1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions.  This pass does not modify the CFG.  This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14//    %Y = add i32 %X, 1
15//    %Z = add i32 %Y, 1
16// into:
17//    %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23//    1. If a binary operator has a constant operand, it is moved to the RHS
24//    2. Bitwise operators with constant operands are always grouped so that
25//       shifts are performed first, then or's, then and's, then xor's.
26//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27//    4. All cmp instructions on boolean values are replaced with logical ops
28//    5. add X, X is represented as (X*2) => (X << 1)
29//    6. Multiplies with a power-of-two constant argument are transformed into
30//       shifts.
31//   ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm/ADT/APInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AssumptionCache.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/BlockFrequencyInfo.h"
46#include "llvm/Analysis/CFG.h"
47#include "llvm/Analysis/ConstantFolding.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/InstructionSimplify.h"
50#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51#include "llvm/Analysis/LoopInfo.h"
52#include "llvm/Analysis/MemoryBuiltins.h"
53#include "llvm/Analysis/OptimizationRemarkEmitter.h"
54#include "llvm/Analysis/ProfileSummaryInfo.h"
55#include "llvm/Analysis/TargetFolder.h"
56#include "llvm/Analysis/TargetLibraryInfo.h"
57#include "llvm/Analysis/TargetTransformInfo.h"
58#include "llvm/Analysis/Utils/Local.h"
59#include "llvm/Analysis/ValueTracking.h"
60#include "llvm/Analysis/VectorUtils.h"
61#include "llvm/IR/BasicBlock.h"
62#include "llvm/IR/CFG.h"
63#include "llvm/IR/Constant.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DIBuilder.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/EHPersonalities.h"
71#include "llvm/IR/Function.h"
72#include "llvm/IR/GetElementPtrTypeIterator.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/InstrTypes.h"
75#include "llvm/IR/Instruction.h"
76#include "llvm/IR/Instructions.h"
77#include "llvm/IR/IntrinsicInst.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/Metadata.h"
80#include "llvm/IR/Operator.h"
81#include "llvm/IR/PassManager.h"
82#include "llvm/IR/PatternMatch.h"
83#include "llvm/IR/Type.h"
84#include "llvm/IR/Use.h"
85#include "llvm/IR/User.h"
86#include "llvm/IR/Value.h"
87#include "llvm/IR/ValueHandle.h"
88#include "llvm/InitializePasses.h"
89#include "llvm/Support/Casting.h"
90#include "llvm/Support/CommandLine.h"
91#include "llvm/Support/Compiler.h"
92#include "llvm/Support/Debug.h"
93#include "llvm/Support/DebugCounter.h"
94#include "llvm/Support/ErrorHandling.h"
95#include "llvm/Support/KnownBits.h"
96#include "llvm/Support/raw_ostream.h"
97#include "llvm/Transforms/InstCombine/InstCombine.h"
98#include "llvm/Transforms/Utils/BasicBlockUtils.h"
99#include "llvm/Transforms/Utils/Local.h"
100#include <algorithm>
101#include <cassert>
102#include <cstdint>
103#include <memory>
104#include <optional>
105#include <string>
106#include <utility>
107
108#define DEBUG_TYPE "instcombine"
109#include "llvm/Transforms/Utils/InstructionWorklist.h"
110#include <optional>
111
112using namespace llvm;
113using namespace llvm::PatternMatch;
114
115STATISTIC(NumWorklistIterations,
116          "Number of instruction combining iterations performed");
117STATISTIC(NumOneIteration, "Number of functions with one iteration");
118STATISTIC(NumTwoIterations, "Number of functions with two iterations");
119STATISTIC(NumThreeIterations, "Number of functions with three iterations");
120STATISTIC(NumFourOrMoreIterations,
121          "Number of functions with four or more iterations");
122
123STATISTIC(NumCombined , "Number of insts combined");
124STATISTIC(NumConstProp, "Number of constant folds");
125STATISTIC(NumDeadInst , "Number of dead inst eliminated");
126STATISTIC(NumSunkInst , "Number of instructions sunk");
127STATISTIC(NumExpand,    "Number of expansions");
128STATISTIC(NumFactor   , "Number of factorizations");
129STATISTIC(NumReassoc  , "Number of reassociations");
130DEBUG_COUNTER(VisitCounter, "instcombine-visit",
131              "Controls which instructions are visited");
132
133static cl::opt<bool>
134EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
135                                              cl::init(true));
136
137static cl::opt<unsigned> MaxSinkNumUsers(
138    "instcombine-max-sink-users", cl::init(32),
139    cl::desc("Maximum number of undroppable users for instruction sinking"));
140
141static cl::opt<unsigned>
142MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143             cl::desc("Maximum array size considered when doing a combine"));
144
145// FIXME: Remove this flag when it is no longer necessary to convert
146// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147// increases variable availability at the cost of accuracy. Variables that
148// cannot be promoted by mem2reg or SROA will be described as living in memory
149// for their entire lifetime. However, passes like DSE and instcombine can
150// delete stores to the alloca, leading to misleading and inaccurate debug
151// information. This flag can be removed when those passes are fixed.
152static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153                                               cl::Hidden, cl::init(true));
154
155std::optional<Instruction *>
156InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
157  // Handle target specific intrinsics
158  if (II.getCalledFunction()->isTargetIntrinsic()) {
159    return TTI.instCombineIntrinsic(*this, II);
160  }
161  return std::nullopt;
162}
163
164std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
165    IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
166    bool &KnownBitsComputed) {
167  // Handle target specific intrinsics
168  if (II.getCalledFunction()->isTargetIntrinsic()) {
169    return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
170                                                KnownBitsComputed);
171  }
172  return std::nullopt;
173}
174
175std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
176    IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
177    APInt &PoisonElts2, APInt &PoisonElts3,
178    std::function<void(Instruction *, unsigned, APInt, APInt &)>
179        SimplifyAndSetOp) {
180  // Handle target specific intrinsics
181  if (II.getCalledFunction()->isTargetIntrinsic()) {
182    return TTI.simplifyDemandedVectorEltsIntrinsic(
183        *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
184        SimplifyAndSetOp);
185  }
186  return std::nullopt;
187}
188
189bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
190  return TTI.isValidAddrSpaceCast(FromAS, ToAS);
191}
192
193Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
194  return llvm::emitGEPOffset(&Builder, DL, GEP);
195}
196
197/// Legal integers and common types are considered desirable. This is used to
198/// avoid creating instructions with types that may not be supported well by the
199/// the backend.
200/// NOTE: This treats i8, i16 and i32 specially because they are common
201///       types in frontend languages.
202bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
203  switch (BitWidth) {
204  case 8:
205  case 16:
206  case 32:
207    return true;
208  default:
209    return DL.isLegalInteger(BitWidth);
210  }
211}
212
213/// Return true if it is desirable to convert an integer computation from a
214/// given bit width to a new bit width.
215/// We don't want to convert from a legal or desirable type (like i8) to an
216/// illegal type or from a smaller to a larger illegal type. A width of '1'
217/// is always treated as a desirable type because i1 is a fundamental type in
218/// IR, and there are many specialized optimizations for i1 types.
219/// Common/desirable widths are equally treated as legal to convert to, in
220/// order to open up more combining opportunities.
221bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
222                                        unsigned ToWidth) const {
223  bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
224  bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
225
226  // Convert to desirable widths even if they are not legal types.
227  // Only shrink types, to prevent infinite loops.
228  if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
229    return true;
230
231  // If this is a legal or desiable integer from type, and the result would be
232  // an illegal type, don't do the transformation.
233  if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
234    return false;
235
236  // Otherwise, if both are illegal, do not increase the size of the result. We
237  // do allow things like i160 -> i64, but not i64 -> i160.
238  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
239    return false;
240
241  return true;
242}
243
244/// Return true if it is desirable to convert a computation from 'From' to 'To'.
245/// We don't want to convert from a legal to an illegal type or from a smaller
246/// to a larger illegal type. i1 is always treated as a legal type because it is
247/// a fundamental type in IR, and there are many specialized optimizations for
248/// i1 types.
249bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
250  // TODO: This could be extended to allow vectors. Datalayout changes might be
251  // needed to properly support that.
252  if (!From->isIntegerTy() || !To->isIntegerTy())
253    return false;
254
255  unsigned FromWidth = From->getPrimitiveSizeInBits();
256  unsigned ToWidth = To->getPrimitiveSizeInBits();
257  return shouldChangeType(FromWidth, ToWidth);
258}
259
260// Return true, if No Signed Wrap should be maintained for I.
261// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
262// where both B and C should be ConstantInts, results in a constant that does
263// not overflow. This function only handles the Add and Sub opcodes. For
264// all other opcodes, the function conservatively returns false.
265static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
266  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
267  if (!OBO || !OBO->hasNoSignedWrap())
268    return false;
269
270  // We reason about Add and Sub Only.
271  Instruction::BinaryOps Opcode = I.getOpcode();
272  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
273    return false;
274
275  const APInt *BVal, *CVal;
276  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
277    return false;
278
279  bool Overflow = false;
280  if (Opcode == Instruction::Add)
281    (void)BVal->sadd_ov(*CVal, Overflow);
282  else
283    (void)BVal->ssub_ov(*CVal, Overflow);
284
285  return !Overflow;
286}
287
288static bool hasNoUnsignedWrap(BinaryOperator &I) {
289  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
290  return OBO && OBO->hasNoUnsignedWrap();
291}
292
293static bool hasNoSignedWrap(BinaryOperator &I) {
294  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
295  return OBO && OBO->hasNoSignedWrap();
296}
297
298/// Conservatively clears subclassOptionalData after a reassociation or
299/// commutation. We preserve fast-math flags when applicable as they can be
300/// preserved.
301static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
302  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
303  if (!FPMO) {
304    I.clearSubclassOptionalData();
305    return;
306  }
307
308  FastMathFlags FMF = I.getFastMathFlags();
309  I.clearSubclassOptionalData();
310  I.setFastMathFlags(FMF);
311}
312
313/// Combine constant operands of associative operations either before or after a
314/// cast to eliminate one of the associative operations:
315/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
316/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
317static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
318                                   InstCombinerImpl &IC) {
319  auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
320  if (!Cast || !Cast->hasOneUse())
321    return false;
322
323  // TODO: Enhance logic for other casts and remove this check.
324  auto CastOpcode = Cast->getOpcode();
325  if (CastOpcode != Instruction::ZExt)
326    return false;
327
328  // TODO: Enhance logic for other BinOps and remove this check.
329  if (!BinOp1->isBitwiseLogicOp())
330    return false;
331
332  auto AssocOpcode = BinOp1->getOpcode();
333  auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
334  if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
335    return false;
336
337  Constant *C1, *C2;
338  if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
339      !match(BinOp2->getOperand(1), m_Constant(C2)))
340    return false;
341
342  // TODO: This assumes a zext cast.
343  // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
344  // to the destination type might lose bits.
345
346  // Fold the constants together in the destination type:
347  // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
348  const DataLayout &DL = IC.getDataLayout();
349  Type *DestTy = C1->getType();
350  Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
351  if (!CastC2)
352    return false;
353  Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
354  if (!FoldedC)
355    return false;
356
357  IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
358  IC.replaceOperand(*BinOp1, 1, FoldedC);
359  BinOp1->dropPoisonGeneratingFlags();
360  Cast->dropPoisonGeneratingFlags();
361  return true;
362}
363
364// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
365// inttoptr ( ptrtoint (x) ) --> x
366Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
367  auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
368  if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
369                      DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
370    auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
371    Type *CastTy = IntToPtr->getDestTy();
372    if (PtrToInt &&
373        CastTy->getPointerAddressSpace() ==
374            PtrToInt->getSrcTy()->getPointerAddressSpace() &&
375        DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
376            DL.getTypeSizeInBits(PtrToInt->getDestTy()))
377      return PtrToInt->getOperand(0);
378  }
379  return nullptr;
380}
381
382/// This performs a few simplifications for operators that are associative or
383/// commutative:
384///
385///  Commutative operators:
386///
387///  1. Order operands such that they are listed from right (least complex) to
388///     left (most complex).  This puts constants before unary operators before
389///     binary operators.
390///
391///  Associative operators:
392///
393///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
394///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
395///
396///  Associative and commutative operators:
397///
398///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
399///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
400///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
401///     if C1 and C2 are constants.
402bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
403  Instruction::BinaryOps Opcode = I.getOpcode();
404  bool Changed = false;
405
406  do {
407    // Order operands such that they are listed from right (least complex) to
408    // left (most complex).  This puts constants before unary operators before
409    // binary operators.
410    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
411        getComplexity(I.getOperand(1)))
412      Changed = !I.swapOperands();
413
414    if (I.isCommutative()) {
415      if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
416        replaceOperand(I, 0, Pair->first);
417        replaceOperand(I, 1, Pair->second);
418        Changed = true;
419      }
420    }
421
422    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
423    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
424
425    if (I.isAssociative()) {
426      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
427      if (Op0 && Op0->getOpcode() == Opcode) {
428        Value *A = Op0->getOperand(0);
429        Value *B = Op0->getOperand(1);
430        Value *C = I.getOperand(1);
431
432        // Does "B op C" simplify?
433        if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
434          // It simplifies to V.  Form "A op V".
435          replaceOperand(I, 0, A);
436          replaceOperand(I, 1, V);
437          bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
438          bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
439
440          // Conservatively clear all optional flags since they may not be
441          // preserved by the reassociation. Reset nsw/nuw based on the above
442          // analysis.
443          ClearSubclassDataAfterReassociation(I);
444
445          // Note: this is only valid because SimplifyBinOp doesn't look at
446          // the operands to Op0.
447          if (IsNUW)
448            I.setHasNoUnsignedWrap(true);
449
450          if (IsNSW)
451            I.setHasNoSignedWrap(true);
452
453          Changed = true;
454          ++NumReassoc;
455          continue;
456        }
457      }
458
459      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
460      if (Op1 && Op1->getOpcode() == Opcode) {
461        Value *A = I.getOperand(0);
462        Value *B = Op1->getOperand(0);
463        Value *C = Op1->getOperand(1);
464
465        // Does "A op B" simplify?
466        if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
467          // It simplifies to V.  Form "V op C".
