1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "CodeGenInstruction.h"
16#include "CodeGenRegisters.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/MapVector.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallString.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/ADT/StringMap.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/TypeSize.h"
28#include "llvm/TableGen/Error.h"
29#include "llvm/TableGen/Record.h"
30#include <algorithm>
31#include <cstdio>
32#include <iterator>
33#include <set>
34using namespace llvm;
35
36#define DEBUG_TYPE "dag-patterns"
37
38static inline bool isIntegerOrPtr(MVT VT) {
39  return VT.isInteger() || VT == MVT::iPTR;
40}
41static inline bool isFloatingPoint(MVT VT) {
42  return VT.isFloatingPoint();
43}
44static inline bool isVector(MVT VT) {
45  return VT.isVector();
46}
47static inline bool isScalar(MVT VT) {
48  return !VT.isVector();
49}
50static inline bool isScalarInteger(MVT VT) {
51  return VT.isScalarInteger();
52}
53
54template <typename Predicate>
55static bool berase_if(MachineValueTypeSet &S, Predicate P) {
56  bool Erased = false;
57  // It is ok to iterate over MachineValueTypeSet and remove elements from it
58  // at the same time.
59  for (MVT T : S) {
60    if (!P(T))
61      continue;
62    Erased = true;
63    S.erase(T);
64  }
65  return Erased;
66}
67
68void MachineValueTypeSet::writeToStream(raw_ostream &OS) const {
69  SmallVector<MVT, 4> Types(begin(), end());
70  array_pod_sort(Types.begin(), Types.end());
71
72  OS << '[';
73  ListSeparator LS(" ");
74  for (const MVT &T : Types)
75    OS << LS << ValueTypeByHwMode::getMVTName(T);
76  OS << ']';
77}
78
79// --- TypeSetByHwMode
80
81// This is a parameterized type-set class. For each mode there is a list
82// of types that are currently possible for a given tree node. Type
83// inference will apply to each mode separately.
84
85TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
86  // Take the address space from the first type in the list.
87  if (!VTList.empty())
88    AddrSpace = VTList[0].PtrAddrSpace;
89
90  for (const ValueTypeByHwMode &VVT : VTList)
91    insert(VVT);
92}
93
94bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
95  for (const auto &I : *this) {
96    if (I.second.size() > 1)
97      return false;
98    if (!AllowEmpty && I.second.empty())
99      return false;
100  }
101  return true;
102}
103
104ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
105  assert(isValueTypeByHwMode(true) &&
106         "The type set has multiple types for at least one HW mode");
107  ValueTypeByHwMode VVT;
108  VVT.PtrAddrSpace = AddrSpace;
109
110  for (const auto &I : *this) {
111    MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
112    VVT.getOrCreateTypeForMode(I.first, T);
113  }
114  return VVT;
115}
116
117bool TypeSetByHwMode::isPossible() const {
118  for (const auto &I : *this)
119    if (!I.second.empty())
120      return true;
121  return false;
122}
123
124bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
125  bool Changed = false;
126  bool ContainsDefault = false;
127  MVT DT = MVT::Other;
128
129  for (const auto &P : VVT) {
130    unsigned M = P.first;
131    // Make sure there exists a set for each specific mode from VVT.
132    Changed |= getOrCreate(M).insert(P.second).second;
133    // Cache VVT's default mode.
134    if (DefaultMode == M) {
135      ContainsDefault = true;
136      DT = P.second;
137    }
138  }
139
140  // If VVT has a default mode, add the corresponding type to all
141  // modes in "this" that do not exist in VVT.
142  if (ContainsDefault)
143    for (auto &I : *this)
144      if (!VVT.hasMode(I.first))
145        Changed |= I.second.insert(DT).second;
146
147  return Changed;
148}
149
150// Constrain the type set to be the intersection with VTS.
151bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
152  bool Changed = false;
153  if (hasDefault()) {
154    for (const auto &I : VTS) {
155      unsigned M = I.first;
156      if (M == DefaultMode || hasMode(M))
157        continue;
158      Map.insert({M, Map.at(DefaultMode)});
159      Changed = true;
160    }
161  }
162
163  for (auto &I : *this) {
164    unsigned M = I.first;
165    SetType &S = I.second;
166    if (VTS.hasMode(M) || VTS.hasDefault()) {
167      Changed |= intersect(I.second, VTS.get(M));
168    } else if (!S.empty()) {
169      S.clear();
170      Changed = true;
171    }
172  }
173  return Changed;
174}
175
176template <typename Predicate>
177bool TypeSetByHwMode::constrain(Predicate P) {
178  bool Changed = false;
179  for (auto &I : *this)
180    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
181  return Changed;
182}
183
184template <typename Predicate>
185bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
186  assert(empty());
187  for (const auto &I : VTS) {
188    SetType &S = getOrCreate(I.first);
189    for (auto J : I.second)
190      if (P(J))
191        S.insert(J);
192  }
193  return !empty();
194}
195
196void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
197  SmallVector<unsigned, 4> Modes;
198  Modes.reserve(Map.size());
199
200  for (const auto &I : *this)
201    Modes.push_back(I.first);
202  if (Modes.empty()) {
203    OS << "{}";
204    return;
205  }
206  array_pod_sort(Modes.begin(), Modes.end());
207
208  OS << '{';
209  for (unsigned M : Modes) {
210    OS << ' ' << getModeName(M) << ':';
211    get(M).writeToStream(OS);
212  }
213  OS << " }";
214}
215
216bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217  // The isSimple call is much quicker than hasDefault - check this first.
218  bool IsSimple = isSimple();
219  bool VTSIsSimple = VTS.isSimple();
220  if (IsSimple && VTSIsSimple)
221    return getSimple() == VTS.getSimple();
222
223  // Speedup: We have a default if the set is simple.
224  bool HaveDefault = IsSimple || hasDefault();
225  bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226  if (HaveDefault != VTSHaveDefault)
227    return false;
228
229  SmallSet<unsigned, 4> Modes;
230  for (auto &I : *this)
231    Modes.insert(I.first);
232  for (const auto &I : VTS)
233    Modes.insert(I.first);
234
235  if (HaveDefault) {
236    // Both sets have default mode.
237    for (unsigned M : Modes) {
238      if (get(M) != VTS.get(M))
239        return false;
240    }
241  } else {
242    // Neither set has default mode.
243    for (unsigned M : Modes) {
244      // If there is no default mode, an empty set is equivalent to not having
245      // the corresponding mode.
246      bool NoModeThis = !hasMode(M) || get(M).empty();
247      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248      if (NoModeThis != NoModeVTS)
249        return false;
250      if (!NoModeThis)
251        if (get(M) != VTS.get(M))
252          return false;
253    }
254  }
255
256  return true;
257}
258
259namespace llvm {
260  raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) {
261    T.writeToStream(OS);
262    return OS;
263  }
264  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
265    T.writeToStream(OS);
266    return OS;
267  }
268}
269
270LLVM_DUMP_METHOD
271void TypeSetByHwMode::dump() const {
272  dbgs() << *this << '\n';
273}
274
275bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
276  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
277  // Complement of In.
278  auto CompIn = [&In](MVT T) -> bool { return !In.count(T); };
279
280  if (OutP == InP)
281    return berase_if(Out, CompIn);
282
283  // Compute the intersection of scalars separately to account for only
284  // one set containing iPTR.
285  // The intersection of iPTR with a set of integer scalar types that does not
286  // include iPTR will result in the most specific scalar type:
287  // - iPTR is more specific than any set with two elements or more
288  // - iPTR is less specific than any single integer scalar type.
289  // For example
290  // { iPTR } * { i32 }     -> { i32 }
291  // { iPTR } * { i32 i64 } -> { iPTR }
292  // and
293  // { iPTR i32 } * { i32 }          -> { i32 }
294  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
295  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
296
297  // Let In' = elements only in In, Out' = elements only in Out, and
298  // IO = elements common to both. Normally IO would be returned as the result
299  // of the intersection, but we need to account for iPTR being a "wildcard" of
300  // sorts. Since elements in IO are those that match both sets exactly, they
301  // will all belong to the output. If any of the "leftovers" (i.e. In' or
302  // Out') contain iPTR, it means that the other set doesn't have it, but it
303  // could have (1) a more specific type, or (2) a set of types that is less
304  // specific. The "leftovers" from the other set is what we want to examine
305  // more closely.
306
307  auto subtract = [](const SetType &A, const SetType &B) {
308    SetType Diff = A;
309    berase_if(Diff, [&B](MVT T) { return B.count(T); });
310    return Diff;
311  };
312
313  if (InP) {
314    SetType OutOnly = subtract(Out, In);
315    if (OutOnly.empty()) {
316      // This means that Out \subset In, so no change to Out.
317      return false;
318    }
319    unsigned NumI = llvm::count_if(OutOnly, isScalarInteger);
320    if (NumI == 1 && OutOnly.size() == 1) {
321      // There is only one element in Out', and it happens to be a scalar
322      // integer that should be kept as a match for iPTR in In.
323      return false;
324    }
325    berase_if(Out, CompIn);
326    if (NumI == 1) {
327      // Replace the iPTR with the leftover scalar integer.
328      Out.insert(*llvm::find_if(OutOnly, isScalarInteger));
329    } else if (NumI > 1) {
330      Out.insert(MVT::iPTR);
331    }
332    return true;
333  }
334
335  // OutP == true
336  SetType InOnly = subtract(In, Out);
337  unsigned SizeOut = Out.size();
338  berase_if(Out, CompIn);   // This will remove at least the iPTR.
339  unsigned NumI = llvm::count_if(InOnly, isScalarInteger);
340  if (NumI == 0) {
341    // iPTR deleted from Out.
342    return true;
343  }
344  if (NumI == 1) {
345    // Replace the iPTR with the leftover scalar integer.
346    Out.insert(*llvm::find_if(InOnly, isScalarInteger));
347    return true;
348  }
349
350  // NumI > 1: Keep the iPTR in Out.
351  Out.insert(MVT::iPTR);
352  // If iPTR was the only element initially removed from Out, then Out
353  // has not changed.
354  return SizeOut != Out.size();
355}
356
357bool TypeSetByHwMode::validate() const {
358  if (empty())
359    return true;
360  bool AllEmpty = true;
361  for (const auto &I : *this)
362    AllEmpty &= I.second.empty();
363  return !AllEmpty;
364}
365
366// --- TypeInfer
367
368bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
369                                const TypeSetByHwMode &In) const {
370  ValidateOnExit _1(Out, *this);
371  In.validate();
372  if (In.empty() || Out == In || TP.hasError())
373    return false;
374  if (Out.empty()) {
375    Out = In;
376    return true;
377  }
378
379  bool Changed = Out.constrain(In);
380  if (Changed && Out.empty())
381    TP.error("Type contradiction");
382
383  return Changed;
384}
385
386bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
387  ValidateOnExit _1(Out, *this);
388  if (TP.hasError())
389    return false;
390  assert(!Out.empty() && "cannot pick from an empty set");
391
392  bool Changed = false;
393  for (auto &I : Out) {
394    TypeSetByHwMode::SetType &S = I.second;
395    if (S.size() <= 1)
396      continue;
397    MVT T = *S.begin(); // Pick the first element.
398    S.clear();
399    S.insert(T);
400    Changed = true;
401  }
402  return Changed;
403}
404
405bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
406  ValidateOnExit _1(Out, *this);
407  if (TP.hasError())
408    return false;
409  if (!Out.empty())
410    return Out.constrain(isIntegerOrPtr);
411
412  return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
413}
414
415bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
416  ValidateOnExit _1(Out, *this);
417  if (TP.hasError())
418    return false;
419  if (!Out.empty())
420    return Out.constrain(isFloatingPoint);
421
422  return Out.assign_if(getLegalTypes(), isFloatingPoint);
423}
424
425bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
426  ValidateOnExit _1(Out, *this);
427  if (TP.hasError())
428    return false;
429  if (!Out.empty())
430    return Out.constrain(isScalar);
431
432  return Out.assign_if(getLegalTypes(), isScalar);
433}
434
435bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
436  ValidateOnExit _1(Out, *this);
437  if (TP.hasError())
438    return false;
439  if (!Out.empty())
440    return Out.constrain(isVector);
441
442  return Out.assign_if(getLegalTypes(), isVector);
443}
444
445bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
446  ValidateOnExit _1(Out, *this);
447  if (TP.hasError() || !Out.empty())
448    return false;
449
450  Out = getLegalTypes();
451  return true;
452}
453
454template <typename Iter, typename Pred, typename Less>
455static Iter min_if(Iter B, Iter E, Pred P, Less L) {
456  if (B == E)
457    return E;
458  Iter Min = E;
459  for (Iter I = B; I != E; ++I) {
460    if (!P(*I))
461      continue;
462    if (Min == E || L(*I, *Min))
463      Min = I;
464  }
465  return Min;
466}
467
468template <typename Iter, typename Pred, typename Less>
469static Iter max_if(Iter B, Iter E, Pred P, Less L) {
470  if (B == E)
471    return E;
472  Iter Max = E;
473  for (Iter I = B; I != E; ++I) {
474    if (!P(*I))
475      continue;
476    if (Max == E || L(*Max, *I))
477      Max = I;
478  }
479  return Max;
480}
481
482/// Make sure that for each type in Small, there exists a larger type in Big.
483bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
484                                   bool SmallIsVT) {
485  ValidateOnExit _1(Small, *this), _2(Big, *this);
486  if (TP.hasError())
487    return false;
488  bool Changed = false;
489
490  assert((!SmallIsVT || !Small.empty()) &&
491         "Small should not be empty for SDTCisVTSmallerThanOp");
492
493  if (Small.empty())
494    Changed |= EnforceAny(Small);
495  if (Big.empty())
496    Changed |= EnforceAny(Big);
497
498  assert(Small.hasDefault() && Big.hasDefault());
499
500  SmallVector<unsigned, 4> Modes;
501  union_modes(Small, Big, Modes);
502
503  // 1. Only allow integer or floating point types and make sure that
504  //    both sides are both integer or both floating point.
505  // 2. Make sure that either both sides have vector types, or neither
506  //    of them does.
507  for (unsigned M : Modes) {
508    TypeSetByHwMode::SetType &S = Small.get(M);
509    TypeSetByHwMode::SetType &B = Big.get(M);
510
511    assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
512
513    if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
514      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
515      Changed |= berase_if(S, NotInt);
516      Changed |= berase_if(B, NotInt);
517    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
518      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
519      Changed |= berase_if(S, NotFP);
520      Changed |= berase_if(B, NotFP);
521    } else if (SmallIsVT && B.empty()) {
522      // B is empty and since S is a specific VT, it will never be empty. Don't
523      // report this as a change, just clear S and continue. This prevents an
524      // infinite loop.
525      S.clear();
526    } else if (S.empty() || B.empty()) {
527      Changed = !S.empty() || !B.empty();
528      S.clear();
529      B.clear();
530    } else {
531      TP.error("Incompatible types");
532      return Changed;
533    }
534
535    if (none_of(S, isVector) || none_of(B, isVector)) {
536      Changed |= berase_if(S, isVector);
537      Changed |= berase_if(B, isVector);
538    }
539  }
540
541  auto LT = [](MVT A, MVT B) -> bool {
542    // Always treat non-scalable MVTs as smaller than scalable MVTs for the
543    // purposes of ordering.
544    auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
545                                 A.getSizeInBits().getKnownMinValue());
546    auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
547                                 B.getSizeInBits().getKnownMinValue());
548    return ASize < BSize;
549  };
550  auto SameKindLE = [](MVT A, MVT B) -> bool {
551    // This function is used when removing elements: when a vector is compared
552    // to a non-vector or a scalable vector to any non-scalable MVT, it should
553    // return false (to avoid removal).
554    if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
555        std::make_tuple(B.isVector(), B.isScalableVector()))
556      return false;
557
558    return std::make_tuple(A.getScalarSizeInBits(),
559                           A.getSizeInBits().getKnownMinValue()) <=
560           std::make_tuple(B.getScalarSizeInBits(),
561                           B.getSizeInBits().getKnownMinValue());
562  };
563
564  for (unsigned M : Modes) {
565    TypeSetByHwMode::SetType &S = Small.get(M);
566    TypeSetByHwMode::SetType &B = Big.get(M);
567    // MinS = min scalar in Small, remove all scalars from Big that are
568    // smaller-or-equal than MinS.
569    auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
570    if (MinS != S.end())
571      Changed |= berase_if(B, std::bind(SameKindLE,
572                                        std::placeholders::_1, *MinS));
573
574    // MaxS = max scalar in Big, remove all scalars from Small that are
575    // larger than MaxS.
576    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
577    if (MaxS != B.end())
578      Changed |= berase_if(S, std::bind(SameKindLE,
579                                        *MaxS, std::placeholders::_1));
580
581    // MinV = min vector in Small, remove all vectors from Big that are
582    // smaller-or-equal than MinV.
583    auto MinV = min_if(S.begin(), S.end(), isVector, LT);
584    if (MinV != S.end())
585      Changed |= berase_if(B, std::bind(SameKindLE,
586                                        std::placeholders::_1, *MinV));
587
588    // MaxV = max vector in Big, remove all vectors from Small that are
589    // larger than MaxV.
590    auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
591    if (MaxV != B.end())
592      Changed |= berase_if(S, std::bind(SameKindLE,
593                                        *MaxV, std::placeholders::_1));
594  }
595
596  return Changed;
597}
598
599/// 1. Ensure that for each type T in Vec, T is a vector type, and that
600///    for each type U in Elem, U is a scalar type.
601/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
602///    type T in Vec, such that U is the element type of T.
603bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
604                                       TypeSetByHwMode &Elem) {
605  ValidateOnExit _1(Vec, *this), _2(Elem, *this);
606  if (TP.hasError())
607    return false;
608  bool Changed = false;
609
610  if (Vec.empty())
611    Changed |= EnforceVector(Vec);
612  if (Elem.empty())
613    Changed |= EnforceScalar(Elem);
614
615  SmallVector<unsigned, 4> Modes;
616  union_modes(Vec, Elem, Modes);
617  for (unsigned M : Modes) {
618    TypeSetByHwMode::SetType &V = Vec.get(M);
619    TypeSetByHwMode::SetType &E = Elem.get(M);
620
621    Changed |= berase_if(V, isScalar);  // Scalar = !vector
622    Changed |= berase_if(E, isVector);  // Vector = !scalar
623    assert(!V.empty() && !E.empty());
624
625    MachineValueTypeSet VT, ST;
626    // Collect element types from the "vector" set.
627    for (MVT T : V)
628      VT.insert(T.getVectorElementType());
629    // Collect scalar types from the "element" set.
630    for (MVT T : E)
631      ST.insert(T);
632
633    // Remove from V all (vector) types whose element type is not in S.
634    Changed |= berase_if(V, [&ST](MVT T) -> bool {
635                              return !ST.count(T.getVectorElementType());
636                            });
637    // Remove from E all (scalar) types, for which there is no corresponding
638    // type in V.
639    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
640  }
641
642  return Changed;
643}
644
645bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
646                                       const ValueTypeByHwMode &VVT) {
647  TypeSetByHwMode Tmp(VVT);
648  ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
649  return EnforceVectorEltTypeIs(Vec, Tmp);
650}
651
652/// Ensure that for each type T in Sub, T is a vector type, and there
653/// exists a type U in Vec such that U is a vector type with the same
654/// element type as T and at least as many elements as T.
655bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
656                                             TypeSetByHwMode &Sub) {
657  ValidateOnExit _1(Vec, *this), _2(Sub, *this);
658  if (TP.hasError())
659    return false;
660
661  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
662  auto IsSubVec = [](MVT B, MVT P) -> bool {
663    if (!B.isVector() || !P.isVector())
664      return false;
665    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
666    // but until there are obvious use-cases for this, keep the
667    // types separate.
668    if (B.isScalableVector() != P.isScalableVector())
669      return false;
670    if (B.getVectorElementType() != P.getVectorElementType())
671      return false;
672    return B.getVectorMinNumElements() < P.getVectorMinNumElements();
673  };
674
675  /// Return true if S has no element (vector type) that T is a sub-vector of,
676  /// i.e. has the same element type as T and more elements.
677  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
678    for (auto I : S)
679      if (IsSubVec(T, I))
680        return false;
681    return true;
682  };
683
684  /// Return true if S has no element (vector type) that T is a super-vector
685  /// of, i.e. has the same element type as T and fewer elements.
686  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
687    for (auto I : S)
688      if (IsSubVec(I, T))
689        return false;
690    return true;
691  };
692
693  bool Changed = false;
694
695  if (Vec.empty())
696    Changed |= EnforceVector(Vec);
697  if (Sub.empty())
698    Changed |= EnforceVector(Sub);
699
700  SmallVector<unsigned, 4> Modes;
701  union_modes(Vec, Sub, Modes);
702  for (unsigned M : Modes) {
703    TypeSetByHwMode::SetType &S = Sub.get(M);
704    TypeSetByHwMode::SetType &V = Vec.get(M);
705
706    Changed |= berase_if(S, isScalar);
707
708    // Erase all types from S that are not sub-vectors of a type in V.
709    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
710
711    // Erase all types from V that are not super-vectors of a type in S.
712    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
713  }
714
715  return Changed;
716}
717
718/// 1. Ensure that V has a scalar type iff W has a scalar type.
719/// 2. Ensure that for each vector type T in V, there exists a vector
720///    type U in W, such that T and U have the same number of elements.
721/// 3. Ensure that for each vector type U in W, there exists a vector
722///    type T in V, such that T and U have the same number of elements
723///    (reverse of 2).
724bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
725  ValidateOnExit _1(V, *this), _2(W, *this);
726  if (TP.hasError())
727    return false;
728
729  bool Changed = false;
730  if (V.empty())
731    Changed |= EnforceAny(V);
732  if (W.empty())
733    Changed |= EnforceAny(W);
734
735  // An actual vector type cannot have 0 elements, so we can treat scalars
736  // as zero-length vectors. This way both vectors and scalars can be
737  // processed identically.
738  auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
739                     MVT T) -> bool {
740    return !Lengths.count(T.isVector() ? T.getVectorElementCount()
741                                       : ElementCount());
742  };
743
744  SmallVector<unsigned, 4> Modes;
745  union_modes(V, W, Modes);
746  for (unsigned M : Modes) {
747    TypeSetByHwMode::SetType &VS = V.get(M);
748    TypeSetByHwMode::SetType &WS = W.get(M);
749
750    SmallDenseSet<ElementCount> VN, WN;
751    for (MVT T : VS)
752      VN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
753    for (MVT T : WS)
754      WN.insert(T.isVector() ? T.getVectorElementCount() : ElementCount());
755
756    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
757    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
758  }
759  return Changed;
760}
761
762namespace {
763struct TypeSizeComparator {
764  bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
765    return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
766           std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
767  }
768};
769} // end anonymous namespace
770
771/// 1. Ensure that for each type T in A, there exists a type U in B,
772///    such that T and U have equal size in bits.
773/// 2. Ensure that for each type U in B, there exists a type T in A
774///    such that T and U have equal size in bits (reverse of 1).
775bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
776  ValidateOnExit _1(A, *this), _2(B, *this);
777  if (TP.hasError())
778    return false;
779  bool Changed = false;
780  if (A.empty())
781    Changed |= EnforceAny(A);
782  if (B.empty())
783    Changed |= EnforceAny(B);
784
785  typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
786
787  auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
788    return !Sizes.count(T.getSizeInBits());
789  };
790
791  SmallVector<unsigned, 4> Modes;
792  union_modes(A, B, Modes);
793  for (unsigned M : Modes) {
794    TypeSetByHwMode::SetType &AS = A.get(M);
795    TypeSetByHwMode::SetType &BS = B.get(M);
796    TypeSizeSet AN, BN;
797
798    for (MVT T : AS)
799      AN.insert(T.getSizeInBits());
800    for (MVT T : BS)
801      BN.insert(T.getSizeInBits());
802
803    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
804    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
805  }
806
807  return Changed;
808}
809
810void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) const {
811  ValidateOnExit _1(VTS, *this);
812  const TypeSetByHwMode &Legal = getLegalTypes();
813  assert(Legal.isSimple() && "Default-mode only expected");
814  const TypeSetByHwMode::SetType &LegalTypes = Legal.getSimple();
815
816  for (auto &I : VTS)
817    expandOverloads(I.second, LegalTypes);
818}
819
820void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
821                                const TypeSetByHwMode::SetType &Legal) const {
822  if (Out.count(MVT::iPTRAny)) {
823    Out.erase(MVT::iPTRAny);
824    Out.insert(MVT::iPTR);
825  } else if (Out.count(MVT::iAny)) {
826    Out.erase(MVT::iAny);
827    for (MVT T : MVT::integer_valuetypes())
828      if (Legal.count(T))
829        Out.insert(T);
830    for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
831      if (Legal.count(T))
832        Out.insert(T);
833    for (MVT T : MVT::integer_scalable_vector_valuetypes())
834      if (Legal.count(T))
835        Out.insert(T);
836  } else if (Out.count(MVT::fAny)) {
837    Out.erase(MVT::fAny);
838    for (MVT T : MVT::fp_valuetypes())
839      if (Legal.count(T))
840        Out.insert(T);
841    for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
842      if (Legal.count(T))
843        Out.insert(T);
844    for (MVT T : MVT::fp_scalable_vector_valuetypes())
845      if (Legal.count(T))
846        Out.insert(T);
847  } else if (Out.count(MVT::vAny)) {
848    Out.erase(MVT::vAny);
849    for (MVT T : MVT::vector_valuetypes())
850      if (Legal.count(T))
851        Out.insert(T);
852  } else if (Out.count(MVT::Any)) {
853    Out.erase(MVT::Any);
854    for (MVT T : MVT::all_valuetypes())
855      if (Legal.count(T))
856        Out.insert(T);
857  }
858}
859
860const TypeSetByHwMode &TypeInfer::getLegalTypes() const {
861  if (!LegalTypesCached) {
862    TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
863    // Stuff all types from all modes into the default mode.
864    const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
865    for (const auto &I : LTS)
866      LegalTypes.insert(I.second);
867    LegalTypesCached = true;
868  }
869  assert(LegalCache.isSimple() && "Default-mode only expected");
870  return LegalCache;
871}
872
873TypeInfer::ValidateOnExit::~ValidateOnExit() {
874  if (Infer.Validate && !VTS.validate()) {
875#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
876    errs() << "Type set is empty for each HW mode:\n"
877              "possible type contradiction in the pattern below "
878              "(use -print-records with llvm-tblgen to see all "
879              "expanded records).\n";
880    Infer.TP.dump();
881    errs() << "Generated from record:\n";
882    Infer.TP.getRecord()->dump();
883#endif
884    PrintFatalError(Infer.TP.getRecord()->getLoc(),
885                    "Type set is empty for each HW mode in '" +
886                        Infer.TP.getRecord()->getName() + "'");
887  }
888}
889
890
891//===----------------------------------------------------------------------===//
892// ScopedName Implementation
893//===----------------------------------------------------------------------===//
894
895bool ScopedName::operator==(const ScopedName &o) const {
896  return Scope == o.Scope && Identifier == o.Identifier;
897}
898
899bool ScopedName::operator!=(const ScopedName &o) const {
900  return !(*this == o);
901}
902
903
904//===----------------------------------------------------------------------===//
905// TreePredicateFn Implementation
906//===----------------------------------------------------------------------===//
907
908/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
909TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
910  assert(
911      (!hasPredCode() || !hasImmCode()) &&
912      ".td file corrupt: can't have a node predicate *and* an imm predicate");
913}
914
915bool TreePredicateFn::hasPredCode() const {
916  return isLoad() || isStore() || isAtomic() || hasNoUse() ||
917         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
918}
919
920std::string TreePredicateFn::getPredCode() const {
921  std::string Code;
922
923  if (!isLoad() && !isStore() && !isAtomic()) {
924    Record *MemoryVT = getMemoryVT();
925
926    if (MemoryVT)
927      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928                      "MemoryVT requires IsLoad or IsStore");
929  }
930
931  if (!isLoad() && !isStore()) {
932    if (isUnindexed())
933      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                      "IsUnindexed requires IsLoad or IsStore");
935
936    Record *ScalarMemoryVT = getScalarMemoryVT();
937
938    if (ScalarMemoryVT)
939      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
940                      "ScalarMemoryVT requires IsLoad or IsStore");
941  }
942
943  if (isLoad() + isStore() + isAtomic() > 1)
944    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
945                    "IsLoad, IsStore, and IsAtomic are mutually exclusive");
946
947  if (isLoad()) {
948    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
949        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
950        getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
951        getMinAlignment() < 1)
952      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                      "IsLoad cannot be used by itself");
954  } else {
955    if (isNonExtLoad())
956      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
957                      "IsNonExtLoad requires IsLoad");
958    if (isAnyExtLoad())
959      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
960                      "IsAnyExtLoad requires IsLoad");
961
962    if (!isAtomic()) {
963      if (isSignExtLoad())
964        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
965                        "IsSignExtLoad requires IsLoad or IsAtomic");
966      if (isZeroExtLoad())
967        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
968                        "IsZeroExtLoad requires IsLoad or IsAtomic");
969    }
970  }
971
972  if (isStore()) {
973    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
974        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
975        getAddressSpaces() == nullptr && getMinAlignment() < 1)
976      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977                      "IsStore cannot be used by itself");
978  } else {
979    if (isNonTruncStore())
980      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
981                      "IsNonTruncStore requires IsStore");
982    if (isTruncStore())
983      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
984                      "IsTruncStore requires IsStore");
985  }
986
987  if (isAtomic()) {
988    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
989        getAddressSpaces() == nullptr &&
990        // FIXME: Should atomic loads be IsLoad, IsAtomic, or both?
991        !isZeroExtLoad() && !isSignExtLoad() && !isAtomicOrderingAcquire() &&
992        !isAtomicOrderingRelease() && !isAtomicOrderingAcquireRelease() &&
993        !isAtomicOrderingSequentiallyConsistent() &&
994        !isAtomicOrderingAcquireOrStronger() &&
995        !isAtomicOrderingReleaseOrStronger() &&
996        !isAtomicOrderingWeakerThanAcquire() &&
997        !isAtomicOrderingWeakerThanRelease())
998      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
999                      "IsAtomic cannot be used by itself");
1000  } else {
1001    if (isAtomicOrderingMonotonic())
1002      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003                      "IsAtomicOrderingMonotonic requires IsAtomic");
1004    if (isAtomicOrderingAcquire())
1005      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1006                      "IsAtomicOrderingAcquire requires IsAtomic");
1007    if (isAtomicOrderingRelease())
1008      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                      "IsAtomicOrderingRelease requires IsAtomic");
1010    if (isAtomicOrderingAcquireRelease())
1011      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1012                      "IsAtomicOrderingAcquireRelease requires IsAtomic");
1013    if (isAtomicOrderingSequentiallyConsistent())
1014      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1015                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1016    if (isAtomicOrderingAcquireOrStronger())
1017      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1018                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1019    if (isAtomicOrderingReleaseOrStronger())
1020      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1021                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1022    if (isAtomicOrderingWeakerThanAcquire())
1023      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1024                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1025  }
1026
1027  if (isLoad() || isStore() || isAtomic()) {
1028    if (ListInit *AddressSpaces = getAddressSpaces()) {
1029      Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1030        " if (";
1031
1032      ListSeparator LS(" && ");
1033      for (Init *Val : AddressSpaces->getValues()) {
1034        Code += LS;
1035
1036        IntInit *IntVal = dyn_cast<IntInit>(Val);
1037        if (!IntVal) {
1038          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1039                          "AddressSpaces element must be integer");
1040        }
1041
1042        Code += "AddrSpace != " + utostr(IntVal->getValue());
1043      }
1044
1045      Code += ")\nreturn false;\n";
1046    }
1047
1048    int64_t MinAlign = getMinAlignment();
1049    if (MinAlign > 0) {
1050      Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1051      Code += utostr(MinAlign);
1052      Code += "))\nreturn false;\n";
1053    }
1054
1055    Record *MemoryVT = getMemoryVT();
1056
1057    if (MemoryVT)
1058      Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1059               MemoryVT->getName() + ") return false;\n")
1060                  .str();
1061  }
1062
1063  if (isAtomic() && isAtomicOrderingMonotonic())
1064    Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1065            "AtomicOrdering::Monotonic) return false;\n";
1066  if (isAtomic() && isAtomicOrderingAcquire())
1067    Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1068            "AtomicOrdering::Acquire) return false;\n";
1069  if (isAtomic() && isAtomicOrderingRelease())
1070    Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1071            "AtomicOrdering::Release) return false;\n";
1072  if (isAtomic() && isAtomicOrderingAcquireRelease())
1073    Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1074            "AtomicOrdering::AcquireRelease) return false;\n";
1075  if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1076    Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1077            "AtomicOrdering::SequentiallyConsistent) return false;\n";
1078
1079  if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1080    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1081            "return false;\n";
1082  if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1083    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1084            "return false;\n";
1085
1086  if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1087    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1088            "return false;\n";
1089  if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1090    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1091            "return false;\n";
1092
1093  // TODO: Handle atomic sextload/zextload normally when ATOMIC_LOAD is removed.
1094  if (isAtomic() && (isZeroExtLoad() || isSignExtLoad()))
1095    Code += "return false;\n";
1096
1097  if (isLoad() || isStore()) {
1098    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1099
1100    if (isUnindexed())
1101      Code += ("if (cast<" + SDNodeName +
1102               ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1103               "return false;\n")
1104                  .str();
1105
1106    if (isLoad()) {
1107      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1108           isZeroExtLoad()) > 1)
1109        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1110                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1111                        "IsZeroExtLoad are mutually exclusive");
1112      if (isNonExtLoad())
1113        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1114                "ISD::NON_EXTLOAD) return false;\n";
1115      if (isAnyExtLoad())
1116        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1117                "return false;\n";
1118      if (isSignExtLoad())
1119        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1120                "return false;\n";
1121      if (isZeroExtLoad())
1122        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1123                "return false;\n";
1124    } else {
1125      if ((isNonTruncStore() + isTruncStore()) > 1)
1126        PrintFatalError(
1127            getOrigPatFragRecord()->getRecord()->getLoc(),
1128            "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1129      if (isNonTruncStore())
1130        Code +=
1131            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1132      if (isTruncStore())
1133        Code +=
1134            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1135    }
1136
1137    Record *ScalarMemoryVT = getScalarMemoryVT();
1138
1139    if (ScalarMemoryVT)
1140      Code += ("if (cast<" + SDNodeName +
1141               ">(N)->getMemoryVT().getScalarType() != MVT::" +
1142               ScalarMemoryVT->getName() + ") return false;\n")
1143                  .str();
1144  }
1145
1146  if (hasNoUse())
1147    Code += "if (!SDValue(N, 0).use_empty()) return false;\n";
1148
1149  std::string PredicateCode =
1150      std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1151
1152  Code += PredicateCode;
1153
1154  if (PredicateCode.empty() && !Code.empty())
1155    Code += "return true;\n";
1156
1157  return Code;
1158}
1159
1160bool TreePredicateFn::hasImmCode() const {
1161  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1162}
1163
1164std::string TreePredicateFn::getImmCode() const {
1165  return std::string(
1166      PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1167}
1168
1169bool TreePredicateFn::immCodeUsesAPInt() const {
1170  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1171}
1172
1173bool TreePredicateFn::immCodeUsesAPFloat() const {
1174  bool Unset;
1175  // The return value will be false when IsAPFloat is unset.
1176  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1177                                                                   Unset);
1178}
1179
1180bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1181                                                   bool Value) const {
1182  bool Unset;
1183  bool Result =
1184      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1185  if (Unset)
1186    return false;
1187  return Result == Value;
1188}
1189bool TreePredicateFn::usesOperands() const {
1190  return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1191}
1192bool TreePredicateFn::hasNoUse() const {
1193  return isPredefinedPredicateEqualTo("HasNoUse", true);
1194}
1195bool TreePredicateFn::isLoad() const {
1196  return isPredefinedPredicateEqualTo("IsLoad", true);
1197}
1198bool TreePredicateFn::isStore() const {
1199  return isPredefinedPredicateEqualTo("IsStore", true);
1200}
1201bool TreePredicateFn::isAtomic() const {
1202  return isPredefinedPredicateEqualTo("IsAtomic", true);
1203}
1204bool TreePredicateFn::isUnindexed() const {
1205  return isPredefinedPredicateEqualTo("IsUnindexed", true);
1206}
1207bool TreePredicateFn::isNonExtLoad() const {
1208  return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1209}
1210bool TreePredicateFn::isAnyExtLoad() const {
1211  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1212}
1213bool TreePredicateFn::isSignExtLoad() const {
1214  return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1215}
1216bool TreePredicateFn::isZeroExtLoad() const {
1217  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1218}
1219bool TreePredicateFn::isNonTruncStore() const {
1220  return isPredefinedPredicateEqualTo("IsTruncStore", false);
1221}
1222bool TreePredicateFn::isTruncStore() const {
1223  return isPredefinedPredicateEqualTo("IsTruncStore", true);
1224}
1225bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1226  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1227}
1228bool TreePredicateFn::isAtomicOrderingAcquire() const {
1229  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1230}
1231bool TreePredicateFn::isAtomicOrderingRelease() const {
1232  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1233}
1234bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1235  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1236}
1237bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1238  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1239                                      true);
1240}
1241bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1242  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1243}
1244bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1245  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1246}
1247bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1248  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1249}
1250bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1251  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1252}
1253Record *TreePredicateFn::getMemoryVT() const {
1254  Record *R = getOrigPatFragRecord()->getRecord();
1255  if (R->isValueUnset("MemoryVT"))
1256    return nullptr;
1257  return R->getValueAsDef("MemoryVT");
1258}
1259
1260ListInit *TreePredicateFn::getAddressSpaces() const {
1261  Record *R = getOrigPatFragRecord()->getRecord();
1262  if (R->isValueUnset("AddressSpaces"))
1263    return nullptr;
1264  return R->getValueAsListInit("AddressSpaces");
1265}
1266
1267int64_t TreePredicateFn::getMinAlignment() const {
1268  Record *R = getOrigPatFragRecord()->getRecord();
1269  if (R->isValueUnset("MinAlignment"))
1270    return 0;
1271  return R->getValueAsInt("MinAlignment");
1272}
1273
1274Record *TreePredicateFn::getScalarMemoryVT() const {
1275  Record *R = getOrigPatFragRecord()->getRecord();
1276  if (R->isValueUnset("ScalarMemoryVT"))
1277    return nullptr;
1278  return R->getValueAsDef("ScalarMemoryVT");
1279}
1280bool TreePredicateFn::hasGISelPredicateCode() const {
1281  return !PatFragRec->getRecord()
1282              ->getValueAsString("GISelPredicateCode")
1283              .empty();
1284}
1285std::string TreePredicateFn::getGISelPredicateCode() const {
1286  return std::string(
1287      PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1288}
1289
1290StringRef TreePredicateFn::getImmType() const {
1291  if (immCodeUsesAPInt())
1292    return "const APInt &";
1293  if (immCodeUsesAPFloat())
1294    return "const APFloat &";
1295  return "int64_t";
1296}
1297
1298StringRef TreePredicateFn::getImmTypeIdentifier() const {
1299  if (immCodeUsesAPInt())
1300    return "APInt";
1301  if (immCodeUsesAPFloat())
1302    return "APFloat";
1303  return "I64";
1304}
1305
1306/// isAlwaysTrue - Return true if this is a noop predicate.
