1//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Loop Distribution Pass.  Its main focus is to
10// distribute loops that cannot be vectorized due to dependence cycles.  It
11// tries to isolate the offending dependences into a new loop allowing
12// vectorization of the remaining parts.
13//
14// For dependence analysis, the pass uses the LoopVectorizer's
15// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
16// memory operations, special care is taken to preserve the lexical order of
17// these operations.
18//
19// Similarly to the Vectorizer, the pass also supports loop versioning to
20// run-time disambiguate potentially overlapping arrays.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar/LoopDistribute.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/EquivalenceClasses.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/StringRef.h"
33#include "llvm/ADT/Twine.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Analysis/AssumptionCache.h"
36#include "llvm/Analysis/GlobalsModRef.h"
37#include "llvm/Analysis/LoopAccessAnalysis.h"
38#include "llvm/Analysis/LoopAnalysisManager.h"
39#include "llvm/Analysis/LoopInfo.h"
40#include "llvm/Analysis/OptimizationRemarkEmitter.h"
41#include "llvm/Analysis/ScalarEvolution.h"
42#include "llvm/Analysis/TargetLibraryInfo.h"
43#include "llvm/Analysis/TargetTransformInfo.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DiagnosticInfo.h"
47#include "llvm/IR/Dominators.h"
48#include "llvm/IR/Function.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/PassManager.h"
54#include "llvm/IR/Value.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/CommandLine.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Transforms/Utils/Cloning.h"
61#include "llvm/Transforms/Utils/LoopUtils.h"
62#include "llvm/Transforms/Utils/LoopVersioning.h"
63#include "llvm/Transforms/Utils/ValueMapper.h"
64#include <cassert>
65#include <functional>
66#include <list>
67#include <tuple>
68#include <utility>
69
70using namespace llvm;
71
72#define LDIST_NAME "loop-distribute"
73#define DEBUG_TYPE LDIST_NAME
74
75/// @{
76/// Metadata attribute names
77static const char *const LLVMLoopDistributeFollowupAll =
78    "llvm.loop.distribute.followup_all";
79static const char *const LLVMLoopDistributeFollowupCoincident =
80    "llvm.loop.distribute.followup_coincident";
81static const char *const LLVMLoopDistributeFollowupSequential =
82    "llvm.loop.distribute.followup_sequential";
83static const char *const LLVMLoopDistributeFollowupFallback =
84    "llvm.loop.distribute.followup_fallback";
85/// @}
86
87static cl::opt<bool>
88    LDistVerify("loop-distribute-verify", cl::Hidden,
89                cl::desc("Turn on DominatorTree and LoopInfo verification "
90                         "after Loop Distribution"),
91                cl::init(false));
92
93static cl::opt<bool> DistributeNonIfConvertible(
94    "loop-distribute-non-if-convertible", cl::Hidden,
95    cl::desc("Whether to distribute into a loop that may not be "
96             "if-convertible by the loop vectorizer"),
97    cl::init(false));
98
99static cl::opt<unsigned> DistributeSCEVCheckThreshold(
100    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
101    cl::desc("The maximum number of SCEV checks allowed for Loop "
102             "Distribution"));
103
104static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
105    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
106    cl::Hidden,
107    cl::desc("The maximum number of SCEV checks allowed for Loop "
108             "Distribution for loop marked with #pragma clang loop "
109             "distribute(enable)"));
110
111static cl::opt<bool> EnableLoopDistribute(
112    "enable-loop-distribute", cl::Hidden,
113    cl::desc("Enable the new, experimental LoopDistribution Pass"),
114    cl::init(false));
115
116STATISTIC(NumLoopsDistributed, "Number of loops distributed");
117
118namespace {
119
120/// Maintains the set of instructions of the loop for a partition before
121/// cloning.  After cloning, it hosts the new loop.
122class InstPartition {
123  using InstructionSet = SmallPtrSet<Instruction *, 8>;
124
125public:
126  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
127      : DepCycle(DepCycle), OrigLoop(L) {
128    Set.insert(I);
129  }
130
131  /// Returns whether this partition contains a dependence cycle.
132  bool hasDepCycle() const { return DepCycle; }
133
134  /// Adds an instruction to this partition.
135  void add(Instruction *I) { Set.insert(I); }
136
137  /// Collection accessors.