468          replaceOperand(I, 0, V);
469          replaceOperand(I, 1, C);
470          // Conservatively clear the optional flags, since they may not be
471          // preserved by the reassociation.
472          ClearSubclassDataAfterReassociation(I);
473          Changed = true;
474          ++NumReassoc;
475          continue;
476        }
477      }
478    }
479
480    if (I.isAssociative() && I.isCommutative()) {
481      if (simplifyAssocCastAssoc(&I, *this)) {
482        Changed = true;
483        ++NumReassoc;
484        continue;
485      }
486
487      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
488      if (Op0 && Op0->getOpcode() == Opcode) {
489        Value *A = Op0->getOperand(0);
490        Value *B = Op0->getOperand(1);
491        Value *C = I.getOperand(1);
492
493        // Does "C op A" simplify?
494        if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
495          // It simplifies to V.  Form "V op B".
496          replaceOperand(I, 0, V);
497          replaceOperand(I, 1, B);
498          // Conservatively clear the optional flags, since they may not be
499          // preserved by the reassociation.
500          ClearSubclassDataAfterReassociation(I);
501          Changed = true;
502          ++NumReassoc;
503          continue;
504        }
505      }
506
507      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
508      if (Op1 && Op1->getOpcode() == Opcode) {
509        Value *A = I.getOperand(0);
510        Value *B = Op1->getOperand(0);
511        Value *C = Op1->getOperand(1);
512
513        // Does "C op A" simplify?
514        if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
515          // It simplifies to V.  Form "B op V".
516          replaceOperand(I, 0, B);
517          replaceOperand(I, 1, V);
518          // Conservatively clear the optional flags, since they may not be
519          // preserved by the reassociation.
520          ClearSubclassDataAfterReassociation(I);
521          Changed = true;
522          ++NumReassoc;
523          continue;
524        }
525      }
526
527      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
528      // if C1 and C2 are constants.
529      Value *A, *B;
530      Constant *C1, *C2, *CRes;
531      if (Op0 && Op1 &&
532          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
533          match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
534          match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
535          (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
536        bool IsNUW = hasNoUnsignedWrap(I) &&
537           hasNoUnsignedWrap(*Op0) &&
538           hasNoUnsignedWrap(*Op1);
539         BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
540           BinaryOperator::CreateNUW(Opcode, A, B) :
541           BinaryOperator::Create(Opcode, A, B);
542
543         if (isa<FPMathOperator>(NewBO)) {
544           FastMathFlags Flags = I.getFastMathFlags() &
545                                 Op0->getFastMathFlags() &
546                                 Op1->getFastMathFlags();
547           NewBO->setFastMathFlags(Flags);
548        }
549        InsertNewInstWith(NewBO, I.getIterator());
550        NewBO->takeName(Op1);
551        replaceOperand(I, 0, NewBO);
552        replaceOperand(I, 1, CRes);
553        // Conservatively clear the optional flags, since they may not be
554        // preserved by the reassociation.
555        ClearSubclassDataAfterReassociation(I);
556        if (IsNUW)
557          I.setHasNoUnsignedWrap(true);
558
559        Changed = true;
560        continue;
561      }
562    }
563
564    // No further simplifications.
565    return Changed;
566  } while (true);
567}
568
569/// Return whether "X LOp (Y ROp Z)" is always equal to
570/// "(X LOp Y) ROp (X LOp Z)".
571static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
572                                     Instruction::BinaryOps ROp) {
573  // X & (Y | Z) <--> (X & Y) | (X & Z)
574  // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
575  if (LOp == Instruction::And)
576    return ROp == Instruction::Or || ROp == Instruction::Xor;
577
578  // X | (Y & Z) <--> (X | Y) & (X | Z)
579  if (LOp == Instruction::Or)
580    return ROp == Instruction::And;
581
582  // X * (Y + Z) <--> (X * Y) + (X * Z)
583  // X * (Y - Z) <--> (X * Y) - (X * Z)
584  if (LOp == Instruction::Mul)
585    return ROp == Instruction::Add || ROp == Instruction::Sub;
586
587  return false;
588}
589
590/// Return whether "(X LOp Y) ROp Z" is always equal to
591/// "(X ROp Z) LOp (Y ROp Z)".
592static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
593                                     Instruction::BinaryOps ROp) {
594  if (Instruction::isCommutative(ROp))
595    return leftDistributesOverRight(ROp, LOp);
596
597  // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
598  return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
599
600  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
601  // but this requires knowing that the addition does not overflow and other
602  // such subtleties.
603}
604
605/// This function returns identity value for given opcode, which can be used to
606/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
607static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
608  if (isa<Constant>(V))
609    return nullptr;
610
611  return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
612}
613
614/// This function predicates factorization using distributive laws. By default,
615/// it just returns the 'Op' inputs. But for special-cases like
616/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
617/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
618/// allow more factorization opportunities.
619static Instruction::BinaryOps
620getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
621                          Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
622  assert(Op && "Expected a binary operator");
623  LHS = Op->getOperand(0);
624  RHS = Op->getOperand(1);
625  if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
626    Constant *C;
627    if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
628      // X << C --> X * (1 << C)
629      RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
630      return Instruction::Mul;
631    }
632    // TODO: We can add other conversions e.g. shr => div etc.
633  }
634  if (Instruction::isBitwiseLogicOp(TopOpcode)) {
635    if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
636        match(Op, m_LShr(m_NonNegative(), m_Value()))) {
637      // lshr nneg C, X --> ashr nneg C, X
638      return Instruction::AShr;
639    }
640  }
641  return Op->getOpcode();
642}
643
644/// This tries to simplify binary operations by factorizing out common terms
645/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
646static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
647                               InstCombiner::BuilderTy &Builder,
648                               Instruction::BinaryOps InnerOpcode, Value *A,
649                               Value *B, Value *C, Value *D) {
650  assert(A && B && C && D && "All values must be provided");
651
652  Value *V = nullptr;
653  Value *RetVal = nullptr;
654  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
655  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
656
657  // Does "X op' Y" always equal "Y op' X"?
658  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
659
660  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
661  if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
662    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
663    // commutative case, "(A op' B) op (C op' A)"?
664    if (A == C || (InnerCommutative && A == D)) {
665      if (A != C)
666        std::swap(C, D);
667      // Consider forming "A op' (B op D)".
668      // If "B op D" simplifies then it can be formed with no cost.
669      V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
670
671      // If "B op D" doesn't simplify then only go on if one of the existing
672      // operations "A op' B" and "C op' D" will be zapped as no longer used.
673      if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
674        V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
675      if (V)
676        RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
677    }
678  }
679
680  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
681  if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
682    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
683    // commutative case, "(A op' B) op (B op' D)"?
684    if (B == D || (InnerCommutative && B == C)) {
685      if (B != D)
686        std::swap(C, D);
687      // Consider forming "(A op C) op' B".
688      // If "A op C" simplifies then it can be formed with no cost.
689      V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
690
691      // If "A op C" doesn't simplify then only go on if one of the existing
692      // operations "A op' B" and "C op' D" will be zapped as no longer used.
693      if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
694        V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
695      if (V)
696        RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
697    }
698  }
699
700  if (!RetVal)
701    return nullptr;
702
703  ++NumFactor;
704  RetVal->takeName(&I);
705
706  // Try to add no-overflow flags to the final value.
707  if (isa<OverflowingBinaryOperator>(RetVal)) {
708    bool HasNSW = false;
709    bool HasNUW = false;
710    if (isa<OverflowingBinaryOperator>(&I)) {
711      HasNSW = I.hasNoSignedWrap();
712      HasNUW = I.hasNoUnsignedWrap();
713    }
714    if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
715      HasNSW &= LOBO->hasNoSignedWrap();
716      HasNUW &= LOBO->hasNoUnsignedWrap();
717    }
718
719    if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
720      HasNSW &= ROBO->hasNoSignedWrap();
721      HasNUW &= ROBO->hasNoUnsignedWrap();
722    }
723
724    if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
725      // We can propagate 'nsw' if we know that
726      //  %Y = mul nsw i16 %X, C
727      //  %Z = add nsw i16 %Y, %X
728      // =>
729      //  %Z = mul nsw i16 %X, C+1
730      //
731      // iff C+1 isn't INT_MIN
732      const APInt *CInt;
733      if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
734        cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
735
736      // nuw can be propagated with any constant or nuw value.
737      cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
738    }
739  }
740  return RetVal;
741}
742
743// If `I` has one Const operand and the other matches `(ctpop (not x))`,
744// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
745// This is only useful is the new subtract can fold so we only handle the
746// following cases:
747//    1) (add/sub/disjoint_or C, (ctpop (not x))
748//        -> (add/sub/disjoint_or C', (ctpop x))
749//    1) (cmp pred C, (ctpop (not x))
750//        -> (cmp pred C', (ctpop x))
751Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) {
752  unsigned Opc = I->getOpcode();
753  unsigned ConstIdx = 1;
754  switch (Opc) {
755  default:
756    return nullptr;
757    // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
758    // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
759    // is constant.
760  case Instruction::Sub:
761    ConstIdx = 0;
762    break;
763  case Instruction::ICmp:
764    // Signed predicates aren't correct in some edge cases like for i2 types, as
765    // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
766    // comparisons against it are simplfied to unsigned.
767    if (cast<ICmpInst>(I)->isSigned())
768      return nullptr;
769    break;
770  case Instruction::Or:
771    if (!match(I, m_DisjointOr(m_Value(), m_Value())))
772      return nullptr;
773    [[fallthrough]];
774  case Instruction::Add:
775    break;
776  }
777
778  Value *Op;
779  // Find ctpop.
780  if (!match(I->getOperand(1 - ConstIdx),
781             m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
782    return nullptr;
783
784  Constant *C;
785  // Check other operand is ImmConstant.
786  if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
787    return nullptr;
788
789  Type *Ty = Op->getType();
790  Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
791  // Need extra check for icmp. Note if this check is true, it generally means
792  // the icmp will simplify to true/false.
793  if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality() &&
794      !ConstantExpr::getICmp(ICmpInst::ICMP_UGT, C, BitWidthC)->isZeroValue())
795    return nullptr;
796
797  // Check we can invert `(not x)` for free.
798  bool Consumes = false;
799  if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
800    return nullptr;
801  Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
802  assert(NotOp != nullptr &&
803         "Desync between isFreeToInvert and getFreelyInverted");
804
805  Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
806
807  Value *R = nullptr;
808
809  // Do the transformation here to avoid potentially introducing an infinite
810  // loop.
811  switch (Opc) {
812  case Instruction::Sub:
813    R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
814    break;
815  case Instruction::Or:
816  case Instruction::Add:
817    R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
818    break;
819  case Instruction::ICmp:
820    R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
821                           CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
822    break;
823  default:
824    llvm_unreachable("Unhandled Opcode");
825  }
826  assert(R != nullptr);
827  return replaceInstUsesWith(*I, R);
828}
829
830// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
831//   IFF
832//    1) the logic_shifts match
833//    2) either both binops are binops and one is `and` or
834//       BinOp1 is `and`
835//       (logic_shift (inv_logic_shift C1, C), C) == C1 or
836//
837//    -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
838//
839// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
840//   IFF
841//    1) the logic_shifts match
842//    2) BinOp1 == BinOp2 (if BinOp ==  `add`, then also requires `shl`).
843//
844//    -> (BinOp (logic_shift (BinOp X, Y)), Mask)
845//
846// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
847//   IFF
848//   1) Binop1 is bitwise logical operator `and`, `or` or `xor`
849//   2) Binop2 is `not`
850//
851//   -> (arithmetic_shift Binop1((not X), Y), Amt)
852
853Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
854  const DataLayout &DL = I.getModule()->getDataLayout();
855  auto IsValidBinOpc = [](unsigned Opc) {
856    switch (Opc) {
857    default:
858      return false;
859    case Instruction::And:
860    case Instruction::Or:
861    case Instruction::Xor:
862    case Instruction::Add:
863      // Skip Sub as we only match constant masks which will canonicalize to use
864      // add.
865      return true;
866    }
867  };
868
869  // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
870  // constraints.
871  auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
872                                      unsigned ShOpc) {
873    assert(ShOpc != Instruction::AShr);
874    return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
875           ShOpc == Instruction::Shl;
876  };
877
878  auto GetInvShift = [](unsigned ShOpc) {
879    assert(ShOpc != Instruction::AShr);
880    return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
881  };
882
883  auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
884                                 unsigned ShOpc, Constant *CMask,
885                                 Constant *CShift) {
886    // If the BinOp1 is `and` we don't need to check the mask.
887    if (BinOpc1 == Instruction::And)
888      return true;
889
890    // For all other possible transfers we need complete distributable
891    // binop/shift (anything but `add` + `lshr`).
892    if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
893      return false;
894
895    // If BinOp2 is `and`, any mask works (this only really helps for non-splat
896    // vecs, otherwise the mask will be simplified and the following check will
897    // handle it).
898    if (BinOpc2 == Instruction::And)
899      return true;
900
901    // Otherwise, need mask that meets the below requirement.
902    // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
903    Constant *MaskInvShift =
904        ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
905    return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
906           CMask;
907  };
908
909  auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
910    Constant *CMask, *CShift;
911    Value *X, *Y, *ShiftedX, *Mask, *Shift;
912    if (!match(I.getOperand(ShOpnum),
913               m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
914      return nullptr;
915    if (!match(I.getOperand(1 - ShOpnum),
916               m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
917      return nullptr;
918
919    if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
920      return nullptr;
921
922    // Make sure we are matching instruction shifts and not ConstantExpr
923    auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
924    auto *IX = dyn_cast<Instruction>(ShiftedX);
925    if (!IY || !IX)
926      return nullptr;
927
928    // LHS and RHS need same shift opcode
929    unsigned ShOpc = IY->getOpcode();
930    if (ShOpc != IX->getOpcode())
931      return nullptr;
932
933    // Make sure binop is real instruction and not ConstantExpr
934    auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
935    if (!BO2)
936      return nullptr;
937
938    unsigned BinOpc = BO2->getOpcode();
939    // Make sure we have valid binops.