1307bool TreePredicateFn::isAlwaysTrue() const {
1308  return !hasPredCode() && !hasImmCode();
1309}
1310
1311/// Return the name to use in the generated code to reference this, this is
1312/// "Predicate_foo" if from a pattern fragment "foo".
1313std::string TreePredicateFn::getFnName() const {
1314  return "Predicate_" + PatFragRec->getRecord()->getName().str();
1315}
1316
1317/// getCodeToRunOnSDNode - Return the code for the function body that
1318/// evaluates this predicate.  The argument is expected to be in "Node",
1319/// not N.  This handles casting and conversion to a concrete node type as
1320/// appropriate.
1321std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1322  // Handle immediate predicates first.
1323  std::string ImmCode = getImmCode();
1324  if (!ImmCode.empty()) {
1325    if (isLoad())
1326      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1327                      "IsLoad cannot be used with ImmLeaf or its subclasses");
1328    if (isStore())
1329      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1330                      "IsStore cannot be used with ImmLeaf or its subclasses");
1331    if (isUnindexed())
1332      PrintFatalError(
1333          getOrigPatFragRecord()->getRecord()->getLoc(),
1334          "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1335    if (isNonExtLoad())
1336      PrintFatalError(
1337          getOrigPatFragRecord()->getRecord()->getLoc(),
1338          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1339    if (isAnyExtLoad())
1340      PrintFatalError(
1341          getOrigPatFragRecord()->getRecord()->getLoc(),
1342          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1343    if (isSignExtLoad())
1344      PrintFatalError(
1345          getOrigPatFragRecord()->getRecord()->getLoc(),
1346          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1347    if (isZeroExtLoad())
1348      PrintFatalError(
1349          getOrigPatFragRecord()->getRecord()->getLoc(),
1350          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1351    if (isNonTruncStore())
1352      PrintFatalError(
1353          getOrigPatFragRecord()->getRecord()->getLoc(),
1354          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1355    if (isTruncStore())
1356      PrintFatalError(
1357          getOrigPatFragRecord()->getRecord()->getLoc(),
1358          "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1359    if (getMemoryVT())
1360      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1361                      "MemoryVT cannot be used with ImmLeaf or its subclasses");
1362    if (getScalarMemoryVT())
1363      PrintFatalError(
1364          getOrigPatFragRecord()->getRecord()->getLoc(),
1365          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1366
1367    std::string Result = ("    " + getImmType() + " Imm = ").str();
1368    if (immCodeUsesAPFloat())
1369      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1370    else if (immCodeUsesAPInt())
1371      Result += "Node->getAsAPIntVal();\n";
1372    else
1373      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1374    return Result + ImmCode;
1375  }
1376
1377  // Handle arbitrary node predicates.
1378  assert(hasPredCode() && "Don't have any predicate code!");
1379
1380  // If this is using PatFrags, there are multiple trees to search. They should
1381  // all have the same class.  FIXME: Is there a way to find a common
1382  // superclass?
1383  StringRef ClassName;
1384  for (const auto &Tree : PatFragRec->getTrees()) {
1385    StringRef TreeClassName;
1386    if (Tree->isLeaf())
1387      TreeClassName = "SDNode";
1388    else {
1389      Record *Op = Tree->getOperator();
1390      const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1391      TreeClassName = Info.getSDClassName();
1392    }
1393
1394    if (ClassName.empty())
1395      ClassName = TreeClassName;
1396    else if (ClassName != TreeClassName) {
1397      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1398                      "PatFrags trees do not have consistent class");
1399    }
1400  }
1401
1402  std::string Result;
1403  if (ClassName == "SDNode")
1404    Result = "    SDNode *N = Node;\n";
1405  else
1406    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1407
1408  return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1409}
1410
1411//===----------------------------------------------------------------------===//
1412// PatternToMatch implementation
1413//
1414
1415static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1416  if (!P->isLeaf())
1417    return false;
1418  DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1419  if (!DI)
1420    return false;
1421
1422  Record *R = DI->getDef();
1423  return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1424}
1425
1426/// getPatternSize - Return the 'size' of this pattern.  We want to match large
1427/// patterns before small ones.  This is used to determine the size of a
1428/// pattern.
1429static unsigned getPatternSize(const TreePatternNode *P,
1430                               const CodeGenDAGPatterns &CGP) {
1431  unsigned Size = 3;  // The node itself.
1432  // If the root node is a ConstantSDNode, increases its size.
1433  // e.g. (set R32:$dst, 0).
1434  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1435    Size += 2;
1436
1437  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1438    Size += AM->getComplexity();
1439    // We don't want to count any children twice, so return early.
1440    return Size;
1441  }
1442
1443  // If this node has some predicate function that must match, it adds to the
1444  // complexity of this node.
1445  if (!P->getPredicateCalls().empty())
1446    ++Size;
1447
1448  // Count children in the count if they are also nodes.
1449  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1450    const TreePatternNode *Child = P->getChild(i);
1451    if (!Child->isLeaf() && Child->getNumTypes()) {
1452      const TypeSetByHwMode &T0 = Child->getExtType(0);
1453      // At this point, all variable type sets should be simple, i.e. only
1454      // have a default mode.
1455      if (T0.getMachineValueType() != MVT::Other) {
1456        Size += getPatternSize(Child, CGP);
1457        continue;
1458      }
1459    }
1460    if (Child->isLeaf()) {
1461      if (isa<IntInit>(Child->getLeafValue()))
1462        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1463      else if (Child->getComplexPatternInfo(CGP))
1464        Size += getPatternSize(Child, CGP);
1465      else if (isImmAllOnesAllZerosMatch(Child))
1466        Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1467      else if (!Child->getPredicateCalls().empty())
1468        ++Size;
1469    }
1470  }
1471
1472  return Size;
1473}
1474
1475/// Compute the complexity metric for the input pattern.  This roughly
1476/// corresponds to the number of nodes that are covered.
1477int PatternToMatch::
1478getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1479  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1480}
1481
1482void PatternToMatch::getPredicateRecords(
1483    SmallVectorImpl<Record *> &PredicateRecs) const {
1484  for (Init *I : Predicates->getValues()) {
1485    if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1486      Record *Def = Pred->getDef();
1487      if (!Def->isSubClassOf("Predicate")) {
1488#ifndef NDEBUG
1489        Def->dump();
1490#endif
1491        llvm_unreachable("Unknown predicate type!");
1492      }
1493      PredicateRecs.push_back(Def);
1494    }
1495  }
1496  // Sort so that different orders get canonicalized to the same string.
1497  llvm::sort(PredicateRecs, LessRecord());
1498  // Remove duplicate predicates.
1499  PredicateRecs.erase(std::unique(PredicateRecs.begin(), PredicateRecs.end()),
1500                      PredicateRecs.end());
1501}
1502
1503/// getPredicateCheck - Return a single string containing all of this
1504/// pattern's predicates concatenated with "&&" operators.
1505///
1506std::string PatternToMatch::getPredicateCheck() const {
1507  SmallVector<Record *, 4> PredicateRecs;
1508  getPredicateRecords(PredicateRecs);
1509
1510  SmallString<128> PredicateCheck;
1511  raw_svector_ostream OS(PredicateCheck);
1512  ListSeparator LS(" && ");
1513  for (Record *Pred : PredicateRecs) {
1514    StringRef CondString = Pred->getValueAsString("CondString");
1515    if (CondString.empty())
1516      continue;
1517    OS << LS << '(' << CondString << ')';
1518  }
1519
1520  if (!HwModeFeatures.empty())
1521    OS << LS << HwModeFeatures;
1522
1523  return std::string(PredicateCheck);
1524}
1525
1526//===----------------------------------------------------------------------===//
1527// SDTypeConstraint implementation
1528//
1529
1530SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1531  OperandNo = R->getValueAsInt("OperandNum");
1532
1533  if (R->isSubClassOf("SDTCisVT")) {
1534    ConstraintType = SDTCisVT;
1535    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1536    for (const auto &P : VVT)
1537      if (P.second == MVT::isVoid)
1538        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1539  } else if (R->isSubClassOf("SDTCisPtrTy")) {
1540    ConstraintType = SDTCisPtrTy;
1541  } else if (R->isSubClassOf("SDTCisInt")) {
1542    ConstraintType = SDTCisInt;
1543  } else if (R->isSubClassOf("SDTCisFP")) {
1544    ConstraintType = SDTCisFP;
1545  } else if (R->isSubClassOf("SDTCisVec")) {
1546    ConstraintType = SDTCisVec;
1547  } else if (R->isSubClassOf("SDTCisSameAs")) {
1548    ConstraintType = SDTCisSameAs;
1549    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1550  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1551    ConstraintType = SDTCisVTSmallerThanOp;
1552    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1553      R->getValueAsInt("OtherOperandNum");
1554  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1555    ConstraintType = SDTCisOpSmallerThanOp;
1556    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1557      R->getValueAsInt("BigOperandNum");
1558  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1559    ConstraintType = SDTCisEltOfVec;
1560    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1561  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1562    ConstraintType = SDTCisSubVecOfVec;
1563    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1564      R->getValueAsInt("OtherOpNum");
1565  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1566    ConstraintType = SDTCVecEltisVT;
1567    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1568    for (const auto &P : VVT) {
1569      MVT T = P.second;
1570      if (T.isVector())
1571        PrintFatalError(R->getLoc(),
1572                        "Cannot use vector type as SDTCVecEltisVT");
1573      if (!T.isInteger() && !T.isFloatingPoint())
1574        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1575                                     "as SDTCVecEltisVT");
1576    }
1577  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1578    ConstraintType = SDTCisSameNumEltsAs;
1579    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1580      R->getValueAsInt("OtherOperandNum");
1581  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1582    ConstraintType = SDTCisSameSizeAs;
1583    x.SDTCisSameSizeAs_Info.OtherOperandNum =
1584      R->getValueAsInt("OtherOperandNum");
1585  } else {
1586    PrintFatalError(R->getLoc(),
1587                    "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1588  }
1589}
1590
1591/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1592/// N, and the result number in ResNo.
1593static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1594                                      const SDNodeInfo &NodeInfo,
1595                                      unsigned &ResNo) {
1596  unsigned NumResults = NodeInfo.getNumResults();
1597  if (OpNo < NumResults) {
1598    ResNo = OpNo;
1599    return N;
1600  }
1601
1602  OpNo -= NumResults;
1603
1604  if (OpNo >= N->getNumChildren()) {
1605    std::string S;
1606    raw_string_ostream OS(S);
1607    OS << "Invalid operand number in type constraint "
1608           << (OpNo+NumResults) << " ";
1609    N->print(OS);
1610    PrintFatalError(S);
1611  }
1612
1613  return N->getChild(OpNo);
1614}
1615
1616/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1617/// constraint to the nodes operands.  This returns true if it makes a
1618/// change, false otherwise.  If a type contradiction is found, flag an error.
1619bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1620                                           const SDNodeInfo &NodeInfo,
1621                                           TreePattern &TP) const {
1622  if (TP.hasError())
1623    return false;
1624
1625  unsigned ResNo = 0; // The result number being referenced.
1626  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1627  TypeInfer &TI = TP.getInfer();
1628
1629  switch (ConstraintType) {
1630  case SDTCisVT:
1631    // Operand must be a particular type.
1632    return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1633  case SDTCisPtrTy:
1634    // Operand must be same as target pointer type.
1635    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1636  case SDTCisInt:
1637    // Require it to be one of the legal integer VTs.
1638     return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1639  case SDTCisFP:
1640    // Require it to be one of the legal fp VTs.
1641    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1642  case SDTCisVec:
1643    // Require it to be one of the legal vector VTs.
1644    return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1645  case SDTCisSameAs: {
1646    unsigned OResNo = 0;
1647    TreePatternNode *OtherNode =
1648      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1649    return (int)NodeToApply->UpdateNodeType(ResNo,
1650                                            OtherNode->getExtType(OResNo), TP) |
1651           (int)OtherNode->UpdateNodeType(OResNo,
1652                                          NodeToApply->getExtType(ResNo), TP);
1653  }
1654  case SDTCisVTSmallerThanOp: {
1655    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1656    // have an integer type that is smaller than the VT.
1657    if (!NodeToApply->isLeaf() ||
1658        !isa<DefInit>(NodeToApply->getLeafValue()) ||
1659        !cast<DefInit>(NodeToApply->getLeafValue())->getDef()
1660               ->isSubClassOf("ValueType")) {
1661      TP.error(N->getOperator()->getName() + " expects a VT operand!");
1662      return false;
1663    }
1664    DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue());
1665    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1666    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1667    TypeSetByHwMode TypeListTmp(VVT);
1668
1669    unsigned OResNo = 0;
1670    TreePatternNode *OtherNode =
1671      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1672                    OResNo);
1673
1674    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo),
1675                                 /*SmallIsVT*/ true);
1676  }
1677  case SDTCisOpSmallerThanOp: {
1678    unsigned BResNo = 0;
1679    TreePatternNode *BigOperand =
1680      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1681                    BResNo);
1682    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1683                                 BigOperand->getExtType(BResNo));
1684  }
1685  case SDTCisEltOfVec: {
1686    unsigned VResNo = 0;
1687    TreePatternNode *VecOperand =
1688      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1689                    VResNo);
1690    // Filter vector types out of VecOperand that don't have the right element
1691    // type.
1692    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1693                                     NodeToApply->getExtType(ResNo));
1694  }
1695  case SDTCisSubVecOfVec: {
1696    unsigned VResNo = 0;
1697    TreePatternNode *BigVecOperand =
1698      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1699                    VResNo);
1700
1701    // Filter vector types out of BigVecOperand that don't have the
1702    // right subvector type.
1703    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1704                                           NodeToApply->getExtType(ResNo));
1705  }
1706  case SDTCVecEltisVT: {
1707    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1708  }
1709  case SDTCisSameNumEltsAs: {
1710    unsigned OResNo = 0;
1711    TreePatternNode *OtherNode =
1712      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1713                    N, NodeInfo, OResNo);
1714    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1715                                 NodeToApply->getExtType(ResNo));
1716  }
1717  case SDTCisSameSizeAs: {
1718    unsigned OResNo = 0;
1719    TreePatternNode *OtherNode =
1720      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1721                    N, NodeInfo, OResNo);
1722    return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1723                              NodeToApply->getExtType(ResNo));
1724  }
1725  }
1726  llvm_unreachable("Invalid ConstraintType!");
1727}
1728
1729// Update the node type to match an instruction operand or result as specified
1730// in the ins or outs lists on the instruction definition. Return true if the
1731// type was actually changed.
1732bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1733                                             Record *Operand,
1734                                             TreePattern &TP) {
1735  // The 'unknown' operand indicates that types should be inferred from the
1736  // context.
1737  if (Operand->isSubClassOf("unknown_class"))
1738    return false;
1739
1740  // The Operand class specifies a type directly.
1741  if (Operand->isSubClassOf("Operand")) {
1742    Record *R = Operand->getValueAsDef("Type");
1743    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1744    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1745  }
1746
1747  // PointerLikeRegClass has a type that is determined at runtime.
1748  if (Operand->isSubClassOf("PointerLikeRegClass"))
1749    return UpdateNodeType(ResNo, MVT::iPTR, TP);
1750
1751  // Both RegisterClass and RegisterOperand operands derive their types from a
1752  // register class def.
1753  Record *RC = nullptr;
1754  if (Operand->isSubClassOf("RegisterClass"))
1755    RC = Operand;
1756  else if (Operand->isSubClassOf("RegisterOperand"))
1757    RC = Operand->getValueAsDef("RegClass");
1758
1759  assert(RC && "Unknown operand type");
1760  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1761  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1762}
1763
1764bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1765  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1766    if (!TP.getInfer().isConcrete(Types[i], true))
1767      return true;
1768  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1769    if (getChild(i)->ContainsUnresolvedType(TP))
1770      return true;
1771  return false;
1772}
1773
1774bool TreePatternNode::hasProperTypeByHwMode() const {
1775  for (const TypeSetByHwMode &S : Types)
1776    if (!S.isSimple())
1777      return true;
1778  for (const TreePatternNodePtr &C : Children)
1779    if (C->hasProperTypeByHwMode())
1780      return true;
1781  return false;
1782}
1783
1784bool TreePatternNode::hasPossibleType() const {
1785  for (const TypeSetByHwMode &S : Types)
1786    if (!S.isPossible())
1787      return false;
1788  for (const TreePatternNodePtr &C : Children)
1789    if (!C->hasPossibleType())
1790      return false;
1791  return true;
1792}
1793
1794bool TreePatternNode::setDefaultMode(unsigned Mode) {
1795  for (TypeSetByHwMode &S : Types) {
1796    S.makeSimple(Mode);
1797    // Check if the selected mode had a type conflict.
1798    if (S.get(DefaultMode).empty())
1799      return false;
1800  }
1801  for (const TreePatternNodePtr &C : Children)
1802    if (!C->setDefaultMode(Mode))
1803      return false;
1804  return true;
1805}
1806
1807//===----------------------------------------------------------------------===//
1808// SDNodeInfo implementation
1809//
1810SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1811  EnumName    = R->getValueAsString("Opcode");
1812  SDClassName = R->getValueAsString("SDClass");
1813  Record *TypeProfile = R->getValueAsDef("TypeProfile");
1814  NumResults = TypeProfile->getValueAsInt("NumResults");
1815  NumOperands = TypeProfile->getValueAsInt("NumOperands");
1816
1817  // Parse the properties.
1818  Properties = parseSDPatternOperatorProperties(R);
1819
1820  // Parse the type constraints.
1821  std::vector<Record*> ConstraintList =
1822    TypeProfile->getValueAsListOfDefs("Constraints");
1823  for (Record *R : ConstraintList)
1824    TypeConstraints.emplace_back(R, CGH);
1825}
1826
1827/// getKnownType - If the type constraints on this node imply a fixed type
1828/// (e.g. all stores return void, etc), then return it as an
1829/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1830MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1831  unsigned NumResults = getNumResults();
1832  assert(NumResults <= 1 &&
1833         "We only work with nodes with zero or one result so far!");
1834  assert(ResNo == 0 && "Only handles single result nodes so far");
1835
1836  for (const SDTypeConstraint &Constraint : TypeConstraints) {
1837    // Make sure that this applies to the correct node result.
1838    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1839      continue;
1840
1841    switch (Constraint.ConstraintType) {
1842    default: break;
1843    case SDTypeConstraint::SDTCisVT:
1844      if (Constraint.VVT.isSimple())
1845        return Constraint.VVT.getSimple().SimpleTy;
1846      break;
1847    case SDTypeConstraint::SDTCisPtrTy:
1848      return MVT::iPTR;
1849    }
1850  }
1851  return MVT::Other;
1852}
1853
1854//===----------------------------------------------------------------------===//
1855// TreePatternNode implementation
1856//
1857
1858static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1859  if (Operator->getName() == "set" ||
1860      Operator->getName() == "implicit")
1861    return 0;  // All return nothing.