138  InstructionSet::iterator begin() { return Set.begin(); }
139  InstructionSet::iterator end() { return Set.end(); }
140  InstructionSet::const_iterator begin() const { return Set.begin(); }
141  InstructionSet::const_iterator end() const { return Set.end(); }
142  bool empty() const { return Set.empty(); }
143
144  /// Moves this partition into \p Other.  This partition becomes empty
145  /// after this.
146  void moveTo(InstPartition &Other) {
147    Other.Set.insert(Set.begin(), Set.end());
148    Set.clear();
149    Other.DepCycle |= DepCycle;
150  }
151
152  /// Populates the partition with a transitive closure of all the
153  /// instructions that the seeded instructions dependent on.
154  void populateUsedSet() {
155    // FIXME: We currently don't use control-dependence but simply include all
156    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
157    // up.
158    for (auto *B : OrigLoop->getBlocks())
159      Set.insert(B->getTerminator());
160
161    // Follow the use-def chains to form a transitive closure of all the
162    // instructions that the originally seeded instructions depend on.
163    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
164    while (!Worklist.empty()) {
165      Instruction *I = Worklist.pop_back_val();
166      // Insert instructions from the loop that we depend on.
167      for (Value *V : I->operand_values()) {
168        auto *I = dyn_cast<Instruction>(V);
169        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
170          Worklist.push_back(I);
171      }
172    }
173  }
174
175  /// Clones the original loop.
176  ///
177  /// Updates LoopInfo and DominatorTree using the information that block \p
178  /// LoopDomBB dominates the loop.
179  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
180                               unsigned Index, LoopInfo *LI,
181                               DominatorTree *DT) {
182    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
183                                          VMap, Twine(".ldist") + Twine(Index),
184                                          LI, DT, ClonedLoopBlocks);
185    return ClonedLoop;
186  }
187
188  /// The cloned loop.  If this partition is mapped to the original loop,
189  /// this is null.
190  const Loop *getClonedLoop() const { return ClonedLoop; }
191
192  /// Returns the loop where this partition ends up after distribution.
193  /// If this partition is mapped to the original loop then use the block from
194  /// the loop.
195  Loop *getDistributedLoop() const {
196    return ClonedLoop ? ClonedLoop : OrigLoop;
197  }
198
199  /// The VMap that is populated by cloning and then used in
200  /// remapinstruction to remap the cloned instructions.
201  ValueToValueMapTy &getVMap() { return VMap; }
202
203  /// Remaps the cloned instructions using VMap.
204  void remapInstructions() {
205    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
206  }
207
208  /// Based on the set of instructions selected for this partition,
209  /// removes the unnecessary ones.
210  void removeUnusedInsts() {
211    SmallVector<Instruction *, 8> Unused;
212
213    for (auto *Block : OrigLoop->getBlocks())
214      for (auto &Inst : *Block)
215        if (!Set.count(&Inst)) {
216          Instruction *NewInst = &Inst;
217          if (!VMap.empty())
218            NewInst = cast<Instruction>(VMap[NewInst]);
219
220          assert(!isa<BranchInst>(NewInst) &&
221                 "Branches are marked used early on");
222          Unused.push_back(NewInst);
223        }
224
225    // Delete the instructions backwards, as it has a reduced likelihood of
226    // having to update as many def-use and use-def chains.
227    for (auto *Inst : reverse(Unused)) {
228      if (!Inst->use_empty())
229        Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
230      Inst->eraseFromParent();
231    }
232  }
233
234  void print() const {
235    if (DepCycle)
236      dbgs() << "  (cycle)\n";
237    for (auto *I : Set)
238      // Prefix with the block name.
239      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
240  }
241
242  void printBlocks() const {
243    for (auto *BB : getDistributedLoop()->getBlocks())
244      dbgs() << *BB;
245  }
246
247private:
248  /// Instructions from OrigLoop selected for this partition.
249  InstructionSet Set;
250
251  /// Whether this partition contains a dependence cycle.
252  bool DepCycle;
253
254  /// The original loop.
255  Loop *OrigLoop;
256
257  /// The cloned loop.  If this partition is mapped to the original loop,
258  /// this is null.
259  Loop *ClonedLoop = nullptr;
260
261  /// The blocks of ClonedLoop including the preheader.  If this
262  /// partition is mapped to the original loop, this is empty.
263  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
264
265  /// These gets populated once the set of instructions have been
266  /// finalized. If this partition is mapped to the original loop, these are not
267  /// set.