940    if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
941      return nullptr;
942
943    if (ShOpc == Instruction::AShr) {
944      if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
945          BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
946        Value *NotX = Builder.CreateNot(X);
947        Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
948        return BinaryOperator::Create(
949            static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
950      }
951
952      return nullptr;
953    }
954
955    // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
956    // distribute to drop the shift irrelevant of constants.
957    if (BinOpc == I.getOpcode() &&
958        IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
959      Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
960      Value *NewBinOp1 = Builder.CreateBinOp(
961          static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
962      return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
963    }
964
965    // Otherwise we can only distribute by constant shifting the mask, so
966    // ensure we have constants.
967    if (!match(Shift, m_ImmConstant(CShift)))
968      return nullptr;
969    if (!match(Mask, m_ImmConstant(CMask)))
970      return nullptr;
971
972    // Check if we can distribute the binops.
973    if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
974      return nullptr;
975
976    Constant *NewCMask =
977        ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
978    Value *NewBinOp2 = Builder.CreateBinOp(
979        static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
980    Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
981    return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
982                                  NewBinOp1, CShift);
983  };
984
985  if (Instruction *R = MatchBinOp(0))
986    return R;
987  return MatchBinOp(1);
988}
989
990// (Binop (zext C), (select C, T, F))
991//    -> (select C, (binop 1, T), (binop 0, F))
992//
993// (Binop (sext C), (select C, T, F))
994//    -> (select C, (binop -1, T), (binop 0, F))
995//
996// Attempt to simplify binary operations into a select with folded args, when
997// one operand of the binop is a select instruction and the other operand is a
998// zext/sext extension, whose value is the select condition.
999Instruction *
1000InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
1001  // TODO: this simplification may be extended to any speculatable instruction,
1002  // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1003  Instruction::BinaryOps Opc = I.getOpcode();
1004  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1005  Value *A, *CondVal, *TrueVal, *FalseVal;
1006  Value *CastOp;
1007
1008  auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1009    return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1010           A->getType()->getScalarSizeInBits() == 1 &&
1011           match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1012                                    m_Value(FalseVal)));
1013  };
1014
1015  // Make sure one side of the binop is a select instruction, and the other is a
1016  // zero/sign extension operating on a i1.
1017  if (MatchSelectAndCast(LHS, RHS))
1018    CastOp = LHS;
1019  else if (MatchSelectAndCast(RHS, LHS))
1020    CastOp = RHS;
1021  else
1022    return nullptr;
1023
1024  auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1025    bool IsCastOpRHS = (CastOp == RHS);
1026    bool IsZExt = isa<ZExtInst>(CastOp);
1027    Constant *C;
1028
1029    if (IsTrueArm) {
1030      C = Constant::getNullValue(V->getType());
1031    } else if (IsZExt) {
1032      unsigned BitWidth = V->getType()->getScalarSizeInBits();
1033      C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1034    } else {
1035      C = Constant::getAllOnesValue(V->getType());
1036    }
1037
1038    return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1039                       : Builder.CreateBinOp(Opc, C, V);
1040  };
1041
1042  // If the value used in the zext/sext is the select condition, or the negated
1043  // of the select condition, the binop can be simplified.
1044  if (CondVal == A) {
1045    Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1046    return SelectInst::Create(CondVal, NewTrueVal,
1047                              NewFoldedConst(true, FalseVal));
1048  }
1049
1050  if (match(A, m_Not(m_Specific(CondVal)))) {
1051    Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1052    return SelectInst::Create(CondVal, NewTrueVal,
1053                              NewFoldedConst(false, FalseVal));
1054  }
1055
1056  return nullptr;
1057}
1058
1059Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
1060  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1061  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1062  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1063  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1064  Value *A, *B, *C, *D;
1065  Instruction::BinaryOps LHSOpcode, RHSOpcode;
1066
1067  if (Op0)
1068    LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1069  if (Op1)
1070    RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1071
1072  // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
1073  // a common term.
1074  if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1075    if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1076      return V;
1077
1078  // The instruction has the form "(A op' B) op (C)".  Try to factorize common
1079  // term.
1080  if (Op0)
1081    if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1082      if (Value *V =
1083              tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1084        return V;
1085
1086  // The instruction has the form "(B) op (C op' D)".  Try to factorize common
1087  // term.
1088  if (Op1)
1089    if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1090      if (Value *V =
1091              tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1092        return V;
1093
1094  return nullptr;
1095}
1096
1097/// This tries to simplify binary operations which some other binary operation
1098/// distributes over either by factorizing out common terms
1099/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1100/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1101/// Returns the simplified value, or null if it didn't simplify.
1102Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
1103  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1104  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1105  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1106  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1107
1108  // Factorization.
1109  if (Value *R = tryFactorizationFolds(I))
1110    return R;
1111
1112  // Expansion.
1113  if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1114    // The instruction has the form "(A op' B) op C".  See if expanding it out
1115    // to "(A op C) op' (B op C)" results in simplifications.
1116    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1117    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1118
1119    // Disable the use of undef because it's not safe to distribute undef.
1120    auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1121    Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1122    Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1123
1124    // Do "A op C" and "B op C" both simplify?
1125    if (L && R) {
1126      // They do! Return "L op' R".
1127      ++NumExpand;
1128      C = Builder.CreateBinOp(InnerOpcode, L, R);
1129      C->takeName(&I);
1130      return C;
1131    }
1132
1133    // Does "A op C" simplify to the identity value for the inner opcode?
1134    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1135      // They do! Return "B op C".
1136      ++NumExpand;
1137      C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1138      C->takeName(&I);
1139      return C;
1140    }
1141
1142    // Does "B op C" simplify to the identity value for the inner opcode?
1143    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1144      // They do! Return "A op C".
1145      ++NumExpand;
1146      C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1147      C->takeName(&I);
1148      return C;
1149    }
1150  }
1151
1152  if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1153    // The instruction has the form "A op (B op' C)".  See if expanding it out
1154    // to "(A op B) op' (A op C)" results in simplifications.
1155    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1156    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1157
1158    // Disable the use of undef because it's not safe to distribute undef.
1159    auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1160    Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1161    Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1162
1163    // Do "A op B" and "A op C" both simplify?
1164    if (L && R) {
1165      // They do! Return "L op' R".
1166      ++NumExpand;
1167      A = Builder.CreateBinOp(InnerOpcode, L, R);
1168      A->takeName(&I);
1169      return A;
1170    }
1171
1172    // Does "A op B" simplify to the identity value for the inner opcode?
1173    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1174      // They do! Return "A op C".
1175      ++NumExpand;
1176      A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1177      A->takeName(&I);
1178      return A;
1179    }
1180
1181    // Does "A op C" simplify to the identity value for the inner opcode?
1182    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1183      // They do! Return "A op B".
1184      ++NumExpand;
1185      A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1186      A->takeName(&I);
1187      return A;
1188    }
1189  }
1190
1191  return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1192}
1193
1194static std::optional<std::pair<Value *, Value *>>
1195matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
1196  if (LHS->getParent() != RHS->getParent())
1197    return std::nullopt;
1198
1199  if (LHS->getNumIncomingValues() < 2)
1200    return std::nullopt;
1201
1202  if (!equal(LHS->blocks(), RHS->blocks()))
1203    return std::nullopt;
1204
1205  Value *L0 = LHS->getIncomingValue(0);
1206  Value *R0 = RHS->getIncomingValue(0);
1207
1208  for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1209    Value *L1 = LHS->getIncomingValue(I);
1210    Value *R1 = RHS->getIncomingValue(I);
1211
1212    if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1213      continue;
1214
1215    return std::nullopt;
1216  }
1217
1218  return std::optional(std::pair(L0, R0));
1219}
1220
1221std::optional<std::pair<Value *, Value *>>
1222InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1223  Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1224  Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1225  if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1226    return std::nullopt;
1227  switch (LHSInst->getOpcode()) {
1228  case Instruction::PHI:
1229    return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
1230  case Instruction::Select: {
1231    Value *Cond = LHSInst->getOperand(0);
1232    Value *TrueVal = LHSInst->getOperand(1);
1233    Value *FalseVal = LHSInst->getOperand(2);
1234    if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1235        FalseVal == RHSInst->getOperand(1))
1236      return std::pair(TrueVal, FalseVal);
1237    return std::nullopt;
1238  }
1239  case Instruction::Call: {
1240    // Match min(a, b) and max(a, b)
1241    MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1242    MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1243    if (LHSMinMax && RHSMinMax &&
1244        LHSMinMax->getPredicate() ==
1245            ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
1246        ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1247          LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1248         (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1249          LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1250      return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1251    return std::nullopt;
1252  }
1253  default:
1254    return std::nullopt;
1255  }
1256}
1257
1258Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
1259                                                        Value *LHS,
1260                                                        Value *RHS) {
1261  Value *A, *B, *C, *D, *E, *F;
1262  bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1263  bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1264  if (!LHSIsSelect && !RHSIsSelect)
1265    return nullptr;
1266
1267  FastMathFlags FMF;
1268  BuilderTy::FastMathFlagGuard Guard(Builder);
1269  if (isa<FPMathOperator>(&I)) {
1270    FMF = I.getFastMathFlags();
1271    Builder.setFastMathFlags(FMF);
1272  }
1273
1274  Instruction::BinaryOps Opcode = I.getOpcode();
1275  SimplifyQuery Q = SQ.getWithInstruction(&I);
1276
1277  Value *Cond, *True = nullptr, *False = nullptr;
1278
1279  // Special-case for add/negate combination. Replace the zero in the negation
1280  // with the trailing add operand:
1281  // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1282  // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1283  auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1284    // We need an 'add' and exactly 1 arm of the select to have been simplified.
1285    if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1286      return nullptr;
1287
1288    Value *N;
1289    if (True && match(FVal, m_Neg(m_Value(N)))) {
1290      Value *Sub = Builder.CreateSub(Z, N);
1291      return Builder.CreateSelect(Cond, True, Sub, I.getName());
1292    }
1293    if (False && match(TVal, m_Neg(m_Value(N)))) {
1294      Value *Sub = Builder.CreateSub(Z, N);
1295      return Builder.CreateSelect(Cond, Sub, False, I.getName());
1296    }
1297    return nullptr;
1298  };
1299
1300  if (LHSIsSelect && RHSIsSelect && A == D) {
1301    // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1302    Cond = A;
1303    True = simplifyBinOp(Opcode, B, E, FMF, Q);
1304    False = simplifyBinOp(Opcode, C, F, FMF, Q);
1305
1306    if (LHS->hasOneUse() && RHS->hasOneUse()) {
1307      if (False && !True)
1308        True = Builder.CreateBinOp(Opcode, B, E);
1309      else if (True && !False)
1310        False = Builder.CreateBinOp(Opcode, C, F);
1311    }
1312  } else if (LHSIsSelect && LHS->hasOneUse()) {
1313    // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1314    Cond = A;
1315    True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1316    False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1317    if (Value *NewSel = foldAddNegate(B, C, RHS))
1318      return NewSel;
1319  } else if (RHSIsSelect && RHS->hasOneUse()) {
1320    // X op (D ? E : F) -> D ? (X op E) : (X op F)
1321    Cond = D;
1322    True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1323    False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1324    if (Value *NewSel = foldAddNegate(E, F, LHS))
1325      return NewSel;
1326  }
1327
1328  if (!True || !False)
1329    return nullptr;
1330
1331  Value *SI = Builder.CreateSelect(Cond, True, False);
1332  SI->takeName(&I);
1333  return SI;
1334}
1335
1336/// Freely adapt every user of V as-if V was changed to !V.
1337/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1338void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
1339  assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1340  for (User *U : make_early_inc_range(I->users())) {
1341    if (U == IgnoredUser)
1342      continue; // Don't consider this user.
1343    switch (cast<Instruction>(U)->getOpcode()) {
1344    case Instruction::Select: {
1345      auto *SI = cast<SelectInst>(U);
1346      SI->swapValues();
1347      SI->swapProfMetadata();
1348      break;
1349    }
1350    case Instruction::Br:
1351      cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
1352      break;
1353    case Instruction::Xor:
1354      replaceInstUsesWith(cast<Instruction>(*U), I);
1355      // Add to worklist for DCE.
1356      addToWorklist(cast<Instruction>(U));
1357      break;
1358    default:
1359      llvm_unreachable("Got unexpected user - out of sync with "
1360                       "canFreelyInvertAllUsersOf() ?");
1361    }
1362  }
1363}
1364
1365/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1366/// constant zero (which is the 'negate' form).
1367Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1368  Value *NegV;
1369  if (match(V, m_Neg(m_Value(NegV))))
1370    return NegV;
1371
1372  // Constants can be considered to be negated values if they can be folded.
1373  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1374    return ConstantExpr::getNeg(C);
1375
1376  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
1377    if (C->getType()->getElementType()->isIntegerTy())
1378      return ConstantExpr::getNeg(C);
1379
1380  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
1381    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1382      Constant *Elt = CV->getAggregateElement(i);
1383      if (!Elt)
1384        return nullptr;
1385
1386      if (isa<UndefValue>(Elt))
1387        continue;
1388
1389      if (!isa<ConstantInt>(Elt))
1390        return nullptr;
1391    }
1392    return ConstantExpr::getNeg(CV);
1393  }
1394
1395  // Negate integer vector splats.
1396  if (auto *CV = dyn_cast<Constant>(V))
1397    if (CV->getType()->isVectorTy() &&
1398        CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1399      return ConstantExpr::getNeg(CV);
1400
1401  return nullptr;
1402}
1403
1404/// A binop with a constant operand and a sign-extended boolean operand may be
1405/// converted into a select of constants by applying the binary operation to
1406/// the constant with the two possible values of the extended boolean (0 or -1).
1407Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1408  // TODO: Handle non-commutative binop (constant is operand 0).
1409  // TODO: Handle zext.
1410  // TODO: Peek through 'not' of cast.