1862
1863  if (Operator->isSubClassOf("Intrinsic"))
1864    return CDP.getIntrinsic(Operator).IS.RetTys.size();
1865
1866  if (Operator->isSubClassOf("SDNode"))
1867    return CDP.getSDNodeInfo(Operator).getNumResults();
1868
1869  if (Operator->isSubClassOf("PatFrags")) {
1870    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1871    // the forward reference case where one pattern fragment references another
1872    // before it is processed.
1873    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1874      // The number of results of a fragment with alternative records is the
1875      // maximum number of results across all alternatives.
1876      unsigned NumResults = 0;
1877      for (const auto &T : PFRec->getTrees())
1878        NumResults = std::max(NumResults, T->getNumTypes());
1879      return NumResults;
1880    }
1881
1882    ListInit *LI = Operator->getValueAsListInit("Fragments");
1883    assert(LI && "Invalid Fragment");
1884    unsigned NumResults = 0;
1885    for (Init *I : LI->getValues()) {
1886      Record *Op = nullptr;
1887      if (DagInit *Dag = dyn_cast<DagInit>(I))
1888        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1889          Op = DI->getDef();
1890      assert(Op && "Invalid Fragment");
1891      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1892    }
1893    return NumResults;
1894  }
1895
1896  if (Operator->isSubClassOf("Instruction")) {
1897    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1898
1899    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1900
1901    // Subtract any defaulted outputs.
1902    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1903      Record *OperandNode = InstInfo.Operands[i].Rec;
1904
1905      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1906          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1907        --NumDefsToAdd;
1908    }
1909
1910    // Add on one implicit def if it has a resolvable type.
1911    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1912      ++NumDefsToAdd;
1913    return NumDefsToAdd;
1914  }
1915
1916  if (Operator->isSubClassOf("SDNodeXForm"))
1917    return 1;  // FIXME: Generalize SDNodeXForm
1918
1919  if (Operator->isSubClassOf("ValueType"))
1920    return 1;  // A type-cast of one result.
1921
1922  if (Operator->isSubClassOf("ComplexPattern"))
1923    return 1;
1924
1925  errs() << *Operator;
1926  PrintFatalError("Unhandled node in GetNumNodeResults");
1927}
1928
1929void TreePatternNode::print(raw_ostream &OS) const {
1930  if (isLeaf())
1931    OS << *getLeafValue();
1932  else
1933    OS << '(' << getOperator()->getName();
1934
1935  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1936    OS << ':';
1937    getExtType(i).writeToStream(OS);
1938  }
1939
1940  if (!isLeaf()) {
1941    if (getNumChildren() != 0) {
1942      OS << " ";
1943      ListSeparator LS;
1944      for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1945        OS << LS;
1946        getChild(i)->print(OS);
1947      }
1948    }
1949    OS << ")";
1950  }
1951
1952  for (const TreePredicateCall &Pred : PredicateCalls) {
1953    OS << "<<P:";
1954    if (Pred.Scope)
1955      OS << Pred.Scope << ":";
1956    OS << Pred.Fn.getFnName() << ">>";
1957  }
1958  if (TransformFn)
1959    OS << "<<X:" << TransformFn->getName() << ">>";
1960  if (!getName().empty())
1961    OS << ":$" << getName();
1962
1963  for (const ScopedName &Name : NamesAsPredicateArg)
1964    OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1965}
1966void TreePatternNode::dump() const {
1967  print(errs());
1968}
1969
1970/// isIsomorphicTo - Return true if this node is recursively
1971/// isomorphic to the specified node.  For this comparison, the node's
1972/// entire state is considered. The assigned name is ignored, since
1973/// nodes with differing names are considered isomorphic. However, if
1974/// the assigned name is present in the dependent variable set, then
1975/// the assigned name is considered significant and the node is
1976/// isomorphic if the names match.
1977bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1978                                     const MultipleUseVarSet &DepVars) const {
1979  if (N == this) return true;
1980  if (N->isLeaf() != isLeaf())
1981    return false;
1982
1983  // Check operator of non-leaves early since it can be cheaper than checking
1984  // types.
1985  if (!isLeaf())
1986    if (N->getOperator() != getOperator() ||
1987        N->getNumChildren() != getNumChildren())
1988      return false;
1989
1990  if (getExtTypes() != N->getExtTypes() ||
1991      getPredicateCalls() != N->getPredicateCalls() ||
1992      getTransformFn() != N->getTransformFn())
1993    return false;
1994
1995  if (isLeaf()) {
1996    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1997      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1998        return ((DI->getDef() == NDI->getDef()) &&
1999                (!DepVars.contains(getName()) || getName() == N->getName()));
2000      }
2001    }
2002    return getLeafValue() == N->getLeafValue();
2003  }
2004
2005  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2006    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
2007      return false;
2008  return true;
2009}
2010
2011/// clone - Make a copy of this tree and all of its children.
2012///
2013TreePatternNodePtr TreePatternNode::clone() const {
2014  TreePatternNodePtr New;
2015  if (isLeaf()) {
2016    New = makeIntrusiveRefCnt<TreePatternNode>(getLeafValue(), getNumTypes());
2017  } else {
2018    std::vector<TreePatternNodePtr> CChildren;
2019    CChildren.reserve(Children.size());
2020    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2021      CChildren.push_back(getChild(i)->clone());
2022    New = makeIntrusiveRefCnt<TreePatternNode>(
2023        getOperator(), std::move(CChildren), getNumTypes());
2024  }
2025  New->setName(getName());
2026  New->setNamesAsPredicateArg(getNamesAsPredicateArg());
2027  New->Types = Types;
2028  New->setPredicateCalls(getPredicateCalls());
2029  New->setGISelFlagsRecord(getGISelFlagsRecord());
2030  New->setTransformFn(getTransformFn());
2031  return New;
2032}
2033
2034/// RemoveAllTypes - Recursively strip all the types of this tree.
2035void TreePatternNode::RemoveAllTypes() {
2036  // Reset to unknown type.
2037  std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2038  if (isLeaf()) return;
2039  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2040    getChild(i)->RemoveAllTypes();
2041}
2042
2043
2044/// SubstituteFormalArguments - Replace the formal arguments in this tree
2045/// with actual values specified by ArgMap.
2046void TreePatternNode::SubstituteFormalArguments(
2047    std::map<std::string, TreePatternNodePtr> &ArgMap) {
2048  if (isLeaf()) return;
2049
2050  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2051    TreePatternNode *Child = getChild(i);
2052    if (Child->isLeaf()) {
2053      Init *Val = Child->getLeafValue();
2054      // Note that, when substituting into an output pattern, Val might be an
2055      // UnsetInit.
2056      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2057          cast<DefInit>(Val)->getDef()->getName() == "node")) {
2058        // We found a use of a formal argument, replace it with its value.
2059        TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2060        assert(NewChild && "Couldn't find formal argument!");
2061        assert((Child->getPredicateCalls().empty() ||
2062                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2063               "Non-empty child predicate clobbered!");
2064        setChild(i, std::move(NewChild));
2065      }
2066    } else {
2067      getChild(i)->SubstituteFormalArguments(ArgMap);
2068    }
2069  }
2070}
2071
2072
2073/// InlinePatternFragments - If this pattern refers to any pattern
2074/// fragments, return the set of inlined versions (this can be more than
2075/// one if a PatFrags record has multiple alternatives).
2076void TreePatternNode::InlinePatternFragments(
2077    TreePattern &TP, std::vector<TreePatternNodePtr> &OutAlternatives) {
2078
2079  if (TP.hasError())
2080    return;
2081
2082  if (isLeaf()) {
2083    OutAlternatives.push_back(this); // nothing to do.
2084    return;
2085  }
2086
2087  Record *Op = getOperator();
2088
2089  if (!Op->isSubClassOf("PatFrags")) {
2090    if (getNumChildren() == 0) {
2091      OutAlternatives.push_back(this);
2092      return;
2093    }
2094
2095    // Recursively inline children nodes.
2096    std::vector<std::vector<TreePatternNodePtr>> ChildAlternatives(
2097        getNumChildren());
2098    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2099      TreePatternNodePtr Child = getChildShared(i);
2100      Child->InlinePatternFragments(TP, ChildAlternatives[i]);
2101      // If there are no alternatives for any child, there are no
2102      // alternatives for this expression as whole.
2103      if (ChildAlternatives[i].empty())
2104        return;
2105
2106      assert((Child->getPredicateCalls().empty() ||
2107              llvm::all_of(ChildAlternatives[i],
2108                           [&](const TreePatternNodePtr &NewChild) {
2109                             return NewChild->getPredicateCalls() ==
2110                                    Child->getPredicateCalls();
2111                           })) &&
2112             "Non-empty child predicate clobbered!");
2113    }
2114
2115    // The end result is an all-pairs construction of the resultant pattern.
2116    std::vector<unsigned> Idxs(ChildAlternatives.size());
2117    bool NotDone;
2118    do {
2119      // Create the variant and add it to the output list.
2120      std::vector<TreePatternNodePtr> NewChildren;
2121      NewChildren.reserve(ChildAlternatives.size());
2122      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2123        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2124      TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
2125          getOperator(), std::move(NewChildren), getNumTypes());
2126
2127      // Copy over properties.
2128      R->setName(getName());
2129      R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2130      R->setPredicateCalls(getPredicateCalls());
2131      R->setGISelFlagsRecord(getGISelFlagsRecord());
2132      R->setTransformFn(getTransformFn());
2133      for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2134        R->setType(i, getExtType(i));
2135      for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2136        R->setResultIndex(i, getResultIndex(i));
2137
2138      // Register alternative.
2139      OutAlternatives.push_back(R);
2140
2141      // Increment indices to the next permutation by incrementing the
2142      // indices from last index backward, e.g., generate the sequence
2143      // [0, 0], [0, 1], [1, 0], [1, 1].
2144      int IdxsIdx;
2145      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2146        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2147          Idxs[IdxsIdx] = 0;
2148        else
2149          break;
2150      }
2151      NotDone = (IdxsIdx >= 0);
2152    } while (NotDone);
2153
2154    return;
2155  }
2156
2157  // Otherwise, we found a reference to a fragment.  First, look up its
2158  // TreePattern record.
2159  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2160
2161  // Verify that we are passing the right number of operands.
2162  if (Frag->getNumArgs() != getNumChildren()) {
2163    TP.error("'" + Op->getName() + "' fragment requires " +
2164             Twine(Frag->getNumArgs()) + " operands!");
2165    return;
2166  }
2167
2168  TreePredicateFn PredFn(Frag);
2169  unsigned Scope = 0;
2170  if (TreePredicateFn(Frag).usesOperands())
2171    Scope = TP.getDAGPatterns().allocateScope();
2172
2173  // Compute the map of formal to actual arguments.
2174  std::map<std::string, TreePatternNodePtr> ArgMap;
2175  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2176    TreePatternNodePtr Child = getChildShared(i);
2177    if (Scope != 0) {
2178      Child = Child->clone();
2179      Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2180    }
2181    ArgMap[Frag->getArgName(i)] = Child;
2182  }
2183
2184  // Loop over all fragment alternatives.
2185  for (const auto &Alternative : Frag->getTrees()) {
2186    TreePatternNodePtr FragTree = Alternative->clone();
2187
2188    if (!PredFn.isAlwaysTrue())
2189      FragTree->addPredicateCall(PredFn, Scope);
2190
2191    // Resolve formal arguments to their actual value.
2192    if (Frag->getNumArgs())
2193      FragTree->SubstituteFormalArguments(ArgMap);
2194
2195    // Transfer types.  Note that the resolved alternative may have fewer
2196    // (but not more) results than the PatFrags node.
2197    FragTree->setName(getName());
2198    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2199      FragTree->UpdateNodeType(i, getExtType(i), TP);
2200
2201    if (Op->isSubClassOf("GISelFlags"))
2202      FragTree->setGISelFlagsRecord(Op);
2203
2204    // Transfer in the old predicates.
2205    for (const TreePredicateCall &Pred : getPredicateCalls())
2206      FragTree->addPredicateCall(Pred);
2207
2208    // The fragment we inlined could have recursive inlining that is needed.  See
2209    // if there are any pattern fragments in it and inline them as needed.
2210    FragTree->InlinePatternFragments(TP, OutAlternatives);
2211  }
2212}
2213
2214/// getImplicitType - Check to see if the specified record has an implicit
2215/// type which should be applied to it.  This will infer the type of register
2216/// references from the register file information, for example.
2217///
2218/// When Unnamed is set, return the type of a DAG operand with no name, such as
2219/// the F8RC register class argument in:
2220///
2221///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2222///
2223/// When Unnamed is false, return the type of a named DAG operand such as the
2224/// GPR:$src operand above.
2225///
2226static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2227                                       bool NotRegisters,
2228                                       bool Unnamed,
2229                                       TreePattern &TP) {
2230  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2231
2232  // Check to see if this is a register operand.
2233  if (R->isSubClassOf("RegisterOperand")) {
2234    assert(ResNo == 0 && "Regoperand ref only has one result!");
2235    if (NotRegisters)
2236      return TypeSetByHwMode(); // Unknown.
2237    Record *RegClass = R->getValueAsDef("RegClass");
2238    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2239    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2240  }
2241
2242  // Check to see if this is a register or a register class.
2243  if (R->isSubClassOf("RegisterClass")) {
2244    assert(ResNo == 0 && "Regclass ref only has one result!");
2245    // An unnamed register class represents itself as an i32 immediate, for
2246    // example on a COPY_TO_REGCLASS instruction.
2247    if (Unnamed)
2248      return TypeSetByHwMode(MVT::i32);
2249
2250    // In a named operand, the register class provides the possible set of
2251    // types.
2252    if (NotRegisters)
2253      return TypeSetByHwMode(); // Unknown.
2254    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2255    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2256  }
2257
2258  if (R->isSubClassOf("PatFrags")) {
2259    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2260    // Pattern fragment types will be resolved when they are inlined.
2261    return TypeSetByHwMode(); // Unknown.
2262  }
2263
2264  if (R->isSubClassOf("Register")) {
2265    assert(ResNo == 0 && "Registers only produce one result!");
2266    if (NotRegisters)
2267      return TypeSetByHwMode(); // Unknown.
2268    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2269    return TypeSetByHwMode(T.getRegisterVTs(R));
2270  }
2271
2272  if (R->isSubClassOf("SubRegIndex")) {
2273    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2274    return TypeSetByHwMode(MVT::i32);
2275  }
2276
2277  if (R->isSubClassOf("ValueType")) {
2278    assert(ResNo == 0 && "This node only has one result!");
2279    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2280    //
2281    //   (sext_inreg GPR:$src, i16)
2282    //                         ~~~
2283    if (Unnamed)
2284      return TypeSetByHwMode(MVT::Other);
2285    // With a name, the ValueType simply provides the type of the named
2286    // variable.
2287    //
2288    //   (sext_inreg i32:$src, i16)
2289    //               ~~~~~~~~
2290    if (NotRegisters)
2291      return TypeSetByHwMode(); // Unknown.
2292    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2293    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2294  }
2295
2296  if (R->isSubClassOf("CondCode")) {
2297    assert(ResNo == 0 && "This node only has one result!");
2298    // Using a CondCodeSDNode.
2299    return TypeSetByHwMode(MVT::Other);
2300  }
2301
2302  if (R->isSubClassOf("ComplexPattern")) {
2303    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2304    if (NotRegisters)
2305      return TypeSetByHwMode(); // Unknown.
2306    Record *T = CDP.getComplexPattern(R).getValueType();
2307    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2308    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2309  }
2310  if (R->isSubClassOf("PointerLikeRegClass")) {
2311    assert(ResNo == 0 && "Regclass can only have one result!");
2312    TypeSetByHwMode VTS(MVT::iPTR);
2313    TP.getInfer().expandOverloads(VTS);
2314    return VTS;
2315  }
2316
2317  if (R->getName() == "node" || R->getName() == "srcvalue" ||
2318      R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2319      R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2320    // Placeholder.
2321    return TypeSetByHwMode(); // Unknown.
2322  }
2323
2324  if (R->isSubClassOf("Operand")) {
2325    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2326    Record *T = R->getValueAsDef("Type");
2327    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2328  }
2329
2330  TP.error("Unknown node flavor used in pattern: " + R->getName());
2331  return TypeSetByHwMode(MVT::Other);
2332}
2333
2334
2335/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2336/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2337const CodeGenIntrinsic *TreePatternNode::
2338getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2339  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2340      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2341      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2342    return nullptr;
2343
2344  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2345  return &CDP.getIntrinsicInfo(IID);
2346}
2347
2348/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2349/// return the ComplexPattern information, otherwise return null.
2350const ComplexPattern *
2351TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2352  Record *Rec;
2353  if (isLeaf()) {
2354    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2355    if (!DI)
2356      return nullptr;
2357    Rec = DI->getDef();
2358  } else
2359    Rec = getOperator();
2360
2361  if (!Rec->isSubClassOf("ComplexPattern"))
2362    return nullptr;
2363  return &CGP.getComplexPattern(Rec);
2364}
2365
2366unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2367  // A ComplexPattern specifically declares how many results it fills in.
2368  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2369    return CP->getNumOperands();
2370
2371  // If MIOperandInfo is specified, that gives the count.
2372  if (isLeaf()) {
2373    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2374    if (DI && DI->getDef()->isSubClassOf("Operand")) {
2375      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2376      if (MIOps->getNumArgs())
2377        return MIOps->getNumArgs();
2378    }
2379  }
2380
2381  // Otherwise there is just one result.
2382  return 1;
2383}
2384
2385/// NodeHasProperty - Return true if this node has the specified property.
2386bool TreePatternNode::NodeHasProperty(SDNP Property,
2387                                      const CodeGenDAGPatterns &CGP) const {
2388  if (isLeaf()) {
2389    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2390      return CP->hasProperty(Property);
2391
2392    return false;
2393  }
2394
2395  if (Property != SDNPHasChain) {
2396    // The chain proprety is already present on the different intrinsic node
2397    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2398    // on the intrinsic. Anything else is specific to the individual intrinsic.
2399    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2400      return Int->hasProperty(Property);
2401  }
2402
2403  if (!getOperator()->isSubClassOf("SDPatternOperator"))
2404    return false;
2405
2406  return CGP.getSDNodeInfo(getOperator()).hasProperty(Property);
2407}
2408
2409
2410
2411
2412/// TreeHasProperty - Return true if any node in this tree has the specified
2413/// property.
2414bool TreePatternNode::TreeHasProperty(SDNP Property,
2415                                      const CodeGenDAGPatterns &CGP) const {
2416  if (NodeHasProperty(Property, CGP))
2417    return true;
2418  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2419    if (getChild(i)->TreeHasProperty(Property, CGP))
2420      return true;
2421  return false;
2422}
2423
2424/// isCommutativeIntrinsic - Return true if the node corresponds to a
2425/// commutative intrinsic.
2426bool
2427TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2428  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2429    return Int->isCommutative;
2430  return false;
2431}
2432
2433static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2434  if (!N->isLeaf())
2435    return N->getOperator()->isSubClassOf(Class);
2436
2437  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2438  if (DI && DI->getDef()->isSubClassOf(Class))
2439    return true;
2440
2441  return false;
2442}
2443
2444static void emitTooManyOperandsError(TreePattern &TP,
2445                                     StringRef InstName,
2446                                     unsigned Expected,
2447                                     unsigned Actual) {
2448  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2449           " operands but expected only " + Twine(Expected) + "!");
2450}
2451
2452static void emitTooFewOperandsError(TreePattern &TP,
2453                                    StringRef InstName,
2454                                    unsigned Actual) {
2455  TP.error("Instruction '" + InstName +
2456           "' expects more than the provided " + Twine(Actual) + " operands!");
2457}
2458
2459/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2460/// this node and its children in the tree.  This returns true if it makes a
2461/// change, false otherwise.  If a type contradiction is found, flag an error.