268  ValueToValueMapTy VMap;
269};
270
271/// Holds the set of Partitions.  It populates them, merges them and then
272/// clones the loops.
273class InstPartitionContainer {
274  using InstToPartitionIdT = DenseMap<Instruction *, int>;
275
276public:
277  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
278      : L(L), LI(LI), DT(DT) {}
279
280  /// Returns the number of partitions.
281  unsigned getSize() const { return PartitionContainer.size(); }
282
283  /// Adds \p Inst into the current partition if that is marked to
284  /// contain cycles.  Otherwise start a new partition for it.
285  void addToCyclicPartition(Instruction *Inst) {
286    // If the current partition is non-cyclic.  Start a new one.
287    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
288      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
289    else
290      PartitionContainer.back().add(Inst);
291  }
292
293  /// Adds \p Inst into a partition that is not marked to contain
294  /// dependence cycles.
295  ///
296  //  Initially we isolate memory instructions into as many partitions as
297  //  possible, then later we may merge them back together.
298  void addToNewNonCyclicPartition(Instruction *Inst) {
299    PartitionContainer.emplace_back(Inst, L);
300  }
301
302  /// Merges adjacent non-cyclic partitions.
303  ///
304  /// The idea is that we currently only want to isolate the non-vectorizable
305  /// partition.  We could later allow more distribution among these partition
306  /// too.
307  void mergeAdjacentNonCyclic() {
308    mergeAdjacentPartitionsIf(
309        [](const InstPartition *P) { return !P->hasDepCycle(); });
310  }
311
312  /// If a partition contains only conditional stores, we won't vectorize
313  /// it.  Try to merge it with a previous cyclic partition.
314  void mergeNonIfConvertible() {
315    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
316      if (Partition->hasDepCycle())
317        return true;
318
319      // Now, check if all stores are conditional in this partition.
320      bool seenStore = false;
321
322      for (auto *Inst : *Partition)
323        if (isa<StoreInst>(Inst)) {
324          seenStore = true;
325          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
326            return false;
327        }
328      return seenStore;
329    });
330  }
331
332  /// Merges the partitions according to various heuristics.
333  void mergeBeforePopulating() {
334    mergeAdjacentNonCyclic();
335    if (!DistributeNonIfConvertible)
336      mergeNonIfConvertible();
337  }
338
339  /// Merges partitions in order to ensure that no loads are duplicated.
340  ///
341  /// We can't duplicate loads because that could potentially reorder them.
342  /// LoopAccessAnalysis provides dependency information with the context that
343  /// the order of memory operation is preserved.
344  ///
345  /// Return if any partitions were merged.
346  bool mergeToAvoidDuplicatedLoads() {
347    using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
348    using ToBeMergedT = EquivalenceClasses<InstPartition *>;
349
350    LoadToPartitionT LoadToPartition;
351    ToBeMergedT ToBeMerged;
352
353    // Step through the partitions and create equivalence between partitions
354    // that contain the same load.  Also put partitions in between them in the
355    // same equivalence class to avoid reordering of memory operations.
356    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
357                                       E = PartitionContainer.end();
358         I != E; ++I) {
359      auto *PartI = &*I;
360
361      // If a load occurs in two partitions PartI and PartJ, merge all
362      // partitions (PartI, PartJ] into PartI.
363      for (Instruction *Inst : *PartI)
364        if (isa<LoadInst>(Inst)) {
365          bool NewElt;
366          LoadToPartitionT::iterator LoadToPart;
367
368          std::tie(LoadToPart, NewElt) =
369              LoadToPartition.insert(std::make_pair(Inst, PartI));
370          if (!NewElt) {
371            LLVM_DEBUG(dbgs()
372                       << "Merging partitions due to this load in multiple "
373                       << "partitions: " << PartI << ", " << LoadToPart->second
374                       << "\n"
375                       << *Inst << "\n");
376
377            auto PartJ = I;
378            do {
379              --PartJ;
380              ToBeMerged.unionSets(PartI, &*PartJ);
381            } while (&*PartJ != LoadToPart->second);
382          }
383        }
384    }
385    if (ToBeMerged.empty())
386      return false;
387
388    // Merge the member of an equivalence class into its class leader.  This
389    // makes the members empty.