1411  Value *BO0 = BO.getOperand(0);
1412  Value *BO1 = BO.getOperand(1);
1413  Value *X;
1414  Constant *C;
1415  if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1416      !X->getType()->isIntOrIntVectorTy(1))
1417    return nullptr;
1418
1419  // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1420  Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
1421  Constant *Zero = ConstantInt::getNullValue(BO.getType());
1422  Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1423  Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1424  return SelectInst::Create(X, TVal, FVal);
1425}
1426
1427static Constant *constantFoldOperationIntoSelectOperand(Instruction &I,
1428                                                        SelectInst *SI,
1429                                                        bool IsTrueArm) {
1430  SmallVector<Constant *> ConstOps;
1431  for (Value *Op : I.operands()) {
1432    CmpInst::Predicate Pred;
1433    Constant *C = nullptr;
1434    if (Op == SI) {
1435      C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
1436                                       : SI->getFalseValue());
1437    } else if (match(SI->getCondition(),
1438                     m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
1439               Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
1440               isGuaranteedNotToBeUndefOrPoison(C)) {
1441      // Pass
1442    } else {
1443      C = dyn_cast<Constant>(Op);
1444    }
1445    if (C == nullptr)
1446      return nullptr;
1447
1448    ConstOps.push_back(C);
1449  }
1450
1451  return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
1452}
1453
1454static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
1455                                             Value *NewOp, InstCombiner &IC) {
1456  Instruction *Clone = I.clone();
1457  Clone->replaceUsesOfWith(SI, NewOp);
1458  Clone->dropUBImplyingAttrsAndMetadata();
1459  IC.InsertNewInstBefore(Clone, SI->getIterator());
1460  return Clone;
1461}
1462
1463Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1464                                                bool FoldWithMultiUse) {
1465  // Don't modify shared select instructions unless set FoldWithMultiUse
1466  if (!SI->hasOneUse() && !FoldWithMultiUse)
1467    return nullptr;
1468
1469  Value *TV = SI->getTrueValue();
1470  Value *FV = SI->getFalseValue();
1471  if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1472    return nullptr;
1473
1474  // Bool selects with constant operands can be folded to logical ops.
1475  if (SI->getType()->isIntOrIntVectorTy(1))
1476    return nullptr;
1477
1478  // If it's a bitcast involving vectors, make sure it has the same number of
1479  // elements on both sides.
1480  if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1481    VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1482    VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1483
1484    // Verify that either both or neither are vectors.
1485    if ((SrcTy == nullptr) != (DestTy == nullptr))
1486      return nullptr;
1487
1488    // If vectors, verify that they have the same number of elements.
1489    if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1490      return nullptr;
1491  }
1492
1493  // Test if a FCmpInst instruction is used exclusively by a select as
1494  // part of a minimum or maximum operation. If so, refrain from doing
1495  // any other folding. This helps out other analyses which understand
1496  // non-obfuscated minimum and maximum idioms. And in this case, at
1497  // least one of the comparison operands has at least one user besides
1498  // the compare (the select), which would often largely negate the
1499  // benefit of folding anyway.
1500  if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1501    if (CI->hasOneUse()) {
1502      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1503      if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1504        return nullptr;
1505    }
1506  }
1507
1508  // Make sure that one of the select arms constant folds successfully.
1509  Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
1510  Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
1511  if (!NewTV && !NewFV)
1512    return nullptr;
1513
1514  // Create an instruction for the arm that did not fold.
1515  if (!NewTV)
1516    NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1517  if (!NewFV)
1518    NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1519  return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1520}
1521
1522static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
1523                                         Value *InValue, BasicBlock *InBB,
1524                                         const DataLayout &DL,
1525                                         const SimplifyQuery SQ) {
1526  // NB: It is a precondition of this transform that the operands be
1527  // phi translatable! This is usually trivially satisfied by limiting it
1528  // to constant ops, and for selects we do a more sophisticated check.
1529  SmallVector<Value *> Ops;
1530  for (Value *Op : I.operands()) {
1531    if (Op == PN)
1532      Ops.push_back(InValue);
1533    else
1534      Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1535  }
1536
1537  // Don't consider the simplification successful if we get back a constant
1538  // expression. That's just an instruction in hiding.
1539  // Also reject the case where we simplify back to the phi node. We wouldn't
1540  // be able to remove it in that case.
1541  Value *NewVal = simplifyInstructionWithOperands(
1542      &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1543  if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1544    return NewVal;
1545
1546  // Check if incoming PHI value can be replaced with constant
1547  // based on implied condition.
1548  BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1549  const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1550  if (TerminatorBI && TerminatorBI->isConditional() &&
1551      TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1552    bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1553    std::optional<bool> ImpliedCond =
1554        isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
1555                           Ops[0], Ops[1], DL, LHSIsTrue);
1556    if (ImpliedCond)
1557      return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1558  }
1559
1560  return nullptr;
1561}
1562
1563Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1564  unsigned NumPHIValues = PN->getNumIncomingValues();
1565  if (NumPHIValues == 0)
1566    return nullptr;
1567
1568  // We normally only transform phis with a single use.  However, if a PHI has
1569  // multiple uses and they are all the same operation, we can fold *all* of the
1570  // uses into the PHI.
1571  if (!PN->hasOneUse()) {
1572    // Walk the use list for the instruction, comparing them to I.
1573    for (User *U : PN->users()) {
1574      Instruction *UI = cast<Instruction>(U);
1575      if (UI != &I && !I.isIdenticalTo(UI))
1576        return nullptr;
1577    }
1578    // Otherwise, we can replace *all* users with the new PHI we form.
1579  }
1580
1581  // Check to see whether the instruction can be folded into each phi operand.
1582  // If there is one operand that does not fold, remember the BB it is in.
1583  // If there is more than one or if *it* is a PHI, bail out.
1584  SmallVector<Value *> NewPhiValues;
1585  BasicBlock *NonSimplifiedBB = nullptr;
1586  Value *NonSimplifiedInVal = nullptr;
1587  for (unsigned i = 0; i != NumPHIValues; ++i) {
1588    Value *InVal = PN->getIncomingValue(i);
1589    BasicBlock *InBB = PN->getIncomingBlock(i);
1590
1591    if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1592      NewPhiValues.push_back(NewVal);
1593      continue;
1594    }
1595
1596    if (NonSimplifiedBB) return nullptr;  // More than one non-simplified value.
1597
1598    NonSimplifiedBB = InBB;
1599    NonSimplifiedInVal = InVal;
1600    NewPhiValues.push_back(nullptr);
1601
1602    // If the InVal is an invoke at the end of the pred block, then we can't
1603    // insert a computation after it without breaking the edge.
1604    if (isa<InvokeInst>(InVal))
1605      if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1606        return nullptr;
1607
1608    // If the incoming non-constant value is reachable from the phis block,
1609    // we'll push the operation across a loop backedge. This could result in
1610    // an infinite combine loop, and is generally non-profitable (especially
1611    // if the operation was originally outside the loop).
1612    if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1613                               LI))
1614      return nullptr;
1615  }
1616
1617  // If there is exactly one non-simplified value, we can insert a copy of the
1618  // operation in that block.  However, if this is a critical edge, we would be
1619  // inserting the computation on some other paths (e.g. inside a loop).  Only
1620  // do this if the pred block is unconditionally branching into the phi block.
1621  // Also, make sure that the pred block is not dead code.
1622  if (NonSimplifiedBB != nullptr) {
1623    BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1624    if (!BI || !BI->isUnconditional() ||
1625        !DT.isReachableFromEntry(NonSimplifiedBB))
1626      return nullptr;
1627  }
1628
1629  // Okay, we can do the transformation: create the new PHI node.
1630  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1631  InsertNewInstBefore(NewPN, PN->getIterator());
1632  NewPN->takeName(PN);
1633  NewPN->setDebugLoc(PN->getDebugLoc());
1634
1635  // If we are going to have to insert a new computation, do so right before the
1636  // predecessor's terminator.
1637  Instruction *Clone = nullptr;
1638  if (NonSimplifiedBB) {
1639    Clone = I.clone();
1640    for (Use &U : Clone->operands()) {
1641      if (U == PN)
1642        U = NonSimplifiedInVal;
1643      else
1644        U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1645    }
1646    InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
1647  }
1648
1649  for (unsigned i = 0; i != NumPHIValues; ++i) {
1650    if (NewPhiValues[i])
1651      NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1652    else
1653      NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1654  }
1655
1656  for (User *U : make_early_inc_range(PN->users())) {
1657    Instruction *User = cast<Instruction>(U);
1658    if (User == &I) continue;
1659    replaceInstUsesWith(*User, NewPN);
1660    eraseInstFromFunction(*User);
1661  }
1662
1663  replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
1664                        const_cast<PHINode &>(*NewPN),
1665                        const_cast<PHINode &>(*PN), DT);
1666  return replaceInstUsesWith(I, NewPN);
1667}
1668
1669Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1670  // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1671  //       we are guarding against replicating the binop in >1 predecessor.
1672  //       This could miss matching a phi with 2 constant incoming values.
1673  auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1674  auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1675  if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1676      Phi0->getNumOperands() != Phi1->getNumOperands())
1677    return nullptr;
1678
1679  // TODO: Remove the restriction for binop being in the same block as the phis.
1680  if (BO.getParent() != Phi0->getParent() ||
1681      BO.getParent() != Phi1->getParent())
1682    return nullptr;
1683
1684  // Fold if there is at least one specific constant value in phi0 or phi1's
1685  // incoming values that comes from the same block and this specific constant
1686  // value can be used to do optimization for specific binary operator.
1687  // For example:
1688  // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1689  // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1690  // %add = add i32 %phi0, %phi1
1691  // ==>
1692  // %add = phi i32 [%j, %bb0], [%i, %bb1]
1693  Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
1694                                               /*AllowRHSConstant*/ false);
1695  if (C) {
1696    SmallVector<Value *, 4> NewIncomingValues;
1697    auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
1698      auto &Phi0Use = std::get<0>(T);
1699      auto &Phi1Use = std::get<1>(T);
1700      if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1701        return false;
1702      Value *Phi0UseV = Phi0Use.get();
1703      Value *Phi1UseV = Phi1Use.get();
1704      if (Phi0UseV == C)
1705        NewIncomingValues.push_back(Phi1UseV);
1706      else if (Phi1UseV == C)
1707        NewIncomingValues.push_back(Phi0UseV);
1708      else
1709        return false;
1710      return true;
1711    };
1712
1713    if (all_of(zip(Phi0->operands(), Phi1->operands()),
1714               CanFoldIncomingValuePair)) {
1715      PHINode *NewPhi =
1716          PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
1717      assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
1718             "The number of collected incoming values should equal the number "
1719             "of the original PHINode operands!");
1720      for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
1721        NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
1722      return NewPhi;
1723    }
1724  }
1725
1726  if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1727    return nullptr;
1728
1729  // Match a pair of incoming constants for one of the predecessor blocks.
1730  BasicBlock *ConstBB, *OtherBB;
1731  Constant *C0, *C1;
1732  if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1733    ConstBB = Phi0->getIncomingBlock(0);
1734    OtherBB = Phi0->getIncomingBlock(1);
1735  } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1736    ConstBB = Phi0->getIncomingBlock(1);
1737    OtherBB = Phi0->getIncomingBlock(0);
1738  } else {
1739    return nullptr;
1740  }
1741  if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1742    return nullptr;
1743
1744  // The block that we are hoisting to must reach here unconditionally.
1745  // Otherwise, we could be speculatively executing an expensive or
1746  // non-speculative op.
1747  auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1748  if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1749      !DT.isReachableFromEntry(OtherBB))
1750    return nullptr;
1751
1752  // TODO: This check could be tightened to only apply to binops (div/rem) that
1753  //       are not safe to speculatively execute. But that could allow hoisting
1754  //       potentially expensive instructions (fdiv for example).
1755  for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1756    if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1757      return nullptr;
1758
1759  // Fold constants for the predecessor block with constant incoming values.
1760  Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1761  if (!NewC)
1762    return nullptr;
1763
1764  // Make a new binop in the predecessor block with the non-constant incoming
1765  // values.
1766  Builder.SetInsertPoint(PredBlockBranch);
1767  Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1768                                     Phi0->getIncomingValueForBlock(OtherBB),
1769                                     Phi1->getIncomingValueForBlock(OtherBB));
1770  if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1771    NotFoldedNewBO->copyIRFlags(&BO);
1772
1773  // Replace the binop with a phi of the new values. The old phis are dead.
1774  PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1775  NewPhi->addIncoming(NewBO, OtherBB);
1776  NewPhi->addIncoming(NewC, ConstBB);
1777  return NewPhi;
1778}
1779
1780Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1781  if (!isa<Constant>(I.getOperand(1)))
1782    return nullptr;
1783
1784  if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1785    if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1786      return NewSel;
1787  } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1788    if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1789      return NewPhi;
1790  }
1791  return nullptr;
1792}
1793
1794static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1795  // If this GEP has only 0 indices, it is the same pointer as
1796  // Src. If Src is not a trivial GEP too, don't combine
1797  // the indices.
1798  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1799      !Src.hasOneUse())
1800    return false;
1801  return true;
1802}
1803
1804Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1805  if (!isa<VectorType>(Inst.getType()))
1806    return nullptr;
1807
1808  BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1809  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1810  assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1811         cast<VectorType>(Inst.getType())->getElementCount());
1812  assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1813         cast<VectorType>(Inst.getType())->getElementCount());
1814
1815  // If both operands of the binop are vector concatenations, then perform the
1816  // narrow binop on each pair of the source operands followed by concatenation
1817  // of the results.
1818  Value *L0, *L1, *R0, *R1;
1819  ArrayRef<int> Mask;
1820  if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1821      match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1822      LHS->hasOneUse() && RHS->hasOneUse() &&
1823      cast<ShuffleVectorInst>(LHS)->isConcat() &&
1824      cast<ShuffleVectorInst>(RHS)->isConcat()) {
1825    // This transform does not have the speculative execution constraint as
1826    // below because the shuffle is a concatenation. The new binops are
1827    // operating on exactly the same elements as the existing binop.
1828    // TODO: We could ease the mask requirement to allow different undef lanes,
1829    //       but that requires an analysis of the binop-with-undef output value.
1830    Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1831    if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1832      BO->copyIRFlags(&Inst);
1833    Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1834    if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1835      BO->copyIRFlags(&Inst);
1836    return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1837  }
1838
1839  auto createBinOpReverse = [&](Value *X, Value *Y) {
1840    Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
1841    if (auto *BO = dyn_cast<BinaryOperator>(V))
1842      BO->copyIRFlags(&Inst);
1843    Module *M = Inst.getModule();
1844    Function *F = Intrinsic::getDeclaration(
1845        M, Intrinsic::experimental_vector_reverse, V->getType());
1846    return CallInst::Create(F, V);
1847  };
1848
1849  // NOTE: Reverse shuffles don't require the speculative execution protection
1850  // below because they don't affect which lanes take part in the computation.