2462bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2463  if (TP.hasError())
2464    return false;
2465
2466  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2467  if (isLeaf()) {
2468    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2469      // If it's a regclass or something else known, include the type.
2470      bool MadeChange = false;
2471      for (unsigned i = 0, e = Types.size(); i != e; ++i)
2472        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2473                                                        NotRegisters,
2474                                                        !hasName(), TP), TP);
2475      return MadeChange;
2476    }
2477
2478    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2479      assert(Types.size() == 1 && "Invalid IntInit");
2480
2481      // Int inits are always integers. :)
2482      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2483
2484      if (!TP.getInfer().isConcrete(Types[0], false))
2485        return MadeChange;
2486
2487      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2488      for (auto &P : VVT) {
2489        MVT::SimpleValueType VT = P.second.SimpleTy;
2490        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2491          continue;
2492        unsigned Size = MVT(VT).getFixedSizeInBits();
2493        // Make sure that the value is representable for this type.
2494        if (Size >= 32)
2495          continue;
2496        // Check that the value doesn't use more bits than we have. It must
2497        // either be a sign- or zero-extended equivalent of the original.
2498        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2499        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2500            SignBitAndAbove == 1)
2501          continue;
2502
2503        TP.error("Integer value '" + Twine(II->getValue()) +
2504                 "' is out of range for type '" + getEnumName(VT) + "'!");
2505        break;
2506      }
2507      return MadeChange;
2508    }
2509
2510    return false;
2511  }
2512
2513  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2514    bool MadeChange = false;
2515
2516    // Apply the result type to the node.
2517    unsigned NumRetVTs = Int->IS.RetTys.size();
2518    unsigned NumParamVTs = Int->IS.ParamTys.size();
2519
2520    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2521      MadeChange |= UpdateNodeType(
2522          i, getValueType(Int->IS.RetTys[i]->getValueAsDef("VT")), TP);
2523
2524    if (getNumChildren() != NumParamVTs + 1) {
2525      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2526               " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2527      return false;
2528    }
2529
2530    // Apply type info to the intrinsic ID.
2531    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2532
2533    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2534      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2535
2536      MVT::SimpleValueType OpVT =
2537          getValueType(Int->IS.ParamTys[i]->getValueAsDef("VT"));
2538      assert(getChild(i + 1)->getNumTypes() == 1 && "Unhandled case");
2539      MadeChange |= getChild(i + 1)->UpdateNodeType(0, OpVT, TP);
2540    }
2541    return MadeChange;
2542  }
2543
2544  if (getOperator()->isSubClassOf("SDNode")) {
2545    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2546
2547    // Check that the number of operands is sane.  Negative operands -> varargs.
2548    if (NI.getNumOperands() >= 0 &&
2549        getNumChildren() != (unsigned)NI.getNumOperands()) {
2550      TP.error(getOperator()->getName() + " node requires exactly " +
2551               Twine(NI.getNumOperands()) + " operands!");
2552      return false;
2553    }
2554
2555    bool MadeChange = false;
2556    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2557      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2558    MadeChange |= NI.ApplyTypeConstraints(this, TP);
2559    return MadeChange;
2560  }
2561
2562  if (getOperator()->isSubClassOf("Instruction")) {
2563    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2564    CodeGenInstruction &InstInfo =
2565      CDP.getTargetInfo().getInstruction(getOperator());
2566
2567    bool MadeChange = false;
2568
2569    // Apply the result types to the node, these come from the things in the
2570    // (outs) list of the instruction.
2571    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2572                                        Inst.getNumResults());
2573    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2574      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2575
2576    // If the instruction has implicit defs, we apply the first one as a result.
2577    // FIXME: This sucks, it should apply all implicit defs.
2578    if (!InstInfo.ImplicitDefs.empty()) {
2579      unsigned ResNo = NumResultsToAdd;
2580
2581      // FIXME: Generalize to multiple possible types and multiple possible
2582      // ImplicitDefs.
2583      MVT::SimpleValueType VT =
2584        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2585
2586      if (VT != MVT::Other)
2587        MadeChange |= UpdateNodeType(ResNo, VT, TP);
2588    }
2589
2590    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2591    // be the same.
2592    if (getOperator()->getName() == "INSERT_SUBREG") {
2593      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2594      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2595      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2596    } else if (getOperator()->getName() == "REG_SEQUENCE") {
2597      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2598      // variadic.
2599
2600      unsigned NChild = getNumChildren();
2601      if (NChild < 3) {
2602        TP.error("REG_SEQUENCE requires at least 3 operands!");
2603        return false;
2604      }
2605
2606      if (NChild % 2 == 0) {
2607        TP.error("REG_SEQUENCE requires an odd number of operands!");
2608        return false;
2609      }
2610
2611      if (!isOperandClass(getChild(0), "RegisterClass")) {
2612        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2613        return false;
2614      }
2615
2616      for (unsigned I = 1; I < NChild; I += 2) {
2617        TreePatternNode *SubIdxChild = getChild(I + 1);
2618        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2619          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2620                   Twine(I + 1) + "!");
2621          return false;
2622        }
2623      }
2624    }
2625
2626    unsigned NumResults = Inst.getNumResults();
2627    unsigned NumFixedOperands = InstInfo.Operands.size();
2628
2629    // If one or more operands with a default value appear at the end of the
2630    // formal operand list for an instruction, we allow them to be overridden
2631    // by optional operands provided in the pattern.
2632    //
2633    // But if an operand B without a default appears at any point after an
2634    // operand A with a default, then we don't allow A to be overridden,
2635    // because there would be no way to specify whether the next operand in
2636    // the pattern was intended to override A or skip it.
2637    unsigned NonOverridableOperands = NumFixedOperands;
2638    while (NonOverridableOperands > NumResults &&
2639           CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2640      --NonOverridableOperands;
2641
2642    unsigned ChildNo = 0;
2643    assert(NumResults <= NumFixedOperands);
2644    for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2645      Record *OperandNode = InstInfo.Operands[i].Rec;
2646
2647      // If the operand has a default value, do we use it? We must use the
2648      // default if we've run out of children of the pattern DAG to consume,
2649      // or if the operand is followed by a non-defaulted one.
2650      if (CDP.operandHasDefault(OperandNode) &&
2651          (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2652        continue;
2653
2654      // If we have run out of child nodes and there _isn't_ a default
2655      // value we can use for the next operand, give an error.
2656      if (ChildNo >= getNumChildren()) {
2657        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2658        return false;
2659      }
2660
2661      TreePatternNode *Child = getChild(ChildNo++);
2662      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2663
2664      // If the operand has sub-operands, they may be provided by distinct
2665      // child patterns, so attempt to match each sub-operand separately.
2666      if (OperandNode->isSubClassOf("Operand")) {
2667        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2668        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2669          // But don't do that if the whole operand is being provided by
2670          // a single ComplexPattern-related Operand.
2671
2672          if (Child->getNumMIResults(CDP) < NumArgs) {
2673            // Match first sub-operand against the child we already have.
2674            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2675            MadeChange |=
2676              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2677
2678            // And the remaining sub-operands against subsequent children.
2679            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2680              if (ChildNo >= getNumChildren()) {
2681                emitTooFewOperandsError(TP, getOperator()->getName(),
2682                                        getNumChildren());
2683                return false;
2684              }
2685              Child = getChild(ChildNo++);
2686
2687              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2688              MadeChange |=
2689                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2690            }
2691            continue;
2692          }
2693        }
2694      }
2695
2696      // If we didn't match by pieces above, attempt to match the whole
2697      // operand now.
2698      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2699    }
2700
2701    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2702      emitTooManyOperandsError(TP, getOperator()->getName(),
2703                               ChildNo, getNumChildren());
2704      return false;
2705    }
2706
2707    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2708      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2709    return MadeChange;
2710  }
2711
2712  if (getOperator()->isSubClassOf("ComplexPattern")) {
2713    bool MadeChange = false;
2714
2715    if (!NotRegisters) {
2716      assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2717      Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2718      const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2719      const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2720      // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2721      // exclusively use those as non-leaf nodes with explicit type casts, so
2722      // for backwards compatibility we do no inference in that case. This is
2723      // not supported when the ComplexPattern is used as a leaf value,
2724      // however; this inconsistency should be resolved, either by adding this
2725      // case there or by altering the backends to not do this (e.g. using Any
2726      // instead may work).
2727      if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2728        MadeChange |= UpdateNodeType(0, VVT, TP);
2729    }
2730
2731    for (unsigned i = 0; i < getNumChildren(); ++i)
2732      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2733
2734    return MadeChange;
2735  }
2736
2737  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2738
2739  // Node transforms always take one operand.
2740  if (getNumChildren() != 1) {
2741    TP.error("Node transform '" + getOperator()->getName() +
2742             "' requires one operand!");
2743    return false;
2744  }
2745
2746  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2747  return MadeChange;
2748}
2749
2750/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2751/// RHS of a commutative operation, not the on LHS.
2752static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2753  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2754    return true;
2755  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2756    return true;
2757  if (isImmAllOnesAllZerosMatch(N))
2758    return true;
2759  return false;
2760}
2761
2762
2763/// canPatternMatch - If it is impossible for this pattern to match on this
2764/// target, fill in Reason and return false.  Otherwise, return true.  This is
2765/// used as a sanity check for .td files (to prevent people from writing stuff
2766/// that can never possibly work), and to prevent the pattern permuter from
2767/// generating stuff that is useless.
2768bool TreePatternNode::canPatternMatch(std::string &Reason,
2769                                      const CodeGenDAGPatterns &CDP) {
2770  if (isLeaf()) return true;
2771
2772  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2773    if (!getChild(i)->canPatternMatch(Reason, CDP))
2774      return false;
2775
2776  // If this is an intrinsic, handle cases that would make it not match.  For
2777  // example, if an operand is required to be an immediate.
2778  if (getOperator()->isSubClassOf("Intrinsic")) {
2779    // TODO:
2780    return true;
2781  }
2782
2783  if (getOperator()->isSubClassOf("ComplexPattern"))
2784    return true;
2785
2786  // If this node is a commutative operator, check that the LHS isn't an
2787  // immediate.
2788  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2789  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2790  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2791    // Scan all of the operands of the node and make sure that only the last one
2792    // is a constant node, unless the RHS also is.
2793    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2794      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2795      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2796        if (OnlyOnRHSOfCommutative(getChild(i))) {
2797          Reason="Immediate value must be on the RHS of commutative operators!";
2798          return false;
2799        }
2800    }
2801  }
2802
2803  return true;
2804}
2805
2806//===----------------------------------------------------------------------===//
2807// TreePattern implementation
2808//
2809
2810TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2811                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2812                         isInputPattern(isInput), HasError(false),
2813                         Infer(*this) {
2814  for (Init *I : RawPat->getValues())
2815    Trees.push_back(ParseTreePattern(I, ""));
2816}
2817
2818TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2819                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2820                         isInputPattern(isInput), HasError(false),
2821                         Infer(*this) {
2822  Trees.push_back(ParseTreePattern(Pat, ""));
2823}
2824
2825TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2826                         CodeGenDAGPatterns &cdp)
2827    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2828      Infer(*this) {
2829  Trees.push_back(Pat);
2830}
2831
2832void TreePattern::error(const Twine &Msg) {
2833  if (HasError)
2834    return;
2835  dump();
2836  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2837  HasError = true;
2838}
2839
2840void TreePattern::ComputeNamedNodes() {
2841  for (TreePatternNodePtr &Tree : Trees)
2842    ComputeNamedNodes(Tree.get());
2843}
2844
2845void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2846  if (!N->getName().empty())
2847    NamedNodes[N->getName()].push_back(N);
2848
2849  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2850    ComputeNamedNodes(N->getChild(i));
2851}
2852
2853TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2854                                                 StringRef OpName) {
2855  RecordKeeper &RK = TheInit->getRecordKeeper();
2856  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2857    Record *R = DI->getDef();
2858
2859    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2860    // TreePatternNode of its own.  For example:
2861    ///   (foo GPR, imm) -> (foo GPR, (imm))
2862    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2863      return ParseTreePattern(
2864        DagInit::get(DI, nullptr,
2865                     std::vector<std::pair<Init*, StringInit*> >()),
2866        OpName);
2867
2868    // Input argument?
2869    TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(DI, 1);
2870    if (R->getName() == "node" && !OpName.empty()) {
2871      if (OpName.empty())
2872        error("'node' argument requires a name to match with operand list");
2873      Args.push_back(std::string(OpName));
2874    }
2875
2876    Res->setName(OpName);
2877    return Res;
2878  }
2879
2880  // ?:$name or just $name.
2881  if (isa<UnsetInit>(TheInit)) {
2882    if (OpName.empty())
2883      error("'?' argument requires a name to match with operand list");
2884    TreePatternNodePtr Res = makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2885    Args.push_back(std::string(OpName));
2886    Res->setName(OpName);
2887    return Res;
2888  }
2889
2890  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2891    if (!OpName.empty())
2892      error("Constant int or bit argument should not have a name!");
2893    if (isa<BitInit>(TheInit))
2894      TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2895    return makeIntrusiveRefCnt<TreePatternNode>(TheInit, 1);
2896  }
2897
2898  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2899    // Turn this into an IntInit.
2900    Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2901    if (!II || !isa<IntInit>(II))
2902      error("Bits value must be constants!");
2903    return II ? ParseTreePattern(II, OpName) : nullptr;
2904  }
2905
2906  DagInit *Dag = dyn_cast<DagInit>(TheInit);
2907  if (!Dag) {
2908    TheInit->print(errs());
2909    error("Pattern has unexpected init kind!");
2910    return nullptr;
2911  }
2912  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2913  if (!OpDef) {
2914    error("Pattern has unexpected operator type!");
2915    return nullptr;
2916  }
2917  Record *Operator = OpDef->getDef();
2918
2919  if (Operator->isSubClassOf("ValueType")) {
2920    // If the operator is a ValueType, then this must be "type cast" of a leaf
2921    // node.
2922    if (Dag->getNumArgs() != 1)
2923      error("Type cast only takes one operand!");
2924
2925    TreePatternNodePtr New =
2926        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2927
2928    // Apply the type cast.
2929    if (New->getNumTypes() != 1)
2930      error("Type cast can only have one type!");
2931    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2932    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2933
2934    if (!OpName.empty())
2935      error("ValueType cast should not have a name!");
2936    return New;
2937  }
2938
2939  // Verify that this is something that makes sense for an operator.
2940  if (!Operator->isSubClassOf("PatFrags") &&
2941      !Operator->isSubClassOf("SDNode") &&
2942      !Operator->isSubClassOf("Instruction") &&
2943      !Operator->isSubClassOf("SDNodeXForm") &&
2944      !Operator->isSubClassOf("Intrinsic") &&
2945      !Operator->isSubClassOf("ComplexPattern") &&
2946      Operator->getName() != "set" &&
2947      Operator->getName() != "implicit")
2948    error("Unrecognized node '" + Operator->getName() + "'!");
2949
2950  //  Check to see if this is something that is illegal in an input pattern.
2951  if (isInputPattern) {
2952    if (Operator->isSubClassOf("Instruction") ||
2953        Operator->isSubClassOf("SDNodeXForm"))
2954      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2955  } else {
2956    if (Operator->isSubClassOf("Intrinsic"))
2957      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2958
2959    if (Operator->isSubClassOf("SDNode") &&
2960        Operator->getName() != "imm" &&
2961        Operator->getName() != "timm" &&
2962        Operator->getName() != "fpimm" &&
2963        Operator->getName() != "tglobaltlsaddr" &&
2964        Operator->getName() != "tconstpool" &&
2965        Operator->getName() != "tjumptable" &&
2966        Operator->getName() != "tframeindex" &&
2967        Operator->getName() != "texternalsym" &&
2968        Operator->getName() != "tblockaddress" &&
2969        Operator->getName() != "tglobaladdr" &&
2970        Operator->getName() != "bb" &&
2971        Operator->getName() != "vt" &&
2972        Operator->getName() != "mcsym")
2973      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2974  }
2975
2976  std::vector<TreePatternNodePtr> Children;
2977
2978  // Parse all the operands.
2979  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2980    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2981
2982  // Get the actual number of results before Operator is converted to an intrinsic
2983  // node (which is hard-coded to have either zero or one result).
2984  unsigned NumResults = GetNumNodeResults(Operator, CDP);
2985
2986  // If the operator is an intrinsic, then this is just syntactic sugar for
2987  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2988  // convert the intrinsic name to a number.
2989  if (Operator->isSubClassOf("Intrinsic")) {
2990    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2991    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2992
2993    // If this intrinsic returns void, it must have side-effects and thus a
2994    // chain.
2995    if (Int.IS.RetTys.empty())
2996      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2997    else if (!Int.ME.doesNotAccessMemory() || Int.hasSideEffects)
2998      // Has side-effects, requires chain.
2999      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
3000    else // Otherwise, no chain.
3001      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
3002
3003    Children.insert(Children.begin(), makeIntrusiveRefCnt<TreePatternNode>(
3004                                          IntInit::get(RK, IID), 1));
3005  }
3006
3007  if (Operator->isSubClassOf("ComplexPattern")) {
3008    for (unsigned i = 0; i < Children.size(); ++i) {
3009      TreePatternNodePtr Child = Children[i];
3010
3011      if (Child->getName().empty())
3012        error("All arguments to a ComplexPattern must be named");
3013
3014      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
3015      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
3016      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
3017      auto OperandId = std::make_pair(Operator, i);
3018      auto PrevOp = ComplexPatternOperands.find(Child->getName());
3019      if (PrevOp != ComplexPatternOperands.end()) {
3020        if (PrevOp->getValue() != OperandId)
3021          error("All ComplexPattern operands must appear consistently: "
3022                "in the same order in just one ComplexPattern instance.");
3023      } else
3024        ComplexPatternOperands[Child->getName()] = OperandId;
3025    }
3026  }
3027
3028  TreePatternNodePtr Result = makeIntrusiveRefCnt<TreePatternNode>(
3029      Operator, std::move(Children), NumResults);
3030  Result->setName(OpName);
3031
3032  if (Dag->getName()) {
3033    assert(Result->getName().empty());
3034    Result->setName(Dag->getNameStr());
3035  }
3036  return Result;
3037}
3038
3039/// SimplifyTree - See if we can simplify this tree to eliminate something that
3040/// will never match in favor of something obvious that will.  This is here
3041/// strictly as a convenience to target authors because it allows them to write
3042/// more type generic things and have useless type casts fold away.
3043///
3044/// This returns true if any change is made.
3045static bool SimplifyTree(TreePatternNodePtr &N) {
3046  if (N->isLeaf())
3047    return false;
3048
3049  // If we have a bitconvert with a resolved type and if the source and
3050  // destination types are the same, then the bitconvert is useless, remove it.
3051  //
3052  // We make an exception if the types are completely empty. This can come up
3053  // when the pattern being simplified is in the Fragments list of a PatFrags,
3054  // so that the operand is just an untyped "node". In that situation we leave
3055  // bitconverts unsimplified, and simplify them later once the fragment is
3056  // expanded into its true context.