390    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
391         I != E; ++I) {
392      if (!I->isLeader())
393        continue;
394
395      auto PartI = I->getData();
396      for (auto *PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
397                                   ToBeMerged.member_end())) {
398        PartJ->moveTo(*PartI);
399      }
400    }
401
402    // Remove the empty partitions.
403    PartitionContainer.remove_if(
404        [](const InstPartition &P) { return P.empty(); });
405
406    return true;
407  }
408
409  /// Sets up the mapping between instructions to partitions.  If the
410  /// instruction is duplicated across multiple partitions, set the entry to -1.
411  void setupPartitionIdOnInstructions() {
412    int PartitionID = 0;
413    for (const auto &Partition : PartitionContainer) {
414      for (Instruction *Inst : Partition) {
415        bool NewElt;
416        InstToPartitionIdT::iterator Iter;
417
418        std::tie(Iter, NewElt) =
419            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
420        if (!NewElt)
421          Iter->second = -1;
422      }
423      ++PartitionID;
424    }
425  }
426
427  /// Populates the partition with everything that the seeding
428  /// instructions require.
429  void populateUsedSet() {
430    for (auto &P : PartitionContainer)
431      P.populateUsedSet();
432  }
433
434  /// This performs the main chunk of the work of cloning the loops for
435  /// the partitions.
436  void cloneLoops() {
437    BasicBlock *OrigPH = L->getLoopPreheader();
438    // At this point the predecessor of the preheader is either the memcheck
439    // block or the top part of the original preheader.
440    BasicBlock *Pred = OrigPH->getSinglePredecessor();
441    assert(Pred && "Preheader does not have a single predecessor");
442    BasicBlock *ExitBlock = L->getExitBlock();
443    assert(ExitBlock && "No single exit block");
444    Loop *NewLoop;
445
446    assert(!PartitionContainer.empty() && "at least two partitions expected");
447    // We're cloning the preheader along with the loop so we already made sure
448    // it was empty.
449    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
450           "preheader not empty");
451
452    // Preserve the original loop ID for use after the transformation.
453    MDNode *OrigLoopID = L->getLoopID();
454
455    // Create a loop for each partition except the last.  Clone the original
456    // loop before PH along with adding a preheader for the cloned loop.  Then
457    // update PH to point to the newly added preheader.
458    BasicBlock *TopPH = OrigPH;
459    unsigned Index = getSize() - 1;
460    for (auto &Part : llvm::drop_begin(llvm::reverse(PartitionContainer))) {
461      NewLoop = Part.cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
462
463      Part.getVMap()[ExitBlock] = TopPH;
464      Part.remapInstructions();
465      setNewLoopID(OrigLoopID, &Part);
466      --Index;
467      TopPH = NewLoop->getLoopPreheader();
468    }
469    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
470
471    // Also set a new loop ID for the last loop.
472    setNewLoopID(OrigLoopID, &PartitionContainer.back());
473
474    // Now go in forward order and update the immediate dominator for the
475    // preheaders with the exiting block of the previous loop.  Dominance
476    // within the loop is updated in cloneLoopWithPreheader.
477    for (auto Curr = PartitionContainer.cbegin(),
478              Next = std::next(PartitionContainer.cbegin()),
479              E = PartitionContainer.cend();
480         Next != E; ++Curr, ++Next)
481      DT->changeImmediateDominator(
482          Next->getDistributedLoop()->getLoopPreheader(),
483          Curr->getDistributedLoop()->getExitingBlock());
484  }
485
486  /// Removes the dead instructions from the cloned loops.
487  void removeUnusedInsts() {
488    for (auto &Partition : PartitionContainer)
489      Partition.removeUnusedInsts();
490  }
491
492  /// For each memory pointer, it computes the partitionId the pointer is
493  /// used in.
494  ///
495  /// This returns an array of int where the I-th entry corresponds to I-th
496  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
497  /// partitions its entry is set to -1.
498  SmallVector<int, 8>
499  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
500    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
501
502    unsigned N = RtPtrCheck->Pointers.size();
503    SmallVector<int, 8> PtrToPartitions(N);
504    for (unsigned I = 0; I < N; ++I) {
505      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
506      auto Instructions =
507          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
508
509      int &Partition = PtrToPartitions[I];
510      // First set it to uninitialized.
511      Partition = -2;
512      for (Instruction *Inst : Instructions) {
513        // Note that this could be -1 if Inst is duplicated across multiple
514        // partitions.