1851
1852  Value *V1, *V2;
1853  if (match(LHS, m_VecReverse(m_Value(V1)))) {
1854    // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
1855    if (match(RHS, m_VecReverse(m_Value(V2))) &&
1856        (LHS->hasOneUse() || RHS->hasOneUse() ||
1857         (LHS == RHS && LHS->hasNUses(2))))
1858      return createBinOpReverse(V1, V2);
1859
1860    // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
1861    if (LHS->hasOneUse() && isSplatValue(RHS))
1862      return createBinOpReverse(V1, RHS);
1863  }
1864  // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
1865  else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
1866    return createBinOpReverse(LHS, V2);
1867
1868  // It may not be safe to reorder shuffles and things like div, urem, etc.
1869  // because we may trap when executing those ops on unknown vector elements.
1870  // See PR20059.
1871  if (!isSafeToSpeculativelyExecute(&Inst))
1872    return nullptr;
1873
1874  auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1875    Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1876    if (auto *BO = dyn_cast<BinaryOperator>(XY))
1877      BO->copyIRFlags(&Inst);
1878    return new ShuffleVectorInst(XY, M);
1879  };
1880
1881  // If both arguments of the binary operation are shuffles that use the same
1882  // mask and shuffle within a single vector, move the shuffle after the binop.
1883  if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
1884      match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
1885      V1->getType() == V2->getType() &&
1886      (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1887    // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1888    return createBinOpShuffle(V1, V2, Mask);
1889  }
1890
1891  // If both arguments of a commutative binop are select-shuffles that use the
1892  // same mask with commuted operands, the shuffles are unnecessary.
1893  if (Inst.isCommutative() &&
1894      match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1895      match(RHS,
1896            m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1897    auto *LShuf = cast<ShuffleVectorInst>(LHS);
1898    auto *RShuf = cast<ShuffleVectorInst>(RHS);
1899    // TODO: Allow shuffles that contain undefs in the mask?
1900    //       That is legal, but it reduces undef knowledge.
1901    // TODO: Allow arbitrary shuffles by shuffling after binop?
1902    //       That might be legal, but we have to deal with poison.
1903    if (LShuf->isSelect() &&
1904        !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
1905        RShuf->isSelect() &&
1906        !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
1907      // Example:
1908      // LHS = shuffle V1, V2, <0, 5, 6, 3>
1909      // RHS = shuffle V2, V1, <0, 5, 6, 3>
1910      // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1911      Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1912      NewBO->copyIRFlags(&Inst);
1913      return NewBO;
1914    }
1915  }
1916
1917  // If one argument is a shuffle within one vector and the other is a constant,
1918  // try moving the shuffle after the binary operation. This canonicalization
1919  // intends to move shuffles closer to other shuffles and binops closer to
1920  // other binops, so they can be folded. It may also enable demanded elements
1921  // transforms.
1922  Constant *C;
1923  auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1924  if (InstVTy &&
1925      match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
1926                                                m_Mask(Mask))),
1927                             m_ImmConstant(C))) &&
1928      cast<FixedVectorType>(V1->getType())->getNumElements() <=
1929          InstVTy->getNumElements()) {
1930    assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1931           "Shuffle should not change scalar type");
1932
1933    // Find constant NewC that has property:
1934    //   shuffle(NewC, ShMask) = C
1935    // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1936    // reorder is not possible. A 1-to-1 mapping is not required. Example:
1937    // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1938    bool ConstOp1 = isa<Constant>(RHS);
1939    ArrayRef<int> ShMask = Mask;
1940    unsigned SrcVecNumElts =
1941        cast<FixedVectorType>(V1->getType())->getNumElements();
1942    PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
1943    SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
1944    bool MayChange = true;
1945    unsigned NumElts = InstVTy->getNumElements();
1946    for (unsigned I = 0; I < NumElts; ++I) {
1947      Constant *CElt = C->getAggregateElement(I);
1948      if (ShMask[I] >= 0) {
1949        assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1950        Constant *NewCElt = NewVecC[ShMask[I]];
1951        // Bail out if:
1952        // 1. The constant vector contains a constant expression.
1953        // 2. The shuffle needs an element of the constant vector that can't
1954        //    be mapped to a new constant vector.
1955        // 3. This is a widening shuffle that copies elements of V1 into the
1956        //    extended elements (extending with poison is allowed).
1957        if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
1958            I >= SrcVecNumElts) {
1959          MayChange = false;
1960          break;
1961        }
1962        NewVecC[ShMask[I]] = CElt;
1963      }
1964      // If this is a widening shuffle, we must be able to extend with poison
1965      // elements. If the original binop does not produce a poison in the high
1966      // lanes, then this transform is not safe.
1967      // Similarly for poison lanes due to the shuffle mask, we can only
1968      // transform binops that preserve poison.
1969      // TODO: We could shuffle those non-poison constant values into the
1970      //       result by using a constant vector (rather than an poison vector)
1971      //       as operand 1 of the new binop, but that might be too aggressive
1972      //       for target-independent shuffle creation.
1973      if (I >= SrcVecNumElts || ShMask[I] < 0) {
1974        Constant *MaybePoison =
1975            ConstOp1
1976                ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
1977                : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
1978        if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
1979          MayChange = false;
1980          break;
1981        }
1982      }
1983    }
1984    if (MayChange) {
1985      Constant *NewC = ConstantVector::get(NewVecC);
1986      // It may not be safe to execute a binop on a vector with poison elements
1987      // because the entire instruction can be folded to undef or create poison
1988      // that did not exist in the original code.
1989      // TODO: The shift case should not be necessary.
1990      if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1991        NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1992
1993      // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1994      // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1995      Value *NewLHS = ConstOp1 ? V1 : NewC;
1996      Value *NewRHS = ConstOp1 ? NewC : V1;
1997      return createBinOpShuffle(NewLHS, NewRHS, Mask);
1998    }
1999  }
2000
2001  // Try to reassociate to sink a splat shuffle after a binary operation.
2002  if (Inst.isAssociative() && Inst.isCommutative()) {
2003    // Canonicalize shuffle operand as LHS.
2004    if (isa<ShuffleVectorInst>(RHS))
2005      std::swap(LHS, RHS);
2006
2007    Value *X;
2008    ArrayRef<int> MaskC;
2009    int SplatIndex;
2010    Value *Y, *OtherOp;
2011    if (!match(LHS,
2012               m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2013        !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
2014        X->getType() != Inst.getType() ||
2015        !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2016      return nullptr;
2017
2018    // FIXME: This may not be safe if the analysis allows undef elements. By
2019    //        moving 'Y' before the splat shuffle, we are implicitly assuming
2020    //        that it is not undef/poison at the splat index.
2021    if (isSplatValue(OtherOp, SplatIndex)) {
2022      std::swap(Y, OtherOp);
2023    } else if (!isSplatValue(Y, SplatIndex)) {
2024      return nullptr;
2025    }
2026
2027    // X and Y are splatted values, so perform the binary operation on those
2028    // values followed by a splat followed by the 2nd binary operation:
2029    // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2030    Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2031    SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2032    Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2033    Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2034
2035    // Intersect FMF on both new binops. Other (poison-generating) flags are
2036    // dropped to be safe.
2037    if (isa<FPMathOperator>(R)) {
2038      R->copyFastMathFlags(&Inst);
2039      R->andIRFlags(RHS);
2040    }
2041    if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2042      NewInstBO->copyIRFlags(R);
2043    return R;
2044  }
2045
2046  return nullptr;
2047}
2048
2049/// Try to narrow the width of a binop if at least 1 operand is an extend of
2050/// of a value. This requires a potentially expensive known bits check to make
2051/// sure the narrow op does not overflow.
2052Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2053  // We need at least one extended operand.
2054  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2055
2056  // If this is a sub, we swap the operands since we always want an extension
2057  // on the RHS. The LHS can be an extension or a constant.
2058  if (BO.getOpcode() == Instruction::Sub)
2059    std::swap(Op0, Op1);
2060
2061  Value *X;
2062  bool IsSext = match(Op0, m_SExt(m_Value(X)));
2063  if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2064    return nullptr;
2065
2066  // If both operands are the same extension from the same source type and we
2067  // can eliminate at least one (hasOneUse), this might work.
2068  CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2069  Value *Y;
2070  if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2071        cast<Operator>(Op1)->getOpcode() == CastOpc &&
2072        (Op0->hasOneUse() || Op1->hasOneUse()))) {
2073    // If that did not match, see if we have a suitable constant operand.
2074    // Truncating and extending must produce the same constant.
2075    Constant *WideC;
2076    if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2077      return nullptr;
2078    Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
2079    if (!NarrowC)
2080      return nullptr;
2081    Y = NarrowC;
2082  }
2083
2084  // Swap back now that we found our operands.
2085  if (BO.getOpcode() == Instruction::Sub)
2086    std::swap(X, Y);
2087
2088  // Both operands have narrow versions. Last step: the math must not overflow
2089  // in the narrow width.
2090  if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2091    return nullptr;
2092
2093  // bo (ext X), (ext Y) --> ext (bo X, Y)
2094  // bo (ext X), C       --> ext (bo X, C')
2095  Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2096  if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2097    if (IsSext)
2098      NewBinOp->setHasNoSignedWrap();
2099    else
2100      NewBinOp->setHasNoUnsignedWrap();
2101  }
2102  return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2103}
2104
2105static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
2106  // At least one GEP must be inbounds.
2107  if (!GEP1.isInBounds() && !GEP2.isInBounds())
2108    return false;
2109
2110  return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
2111         (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
2112}
2113
2114/// Thread a GEP operation with constant indices through the constant true/false
2115/// arms of a select.
2116static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
2117                                  InstCombiner::BuilderTy &Builder) {
2118  if (!GEP.hasAllConstantIndices())
2119    return nullptr;
2120
2121  Instruction *Sel;
2122  Value *Cond;
2123  Constant *TrueC, *FalseC;
2124  if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2125      !match(Sel,
2126             m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2127    return nullptr;
2128
2129  // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2130  // Propagate 'inbounds' and metadata from existing instructions.
2131  // Note: using IRBuilder to create the constants for efficiency.
2132  SmallVector<Value *, 4> IndexC(GEP.indices());
2133  bool IsInBounds = GEP.isInBounds();
2134  Type *Ty = GEP.getSourceElementType();
2135  Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
2136  Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
2137  return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2138}
2139
2140Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
2141                                             GEPOperator *Src) {
2142  // Combine Indices - If the source pointer to this getelementptr instruction
2143  // is a getelementptr instruction with matching element type, combine the
2144  // indices of the two getelementptr instructions into a single instruction.
2145  if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2146    return nullptr;
2147
2148  // For constant GEPs, use a more general offset-based folding approach.
2149  Type *PtrTy = Src->getType()->getScalarType();
2150  if (GEP.hasAllConstantIndices() &&
2151      (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2152    // Split Src into a variable part and a constant suffix.
2153    gep_type_iterator GTI = gep_type_begin(*Src);
2154    Type *BaseType = GTI.getIndexedType();
2155    bool IsFirstType = true;
2156    unsigned NumVarIndices = 0;
2157    for (auto Pair : enumerate(Src->indices())) {
2158      if (!isa<ConstantInt>(Pair.value())) {
2159        BaseType = GTI.getIndexedType();
2160        IsFirstType = false;
2161        NumVarIndices = Pair.index() + 1;
2162      }
2163      ++GTI;
2164    }
2165
2166    // Determine the offset for the constant suffix of Src.
2167    APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2168    if (NumVarIndices != Src->getNumIndices()) {
2169      // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2170      if (BaseType->isScalableTy())
2171        return nullptr;
2172
2173      SmallVector<Value *> ConstantIndices;
2174      if (!IsFirstType)
2175        ConstantIndices.push_back(
2176            Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2177      append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2178      Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2179    }
2180
2181    // Add the offset for GEP (which is fully constant).
2182    if (!GEP.accumulateConstantOffset(DL, Offset))
2183      return nullptr;
2184
2185    APInt OffsetOld = Offset;
2186    // Convert the total offset back into indices.
2187    SmallVector<APInt> ConstIndices =
2188        DL.getGEPIndicesForOffset(BaseType, Offset);
2189    if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2190      // If both GEP are constant-indexed, and cannot be merged in either way,
2191      // convert them to a GEP of i8.
2192      if (Src->hasAllConstantIndices())
2193        return replaceInstUsesWith(
2194            GEP, Builder.CreateGEP(
2195                     Builder.getInt8Ty(), Src->getOperand(0),
2196                     Builder.getInt(OffsetOld), "",
2197                     isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2198      return nullptr;
2199    }
2200
2201    bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2202    SmallVector<Value *> Indices;
2203    append_range(Indices, drop_end(Src->indices(),
2204                                   Src->getNumIndices() - NumVarIndices));
2205    for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2206      Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2207      // Even if the total offset is inbounds, we may end up representing it
2208      // by first performing a larger negative offset, and then a smaller
2209      // positive one. The large negative offset might go out of bounds. Only
2210      // preserve inbounds if all signs are the same.
2211      IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2212    }
2213
2214    return replaceInstUsesWith(
2215        GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2216                               Indices, "", IsInBounds));
2217  }
2218
2219  if (Src->getResultElementType() != GEP.getSourceElementType())
2220    return nullptr;
2221
2222  SmallVector<Value*, 8> Indices;
2223
2224  // Find out whether the last index in the source GEP is a sequential idx.
2225  bool EndsWithSequential = false;
2226  for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2227       I != E; ++I)
2228    EndsWithSequential = I.isSequential();
2229
2230  // Can we combine the two pointer arithmetics offsets?
2231  if (EndsWithSequential) {
2232    // Replace: gep (gep %P, long B), long A, ...
2233    // With:    T = long A+B; gep %P, T, ...
2234    Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2235    Value *GO1 = GEP.getOperand(1);
2236
2237    // If they aren't the same type, then the input hasn't been processed
2238    // by the loop above yet (which canonicalizes sequential index types to
2239    // intptr_t).  Just avoid transforming this until the input has been
2240    // normalized.
