, S> *flag);
4626extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4627
4628template <bool C, bool S>
4629int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4630                           kmp_flag_32<C, S> *flag, int final_spin,
4631                           int *thread_finished,
4632#if USE_ITT_BUILD
4633                           void *itt_sync_obj,
4634#endif /* USE_ITT_BUILD */
4635                           kmp_int32 is_constrained);
4636template <bool C, bool S>
4637int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4638                           kmp_flag_64<C, S> *flag, int final_spin,
4639                           int *thread_finished,
4640#if USE_ITT_BUILD
4641                           void *itt_sync_obj,
4642#endif /* USE_ITT_BUILD */
4643                           kmp_int32 is_constrained);
4644template <bool C, bool S>
4645int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4646                                  kmp_atomic_flag_64<C, S> *flag,
4647                                  int final_spin, int *thread_finished,
4648#if USE_ITT_BUILD
4649                                  void *itt_sync_obj,
4650#endif /* USE_ITT_BUILD */
4651                                  kmp_int32 is_constrained);
4652int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4653                               kmp_flag_oncore *flag, int final_spin,
4654                               int *thread_finished,
4655#if USE_ITT_BUILD
4656                               void *itt_sync_obj,
4657#endif /* USE_ITT_BUILD */
4658                               kmp_int32 is_constrained);
4659
4660extern int __kmp_nesting_mode;
4661extern int __kmp_nesting_mode_nlevels;
4662extern int *__kmp_nesting_nth_level;
4663extern void __kmp_init_nesting_mode();
4664extern void __kmp_set_nesting_mode_threads();
4665
4666/// This class safely opens and closes a C-style FILE* object using RAII
4667/// semantics. There are also methods which allow using stdout or stderr as
4668/// the underlying FILE* object. With the implicit conversion operator to
4669/// FILE*, an object with this type can be used in any function which takes
4670/// a FILE* object e.g., fprintf().
4671/// No close method is needed at use sites.
4672class kmp_safe_raii_file_t {
4673  FILE *f;
4674
4675  void close() {
4676    if (f && f != stdout && f != stderr) {
4677      fclose(f);
4678      f = nullptr;
4679    }
4680  }
4681
4682public:
4683  kmp_safe_raii_file_t() : f(nullptr) {}
4684  kmp_safe_raii_file_t(const char *filename, const char *mode,
4685                       const char *env_var = nullptr)
4686      : f(nullptr) {
4687    open(filename, mode, env_var);
4688  }
4689  ~kmp_safe_raii_file_t() { close(); }
4690
4691  /// Open filename using mode. This is automatically closed in the destructor.
4692  /// The env_var parameter indicates the environment variable the filename
4693  /// came from if != nullptr.
4694  void open(const char *filename, const char *mode,
4695            const char *env_var = nullptr) {
4696    KMP_ASSERT(!f);
4697    f = fopen(filename, mode);
4698    if (!f) {
4699      int code = errno;
4700      if (env_var) {
4701        __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4702                    KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4703      } else {
4704        __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4705                    __kmp_msg_null);
4706      }
4707    }
4708  }
4709  /// Instead of erroring out, return non-zero when
4710  /// unsuccessful fopen() for any reason
4711  int try_open(const char *filename, const char *mode) {
4712    KMP_ASSERT(!f);
4713    f = fopen(filename, mode);
4714    if (!f)
4715      return errno;
4716    return 0;
4717  }
4718  /// Set the FILE* object to stdout and output there
4719  /// No open call should happen before this call.
4720  void set_stdout() {
4721    KMP_ASSERT(!f);
4722    f = stdout;
4723  }
4724  /// Set the FILE* object to stderr and output there
4725  /// No open call should happen before this call.
4726  void set_stderr() {
4727    KMP_ASSERT(!f);
4728    f = stderr;
4729  }
4730  operator bool() { return bool(f); }
4731  operator FILE *() { return f; }
4732};
4733
4734template <typename SourceType, typename TargetType,
4735          bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4736          bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4737          bool isSourceSigned = std::is_signed<SourceType>::value,
4738          bool isTargetSigned = std::is_signed<TargetType>::value>
4739struct kmp_convert {};
4740
4741// Both types are signed; Source smaller
4742template <typename SourceType, typename TargetType>
4743struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4744  static TargetType to(SourceType src) { return (TargetType)src; }
4745};
4746// Source equal
4747template <typename SourceType, typename TargetType>
4748struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4749  static TargetType to(SourceType src) { return src; }
4750};
4751// Source bigger
4752template <typename SourceType, typename TargetType>
4753struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4754  static TargetType to(SourceType src) {
4755    KMP_ASSERT(src <= static_cast<SourceType>(
4756                          (std::numeric_limits<TargetType>::max)()));
4757    KMP_ASSERT(src >= static_cast<SourceType>(
4758                          (std::numeric_limits<TargetType>::min)()));
4759    return (TargetType)src;
4760  }
4761};
4762
4763// Source signed, Target unsigned
4764// Source smaller
4765template <typename SourceType, typename TargetType>
4766struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4767  static TargetType to(SourceType src) {
4768    KMP_ASSERT(src >= 0);
4769    return (TargetType)src;
4770  }
4771};
4772// Source equal
4773template <typename SourceType, typename TargetType>
4774struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4775  static TargetType to(SourceType src) {
4776    KMP_ASSERT(src >= 0);
4777    return (TargetType)src;
4778  }
4779};
4780// Source bigger
4781template <typename SourceType, typename TargetType>
4782struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4783  static TargetType to(SourceType src) {
4784    KMP_ASSERT(src >= 0);
4785    KMP_ASSERT(src <= static_cast<SourceType>(
4786                          (std::numeric_limits<TargetType>::max)()));
4787    return (TargetType)src;
4788  }
4789};
4790
4791// Source unsigned, Target signed
4792// Source smaller
4793template <typename SourceType, typename TargetType>
4794struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4795  static TargetType to(SourceType src) { return (TargetType)src; }
4796};
4797// Source equal
4798template <typename SourceType, typename TargetType>
4799struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4800  static TargetType to(SourceType src) {
4801    KMP_ASSERT(src <= static_cast<SourceType>(
4802                          (std::numeric_limits<TargetType>::max)()));
4803    return (TargetType)src;
4804  }
4805};
4806// Source bigger
4807template <typename SourceType, typename TargetType>
4808struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4809  static TargetType to(SourceType src) {
4810    KMP_ASSERT(src <= static_cast<SourceType>(
4811                          (std::numeric_limits<TargetType>::max)()));
4812    return (TargetType)src;
4813  }
4814};
4815
4816// Source unsigned, Target unsigned
4817// Source smaller
4818template <typename SourceType, typename TargetType>
4819struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4820  static TargetType to(SourceType src) { return (TargetType)src; }
4821};
4822// Source equal
4823template <typename SourceType, typename TargetType>
4824struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4825  static TargetType to(SourceType src) { return src; }
4826};
4827// Source bigger
4828template <typename SourceType, typename TargetType>
4829struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4830  static TargetType to(SourceType src) {
4831    KMP_ASSERT(src <= static_cast<SourceType>(
4832                          (std::numeric_limits<TargetType>::max)()));
4833    return (TargetType)src;
4834  }
4835};
4836
4837template <typename T1, typename T2>
4838static inline void __kmp_type_convert(T1 src, T2 *dest) {
4839  *dest = kmp_convert<T1, T2>::to(src);
4840}
4841
4842#endif /* KMP_H */
4843