3057  if (N->getOperator()->getName() == "bitconvert" &&
3058      N->getExtType(0).isValueTypeByHwMode(false) &&
3059      !N->getExtType(0).empty() &&
3060      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
3061      N->getName().empty()) {
3062    N = N->getChildShared(0);
3063    SimplifyTree(N);
3064    return true;
3065  }
3066
3067  // Walk all children.
3068  bool MadeChange = false;
3069  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3070    MadeChange |= SimplifyTree(N->getChildSharedPtr(i));
3071
3072  return MadeChange;
3073}
3074
3075
3076
3077/// InferAllTypes - Infer/propagate as many types throughout the expression
3078/// patterns as possible.  Return true if all types are inferred, false
3079/// otherwise.  Flags an error if a type contradiction is found.
3080bool TreePattern::
3081InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3082  if (NamedNodes.empty())
3083    ComputeNamedNodes();
3084
3085  bool MadeChange = true;
3086  while (MadeChange) {
3087    MadeChange = false;
3088    for (TreePatternNodePtr &Tree : Trees) {
3089      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3090      MadeChange |= SimplifyTree(Tree);
3091    }
3092
3093    // If there are constraints on our named nodes, apply them.
3094    for (auto &Entry : NamedNodes) {
3095      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3096
3097      // If we have input named node types, propagate their types to the named
3098      // values here.
3099      if (InNamedTypes) {
3100        if (!InNamedTypes->count(Entry.getKey())) {
3101          error("Node '" + std::string(Entry.getKey()) +
3102                "' in output pattern but not input pattern");
3103          return true;
3104        }
3105
3106        const SmallVectorImpl<TreePatternNode*> &InNodes =
3107          InNamedTypes->find(Entry.getKey())->second;
3108
3109        // The input types should be fully resolved by now.
3110        for (TreePatternNode *Node : Nodes) {
3111          // If this node is a register class, and it is the root of the pattern
3112          // then we're mapping something onto an input register.  We allow
3113          // changing the type of the input register in this case.  This allows
3114          // us to match things like:
3115          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3116          if (Node == Trees[0].get() && Node->isLeaf()) {
3117            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3118            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3119                       DI->getDef()->isSubClassOf("RegisterOperand")))
3120              continue;
3121          }
3122
3123          assert(Node->getNumTypes() == 1 &&
3124                 InNodes[0]->getNumTypes() == 1 &&
3125                 "FIXME: cannot name multiple result nodes yet");
3126          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3127                                             *this);
3128        }
3129      }
3130
3131      // If there are multiple nodes with the same name, they must all have the
3132      // same type.
3133      if (Entry.second.size() > 1) {
3134        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3135          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3136          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3137                 "FIXME: cannot name multiple result nodes yet");
3138
3139          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3140          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3141        }
3142      }
3143    }
3144  }
3145
3146  bool HasUnresolvedTypes = false;
3147  for (const TreePatternNodePtr &Tree : Trees)
3148    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3149  return !HasUnresolvedTypes;
3150}
3151
3152void TreePattern::print(raw_ostream &OS) const {
3153  OS << getRecord()->getName();
3154  if (!Args.empty()) {
3155    OS << "(";
3156    ListSeparator LS;
3157    for (const std::string &Arg : Args)
3158      OS << LS << Arg;
3159    OS << ")";
3160  }
3161  OS << ": ";
3162
3163  if (Trees.size() > 1)
3164    OS << "[\n";
3165  for (const TreePatternNodePtr &Tree : Trees) {
3166    OS << "\t";
3167    Tree->print(OS);
3168    OS << "\n";
3169  }
3170
3171  if (Trees.size() > 1)
3172    OS << "]\n";
3173}
3174
3175void TreePattern::dump() const { print(errs()); }
3176
3177//===----------------------------------------------------------------------===//
3178// CodeGenDAGPatterns implementation
3179//
3180
3181CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3182                                       PatternRewriterFn PatternRewriter)
3183    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3184      PatternRewriter(PatternRewriter) {
3185
3186  Intrinsics = CodeGenIntrinsicTable(Records);
3187  ParseNodeInfo();
3188  ParseNodeTransforms();
3189  ParseComplexPatterns();
3190  ParsePatternFragments();
3191  ParseDefaultOperands();
3192  ParseInstructions();
3193  ParsePatternFragments(/*OutFrags*/true);
3194  ParsePatterns();
3195
3196  // Generate variants.  For example, commutative patterns can match
3197  // multiple ways.  Add them to PatternsToMatch as well.
3198  GenerateVariants();
3199
3200  // Break patterns with parameterized types into a series of patterns,
3201  // where each one has a fixed type and is predicated on the conditions
3202  // of the associated HW mode.
3203  ExpandHwModeBasedTypes();
3204
3205  // Infer instruction flags.  For example, we can detect loads,
3206  // stores, and side effects in many cases by examining an
3207  // instruction's pattern.
3208  InferInstructionFlags();
3209
3210  // Verify that instruction flags match the patterns.
3211  VerifyInstructionFlags();
3212}
3213
3214Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3215  Record *N = Records.getDef(Name);
3216  if (!N || !N->isSubClassOf("SDNode"))
3217    PrintFatalError("Error getting SDNode '" + Name + "'!");
3218
3219  return N;
3220}
3221
3222// Parse all of the SDNode definitions for the target, populating SDNodes.
3223void CodeGenDAGPatterns::ParseNodeInfo() {
3224  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3225  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3226
3227  while (!Nodes.empty()) {
3228    Record *R = Nodes.back();
3229    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3230    Nodes.pop_back();
3231  }
3232
3233  // Get the builtin intrinsic nodes.
3234  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3235  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3236  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3237}
3238
3239/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3240/// map, and emit them to the file as functions.
3241void CodeGenDAGPatterns::ParseNodeTransforms() {
3242  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3243  while (!Xforms.empty()) {
3244    Record *XFormNode = Xforms.back();
3245    Record *SDNode = XFormNode->getValueAsDef("Opcode");
3246    StringRef Code = XFormNode->getValueAsString("XFormFunction");
3247    SDNodeXForms.insert(
3248        std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3249
3250    Xforms.pop_back();
3251  }
3252}
3253
3254void CodeGenDAGPatterns::ParseComplexPatterns() {
3255  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3256  while (!AMs.empty()) {
3257    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3258    AMs.pop_back();
3259  }
3260}
3261
3262
3263/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3264/// file, building up the PatternFragments map.  After we've collected them all,
3265/// inline fragments together as necessary, so that there are no references left
3266/// inside a pattern fragment to a pattern fragment.
3267///
3268void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3269  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3270
3271  // First step, parse all of the fragments.
3272  for (Record *Frag : Fragments) {
3273    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3274      continue;
3275
3276    ListInit *LI = Frag->getValueAsListInit("Fragments");
3277    TreePattern *P =
3278        (PatternFragments[Frag] = std::make_unique<TreePattern>(
3279             Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3280             *this)).get();
3281
3282    // Validate the argument list, converting it to set, to discard duplicates.
3283    std::vector<std::string> &Args = P->getArgList();
3284    // Copy the args so we can take StringRefs to them.
3285    auto ArgsCopy = Args;
3286    SmallDenseSet<StringRef, 4> OperandsSet;
3287    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3288
3289    if (OperandsSet.count(""))
3290      P->error("Cannot have unnamed 'node' values in pattern fragment!");
3291
3292    // Parse the operands list.
3293    DagInit *OpsList = Frag->getValueAsDag("Operands");
3294    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3295    // Special cases: ops == outs == ins. Different names are used to
3296    // improve readability.
3297    if (!OpsOp ||
3298        (OpsOp->getDef()->getName() != "ops" &&
3299         OpsOp->getDef()->getName() != "outs" &&
3300         OpsOp->getDef()->getName() != "ins"))
3301      P->error("Operands list should start with '(ops ... '!");
3302
3303    // Copy over the arguments.
3304    Args.clear();
3305    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3306      if (!isa<DefInit>(OpsList->getArg(j)) ||
3307          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3308        P->error("Operands list should all be 'node' values.");
3309      if (!OpsList->getArgName(j))
3310        P->error("Operands list should have names for each operand!");
3311      StringRef ArgNameStr = OpsList->getArgNameStr(j);
3312      if (!OperandsSet.count(ArgNameStr))
3313        P->error("'" + ArgNameStr +
3314                 "' does not occur in pattern or was multiply specified!");
3315      OperandsSet.erase(ArgNameStr);
3316      Args.push_back(std::string(ArgNameStr));
3317    }
3318
3319    if (!OperandsSet.empty())
3320      P->error("Operands list does not contain an entry for operand '" +
3321               *OperandsSet.begin() + "'!");
3322
3323    // If there is a node transformation corresponding to this, keep track of
3324    // it.
3325    Record *Transform = Frag->getValueAsDef("OperandTransform");
3326    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3327      for (const auto &T : P->getTrees())
3328        T->setTransformFn(Transform);
3329  }
3330
3331  // Now that we've parsed all of the tree fragments, do a closure on them so
3332  // that there are not references to PatFrags left inside of them.
3333  for (Record *Frag : Fragments) {
3334    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3335      continue;
3336
3337    TreePattern &ThePat = *PatternFragments[Frag];
3338    ThePat.InlinePatternFragments();
3339
3340    // Infer as many types as possible.  Don't worry about it if we don't infer
3341    // all of them, some may depend on the inputs of the pattern.  Also, don't
3342    // validate type sets; validation may cause spurious failures e.g. if a
3343    // fragment needs floating-point types but the current target does not have
3344    // any (this is only an error if that fragment is ever used!).
3345    {
3346      TypeInfer::SuppressValidation SV(ThePat.getInfer());
3347      ThePat.InferAllTypes();
3348      ThePat.resetError();
3349    }
3350
3351    // If debugging, print out the pattern fragment result.
3352    LLVM_DEBUG(ThePat.dump());
3353  }
3354}
3355
3356void CodeGenDAGPatterns::ParseDefaultOperands() {
3357  std::vector<Record*> DefaultOps;
3358  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3359
3360  // Find some SDNode.
3361  assert(!SDNodes.empty() && "No SDNodes parsed?");
3362  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3363
3364  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3365    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3366
3367    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3368    // SomeSDnode so that we can parse this.
3369    std::vector<std::pair<Init*, StringInit*> > Ops;
3370    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3371      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3372                                   DefaultInfo->getArgName(op)));
3373    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3374
3375    // Create a TreePattern to parse this.
3376    TreePattern P(DefaultOps[i], DI, false, *this);
3377    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3378
3379    // Copy the operands over into a DAGDefaultOperand.
3380    DAGDefaultOperand DefaultOpInfo;
3381
3382    const TreePatternNodePtr &T = P.getTree(0);
3383    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3384      TreePatternNodePtr TPN = T->getChildShared(op);
3385      while (TPN->ApplyTypeConstraints(P, false))
3386        /* Resolve all types */;
3387
3388      if (TPN->ContainsUnresolvedType(P)) {
3389        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3390                        DefaultOps[i]->getName() +
3391                        "' doesn't have a concrete type!");
3392      }
3393      DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3394    }
3395
3396    // Insert it into the DefaultOperands map so we can find it later.
3397    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3398  }
3399}
3400
3401/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3402/// instruction input.  Return true if this is a real use.
3403static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3404                      std::map<std::string, TreePatternNodePtr> &InstInputs) {
3405  // No name -> not interesting.
3406  if (Pat->getName().empty()) {
3407    if (Pat->isLeaf()) {
3408      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3409      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3410                 DI->getDef()->isSubClassOf("RegisterOperand")))
3411        I.error("Input " + DI->getDef()->getName() + " must be named!");
3412    }
3413    return false;
3414  }
3415
3416  Record *Rec;
3417  if (Pat->isLeaf()) {
3418    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3419    if (!DI)
3420      I.error("Input $" + Pat->getName() + " must be an identifier!");
3421    Rec = DI->getDef();
3422  } else {
3423    Rec = Pat->getOperator();
3424  }
3425
3426  // SRCVALUE nodes are ignored.
3427  if (Rec->getName() == "srcvalue")
3428    return false;
3429
3430  TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3431  if (!Slot) {
3432    Slot = Pat;
3433    return true;
3434  }
3435  Record *SlotRec;
3436  if (Slot->isLeaf()) {
3437    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3438  } else {
3439    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3440    SlotRec = Slot->getOperator();
3441  }
3442
3443  // Ensure that the inputs agree if we've already seen this input.
3444  if (Rec != SlotRec)
3445    I.error("All $" + Pat->getName() + " inputs must agree with each other");
3446  // Ensure that the types can agree as well.
3447  Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3448  Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3449  if (Slot->getExtTypes() != Pat->getExtTypes())
3450    I.error("All $" + Pat->getName() + " inputs must agree with each other");
3451  return true;
3452}
3453
3454/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3455/// part of "I", the instruction), computing the set of inputs and outputs of
3456/// the pattern.  Report errors if we see anything naughty.
3457void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3458    TreePattern &I, TreePatternNodePtr Pat,
3459    std::map<std::string, TreePatternNodePtr> &InstInputs,
3460    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3461        &InstResults,
3462    std::vector<Record *> &InstImpResults) {
3463
3464  // The instruction pattern still has unresolved fragments.  For *named*
3465  // nodes we must resolve those here.  This may not result in multiple
3466  // alternatives.
3467  if (!Pat->getName().empty()) {
3468    TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3469    SrcPattern.InlinePatternFragments();
3470    SrcPattern.InferAllTypes();
3471    Pat = SrcPattern.getOnlyTree();
3472  }
3473
3474  if (Pat->isLeaf()) {
3475    bool isUse = HandleUse(I, Pat, InstInputs);
3476    if (!isUse && Pat->getTransformFn())
3477      I.error("Cannot specify a transform function for a non-input value!");
3478    return;
3479  }
3480
3481  if (Pat->getOperator()->getName() == "implicit") {
3482    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3483      TreePatternNode *Dest = Pat->getChild(i);
3484      if (!Dest->isLeaf())
3485        I.error("implicitly defined value should be a register!");
3486
3487      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3488      if (!Val || !Val->getDef()->isSubClassOf("Register"))
3489        I.error("implicitly defined value should be a register!");
3490      if (Val)
3491        InstImpResults.push_back(Val->getDef());
3492    }
3493    return;
3494  }
3495
3496  if (Pat->getOperator()->getName() != "set") {
3497    // If this is not a set, verify that the children nodes are not void typed,
3498    // and recurse.
3499    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3500      if (Pat->getChild(i)->getNumTypes() == 0)
3501        I.error("Cannot have void nodes inside of patterns!");
3502      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3503                                  InstResults, InstImpResults);
3504    }
3505
3506    // If this is a non-leaf node with no children, treat it basically as if
3507    // it were a leaf.  This handles nodes like (imm).
3508    bool isUse = HandleUse(I, Pat, InstInputs);
3509
3510    if (!isUse && Pat->getTransformFn())
3511      I.error("Cannot specify a transform function for a non-input value!");
3512    return;
3513  }
3514
3515  // Otherwise, this is a set, validate and collect instruction results.
3516  if (Pat->getNumChildren() == 0)
3517    I.error("set requires operands!");
3518
3519  if (Pat->getTransformFn())
3520    I.error("Cannot specify a transform function on a set node!");
3521
3522  // Check the set destinations.
3523  unsigned NumDests = Pat->getNumChildren()-1;
3524  for (unsigned i = 0; i != NumDests; ++i) {
3525    TreePatternNodePtr Dest = Pat->getChildShared(i);
3526    // For set destinations we also must resolve fragments here.
3527    TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3528    DestPattern.InlinePatternFragments();
3529    DestPattern.InferAllTypes();
3530    Dest = DestPattern.getOnlyTree();
3531
3532    if (!Dest->isLeaf())
3533      I.error("set destination should be a register!");
3534
3535    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3536    if (!Val) {
3537      I.error("set destination should be a register!");
3538      continue;
3539    }
3540
3541    if (Val->getDef()->isSubClassOf("RegisterClass") ||
3542        Val->getDef()->isSubClassOf("ValueType") ||
3543        Val->getDef()->isSubClassOf("RegisterOperand") ||
3544        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3545      if (Dest->getName().empty())
3546        I.error("set destination must have a name!");
3547      if (InstResults.count(Dest->getName()))
3548        I.error("cannot set '" + Dest->getName() + "' multiple times");
3549      InstResults[Dest->getName()] = Dest;
3550    } else if (Val->getDef()->isSubClassOf("Register")) {
3551      InstImpResults.push_back(Val->getDef());
3552    } else {
3553      I.error("set destination should be a register!");
3554    }
3555  }
3556
3557  // Verify and collect info from the computation.
3558  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3559                              InstResults, InstImpResults);
3560}
3561
3562//===----------------------------------------------------------------------===//
3563// Instruction Analysis
3564//===----------------------------------------------------------------------===//
3565
3566class InstAnalyzer {
3567  const CodeGenDAGPatterns &CDP;
3568public:
3569  bool hasSideEffects;
3570  bool mayStore;
3571  bool mayLoad;
3572  bool isBitcast;
3573  bool isVariadic;
3574  bool hasChain;
3575
3576  InstAnalyzer(const CodeGenDAGPatterns &cdp)
3577    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3578      isBitcast(false), isVariadic(false), hasChain(false) {}
3579
3580  void Analyze(const PatternToMatch &Pat) {
3581    const TreePatternNode *N = Pat.getSrcPattern();
3582    AnalyzeNode(N);
3583    // These properties are detected only on the root node.
3584    isBitcast = IsNodeBitcast(N);
3585  }
3586
3587private:
3588  bool IsNodeBitcast(const TreePatternNode *N) const {
3589    if (hasSideEffects || mayLoad || mayStore || isVariadic)
3590      return false;
3591
3592    if (N->isLeaf())
3593      return false;
3594    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3595      return false;
3596
3597    if (N->getOperator()->isSubClassOf("ComplexPattern"))
3598      return false;
3599
3600    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3601    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3602      return false;
3603    return OpInfo.getEnumName() == "ISD::BITCAST";
3604  }
3605
3606public:
3607  void AnalyzeNode(const TreePatternNode *N) {
3608    if (N->isLeaf()) {
3609      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3610        Record *LeafRec = DI->getDef();
3611        // Handle ComplexPattern leaves.
3612        if (LeafRec->isSubClassOf("ComplexPattern")) {
3613          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3614          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3615          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3616          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3617        }
3618      }
3619      return;
3620    }
3621
3622    // Analyze children.
3623    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3624      AnalyzeNode(N->getChild(i));
3625
3626    // Notice properties of the node.
3627    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3628    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3629    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3630    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3631    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3632
3633    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3634      ModRefInfo MR = IntInfo->ME.getModRef();
3635      // If this is an intrinsic, analyze it.
3636      if (isRefSet(MR))
3637        mayLoad = true; // These may load memory.
3638
3639      if (isModSet(MR))
3640        mayStore = true; // Intrinsics that can write to memory are 'mayStore'.
3641
3642      // Consider intrinsics that don't specify any restrictions on memory
3643      // effects as having a side-effect.
3644      if (IntInfo->ME == MemoryEffects::unknown() || IntInfo->hasSideEffects)
3645        hasSideEffects = true;
3646    }
3647  }
3648
3649};
3650
3651static bool InferFromPattern(CodeGenInstruction &InstInfo,
3652                             const InstAnalyzer &PatInfo,
3653                             Record *PatDef) {
3654  bool Error = false;
3655
3656  // Remember where InstInfo got its flags.
3657  if (InstInfo.hasUndefFlags())
3658      InstInfo.InferredFrom = PatDef;
3659
3660  // Check explicitly set flags for consistency.