2241    if (SO1->getType() != GO1->getType())
2242      return nullptr;
2243
2244    Value *Sum =
2245        simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2246    // Only do the combine when we are sure the cost after the
2247    // merge is never more than that before the merge.
2248    if (Sum == nullptr)
2249      return nullptr;
2250
2251    // Update the GEP in place if possible.
2252    if (Src->getNumOperands() == 2) {
2253      GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2254      replaceOperand(GEP, 0, Src->getOperand(0));
2255      replaceOperand(GEP, 1, Sum);
2256      return &GEP;
2257    }
2258    Indices.append(Src->op_begin()+1, Src->op_end()-1);
2259    Indices.push_back(Sum);
2260    Indices.append(GEP.op_begin()+2, GEP.op_end());
2261  } else if (isa<Constant>(*GEP.idx_begin()) &&
2262             cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2263             Src->getNumOperands() != 1) {
2264    // Otherwise we can do the fold if the first index of the GEP is a zero
2265    Indices.append(Src->op_begin()+1, Src->op_end());
2266    Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2267  }
2268
2269  if (!Indices.empty())
2270    return replaceInstUsesWith(
2271        GEP, Builder.CreateGEP(
2272                 Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2273                 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2274
2275  return nullptr;
2276}
2277
2278Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
2279                                           BuilderTy *Builder,
2280                                           bool &DoesConsume, unsigned Depth) {
2281  static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2282  // ~(~(X)) -> X.
2283  Value *A, *B;
2284  if (match(V, m_Not(m_Value(A)))) {
2285    DoesConsume = true;
2286    return A;
2287  }
2288
2289  Constant *C;
2290  // Constants can be considered to be not'ed values.
2291  if (match(V, m_ImmConstant(C)))
2292    return ConstantExpr::getNot(C);
2293
2294  if (Depth++ >= MaxAnalysisRecursionDepth)
2295    return nullptr;
2296
2297  // The rest of the cases require that we invert all uses so don't bother
2298  // doing the analysis if we know we can't use the result.
2299  if (!WillInvertAllUses)
2300    return nullptr;
2301
2302  // Compares can be inverted if all of their uses are being modified to use
2303  // the ~V.
2304  if (auto *I = dyn_cast<CmpInst>(V)) {
2305    if (Builder != nullptr)
2306      return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2307                                I->getOperand(1));
2308    return NonNull;
2309  }
2310
2311  // If `V` is of the form `A + B` then `-1 - V` can be folded into
2312  // `(-1 - B) - A` if we are willing to invert all of the uses.
2313  if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2314    if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2315                                         DoesConsume, Depth))
2316      return Builder ? Builder->CreateSub(BV, A) : NonNull;
2317    if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2318                                         DoesConsume, Depth))
2319      return Builder ? Builder->CreateSub(AV, B) : NonNull;
2320    return nullptr;
2321  }
2322
2323  // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2324  // into `A ^ B` if we are willing to invert all of the uses.
2325  if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2326    if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2327                                         DoesConsume, Depth))
2328      return Builder ? Builder->CreateXor(A, BV) : NonNull;
2329    if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2330                                         DoesConsume, Depth))
2331      return Builder ? Builder->CreateXor(AV, B) : NonNull;
2332    return nullptr;
2333  }
2334
2335  // If `V` is of the form `B - A` then `-1 - V` can be folded into
2336  // `A + (-1 - B)` if we are willing to invert all of the uses.
2337  if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2338    if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2339                                         DoesConsume, Depth))
2340      return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2341    return nullptr;
2342  }
2343
2344  // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2345  // into `A s>> B` if we are willing to invert all of the uses.
2346  if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2347    if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2348                                         DoesConsume, Depth))
2349      return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2350    return nullptr;
2351  }
2352
2353  Value *Cond;
2354  // LogicOps are special in that we canonicalize them at the cost of an
2355  // instruction.
2356  bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2357                  !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
2358  // Selects/min/max with invertible operands are freely invertible
2359  if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2360    if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2361                               DoesConsume, Depth))
2362      return nullptr;
2363    if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2364                                            DoesConsume, Depth)) {
2365      if (Builder != nullptr) {
2366        Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2367                                            DoesConsume, Depth);
2368        assert(NotB != nullptr &&
2369               "Unable to build inverted value for known freely invertable op");
2370        if (auto *II = dyn_cast<IntrinsicInst>(V))
2371          return Builder->CreateBinaryIntrinsic(
2372              getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2373        return Builder->CreateSelect(Cond, NotA, NotB);
2374      }
2375      return NonNull;
2376    }
2377  }
2378
2379  return nullptr;
2380}
2381
2382Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2383  Value *PtrOp = GEP.getOperand(0);
2384  SmallVector<Value *, 8> Indices(GEP.indices());
2385  Type *GEPType = GEP.getType();
2386  Type *GEPEltType = GEP.getSourceElementType();
2387  bool IsGEPSrcEleScalable = GEPEltType->isScalableTy();
2388  if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
2389                                 SQ.getWithInstruction(&GEP)))
2390    return replaceInstUsesWith(GEP, V);
2391
2392  // For vector geps, use the generic demanded vector support.
2393  // Skip if GEP return type is scalable. The number of elements is unknown at
2394  // compile-time.
2395  if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2396    auto VWidth = GEPFVTy->getNumElements();
2397    APInt PoisonElts(VWidth, 0);
2398    APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2399    if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2400                                              PoisonElts)) {
2401      if (V != &GEP)
2402        return replaceInstUsesWith(GEP, V);
2403      return &GEP;
2404    }
2405
2406    // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2407    // possible (decide on canonical form for pointer broadcast), 3) exploit
2408    // undef elements to decrease demanded bits
2409  }
2410
2411  // Eliminate unneeded casts for indices, and replace indices which displace
2412  // by multiples of a zero size type with zero.
2413  bool MadeChange = false;
2414
2415  // Index width may not be the same width as pointer width.
2416  // Data layout chooses the right type based on supported integer types.
2417  Type *NewScalarIndexTy =
2418      DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2419
2420  gep_type_iterator GTI = gep_type_begin(GEP);
2421  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2422       ++I, ++GTI) {
2423    // Skip indices into struct types.
2424    if (GTI.isStruct())
2425      continue;
2426
2427    Type *IndexTy = (*I)->getType();
2428    Type *NewIndexType =
2429        IndexTy->isVectorTy()
2430            ? VectorType::get(NewScalarIndexTy,
2431                              cast<VectorType>(IndexTy)->getElementCount())
2432            : NewScalarIndexTy;
2433
2434    // If the element type has zero size then any index over it is equivalent
2435    // to an index of zero, so replace it with zero if it is not zero already.
2436    Type *EltTy = GTI.getIndexedType();
2437    if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2438      if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2439        *I = Constant::getNullValue(NewIndexType);
2440        MadeChange = true;
2441      }
2442
2443    if (IndexTy != NewIndexType) {
2444      // If we are using a wider index than needed for this platform, shrink
2445      // it to what we need.  If narrower, sign-extend it to what we need.
2446      // This explicit cast can make subsequent optimizations more obvious.
2447      *I = Builder.CreateIntCast(*I, NewIndexType, true);
2448      MadeChange = true;
2449    }
2450  }
2451  if (MadeChange)
2452    return &GEP;
2453
2454  // Check to see if the inputs to the PHI node are getelementptr instructions.
2455  if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2456    auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2457    if (!Op1)
2458      return nullptr;
2459
2460    // Don't fold a GEP into itself through a PHI node. This can only happen
2461    // through the back-edge of a loop. Folding a GEP into itself means that
2462    // the value of the previous iteration needs to be stored in the meantime,
2463    // thus requiring an additional register variable to be live, but not
2464    // actually achieving anything (the GEP still needs to be executed once per
2465    // loop iteration).
2466    if (Op1 == &GEP)
2467      return nullptr;
2468
2469    int DI = -1;
2470
2471    for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2472      auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2473      if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2474          Op1->getSourceElementType() != Op2->getSourceElementType())
2475        return nullptr;
2476
2477      // As for Op1 above, don't try to fold a GEP into itself.
2478      if (Op2 == &GEP)
2479        return nullptr;
2480
2481      // Keep track of the type as we walk the GEP.
2482      Type *CurTy = nullptr;
2483
2484      for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2485        if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2486          return nullptr;
2487
2488        if (Op1->getOperand(J) != Op2->getOperand(J)) {
2489          if (DI == -1) {
2490            // We have not seen any differences yet in the GEPs feeding the
2491            // PHI yet, so we record this one if it is allowed to be a
2492            // variable.
2493
2494            // The first two arguments can vary for any GEP, the rest have to be
2495            // static for struct slots
2496            if (J > 1) {
2497              assert(CurTy && "No current type?");
2498              if (CurTy->isStructTy())
2499                return nullptr;
2500            }
2501
2502            DI = J;
2503          } else {
2504            // The GEP is different by more than one input. While this could be
2505            // extended to support GEPs that vary by more than one variable it
2506            // doesn't make sense since it greatly increases the complexity and
2507            // would result in an R+R+R addressing mode which no backend
2508            // directly supports and would need to be broken into several
2509            // simpler instructions anyway.
2510            return nullptr;
2511          }
2512        }
2513
2514        // Sink down a layer of the type for the next iteration.
2515        if (J > 0) {
2516          if (J == 1) {
2517            CurTy = Op1->getSourceElementType();
2518          } else {
2519            CurTy =
2520                GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2521          }
2522        }
2523      }
2524    }
2525
2526    // If not all GEPs are identical we'll have to create a new PHI node.
2527    // Check that the old PHI node has only one use so that it will get
2528    // removed.
2529    if (DI != -1 && !PN->hasOneUse())
2530      return nullptr;
2531
2532    auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2533    if (DI == -1) {
2534      // All the GEPs feeding the PHI are identical. Clone one down into our
2535      // BB so that it can be merged with the current GEP.
2536    } else {
2537      // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2538      // into the current block so it can be merged, and create a new PHI to
2539      // set that index.
2540      PHINode *NewPN;
2541      {
2542        IRBuilderBase::InsertPointGuard Guard(Builder);
2543        Builder.SetInsertPoint(PN);
2544        NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2545                                  PN->getNumOperands());
2546      }
2547
2548      for (auto &I : PN->operands())
2549        NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2550                           PN->getIncomingBlock(I));
2551
2552      NewGEP->setOperand(DI, NewPN);
2553    }
2554
2555    NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2556    return replaceOperand(GEP, 0, NewGEP);
2557  }
2558
2559  if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2560    if (Instruction *I = visitGEPOfGEP(GEP, Src))
2561      return I;
2562
2563  // Skip if GEP source element type is scalable. The type alloc size is unknown
2564  // at compile-time.
2565  if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2566    unsigned AS = GEP.getPointerAddressSpace();
2567    if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2568        DL.getIndexSizeInBits(AS)) {
2569      uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2570
2571      if (TyAllocSize == 1) {
2572        // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
2573        // but only if the result pointer is only used as if it were an integer,
2574        // or both point to the same underlying object (otherwise provenance is
2575        // not necessarily retained).
2576        Value *X = GEP.getPointerOperand();
2577        Value *Y;
2578        if (match(GEP.getOperand(1),
2579                  m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2580            GEPType == Y->getType()) {
2581          bool HasSameUnderlyingObject =
2582              getUnderlyingObject(X) == getUnderlyingObject(Y);
2583          bool Changed = false;
2584          GEP.replaceUsesWithIf(Y, [&](Use &U) {
2585            bool ShouldReplace = HasSameUnderlyingObject ||
2586                                 isa<ICmpInst>(U.getUser()) ||
2587                                 isa<PtrToIntInst>(U.getUser());
2588            Changed |= ShouldReplace;
2589            return ShouldReplace;
2590          });
2591          return Changed ? &GEP : nullptr;
2592        }
2593      } else {
2594        // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
2595        Value *V;
2596        if ((has_single_bit(TyAllocSize) &&
2597             match(GEP.getOperand(1),
2598                   m_Exact(m_Shr(m_Value(V),
2599                                 m_SpecificInt(countr_zero(TyAllocSize)))))) ||
2600            match(GEP.getOperand(1),
2601                  m_Exact(m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) {
2602          GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
2603              Builder.getInt8Ty(), GEP.getPointerOperand(), V);
2604          NewGEP->setIsInBounds(GEP.isInBounds());
2605          return NewGEP;
2606        }
2607      }
2608    }
2609  }
2610  // We do not handle pointer-vector geps here.
2611  if (GEPType->isVectorTy())
2612    return nullptr;
2613
2614  if (GEP.getNumIndices() == 1) {
2615    // Try to replace ADD + GEP with GEP + GEP.
2616    Value *Idx1, *Idx2;
2617    if (match(GEP.getOperand(1),
2618              m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
2619      //   %idx = add i64 %idx1, %idx2
2620      //   %gep = getelementptr i32, ptr %ptr, i64 %idx
2621      // as:
2622      //   %newptr = getelementptr i32, ptr %ptr, i64 %idx1
2623      //   %newgep = getelementptr i32, ptr %newptr, i64 %idx2
2624      auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(),
2625                                       GEP.getPointerOperand(), Idx1);
2626      return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr,
2627                                       Idx2);
2628    }
2629    ConstantInt *C;
2630    if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
2631                                     m_Value(Idx1), m_ConstantInt(C))))))) {
2632      // %add = add nsw i32 %idx1, idx2
2633      // %sidx = sext i32 %add to i64
2634      // %gep = getelementptr i32, ptr %ptr, i64 %sidx
2635      // as:
2636      // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
2637      // %newgep = getelementptr i32, ptr %newptr, i32 idx2
2638      auto *NewPtr = Builder.CreateGEP(
2639          GEP.getResultElementType(), GEP.getPointerOperand(),
2640          Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()));
2641      return GetElementPtrInst::Create(
2642          GEP.getResultElementType(), NewPtr,
2643          Builder.CreateSExt(C, GEP.getOperand(1)->getType()));
2644    }
2645  }
2646
2647  if (!GEP.isInBounds()) {
2648    unsigned IdxWidth =
2649        DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2650    APInt BasePtrOffset(IdxWidth, 0);
2651    Value *UnderlyingPtrOp =
2652            PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2653                                                             BasePtrOffset);
2654    bool CanBeNull, CanBeFreed;
2655    uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
2656        DL, CanBeNull, CanBeFreed);
2657    if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
2658      if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2659          BasePtrOffset.isNonNegative()) {
2660        APInt AllocSize(IdxWidth, DerefBytes);
2661        if (BasePtrOffset.ule(AllocSize)) {
2662          return GetElementPtrInst::CreateInBounds(
2663              GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
2664        }
2665      }
2666    }
2667  }
2668
2669  if (Instruction *R = foldSelectGEP(GEP, Builder))
2670    return R;
2671
2672  return nullptr;
2673}
2674
2675static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
2676                                         Instruction *AI) {
2677  if (isa<ConstantPointerNull>(V))
2678    return true;
2679  if (auto *LI = dyn_cast<LoadInst>(V))
2680    return isa<GlobalVariable>(LI->getPointerOperand());
2681  // Two distinct allocations will never be equal.