515        int ThisPartition = this->InstToPartitionId[Inst];
516        if (Partition == -2)
517          Partition = ThisPartition;
518        // -1 means belonging to multiple partitions.
519        else if (Partition == -1)
520          break;
521        else if (Partition != (int)ThisPartition)
522          Partition = -1;
523      }
524      assert(Partition != -2 && "Pointer not belonging to any partition");
525    }
526
527    return PtrToPartitions;
528  }
529
530  void print(raw_ostream &OS) const {
531    unsigned Index = 0;
532    for (const auto &P : PartitionContainer) {
533      OS << "Partition " << Index++ << " (" << &P << "):\n";
534      P.print();
535    }
536  }
537
538  void dump() const { print(dbgs()); }
539
540#ifndef NDEBUG
541  friend raw_ostream &operator<<(raw_ostream &OS,
542                                 const InstPartitionContainer &Partitions) {
543    Partitions.print(OS);
544    return OS;
545  }
546#endif
547
548  void printBlocks() const {
549    unsigned Index = 0;
550    for (const auto &P : PartitionContainer) {
551      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
552      P.printBlocks();
553    }
554  }
555
556private:
557  using PartitionContainerT = std::list<InstPartition>;
558
559  /// List of partitions.
560  PartitionContainerT PartitionContainer;
561
562  /// Mapping from Instruction to partition Id.  If the instruction
563  /// belongs to multiple partitions the entry contains -1.
564  InstToPartitionIdT InstToPartitionId;
565
566  Loop *L;
567  LoopInfo *LI;
568  DominatorTree *DT;
569
570  /// The control structure to merge adjacent partitions if both satisfy
571  /// the \p Predicate.
572  template <class UnaryPredicate>
573  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
574    InstPartition *PrevMatch = nullptr;
575    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
576      auto DoesMatch = Predicate(&*I);
577      if (PrevMatch == nullptr && DoesMatch) {
578        PrevMatch = &*I;
579        ++I;
580      } else if (PrevMatch != nullptr && DoesMatch) {
581        I->moveTo(*PrevMatch);
582        I = PartitionContainer.erase(I);
583      } else {
584        PrevMatch = nullptr;
585        ++I;
586      }
587    }
588  }
589
590  /// Assign new LoopIDs for the partition's cloned loop.
591  void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
592    std::optional<MDNode *> PartitionID = makeFollowupLoopID(
593        OrigLoopID,
594        {LLVMLoopDistributeFollowupAll,
595         Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
596                             : LLVMLoopDistributeFollowupCoincident});
597    if (PartitionID) {
598      Loop *NewLoop = Part->getDistributedLoop();
599      NewLoop->setLoopID(*PartitionID);
600    }
601  }
602};
603
604/// For each memory instruction, this class maintains difference of the
605/// number of unsafe dependences that start out from this instruction minus
606/// those that end here.
607///
608/// By traversing the memory instructions in program order and accumulating this
609/// number, we know whether any unsafe dependence crosses over a program point.
610class MemoryInstructionDependences {
611  using Dependence = MemoryDepChecker::Dependence;
612
613public:
614  struct Entry {
615    Instruction *Inst;
616    unsigned NumUnsafeDependencesStartOrEnd = 0;
617
618    Entry(Instruction *Inst) : Inst(Inst) {}
619  };
620
621  using AccessesType = SmallVector<Entry, 8>;
622
623  AccessesType::const_iterator begin() const { return Accesses.begin(); }
624  AccessesType::const_iterator end() const { return Accesses.end(); }
625
626  MemoryInstructionDependences(
627      const SmallVectorImpl<Instruction *> &Instructions,
628      const SmallVectorImpl<Dependence> &Dependences) {
629    Accesses.append(Instructions.begin(), Instructions.end());
630
631    LLVM_DEBUG(dbgs() << "Backward dependences:\n");
632    for (const auto &Dep : Dependences)
633      if (Dep.isPossiblyBackward()) {
634        // Note that the designations source and destination follow the program
635        // order, i.e. source is always first.  (The direction is given by the
636        // DepType.)
637        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
638        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
639
640        LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
641      }
642  }
643
644private:
645  AccessesType Accesses;
646};
647
648/// The actual class performing the per-loop work.