3661  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3662      !InstInfo.hasSideEffects_Unset) {
3663    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3664    // the pattern has no side effects. That could be useful for div/rem
3665    // instructions that may trap.
3666    if (!InstInfo.hasSideEffects) {
3667      Error = true;
3668      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3669                 Twine(InstInfo.hasSideEffects));
3670    }
3671  }
3672
3673  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3674    Error = true;
3675    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3676               Twine(InstInfo.mayStore));
3677  }
3678
3679  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3680    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3681    // Some targets translate immediates to loads.
3682    if (!InstInfo.mayLoad) {
3683      Error = true;
3684      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3685                 Twine(InstInfo.mayLoad));
3686    }
3687  }
3688
3689  // Transfer inferred flags.
3690  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3691  InstInfo.mayStore |= PatInfo.mayStore;
3692  InstInfo.mayLoad |= PatInfo.mayLoad;
3693
3694  // These flags are silently added without any verification.
3695  // FIXME: To match historical behavior of TableGen, for now add those flags
3696  // only when we're inferring from the primary instruction pattern.
3697  if (PatDef->isSubClassOf("Instruction")) {
3698    InstInfo.isBitcast |= PatInfo.isBitcast;
3699    InstInfo.hasChain |= PatInfo.hasChain;
3700    InstInfo.hasChain_Inferred = true;
3701  }
3702
3703  // Don't infer isVariadic. This flag means something different on SDNodes and
3704  // instructions. For example, a CALL SDNode is variadic because it has the
3705  // call arguments as operands, but a CALL instruction is not variadic - it
3706  // has argument registers as implicit, not explicit uses.
3707
3708  return Error;
3709}
3710
3711/// hasNullFragReference - Return true if the DAG has any reference to the
3712/// null_frag operator.
3713static bool hasNullFragReference(DagInit *DI) {
3714  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3715  if (!OpDef) return false;
3716  Record *Operator = OpDef->getDef();
3717
3718  // If this is the null fragment, return true.
3719  if (Operator->getName() == "null_frag") return true;
3720  // If any of the arguments reference the null fragment, return true.
3721  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3722    if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3723      if (Arg->getDef()->getName() == "null_frag")
3724        return true;
3725    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3726    if (Arg && hasNullFragReference(Arg))
3727      return true;
3728  }
3729
3730  return false;
3731}
3732
3733/// hasNullFragReference - Return true if any DAG in the list references
3734/// the null_frag operator.
3735static bool hasNullFragReference(ListInit *LI) {
3736  for (Init *I : LI->getValues()) {
3737    DagInit *DI = dyn_cast<DagInit>(I);
3738    assert(DI && "non-dag in an instruction Pattern list?!");
3739    if (hasNullFragReference(DI))
3740      return true;
3741  }
3742  return false;
3743}
3744
3745/// Get all the instructions in a tree.
3746static void
3747getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3748  if (Tree->isLeaf())
3749    return;
3750  if (Tree->getOperator()->isSubClassOf("Instruction"))
3751    Instrs.push_back(Tree->getOperator());
3752  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3753    getInstructionsInTree(Tree->getChild(i), Instrs);
3754}
3755
3756/// Check the class of a pattern leaf node against the instruction operand it
3757/// represents.
3758static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3759                              Record *Leaf) {
3760  if (OI.Rec == Leaf)
3761    return true;
3762
3763  // Allow direct value types to be used in instruction set patterns.
3764  // The type will be checked later.
3765  if (Leaf->isSubClassOf("ValueType"))
3766    return true;
3767
3768  // Patterns can also be ComplexPattern instances.
3769  if (Leaf->isSubClassOf("ComplexPattern"))
3770    return true;
3771
3772  return false;
3773}
3774
3775void CodeGenDAGPatterns::parseInstructionPattern(
3776    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3777
3778  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3779
3780  // Parse the instruction.
3781  TreePattern I(CGI.TheDef, Pat, true, *this);
3782
3783  // InstInputs - Keep track of all of the inputs of the instruction, along
3784  // with the record they are declared as.
3785  std::map<std::string, TreePatternNodePtr> InstInputs;
3786
3787  // InstResults - Keep track of all the virtual registers that are 'set'
3788  // in the instruction, including what reg class they are.
3789  MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3790      InstResults;
3791
3792  std::vector<Record*> InstImpResults;
3793
3794  // Verify that the top-level forms in the instruction are of void type, and
3795  // fill in the InstResults map.
3796  SmallString<32> TypesString;
3797  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3798    TypesString.clear();
3799    TreePatternNodePtr Pat = I.getTree(j);
3800    if (Pat->getNumTypes() != 0) {
3801      raw_svector_ostream OS(TypesString);
3802      ListSeparator LS;
3803      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3804        OS << LS;
3805        Pat->getExtType(k).writeToStream(OS);
3806      }
3807      I.error("Top-level forms in instruction pattern should have"
3808               " void types, has types " +
3809               OS.str());
3810    }
3811
3812    // Find inputs and outputs, and verify the structure of the uses/defs.
3813    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3814                                InstImpResults);
3815  }
3816
3817  // Now that we have inputs and outputs of the pattern, inspect the operands
3818  // list for the instruction.  This determines the order that operands are
3819  // added to the machine instruction the node corresponds to.
3820  unsigned NumResults = InstResults.size();
3821
3822  // Parse the operands list from the (ops) list, validating it.
3823  assert(I.getArgList().empty() && "Args list should still be empty here!");
3824
3825  // Check that all of the results occur first in the list.
3826  std::vector<Record*> Results;
3827  std::vector<unsigned> ResultIndices;
3828  SmallVector<TreePatternNodePtr, 2> ResNodes;
3829  for (unsigned i = 0; i != NumResults; ++i) {
3830    if (i == CGI.Operands.size()) {
3831      const std::string &OpName =
3832          llvm::find_if(
3833              InstResults,
3834              [](const std::pair<std::string, TreePatternNodePtr> &P) {
3835                return P.second;
3836              })
3837              ->first;
3838
3839      I.error("'" + OpName + "' set but does not appear in operand list!");
3840    }
3841
3842    const std::string &OpName = CGI.Operands[i].Name;
3843
3844    // Check that it exists in InstResults.
3845    auto InstResultIter = InstResults.find(OpName);
3846    if (InstResultIter == InstResults.end() || !InstResultIter->second)
3847      I.error("Operand $" + OpName + " does not exist in operand list!");
3848
3849    TreePatternNodePtr RNode = InstResultIter->second;
3850    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3851    ResNodes.push_back(std::move(RNode));
3852    if (!R)
3853      I.error("Operand $" + OpName + " should be a set destination: all "
3854               "outputs must occur before inputs in operand list!");
3855
3856    if (!checkOperandClass(CGI.Operands[i], R))
3857      I.error("Operand $" + OpName + " class mismatch!");
3858
3859    // Remember the return type.
3860    Results.push_back(CGI.Operands[i].Rec);
3861
3862    // Remember the result index.
3863    ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3864
3865    // Okay, this one checks out.
3866    InstResultIter->second = nullptr;
3867  }
3868
3869  // Loop over the inputs next.
3870  std::vector<TreePatternNodePtr> ResultNodeOperands;
3871  std::vector<Record*> Operands;
3872  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3873    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3874    const std::string &OpName = Op.Name;
3875    if (OpName.empty())
3876      I.error("Operand #" + Twine(i) + " in operands list has no name!");
3877
3878    if (!InstInputs.count(OpName)) {
3879      // If this is an operand with a DefaultOps set filled in, we can ignore
3880      // this.  When we codegen it, we will do so as always executed.
3881      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3882        // Does it have a non-empty DefaultOps field?  If so, ignore this
3883        // operand.
3884        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3885          continue;
3886      }
3887      I.error("Operand $" + OpName +
3888               " does not appear in the instruction pattern");
3889    }
3890    TreePatternNodePtr InVal = InstInputs[OpName];
3891    InstInputs.erase(OpName);   // It occurred, remove from map.
3892
3893    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3894      Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3895      if (!checkOperandClass(Op, InRec))
3896        I.error("Operand $" + OpName + "'s register class disagrees"
3897                 " between the operand and pattern");
3898    }
3899    Operands.push_back(Op.Rec);
3900
3901    // Construct the result for the dest-pattern operand list.
3902    TreePatternNodePtr OpNode = InVal->clone();
3903
3904    // No predicate is useful on the result.
3905    OpNode->clearPredicateCalls();
3906
3907    // Promote the xform function to be an explicit node if set.
3908    if (Record *Xform = OpNode->getTransformFn()) {
3909      OpNode->setTransformFn(nullptr);
3910      std::vector<TreePatternNodePtr> Children;
3911      Children.push_back(OpNode);
3912      OpNode = makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
3913                                                 OpNode->getNumTypes());
3914    }
3915
3916    ResultNodeOperands.push_back(std::move(OpNode));
3917  }
3918
3919  if (!InstInputs.empty())
3920    I.error("Input operand $" + InstInputs.begin()->first +
3921            " occurs in pattern but not in operands list!");
3922
3923  TreePatternNodePtr ResultPattern = makeIntrusiveRefCnt<TreePatternNode>(
3924      I.getRecord(), std::move(ResultNodeOperands),
3925      GetNumNodeResults(I.getRecord(), *this));
3926  // Copy fully inferred output node types to instruction result pattern.
3927  for (unsigned i = 0; i != NumResults; ++i) {
3928    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3929    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3930    ResultPattern->setResultIndex(i, ResultIndices[i]);
3931  }
3932
3933  // FIXME: Assume only the first tree is the pattern. The others are clobber
3934  // nodes.
3935  TreePatternNodePtr Pattern = I.getTree(0);
3936  TreePatternNodePtr SrcPattern;
3937  if (Pattern->getOperator()->getName() == "set") {
3938    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3939  } else{
3940    // Not a set (store or something?)
3941    SrcPattern = Pattern;
3942  }
3943
3944  // Create and insert the instruction.
3945  // FIXME: InstImpResults should not be part of DAGInstruction.
3946  Record *R = I.getRecord();
3947  DAGInsts.try_emplace(R, std::move(Results), std::move(Operands),
3948                       std::move(InstImpResults), SrcPattern, ResultPattern);
3949
3950  LLVM_DEBUG(I.dump());
3951}
3952
3953/// ParseInstructions - Parse all of the instructions, inlining and resolving
3954/// any fragments involved.  This populates the Instructions list with fully
3955/// resolved instructions.
3956void CodeGenDAGPatterns::ParseInstructions() {
3957  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3958
3959  for (Record *Instr : Instrs) {
3960    ListInit *LI = nullptr;
3961
3962    if (isa<ListInit>(Instr->getValueInit("Pattern")))
3963      LI = Instr->getValueAsListInit("Pattern");
3964
3965    // If there is no pattern, only collect minimal information about the
3966    // instruction for its operand list.  We have to assume that there is one
3967    // result, as we have no detailed info. A pattern which references the
3968    // null_frag operator is as-if no pattern were specified. Normally this
3969    // is from a multiclass expansion w/ a SDPatternOperator passed in as
3970    // null_frag.
3971    if (!LI || LI->empty() || hasNullFragReference(LI)) {
3972      std::vector<Record*> Results;
3973      std::vector<Record*> Operands;
3974
3975      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3976
3977      if (InstInfo.Operands.size() != 0) {
3978        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3979          Results.push_back(InstInfo.Operands[j].Rec);
3980
3981        // The rest are inputs.
3982        for (unsigned j = InstInfo.Operands.NumDefs,
3983               e = InstInfo.Operands.size(); j < e; ++j)
3984          Operands.push_back(InstInfo.Operands[j].Rec);
3985      }
3986
3987      // Create and insert the instruction.
3988      Instructions.try_emplace(Instr, std::move(Results), std::move(Operands),
3989                               std::vector<Record *>());
3990      continue;  // no pattern.
3991    }
3992
3993    CodeGenInstruction &CGI = Target.getInstruction(Instr);
3994    parseInstructionPattern(CGI, LI, Instructions);
3995  }
3996
3997  // If we can, convert the instructions to be patterns that are matched!
3998  for (auto &Entry : Instructions) {
3999    Record *Instr = Entry.first;
4000    DAGInstruction &TheInst = Entry.second;
4001    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
4002    TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
4003
4004    if (SrcPattern && ResultPattern) {
4005      TreePattern Pattern(Instr, SrcPattern, true, *this);
4006      TreePattern Result(Instr, ResultPattern, false, *this);
4007      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
4008    }
4009  }
4010}
4011
4012typedef std::pair<TreePatternNode *, unsigned> NameRecord;
4013
4014static void FindNames(TreePatternNode *P,
4015                      std::map<std::string, NameRecord> &Names,
4016                      TreePattern *PatternTop) {
4017  if (!P->getName().empty()) {
4018    NameRecord &Rec = Names[P->getName()];
4019    // If this is the first instance of the name, remember the node.
4020    if (Rec.second++ == 0)
4021      Rec.first = P;
4022    else if (Rec.first->getExtTypes() != P->getExtTypes())
4023      PatternTop->error("repetition of value: $" + P->getName() +
4024                        " where different uses have different types!");
4025  }
4026
4027  if (!P->isLeaf()) {
4028    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
4029      FindNames(P->getChild(i), Names, PatternTop);
4030  }
4031}
4032
4033void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
4034                                           PatternToMatch &&PTM) {
4035  // Do some sanity checking on the pattern we're about to match.
4036  std::string Reason;
4037  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
4038    PrintWarning(Pattern->getRecord()->getLoc(),
4039      Twine("Pattern can never match: ") + Reason);
4040    return;
4041  }
4042
4043  // If the source pattern's root is a complex pattern, that complex pattern
4044  // must specify the nodes it can potentially match.
4045  if (const ComplexPattern *CP =
4046        PTM.getSrcPattern()->getComplexPatternInfo(*this))
4047    if (CP->getRootNodes().empty())
4048      Pattern->error("ComplexPattern at root must specify list of opcodes it"
4049                     " could match");
4050
4051
4052  // Find all of the named values in the input and output, ensure they have the
4053  // same type.
4054  std::map<std::string, NameRecord> SrcNames, DstNames;
4055  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4056  FindNames(PTM.getDstPattern(), DstNames, Pattern);
4057
4058  // Scan all of the named values in the destination pattern, rejecting them if
4059  // they don't exist in the input pattern.
4060  for (const auto &Entry : DstNames) {
4061    if (SrcNames[Entry.first].first == nullptr)
4062      Pattern->error("Pattern has input without matching name in output: $" +
4063                     Entry.first);
4064  }
4065
4066  // Scan all of the named values in the source pattern, rejecting them if the
4067  // name isn't used in the dest, and isn't used to tie two values together.
4068  for (const auto &Entry : SrcNames)
4069    if (DstNames[Entry.first].first == nullptr &&
4070        SrcNames[Entry.first].second == 1)
4071      Pattern->error("Pattern has dead named input: $" + Entry.first);
4072
4073  PatternsToMatch.push_back(std::move(PTM));
4074}
4075
4076void CodeGenDAGPatterns::InferInstructionFlags() {
4077  ArrayRef<const CodeGenInstruction*> Instructions =
4078    Target.getInstructionsByEnumValue();
4079
4080  unsigned Errors = 0;
4081
4082  // Try to infer flags from all patterns in PatternToMatch.  These include
4083  // both the primary instruction patterns (which always come first) and
4084  // patterns defined outside the instruction.
4085  for (const PatternToMatch &PTM : ptms()) {
4086    // We can only infer from single-instruction patterns, otherwise we won't
4087    // know which instruction should get the flags.
4088    SmallVector<Record*, 8> PatInstrs;
4089    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4090    if (PatInstrs.size() != 1)
4091      continue;
4092
4093    // Get the single instruction.
4094    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4095
4096    // Only infer properties from the first pattern. We'll verify the others.
4097    if (InstInfo.InferredFrom)
4098      continue;
4099
4100    InstAnalyzer PatInfo(*this);
4101    PatInfo.Analyze(PTM);
4102    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4103  }
4104
4105  if (Errors)
4106    PrintFatalError("pattern conflicts");
4107
4108  // If requested by the target, guess any undefined properties.
4109  if (Target.guessInstructionProperties()) {
4110    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4111      CodeGenInstruction *InstInfo =
4112        const_cast<CodeGenInstruction *>(Instructions[i]);
4113      if (InstInfo->InferredFrom)
4114        continue;
4115      // The mayLoad and mayStore flags default to false.
4116      // Conservatively assume hasSideEffects if it wasn't explicit.
4117      if (InstInfo->hasSideEffects_Unset)
4118        InstInfo->hasSideEffects = true;
4119    }
4120    return;
4121  }
4122
4123  // Complain about any flags that are still undefined.
4124  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4125    CodeGenInstruction *InstInfo =
4126      const_cast<CodeGenInstruction *>(Instructions[i]);
4127    if (InstInfo->InferredFrom)
4128      continue;
4129    if (InstInfo->hasSideEffects_Unset)
4130      PrintError(InstInfo->TheDef->getLoc(),
4131                 "Can't infer hasSideEffects from patterns");
4132    if (InstInfo->mayStore_Unset)
4133      PrintError(InstInfo->TheDef->getLoc(),
4134                 "Can't infer mayStore from patterns");
4135    if (InstInfo->mayLoad_Unset)
4136      PrintError(InstInfo->TheDef->getLoc(),
4137                 "Can't infer mayLoad from patterns");
4138  }
4139}
4140
4141
4142/// Verify instruction flags against pattern node properties.
4143void CodeGenDAGPatterns::VerifyInstructionFlags() {
4144  unsigned Errors = 0;
4145  for (const PatternToMatch &PTM : ptms()) {
4146    SmallVector<Record*, 8> Instrs;
4147    getInstructionsInTree(PTM.getDstPattern(), Instrs);
4148    if (Instrs.empty())
4149      continue;
4150
4151    // Count the number of instructions with each flag set.
4152    unsigned NumSideEffects = 0;
4153    unsigned NumStores = 0;
4154    unsigned NumLoads = 0;
4155    for (const Record *Instr : Instrs) {
4156      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4157      NumSideEffects += InstInfo.hasSideEffects;
4158      NumStores += InstInfo.mayStore;
4159      NumLoads += InstInfo.mayLoad;
4160    }
4161
4162    // Analyze the source pattern.
4163    InstAnalyzer PatInfo(*this);
4164    PatInfo.Analyze(PTM);
4165
4166    // Collect error messages.
4167    SmallVector<std::string, 4> Msgs;
4168
4169    // Check for missing flags in the output.
4170    // Permit extra flags for now at least.
4171    if (PatInfo.hasSideEffects && !NumSideEffects)
4172      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4173
4174    // Don't verify store flags on instructions with side effects. At least for
4175    // intrinsics, side effects implies mayStore.
4176    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4177      Msgs.push_back("pattern may store, but mayStore isn't set");
4178
4179    // Similarly, mayStore implies mayLoad on intrinsics.
4180    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4181      Msgs.push_back("pattern may load, but mayLoad isn't set");
4182
4183    // Print error messages.
4184    if (Msgs.empty())
4185      continue;
4186    ++Errors;
4187
4188    for (const std::string &Msg : Msgs)
4189      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4190                 (Instrs.size() == 1 ?
4191                  "instruction" : "output instructions"));
4192    // Provide the location of the relevant instruction definitions.