2682  return isAllocLikeFn(V, &TLI) && V != AI;
2683}
2684
2685/// Given a call CB which uses an address UsedV, return true if we can prove the
2686/// call's only possible effect is storing to V.
2687static bool isRemovableWrite(CallBase &CB, Value *UsedV,
2688                             const TargetLibraryInfo &TLI) {
2689  if (!CB.use_empty())
2690    // TODO: add recursion if returned attribute is present
2691    return false;
2692
2693  if (CB.isTerminator())
2694    // TODO: remove implementation restriction
2695    return false;
2696
2697  if (!CB.willReturn() || !CB.doesNotThrow())
2698    return false;
2699
2700  // If the only possible side effect of the call is writing to the alloca,
2701  // and the result isn't used, we can safely remove any reads implied by the
2702  // call including those which might read the alloca itself.
2703  std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
2704  return Dest && Dest->Ptr == UsedV;
2705}
2706
2707static bool isAllocSiteRemovable(Instruction *AI,
2708                                 SmallVectorImpl<WeakTrackingVH> &Users,
2709                                 const TargetLibraryInfo &TLI) {
2710  SmallVector<Instruction*, 4> Worklist;
2711  const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
2712  Worklist.push_back(AI);
2713
2714  do {
2715    Instruction *PI = Worklist.pop_back_val();
2716    for (User *U : PI->users()) {
2717      Instruction *I = cast<Instruction>(U);
2718      switch (I->getOpcode()) {
2719      default:
2720        // Give up the moment we see something we can't handle.
2721        return false;
2722
2723      case Instruction::AddrSpaceCast:
2724      case Instruction::BitCast:
2725      case Instruction::GetElementPtr:
2726        Users.emplace_back(I);
2727        Worklist.push_back(I);
2728        continue;
2729
2730      case Instruction::ICmp: {
2731        ICmpInst *ICI = cast<ICmpInst>(I);
2732        // We can fold eq/ne comparisons with null to false/true, respectively.
2733        // We also fold comparisons in some conditions provided the alloc has
2734        // not escaped (see isNeverEqualToUnescapedAlloc).
2735        if (!ICI->isEquality())
2736          return false;
2737        unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2738        if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2739          return false;
2740
2741        // Do not fold compares to aligned_alloc calls, as they may have to
2742        // return null in case the required alignment cannot be satisfied,
2743        // unless we can prove that both alignment and size are valid.
2744        auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
2745          // Check if alignment and size of a call to aligned_alloc is valid,
2746          // that is alignment is a power-of-2 and the size is a multiple of the
2747          // alignment.
2748          const APInt *Alignment;
2749          const APInt *Size;
2750          return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
2751                 match(CB->getArgOperand(1), m_APInt(Size)) &&
2752                 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
2753        };
2754        auto *CB = dyn_cast<CallBase>(AI);
2755        LibFunc TheLibFunc;
2756        if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
2757            TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
2758            !AlignmentAndSizeKnownValid(CB))
2759          return false;
2760        Users.emplace_back(I);
2761        continue;
2762      }
2763
2764      case Instruction::Call:
2765        // Ignore no-op and store intrinsics.
2766        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2767          switch (II->getIntrinsicID()) {
2768          default:
2769            return false;
2770
2771          case Intrinsic::memmove:
2772          case Intrinsic::memcpy:
2773          case Intrinsic::memset: {
2774            MemIntrinsic *MI = cast<MemIntrinsic>(II);
2775            if (MI->isVolatile() || MI->getRawDest() != PI)
2776              return false;
2777            [[fallthrough]];
2778          }
2779          case Intrinsic::assume:
2780          case Intrinsic::invariant_start:
2781          case Intrinsic::invariant_end:
2782          case Intrinsic::lifetime_start:
2783          case Intrinsic::lifetime_end:
2784          case Intrinsic::objectsize:
2785            Users.emplace_back(I);
2786            continue;
2787          case Intrinsic::launder_invariant_group:
2788          case Intrinsic::strip_invariant_group:
2789            Users.emplace_back(I);
2790            Worklist.push_back(I);
2791            continue;
2792          }
2793        }
2794
2795        if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
2796          Users.emplace_back(I);
2797          continue;
2798        }
2799
2800        if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
2801            getAllocationFamily(I, &TLI) == Family) {
2802          assert(Family);
2803          Users.emplace_back(I);
2804          continue;
2805        }
2806
2807        if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
2808            getAllocationFamily(I, &TLI) == Family) {
2809          assert(Family);
2810          Users.emplace_back(I);
2811          Worklist.push_back(I);
2812          continue;
2813        }
2814
2815        return false;
2816
2817      case Instruction::Store: {
2818        StoreInst *SI = cast<StoreInst>(I);
2819        if (SI->isVolatile() || SI->getPointerOperand() != PI)
2820          return false;
2821        Users.emplace_back(I);
2822        continue;
2823      }
2824      }
2825      llvm_unreachable("missing a return?");
2826    }
2827  } while (!Worklist.empty());
2828  return true;
2829}
2830
2831Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2832  assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
2833
2834  // If we have a malloc call which is only used in any amount of comparisons to
2835  // null and free calls, delete the calls and replace the comparisons with true
2836  // or false as appropriate.
2837
2838  // This is based on the principle that we can substitute our own allocation
2839  // function (which will never return null) rather than knowledge of the
2840  // specific function being called. In some sense this can change the permitted
2841  // outputs of a program (when we convert a malloc to an alloca, the fact that
2842  // the allocation is now on the stack is potentially visible, for example),
2843  // but we believe in a permissible manner.
2844  SmallVector<WeakTrackingVH, 64> Users;
2845
2846  // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2847  // before each store.
2848  SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2849  SmallVector<DPValue *, 8> DPVs;
2850  std::unique_ptr<DIBuilder> DIB;
2851  if (isa<AllocaInst>(MI)) {
2852    findDbgUsers(DVIs, &MI, &DPVs);
2853    DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2854  }
2855
2856  if (isAllocSiteRemovable(&MI, Users, TLI)) {
2857    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2858      // Lowering all @llvm.objectsize calls first because they may
2859      // use a bitcast/GEP of the alloca we are removing.
2860      if (!Users[i])
2861       continue;
2862
2863      Instruction *I = cast<Instruction>(&*Users[i]);
2864
2865      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2866        if (II->getIntrinsicID() == Intrinsic::objectsize) {
2867          SmallVector<Instruction *> InsertedInstructions;
2868          Value *Result = lowerObjectSizeCall(
2869              II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
2870          for (Instruction *Inserted : InsertedInstructions)
2871            Worklist.add(Inserted);
2872          replaceInstUsesWith(*I, Result);
2873          eraseInstFromFunction(*I);
2874          Users[i] = nullptr; // Skip examining in the next loop.
2875        }
2876      }
2877    }
2878    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2879      if (!Users[i])
2880        continue;
2881
2882      Instruction *I = cast<Instruction>(&*Users[i]);
2883
2884      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2885        replaceInstUsesWith(*C,
2886                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
2887                                             C->isFalseWhenEqual()));
2888      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2889        for (auto *DVI : DVIs)
2890          if (DVI->isAddressOfVariable())
2891            ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2892        for (auto *DPV : DPVs)
2893          if (DPV->isAddressOfVariable())
2894            ConvertDebugDeclareToDebugValue(DPV, SI, *DIB);
2895      } else {
2896        // Casts, GEP, or anything else: we're about to delete this instruction,
2897        // so it can not have any valid uses.
2898        replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2899      }
2900      eraseInstFromFunction(*I);
2901    }
2902
2903    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2904      // Replace invoke with a NOP intrinsic to maintain the original CFG
2905      Module *M = II->getModule();
2906      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2907      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2908                         std::nullopt, "", II->getParent());
2909    }
2910
2911    // Remove debug intrinsics which describe the value contained within the
2912    // alloca. In addition to removing dbg.{declare,addr} which simply point to
2913    // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2914    //
2915    // ```
2916    //   define void @foo(i32 %0) {
2917    //     %a = alloca i32                              ; Deleted.
2918    //     store i32 %0, i32* %a
2919    //     dbg.value(i32 %0, "arg0")                    ; Not deleted.
2920    //     dbg.value(i32* %a, "arg0", DW_OP_deref)      ; Deleted.
2921    //     call void @trivially_inlinable_no_op(i32* %a)
2922    //     ret void
2923    //  }
2924    // ```
2925    //
2926    // This may not be required if we stop describing the contents of allocas
2927    // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2928    // the LowerDbgDeclare utility.
2929    //
2930    // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2931    // "arg0" dbg.value may be stale after the call. However, failing to remove
2932    // the DW_OP_deref dbg.value causes large gaps in location coverage.
2933    //
2934    // FIXME: the Assignment Tracking project has now likely made this
2935    // redundant (and it's sometimes harmful).
2936    for (auto *DVI : DVIs)
2937      if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2938        DVI->eraseFromParent();
2939    for (auto *DPV : DPVs)
2940      if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref())
2941        DPV->eraseFromParent();
2942
2943    return eraseInstFromFunction(MI);
2944  }
2945  return nullptr;
2946}
2947
2948/// Move the call to free before a NULL test.
2949///
2950/// Check if this free is accessed after its argument has been test
2951/// against NULL (property 0).
2952/// If yes, it is legal to move this call in its predecessor block.
2953///
2954/// The move is performed only if the block containing the call to free
2955/// will be removed, i.e.:
2956/// 1. it has only one predecessor P, and P has two successors
2957/// 2. it contains the call, noops, and an unconditional branch
2958/// 3. its successor is the same as its predecessor's successor
2959///
2960/// The profitability is out-of concern here and this function should
2961/// be called only if the caller knows this transformation would be
2962/// profitable (e.g., for code size).
2963static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2964                                                const DataLayout &DL) {
2965  Value *Op = FI.getArgOperand(0);
2966  BasicBlock *FreeInstrBB = FI.getParent();
2967  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2968
2969  // Validate part of constraint #1: Only one predecessor
2970  // FIXME: We can extend the number of predecessor, but in that case, we
2971  //        would duplicate the call to free in each predecessor and it may
2972  //        not be profitable even for code size.
2973  if (!PredBB)
2974    return nullptr;
2975
2976  // Validate constraint #2: Does this block contains only the call to
2977  //                         free, noops, and an unconditional branch?
2978  BasicBlock *SuccBB;
2979  Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2980  if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2981    return nullptr;
2982
2983  // If there are only 2 instructions in the block, at this point,
2984  // this is the call to free and unconditional.
2985  // If there are more than 2 instructions, check that they are noops
2986  // i.e., they won't hurt the performance of the generated code.
2987  if (FreeInstrBB->size() != 2) {
2988    for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2989      if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2990        continue;
2991      auto *Cast = dyn_cast<CastInst>(&Inst);
2992      if (!Cast || !Cast->isNoopCast(DL))
2993        return nullptr;
2994    }
2995  }
2996  // Validate the rest of constraint #1 by matching on the pred branch.
2997  Instruction *TI = PredBB->getTerminator();
2998  BasicBlock *TrueBB, *FalseBB;
2999  ICmpInst::Predicate Pred;
3000  if (!match(TI, m_Br(m_ICmp(Pred,
3001                             m_CombineOr(m_Specific(Op),
3002                                         m_Specific(Op->stripPointerCasts())),
3003                             m_Zero()),
3004                      TrueBB, FalseBB)))
3005    return nullptr;
3006  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3007    return nullptr;
3008
3009  // Validate constraint #3: Ensure the null case just falls through.
3010  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3011    return nullptr;
3012  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3013         "Broken CFG: missing edge from predecessor to successor");
3014
3015  // At this point, we know that everything in FreeInstrBB can be moved
3016  // before TI.
3017  for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3018    if (&Instr == FreeInstrBBTerminator)
3019      break;
3020    Instr.moveBeforePreserving(TI);
3021  }
3022  assert(FreeInstrBB->size() == 1 &&
3023         "Only the branch instruction should remain");
3024
3025  // Now that we've moved the call to free before the NULL check, we have to
3026  // remove any attributes on its parameter that imply it's non-null, because
3027  // those attributes might have only been valid because of the NULL check, and
3028  // we can get miscompiles if we keep them. This is conservative if non-null is
3029  // also implied by something other than the NULL check, but it's guaranteed to
3030  // be correct, and the conservativeness won't matter in practice, since the
3031  // attributes are irrelevant for the call to free itself and the pointer
3032  // shouldn't be used after the call.
3033  AttributeList Attrs = FI.getAttributes();
3034  Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3035  Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3036  if (Dereferenceable.isValid()) {
3037    uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3038    Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3039                                       Attribute::Dereferenceable);
3040    Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3041  }
3042  FI.setAttributes(Attrs);
3043
3044  return &FI;
3045}
3046
3047Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
3048  // free undef -> unreachable.
3049  if (isa<UndefValue>(Op)) {
3050    // Leave a marker since we can't modify the CFG here.
3051    CreateNonTerminatorUnreachable(&FI);
3052    return eraseInstFromFunction(FI);
3053  }
3054
3055  // If we have 'free null' delete the instruction.  This can happen in stl code
3056  // when lots of inlining happens.
3057  if (isa<ConstantPointerNull>(Op))
3058    return eraseInstFromFunction(FI);
3059
3060  // If we had free(realloc(...)) with no intervening uses, then eliminate the
3061  // realloc() entirely.