649class LoopDistributeForLoop {
650public:
651  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
652                        ScalarEvolution *SE, LoopAccessInfoManager &LAIs,
653                        OptimizationRemarkEmitter *ORE)
654      : L(L), F(F), LI(LI), DT(DT), SE(SE), LAIs(LAIs), ORE(ORE) {
655    setForced();
656  }
657
658  /// Try to distribute an inner-most loop.
659  bool processLoop() {
660    assert(L->isInnermost() && "Only process inner loops.");
661
662    LLVM_DEBUG(dbgs() << "\nLDist: In \""
663                      << L->getHeader()->getParent()->getName()
664                      << "\" checking " << *L << "\n");
665
666    // Having a single exit block implies there's also one exiting block.
667    if (!L->getExitBlock())
668      return fail("MultipleExitBlocks", "multiple exit blocks");
669    if (!L->isLoopSimplifyForm())
670      return fail("NotLoopSimplifyForm",
671                  "loop is not in loop-simplify form");
672    if (!L->isRotatedForm())
673      return fail("NotBottomTested", "loop is not bottom tested");
674
675    BasicBlock *PH = L->getLoopPreheader();
676
677    LAI = &LAIs.getInfo(*L);
678
679    // Currently, we only distribute to isolate the part of the loop with
680    // dependence cycles to enable partial vectorization.
681    if (LAI->canVectorizeMemory())
682      return fail("MemOpsCanBeVectorized",
683                  "memory operations are safe for vectorization");
684
685    auto *Dependences = LAI->getDepChecker().getDependences();
686    if (!Dependences || Dependences->empty())
687      return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
688
689    InstPartitionContainer Partitions(L, LI, DT);
690
691    // First, go through each memory operation and assign them to consecutive
692    // partitions (the order of partitions follows program order).  Put those
693    // with unsafe dependences into "cyclic" partition otherwise put each store
694    // in its own "non-cyclic" partition (we'll merge these later).
695    //
696    // Note that a memory operation (e.g. Load2 below) at a program point that
697    // has an unsafe dependence (Store3->Load1) spanning over it must be
698    // included in the same cyclic partition as the dependent operations.  This
699    // is to preserve the original program order after distribution.  E.g.:
700    //
701    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
702    //  Load1   -.                     1                       0->1
703    //  Load2    | /Unsafe/            0                       1
704    //  Store3  -'                    -1                       1->0
705    //  Load4                          0                       0
706    //
707    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
708    // we just keep assigning to the same cyclic partition until
709    // NumUnsafeDependencesActive reaches 0.
710    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
711    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
712                                     *Dependences);
713
714    int NumUnsafeDependencesActive = 0;
715    for (const auto &InstDep : MID) {
716      Instruction *I = InstDep.Inst;
717      // We update NumUnsafeDependencesActive post-instruction, catch the
718      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
719      if (NumUnsafeDependencesActive ||
720          InstDep.NumUnsafeDependencesStartOrEnd > 0)
721        Partitions.addToCyclicPartition(I);
722      else
723        Partitions.addToNewNonCyclicPartition(I);
724      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
725      assert(NumUnsafeDependencesActive >= 0 &&
726             "Negative number of dependences active");
727    }
728
729    // Add partitions for values used outside.  These partitions can be out of
730    // order from the original program order.  This is OK because if the
731    // partition uses a load we will merge this partition with the original
732    // partition of the load that we set up in the previous loop (see
733    // mergeToAvoidDuplicatedLoads).
734    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
735    for (auto *Inst : DefsUsedOutside)
736      Partitions.addToNewNonCyclicPartition(Inst);
737
738    LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
739    if (Partitions.getSize() < 2)
740      return fail("CantIsolateUnsafeDeps",
741                  "cannot isolate unsafe dependencies");
742
743    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
744    // should be able to vectorize these together.
745    Partitions.mergeBeforePopulating();
746    LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
747    if (Partitions.getSize() < 2)
748      return fail("CantIsolateUnsafeDeps",
749                  "cannot isolate unsafe dependencies");
750
751    // Now, populate the partitions with non-memory operations.
752    Partitions.populateUsedSet();
753    LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
754
755    // In order to preserve original lexical order for loads, keep them in the
756    // partition that we set up in the MemoryInstructionDependences loop.
757    if (Partitions.mergeToAvoidDuplicatedLoads()) {
758      LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
759                        << Partitions);
760      if (Partitions.getSize() < 2)
761        return fail("CantIsolateUnsafeDeps",
762                    "cannot isolate unsafe dependencies");
763    }
764
765    // Don't distribute the loop if we need too many SCEV run-time checks, or
766    // any if it's illegal.