4193    for (const Record *Instr : Instrs) {
4194      if (Instr != PTM.getSrcRecord())
4195        PrintError(Instr->getLoc(), "defined here");
4196      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4197      if (InstInfo.InferredFrom &&
4198          InstInfo.InferredFrom != InstInfo.TheDef &&
4199          InstInfo.InferredFrom != PTM.getSrcRecord())
4200        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4201    }
4202  }
4203  if (Errors)
4204    PrintFatalError("Errors in DAG patterns");
4205}
4206
4207/// Given a pattern result with an unresolved type, see if we can find one
4208/// instruction with an unresolved result type.  Force this result type to an
4209/// arbitrary element if it's possible types to converge results.
4210static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4211  if (N->isLeaf())
4212    return false;
4213
4214  // Analyze children.
4215  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4216    if (ForceArbitraryInstResultType(N->getChild(i), TP))
4217      return true;
4218
4219  if (!N->getOperator()->isSubClassOf("Instruction"))
4220    return false;
4221
4222  // If this type is already concrete or completely unknown we can't do
4223  // anything.
4224  TypeInfer &TI = TP.getInfer();
4225  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4226    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4227      continue;
4228
4229    // Otherwise, force its type to an arbitrary choice.
4230    if (TI.forceArbitrary(N->getExtType(i)))
4231      return true;
4232  }
4233
4234  return false;
4235}
4236
4237// Promote xform function to be an explicit node wherever set.
4238static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4239  if (Record *Xform = N->getTransformFn()) {
4240      N->setTransformFn(nullptr);
4241      std::vector<TreePatternNodePtr> Children;
4242      Children.push_back(PromoteXForms(N));
4243      return makeIntrusiveRefCnt<TreePatternNode>(Xform, std::move(Children),
4244                                               N->getNumTypes());
4245  }
4246
4247  if (!N->isLeaf())
4248    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4249      TreePatternNodePtr Child = N->getChildShared(i);
4250      N->setChild(i, PromoteXForms(Child));
4251    }
4252  return N;
4253}
4254
4255void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4256       TreePattern &Pattern, TreePattern &Result,
4257       const std::vector<Record *> &InstImpResults) {
4258
4259  // Inline pattern fragments and expand multiple alternatives.
4260  Pattern.InlinePatternFragments();
4261  Result.InlinePatternFragments();
4262
4263  if (Result.getNumTrees() != 1)
4264    Result.error("Cannot use multi-alternative fragments in result pattern!");
4265
4266  // Infer types.
4267  bool IterateInference;
4268  bool InferredAllPatternTypes, InferredAllResultTypes;
4269  do {
4270    // Infer as many types as possible.  If we cannot infer all of them, we
4271    // can never do anything with this pattern: report it to the user.
4272    InferredAllPatternTypes =
4273        Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4274
4275    // Infer as many types as possible.  If we cannot infer all of them, we
4276    // can never do anything with this pattern: report it to the user.
4277    InferredAllResultTypes =
4278        Result.InferAllTypes(&Pattern.getNamedNodesMap());
4279
4280    IterateInference = false;
4281
4282    // Apply the type of the result to the source pattern.  This helps us
4283    // resolve cases where the input type is known to be a pointer type (which
4284    // is considered resolved), but the result knows it needs to be 32- or
4285    // 64-bits.  Infer the other way for good measure.
4286    for (const auto &T : Pattern.getTrees())
4287      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4288                                        T->getNumTypes());
4289         i != e; ++i) {
4290        IterateInference |= T->UpdateNodeType(
4291            i, Result.getOnlyTree()->getExtType(i), Result);
4292        IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4293            i, T->getExtType(i), Result);
4294      }
4295
4296    // If our iteration has converged and the input pattern's types are fully
4297    // resolved but the result pattern is not fully resolved, we may have a
4298    // situation where we have two instructions in the result pattern and
4299    // the instructions require a common register class, but don't care about
4300    // what actual MVT is used.  This is actually a bug in our modelling:
4301    // output patterns should have register classes, not MVTs.
4302    //
4303    // In any case, to handle this, we just go through and disambiguate some
4304    // arbitrary types to the result pattern's nodes.
4305    if (!IterateInference && InferredAllPatternTypes &&
4306        !InferredAllResultTypes)
4307      IterateInference =
4308          ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4309  } while (IterateInference);
4310
4311  // Verify that we inferred enough types that we can do something with the
4312  // pattern and result.  If these fire the user has to add type casts.
4313  if (!InferredAllPatternTypes)
4314    Pattern.error("Could not infer all types in pattern!");
4315  if (!InferredAllResultTypes) {
4316    Pattern.dump();
4317    Result.error("Could not infer all types in pattern result!");
4318  }
4319
4320  // Promote xform function to be an explicit node wherever set.
4321  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4322
4323  TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4324  Temp.InferAllTypes();
4325
4326  ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4327  int Complexity = TheDef->getValueAsInt("AddedComplexity");
4328
4329  if (PatternRewriter)
4330    PatternRewriter(&Pattern);
4331
4332  // A pattern may end up with an "impossible" type, i.e. a situation
4333  // where all types have been eliminated for some node in this pattern.
4334  // This could occur for intrinsics that only make sense for a specific
4335  // value type, and use a specific register class. If, for some mode,
4336  // that register class does not accept that type, the type inference
4337  // will lead to a contradiction, which is not an error however, but
4338  // a sign that this pattern will simply never match.
4339  if (Temp.getOnlyTree()->hasPossibleType()) {
4340    for (const auto &T : Pattern.getTrees()) {
4341      if (T->hasPossibleType())
4342        AddPatternToMatch(&Pattern,
4343                          PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4344                                         InstImpResults, Complexity,
4345                                         TheDef->getID()));
4346    }
4347  } else {
4348    // Show a message about a dropped pattern with some info to make it
4349    // easier to identify it in the .td files.
4350    LLVM_DEBUG({
4351      dbgs() << "Dropping: ";
4352      Pattern.dump();
4353      Temp.getOnlyTree()->dump();
4354      dbgs() << "\n";
4355    });
4356  }
4357}
4358
4359void CodeGenDAGPatterns::ParsePatterns() {
4360  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4361
4362  for (Record *CurPattern : Patterns) {
4363    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4364
4365    // If the pattern references the null_frag, there's nothing to do.
4366    if (hasNullFragReference(Tree))
4367      continue;
4368
4369    TreePattern Pattern(CurPattern, Tree, true, *this);
4370
4371    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4372    if (LI->empty()) continue;  // no pattern.
4373
4374    // Parse the instruction.
4375    TreePattern Result(CurPattern, LI, false, *this);
4376
4377    if (Result.getNumTrees() != 1)
4378      Result.error("Cannot handle instructions producing instructions "
4379                   "with temporaries yet!");
4380
4381    // Validate that the input pattern is correct.
4382    std::map<std::string, TreePatternNodePtr> InstInputs;
4383    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4384        InstResults;
4385    std::vector<Record*> InstImpResults;
4386    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4387      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4388                                  InstResults, InstImpResults);
4389
4390    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4391  }
4392}
4393
4394static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4395  for (const TypeSetByHwMode &VTS : N->getExtTypes())
4396    for (const auto &I : VTS)
4397      Modes.insert(I.first);
4398
4399  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4400    collectModes(Modes, N->getChild(i));
4401}
4402
4403void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4404  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4405  if (CGH.getNumModeIds() == 1)
4406    return;
4407
4408  std::vector<PatternToMatch> Copy;
4409  PatternsToMatch.swap(Copy);
4410
4411  auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4412                              StringRef Check) {
4413    TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4414    TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4415    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4416      return;
4417    }
4418
4419    PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4420                                 std::move(NewSrc), std::move(NewDst),
4421                                 P.getDstRegs(), P.getAddedComplexity(),
4422                                 Record::getNewUID(Records), Check);
4423  };
4424
4425  for (PatternToMatch &P : Copy) {
4426    const TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4427    if (P.getSrcPattern()->hasProperTypeByHwMode())
4428      SrcP = P.getSrcPattern();
4429    if (P.getDstPattern()->hasProperTypeByHwMode())
4430      DstP = P.getDstPattern();
4431    if (!SrcP && !DstP) {
4432      PatternsToMatch.push_back(P);
4433      continue;
4434    }
4435
4436    std::set<unsigned> Modes;
4437    if (SrcP)
4438      collectModes(Modes, SrcP);
4439    if (DstP)
4440      collectModes(Modes, DstP);
4441
4442    // The predicate for the default mode needs to be constructed for each
4443    // pattern separately.
4444    // Since not all modes must be present in each pattern, if a mode m is
4445    // absent, then there is no point in constructing a check for m. If such
4446    // a check was created, it would be equivalent to checking the default
4447    // mode, except not all modes' predicates would be a part of the checking
4448    // code. The subsequently generated check for the default mode would then
4449    // have the exact same patterns, but a different predicate code. To avoid
4450    // duplicated patterns with different predicate checks, construct the
4451    // default check as a negation of all predicates that are actually present
4452    // in the source/destination patterns.
4453    SmallString<128> DefaultCheck;
4454
4455    for (unsigned M : Modes) {
4456      if (M == DefaultMode)
4457        continue;
4458
4459      // Fill the map entry for this mode.
4460      const HwMode &HM = CGH.getMode(M);
4461      AppendPattern(P, M, HM.Predicates);
4462
4463      // Add negations of the HM's predicates to the default predicate.
4464      if (!DefaultCheck.empty())
4465        DefaultCheck += " && ";
4466      DefaultCheck += "!(";
4467      DefaultCheck += HM.Predicates;
4468      DefaultCheck += ")";
4469    }
4470
4471    bool HasDefault = Modes.count(DefaultMode);
4472    if (HasDefault)
4473      AppendPattern(P, DefaultMode, DefaultCheck);
4474  }
4475}
4476
4477/// Dependent variable map for CodeGenDAGPattern variant generation
4478typedef StringMap<int> DepVarMap;
4479
4480static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4481  if (N->isLeaf()) {
4482    if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4483      DepMap[N->getName()]++;
4484  } else {
4485    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4486      FindDepVarsOf(N->getChild(i), DepMap);
4487  }
4488}
4489
4490/// Find dependent variables within child patterns
4491static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4492  DepVarMap depcounts;
4493  FindDepVarsOf(N, depcounts);
4494  for (const auto &Pair : depcounts) {
4495    if (Pair.getValue() > 1)
4496      DepVars.insert(Pair.getKey());
4497  }
4498}
4499
4500#ifndef NDEBUG
4501/// Dump the dependent variable set:
4502static void DumpDepVars(MultipleUseVarSet &DepVars) {
4503  if (DepVars.empty()) {
4504    LLVM_DEBUG(errs() << "<empty set>");
4505  } else {
4506    LLVM_DEBUG(errs() << "[ ");
4507    for (const auto &DepVar : DepVars) {
4508      LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4509    }
4510    LLVM_DEBUG(errs() << "]");
4511  }
4512}
4513#endif
4514
4515
4516/// CombineChildVariants - Given a bunch of permutations of each child of the
4517/// 'operator' node, put them together in all possible ways.
4518static void CombineChildVariants(
4519    TreePatternNodePtr Orig,
4520    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4521    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4522    const MultipleUseVarSet &DepVars) {
4523  // Make sure that each operand has at least one variant to choose from.
4524  for (const auto &Variants : ChildVariants)
4525    if (Variants.empty())
4526      return;
4527
4528  // The end result is an all-pairs construction of the resultant pattern.
4529  std::vector<unsigned> Idxs(ChildVariants.size());
4530  bool NotDone;
4531  do {
4532#ifndef NDEBUG
4533    LLVM_DEBUG(if (!Idxs.empty()) {
4534      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4535      for (unsigned Idx : Idxs) {
4536        errs() << Idx << " ";
4537      }
4538      errs() << "]\n";
4539    });
4540#endif
4541    // Create the variant and add it to the output list.
4542    std::vector<TreePatternNodePtr> NewChildren;
4543    NewChildren.reserve(ChildVariants.size());
4544    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4545      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4546    TreePatternNodePtr R = makeIntrusiveRefCnt<TreePatternNode>(
4547        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4548
4549    // Copy over properties.
4550    R->setName(Orig->getName());
4551    R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4552    R->setPredicateCalls(Orig->getPredicateCalls());
4553    R->setGISelFlagsRecord(Orig->getGISelFlagsRecord());
4554    R->setTransformFn(Orig->getTransformFn());
4555    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4556      R->setType(i, Orig->getExtType(i));
4557
4558    // If this pattern cannot match, do not include it as a variant.
4559    std::string ErrString;
4560    // Scan to see if this pattern has already been emitted.  We can get
4561    // duplication due to things like commuting:
4562    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4563    // which are the same pattern.  Ignore the dups.
4564    if (R->canPatternMatch(ErrString, CDP) &&
4565        none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4566          return R->isIsomorphicTo(Variant.get(), DepVars);
4567        }))
4568      OutVariants.push_back(R);
4569
4570    // Increment indices to the next permutation by incrementing the
4571    // indices from last index backward, e.g., generate the sequence
4572    // [0, 0], [0, 1], [1, 0], [1, 1].
4573    int IdxsIdx;
4574    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4575      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4576        Idxs[IdxsIdx] = 0;
4577      else
4578        break;
4579    }
4580    NotDone = (IdxsIdx >= 0);
4581  } while (NotDone);
4582}
4583
4584/// CombineChildVariants - A helper function for binary operators.
4585///
4586static void CombineChildVariants(TreePatternNodePtr Orig,
4587                                 const std::vector<TreePatternNodePtr> &LHS,
4588                                 const std::vector<TreePatternNodePtr> &RHS,
4589                                 std::vector<TreePatternNodePtr> &OutVariants,
4590                                 CodeGenDAGPatterns &CDP,
4591                                 const MultipleUseVarSet &DepVars) {
4592  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4593  ChildVariants.push_back(LHS);
4594  ChildVariants.push_back(RHS);
4595  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4596}
4597
4598static void
4599GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4600                                  std::vector<TreePatternNodePtr> &Children) {
4601  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4602  Record *Operator = N->getOperator();
4603
4604  // Only permit raw nodes.
4605  if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4606      N->getTransformFn()) {
4607    Children.push_back(N);
4608    return;
4609  }
4610
4611  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4612    Children.push_back(N->getChildShared(0));
4613  else
4614    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4615
4616  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4617    Children.push_back(N->getChildShared(1));
4618  else
4619    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4620}
4621
4622/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4623/// the (potentially recursive) pattern by using algebraic laws.
4624///
4625static void GenerateVariantsOf(TreePatternNodePtr N,
4626                               std::vector<TreePatternNodePtr> &OutVariants,
4627                               CodeGenDAGPatterns &CDP,
4628                               const MultipleUseVarSet &DepVars) {
4629  // We cannot permute leaves or ComplexPattern uses.
4630  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4631    OutVariants.push_back(N);
4632    return;
4633  }
4634
4635  // Look up interesting info about the node.
4636  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4637
4638  // If this node is associative, re-associate.
4639  if (NodeInfo.hasProperty(SDNPAssociative)) {
4640    // Re-associate by pulling together all of the linked operators
4641    std::vector<TreePatternNodePtr> MaximalChildren;
4642    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4643
4644    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4645    // permutations.
4646    if (MaximalChildren.size() == 3) {
4647      // Find the variants of all of our maximal children.
4648      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4649      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4650      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4651      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4652
4653      // There are only two ways we can permute the tree:
4654      //   (A op B) op C    and    A op (B op C)
4655      // Within these forms, we can also permute A/B/C.
4656
4657      // Generate legal pair permutations of A/B/C.
4658      std::vector<TreePatternNodePtr> ABVariants;
4659      std::vector<TreePatternNodePtr> BAVariants;
4660      std::vector<TreePatternNodePtr> ACVariants;
4661      std::vector<TreePatternNodePtr> CAVariants;
4662      std::vector<TreePatternNodePtr> BCVariants;
4663      std::vector<TreePatternNodePtr> CBVariants;
4664      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4665      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4666      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4667      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4668      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4669      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4670
4671      // Combine those into the result: (x op x) op x
4672      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4673      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4674      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4675      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4676      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4677      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4678
4679      // Combine those into the result: x op (x op x)
4680      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4681      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4682      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4683      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4684      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4685      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4686      return;
4687    }
4688  }
4689
4690  // Compute permutations of all children.
4691  std::vector<std::vector<TreePatternNodePtr>> ChildVariants(
4692      N->getNumChildren());
4693  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4694    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4695
4696  // Build all permutations based on how the children were formed.
4697  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4698
4699  // If this node is commutative, consider the commuted order.
4700  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4701  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4702    unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4703    assert(N->getNumChildren() >= (2 + Skip) &&
4704           "Commutative but doesn't have 2 children!");
4705    // Don't allow commuting children which are actually register references.
4706    bool NoRegisters = true;
4707    unsigned i = 0 + Skip;
4708    unsigned e = 2 + Skip;
4709    for (; i != e; ++i) {
4710      TreePatternNode *Child = N->getChild(i);
4711      if (Child->isLeaf())
4712        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4713          Record *RR = DI->getDef();
4714          if (RR->isSubClassOf("Register"))
4715            NoRegisters = false;
4716        }
4717    }
4718    // Consider the commuted order.
4719    if (NoRegisters) {
4720      // Swap the first two operands after the intrinsic id, if present.
4721      unsigned i = isCommIntrinsic ? 1 : 0;
4722      std::swap(ChildVariants[i], ChildVariants[i + 1]);
4723      CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4724    }
4725  }
4726}
4727
4728
4729// GenerateVariants - Generate variants.  For example, commutative patterns can
4730// match multiple ways.  Add them to PatternsToMatch as well.
4731void CodeGenDAGPatterns::GenerateVariants() {
4732  LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4733
4734  // Loop over all of the patterns we've collected, checking to see if we can
4735  // generate variants of the instruction, through the exploitation of
4736  // identities.  This permits the target to provide aggressive matching without
4737  // the .td file having to contain tons of variants of instructions.
4738  //
4739  // Note that this loop adds new patterns to the PatternsToMatch list, but we
4740  // intentionally do not reconsider these.  Any variants of added patterns have
4741  // already been added.
4742  //
4743  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4744    MultipleUseVarSet DepVars;
4745    std::vector<TreePatternNodePtr> Variants;
4746    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4747    LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4748    LLVM_DEBUG(DumpDepVars(DepVars));
4749    LLVM_DEBUG(errs() << "\n");
4750    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4751                       *this, DepVars);
4752
4753    assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4754           "HwModes should not have been expanded yet!");
4755
4756    assert(!Variants.empty() && "Must create at least original variant!");
4757    if (Variants.size() == 1) // No additional variants for this pattern.
4758      continue;
4759
4760    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4761               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4762
4763    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4764      TreePatternNodePtr Variant = Variants[v];
4765
4766      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4767                 errs() << "\n");
4768
4769      // Scan to see if an instruction or explicit pattern already matches this.
4770      bool AlreadyExists = false;
4771      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4772        // Skip if the top level predicates do not match.
4773        if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4774                         PatternsToMatch[p].getPredicates()))
4775          continue;
4776        // Check to see if this variant already exists.
4777        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4778                                    DepVars)) {
4779          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4780          AlreadyExists = true;
4781          break;
4782        }
4783      }
4784      // If we already have it, ignore the variant.
4785      if (AlreadyExists) continue;
4786
4787      // Otherwise, add it to the list of patterns we have.
4788      PatternsToMatch.emplace_back(
4789          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4790          Variant, PatternsToMatch[i].getDstPatternShared(),
4791          PatternsToMatch[i].getDstRegs(),
4792          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4793          PatternsToMatch[i].getHwModeFeatures());
4794    }
4795
4796    LLVM_DEBUG(errs() << "\n");
4797  }
4798}
4799