767    const SCEVPredicate &Pred = LAI->getPSE().getPredicate();
768    if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
769      return fail("RuntimeCheckWithConvergent",
770                  "may not insert runtime check with convergent operation");
771    }
772
773    if (Pred.getComplexity() > (IsForced.value_or(false)
774                                    ? PragmaDistributeSCEVCheckThreshold
775                                    : DistributeSCEVCheckThreshold))
776      return fail("TooManySCEVRuntimeChecks",
777                  "too many SCEV run-time checks needed.\n");
778
779    if (!IsForced.value_or(false) && hasDisableAllTransformsHint(L))
780      return fail("HeuristicDisabled", "distribution heuristic disabled");
781
782    LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
783    // We're done forming the partitions set up the reverse mapping from
784    // instructions to partitions.
785    Partitions.setupPartitionIdOnInstructions();
786
787    // If we need run-time checks, version the loop now.
788    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
789    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
790    const auto &AllChecks = RtPtrChecking->getChecks();
791    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
792                                                  RtPtrChecking);
793
794    if (LAI->hasConvergentOp() && !Checks.empty()) {
795      return fail("RuntimeCheckWithConvergent",
796                  "may not insert runtime check with convergent operation");
797    }
798
799    // To keep things simple have an empty preheader before we version or clone
800    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
801    // rely on PH having a predecessor.)
802    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
803      SplitBlock(PH, PH->getTerminator(), DT, LI);
804
805    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
806      assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");
807
808      MDNode *OrigLoopID = L->getLoopID();
809
810      LLVM_DEBUG(dbgs() << "\nPointers:\n");
811      LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
812      LoopVersioning LVer(*LAI, Checks, L, LI, DT, SE);
813      LVer.versionLoop(DefsUsedOutside);
814      LVer.annotateLoopWithNoAlias();
815
816      // The unversioned loop will not be changed, so we inherit all attributes
817      // from the original loop, but remove the loop distribution metadata to
818      // avoid to distribute it again.
819      MDNode *UnversionedLoopID = *makeFollowupLoopID(
820          OrigLoopID,
821          {LLVMLoopDistributeFollowupAll, LLVMLoopDistributeFollowupFallback},
822          "llvm.loop.distribute.", true);
823      LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
824    }
825
826    // Create identical copies of the original loop for each partition and hook
827    // them up sequentially.
828    Partitions.cloneLoops();
829
830    // Now, we remove the instruction from each loop that don't belong to that
831    // partition.
832    Partitions.removeUnusedInsts();
833    LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
834    LLVM_DEBUG(Partitions.printBlocks());
835
836    if (LDistVerify) {
837      LI->verify(*DT);
838      assert(DT->verify(DominatorTree::VerificationLevel::Fast));
839    }
840
841    ++NumLoopsDistributed;
842    // Report the success.
843    ORE->emit([&]() {
844      return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
845                                L->getHeader())
846             << "distributed loop";
847    });
848    return true;
849  }
850
851  /// Provide diagnostics then \return with false.
852  bool fail(StringRef RemarkName, StringRef Message) {
853    LLVMContext &Ctx = F->getContext();
854    bool Forced = isForced().value_or(false);
855
856    LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");
857
858    // With Rpass-missed report that distribution failed.
859    ORE->emit([&]() {
860      return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
861                                      L->getStartLoc(), L->getHeader())
862             << "loop not distributed: use -Rpass-analysis=loop-distribute for "
863                "more "
864                "info";
865    });
866
867    // With Rpass-analysis report why.  This is on by default if distribution
868    // was requested explicitly.
869    ORE->emit(OptimizationRemarkAnalysis(
870                  Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
871                  RemarkName, L->getStartLoc(), L->getHeader())
872              << "loop not distributed: " << Message);
873
874    // Also issue a warning if distribution was requested explicitly but it
875    // failed.
876    if (Forced)
877      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
878          *F, L->getStartLoc(), "loop not distributed: failed "
879                                "explicitly specified loop distribution"));
880
881    return false;
882  }
883
884  /// Return if distribution forced to be enabled/disabled for the loop.
885  ///
886  /// If the optional has a value, it indicates whether distribution was forced
887  /// to be enabled (true) or disabled (false).  If the optional has no value
888  /// distribution was not forced either way.
889  const std::optional<bool> &isForced() const { return IsForced; }
890
891private:
892  /// Filter out checks between pointers from the same partition.
893  ///
894  /// \p PtrToPartition contains the partition number for pointers.  Partition
895  /// number -1 means that the pointer is used in multiple partitions.  In this
896  /// case we can't safely omit the check.
897  SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks(
898      const SmallVectorImpl<RuntimePointerCheck> &AllChecks,
899      const SmallVectorImpl<int> &PtrToPartition,
900      const RuntimePointerChecking *RtPtrChecking) {
901    SmallVector<RuntimePointerCheck, 4> Checks;
902
903    copy_if(AllChecks, std::back_inserter(Checks),
904            [&](const RuntimePointerCheck &Check) {
905              for (unsigned PtrIdx1 : Check.first->Members)
906                for (unsigned PtrIdx2 : Check.second->Members)
907                  // Only include this check if there is a pair of pointers
908                  // that require checking and the pointers fall into
909                  // separate partitions.
910                  //
911                  // (Note that we already know at this point that the two
912                  // pointer groups need checking but it doesn't follow
913                  // that each pair of pointers within the two groups need
914                  // checking as well.
915                  //
916                  // In other words we don't want to include a check just
917                  // because there is a pair of pointers between the two
918                  // pointer groups that require checks and a different
919                  // pair whose pointers fall into different partitions.)
920                  if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
921                      !RuntimePointerChecking::arePointersInSamePartition(
922                          PtrToPartition, PtrIdx1, PtrIdx2))
923                    return true;
924              return false;
925            });
926
927    return Checks;
928  }
929
930  /// Check whether the loop metadata is forcing distribution to be
931  /// enabled/disabled.
932  void setForced() {
933    std::optional<const MDOperand *> Value =
934        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
935    if (!Value)
936      return;
937
938    const MDOperand *Op = *Value;
939    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
940    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
941  }
942
943  Loop *L;
944  Function *F;
945
946  // Analyses used.
947  LoopInfo *LI;
948  const LoopAccessInfo *LAI = nullptr;
949  DominatorTree *DT;
950  ScalarEvolution *SE;
951  LoopAccessInfoManager &LAIs;
952  OptimizationRemarkEmitter *ORE;
953
954  /// Indicates whether distribution is forced to be enabled/disabled for
955  /// the loop.
956  ///
957  /// If the optional has a value, it indicates whether distribution was forced
958  /// to be enabled (true) or disabled (false).  If the optional has no value
959  /// distribution was not forced either way.
960  std::optional<bool> IsForced;
961};
962
963} // end anonymous namespace
964
965/// Shared implementation between new and old PMs.
966static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
967                    ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
968                    LoopAccessInfoManager &LAIs) {
969  // Build up a worklist of inner-loops to vectorize. This is necessary as the
970  // act of distributing a loop creates new loops and can invalidate iterators
971  // across the loops.
972  SmallVector<Loop *, 8> Worklist;
973
974  for (Loop *TopLevelLoop : *LI)
975    for (Loop *L : depth_first(TopLevelLoop))
976      // We only handle inner-most loops.
977      if (L->isInnermost())
978        Worklist.push_back(L);
979
980  // Now walk the identified inner loops.
981  bool Changed = false;
982  for (Loop *L : Worklist) {
983    LoopDistributeForLoop LDL(L, &F, LI, DT, SE, LAIs, ORE);
984
985    // If distribution was forced for the specific loop to be
986    // enabled/disabled, follow that.  Otherwise use the global flag.
987    if (LDL.isForced().value_or(EnableLoopDistribute))
988      Changed |= LDL.processLoop();
989  }
990
991  // Process each loop nest in the function.
992  return Changed;
993}
994
995PreservedAnalyses LoopDistributePass::run(Function &F,
996                                          FunctionAnalysisManager &AM) {
997  auto &LI = AM.getResult<LoopAnalysis>(F);
998  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
999  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1000  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1001
1002  LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
1003  bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, LAIs);
1004  if (!Changed)
1005    return PreservedAnalyses::all();
1006  PreservedAnalyses PA;
1007  PA.preserve<LoopAnalysis>();
1008  PA.preserve<DominatorTreeAnalysis>();
1009  return PA;
1010}
1011