3062  CallInst *CI = dyn_cast<CallInst>(Op);
3063  if (CI && CI->hasOneUse())
3064    if (Value *ReallocatedOp = getReallocatedOperand(CI))
3065      return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3066
3067  // If we optimize for code size, try to move the call to free before the null
3068  // test so that simplify cfg can remove the empty block and dead code
3069  // elimination the branch. I.e., helps to turn something like:
3070  // if (foo) free(foo);
3071  // into
3072  // free(foo);
3073  //
3074  // Note that we can only do this for 'free' and not for any flavor of
3075  // 'operator delete'; there is no 'operator delete' symbol for which we are
3076  // permitted to invent a call, even if we're passing in a null pointer.
3077  if (MinimizeSize) {
3078    LibFunc Func;
3079    if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3080      if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3081        return I;
3082  }
3083
3084  return nullptr;
3085}
3086
3087Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3088  // Nothing for now.
3089  return nullptr;
3090}
3091
3092// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3093bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
3094  // Try to remove the previous instruction if it must lead to unreachable.
3095  // This includes instructions like stores and "llvm.assume" that may not get
3096  // removed by simple dead code elimination.
3097  bool Changed = false;
3098  while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3099    // While we theoretically can erase EH, that would result in a block that
3100    // used to start with an EH no longer starting with EH, which is invalid.
3101    // To make it valid, we'd need to fixup predecessors to no longer refer to
3102    // this block, but that changes CFG, which is not allowed in InstCombine.
3103    if (Prev->isEHPad())
3104      break; // Can not drop any more instructions. We're done here.
3105
3106    if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3107      break; // Can not drop any more instructions. We're done here.
3108    // Otherwise, this instruction can be freely erased,
3109    // even if it is not side-effect free.
3110
3111    // A value may still have uses before we process it here (for example, in
3112    // another unreachable block), so convert those to poison.
3113    replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3114    eraseInstFromFunction(*Prev);
3115    Changed = true;
3116  }
3117  return Changed;
3118}
3119
3120Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3121  removeInstructionsBeforeUnreachable(I);
3122  return nullptr;
3123}
3124
3125Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3126  assert(BI.isUnconditional() && "Only for unconditional branches.");
3127
3128  // If this store is the second-to-last instruction in the basic block
3129  // (excluding debug info and bitcasts of pointers) and if the block ends with
3130  // an unconditional branch, try to move the store to the successor block.
3131
3132  auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3133    auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3134      return BBI->isDebugOrPseudoInst() ||
3135             (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3136    };
3137
3138    BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3139    do {
3140      if (BBI != FirstInstr)
3141        --BBI;
3142    } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3143
3144    return dyn_cast<StoreInst>(BBI);
3145  };
3146
3147  if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3148    if (mergeStoreIntoSuccessor(*SI))
3149      return &BI;
3150
3151  return nullptr;
3152}
3153
3154void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
3155                                   SmallVectorImpl<BasicBlock *> &Worklist) {
3156  if (!DeadEdges.insert({From, To}).second)
3157    return;
3158
3159  // Replace phi node operands in successor with poison.
3160  for (PHINode &PN : To->phis())
3161    for (Use &U : PN.incoming_values())
3162      if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
3163        replaceUse(U, PoisonValue::get(PN.getType()));
3164        addToWorklist(&PN);
3165        MadeIRChange = true;
3166      }
3167
3168  Worklist.push_back(To);
3169}
3170
3171// Under the assumption that I is unreachable, remove it and following
3172// instructions. Changes are reported directly to MadeIRChange.
3173void InstCombinerImpl::handleUnreachableFrom(
3174    Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
3175  BasicBlock *BB = I->getParent();
3176  for (Instruction &Inst : make_early_inc_range(
3177           make_range(std::next(BB->getTerminator()->getReverseIterator()),
3178                      std::next(I->getReverseIterator())))) {
3179    if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3180      replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
3181      MadeIRChange = true;
3182    }
3183    if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3184      continue;
3185    // RemoveDIs: erase debug-info on this instruction manually.
3186    Inst.dropDbgValues();
3187    eraseInstFromFunction(Inst);
3188    MadeIRChange = true;
3189  }
3190
3191  // RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on
3192  // terminator too.
3193  BB->getTerminator()->dropDbgValues();
3194
3195  // Handle potentially dead successors.
3196  for (BasicBlock *Succ : successors(BB))
3197    addDeadEdge(BB, Succ, Worklist);
3198}
3199
3200void InstCombinerImpl::handlePotentiallyDeadBlocks(
3201    SmallVectorImpl<BasicBlock *> &Worklist) {
3202  while (!Worklist.empty()) {
3203    BasicBlock *BB = Worklist.pop_back_val();
3204    if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
3205          return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
3206        }))
3207      continue;
3208
3209    handleUnreachableFrom(&BB->front(), Worklist);
3210  }
3211}
3212
3213void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
3214                                                       BasicBlock *LiveSucc) {
3215  SmallVector<BasicBlock *> Worklist;
3216  for (BasicBlock *Succ : successors(BB)) {
3217    // The live successor isn't dead.
3218    if (Succ == LiveSucc)
3219      continue;
3220
3221    addDeadEdge(BB, Succ, Worklist);
3222  }
3223
3224  handlePotentiallyDeadBlocks(Worklist);
3225}
3226
3227Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3228  if (BI.isUnconditional())
3229    return visitUnconditionalBranchInst(BI);
3230
3231  // Change br (not X), label True, label False to: br X, label False, True
3232  Value *Cond = BI.getCondition();
3233  Value *X;
3234  if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3235    // Swap Destinations and condition...
3236    BI.swapSuccessors();
3237    return replaceOperand(BI, 0, X);
3238  }
3239
3240  // Canonicalize logical-and-with-invert as logical-or-with-invert.
3241  // This is done by inverting the condition and swapping successors:
3242  // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3243  Value *Y;
3244  if (isa<SelectInst>(Cond) &&
3245      match(Cond,
3246            m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
3247    Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3248    Value *Or = Builder.CreateLogicalOr(NotX, Y);
3249    BI.swapSuccessors();
3250    return replaceOperand(BI, 0, Or);
3251  }
3252
3253  // If the condition is irrelevant, remove the use so that other
3254  // transforms on the condition become more effective.
3255  if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3256    return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3257
3258  // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3259  CmpInst::Predicate Pred;
3260  if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3261      !isCanonicalPredicate(Pred)) {
3262    // Swap destinations and condition.
3263    auto *Cmp = cast<CmpInst>(Cond);
3264    Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3265    BI.swapSuccessors();
3266    Worklist.push(Cmp);
3267    return &BI;
3268  }
3269
3270  if (isa<UndefValue>(Cond)) {
3271    handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
3272    return nullptr;
3273  }
3274  if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3275    handlePotentiallyDeadSuccessors(BI.getParent(),
3276                                    BI.getSuccessor(!CI->getZExtValue()));
3277    return nullptr;
3278  }
3279
3280  DC.registerBranch(&BI);
3281  return nullptr;
3282}
3283
3284Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3285  Value *Cond = SI.getCondition();
3286  Value *Op0;
3287  ConstantInt *AddRHS;
3288  if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3289    // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3290    for (auto Case : SI.cases()) {
3291      Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3292      assert(isa<ConstantInt>(NewCase) &&
3293             "Result of expression should be constant");
3294      Case.setValue(cast<ConstantInt>(NewCase));
3295    }
3296    return replaceOperand(SI, 0, Op0);
3297  }
3298
3299  ConstantInt *SubLHS;
3300  if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
3301    // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3302    for (auto Case : SI.cases()) {
3303      Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
3304      assert(isa<ConstantInt>(NewCase) &&
3305             "Result of expression should be constant");
3306      Case.setValue(cast<ConstantInt>(NewCase));
3307    }
3308    return replaceOperand(SI, 0, Op0);
3309  }
3310
3311  uint64_t ShiftAmt;
3312  if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
3313      ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
3314      all_of(SI.cases(), [&](const auto &Case) {
3315        return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3316      })) {
3317    // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3318    OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
3319    if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
3320        Shl->hasOneUse()) {
3321      Value *NewCond = Op0;
3322      if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
3323        // If the shift may wrap, we need to mask off the shifted bits.
3324        unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
3325        NewCond = Builder.CreateAnd(
3326            Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
3327      }
3328      for (auto Case : SI.cases()) {
3329        const APInt &CaseVal = Case.getCaseValue()->getValue();
3330        APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
3331                                                   : CaseVal.lshr(ShiftAmt);
3332        Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3333      }
3334      return replaceOperand(SI, 0, NewCond);
3335    }
3336  }
3337
3338  // Fold switch(zext/sext(X)) into switch(X) if possible.
3339  if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
3340    bool IsZExt = isa<ZExtInst>(Cond);
3341    Type *SrcTy = Op0->getType();
3342    unsigned NewWidth = SrcTy->getScalarSizeInBits();
3343
3344    if (all_of(SI.cases(), [&](const auto &Case) {
3345          const APInt &CaseVal = Case.getCaseValue()->getValue();
3346          return IsZExt ? CaseVal.isIntN(NewWidth)
3347                        : CaseVal.isSignedIntN(NewWidth);
3348        })) {
3349      for (auto &Case : SI.cases()) {
3350        APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3351        Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3352      }
3353      return replaceOperand(SI, 0, Op0);
3354    }
3355  }
3356
3357  KnownBits Known = computeKnownBits(Cond, 0, &SI);
3358  unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3359  unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3360
3361  // Compute the number of leading bits we can ignore.
3362  // TODO: A better way to determine this would use ComputeNumSignBits().
3363  for (const auto &C : SI.cases()) {
3364    LeadingKnownZeros =
3365        std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
3366    LeadingKnownOnes =
3367        std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
3368  }
3369
3370  unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3371
3372  // Shrink the condition operand if the new type is smaller than the old type.
3373  // But do not shrink to a non-standard type, because backend can't generate
3374  // good code for that yet.
3375  // TODO: We can make it aggressive again after fixing PR39569.
3376  if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3377      shouldChangeType(Known.getBitWidth(), NewWidth)) {
3378    IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3379    Builder.SetInsertPoint(&SI);
3380    Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3381
3382    for (auto Case : SI.cases()) {
3383      APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3384      Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3385    }
3386    return replaceOperand(SI, 0, NewCond);
3387  }
3388
3389  if (isa<UndefValue>(Cond)) {
3390    handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
3391    return nullptr;
3392  }
3393  if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3394    handlePotentiallyDeadSuccessors(SI.getParent(),
3395                                    SI.findCaseValue(CI)->getCaseSuccessor());
3396    return nullptr;
3397  }
3398
3399  return nullptr;
3400}
3401
3402Instruction *
3403InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3404  auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3405  if (!WO)
3406    return nullptr;
3407
3408  Intrinsic::ID OvID = WO->getIntrinsicID();
3409  const APInt *C = nullptr;
3410  if (match(WO->getRHS(), m_APIntAllowUndef(C))) {
3411    if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3412                                 OvID == Intrinsic::umul_with_overflow)) {
3413      // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3414      if (C->isAllOnes())
3415        return BinaryOperator::CreateNeg(WO->getLHS());
3416      // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3417      if (C->isPowerOf2()) {
3418        return BinaryOperator::CreateShl(
3419            WO->getLHS(),
3420            ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3421      }
3422    }
3423  }
3424
3425  // We're extracting from an overflow intrinsic. See if we're the only user.
3426  // That allows us to simplify multiple result intrinsics to simpler things
3427  // that just get one value.
3428  if (!WO->hasOneUse())
3429    return nullptr;
3430
3431  // Check if we're grabbing only the result of a 'with overflow' intrinsic
3432  // and replace it with a traditional binary instruction.
3433  if (*EV.idx_begin() == 0) {
3434    Instruction::BinaryOps BinOp = WO->getBinaryOp();
3435    Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3436    // Replace the old instruction's uses with poison.
3437    replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3438    eraseInstFromFunction(*WO);
3439    return BinaryOperator::Create(BinOp, LHS, RHS);
3440  }
3441
3442  assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3443
3444  // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3445  if (OvID == Intrinsic::usub_with_overflow)
3446    return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3447
3448  // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3449  // +1 is not possible because we assume signed values.
3450  if (OvID == Intrinsic::smul_with_overflow &&
3451      WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3452    return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3453
3454  // If only the overflow result is used, and the right hand side is a
3455  // constant (or constant splat), we can remove the intrinsic by directly
3456  // checking for overflow.
3457  if (C) {
3458    // Compute the no-wrap range for LHS given RHS=C, then construct an
3459    // equivalent icmp, potentially using an offset.
3460    ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
3461        WO->getBinaryOp(), *C, WO->getNoWrapKind());
3462
3463    CmpInst::Predicate Pred;
3464    APInt NewRHSC, Offset;
3465    NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3466    auto *OpTy = WO->getRHS()->getType();
3467    auto *NewLHS = WO->getLHS();
3468    if (Offset != 0)
3469      NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3470    return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3471                        ConstantInt::get(OpTy, NewRHSC));
3472  }
3473
3474  return nullptr;
3475}
3476
3477Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3478  Value *Agg = EV.getAggregateOperand();
3479
3480  if (!EV.hasIndices())
3481    return replaceInstUsesWith(EV, Agg);
3482
3483  if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3484                                          SQ.getWithInstruction(&EV)))
3485    return replaceInstUsesWith(EV, V);
3486
3487  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3488    // We're extracting from an insertvalue instruction, compare the indices
3489    const unsigned *exti, *exte, *insi, *inse;
3490    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3491         exte = EV.idx_end(), inse = IV->idx_end();
3492         exti != exte && insi != inse;
3493         ++exti, ++insi) {
3494      if (*insi != *exti)
3495        // The insert and extract both reference distinctly different elements.
3496        // This means the extract is not influenced by the insert, and we can
3497        // replace the aggregate operand of the extract with the aggregate
3498        // operand of the insert. i.e., replace
3499        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3500        // %E = extractvalue { i32, { i32 } } %I, 0
3501        // with
3502        // %E = extractvalue { i32, { i32 } } %A, 0
3503        return ExtractValueInst::Create(IV->getAggregateOperand(),
3504                                        EV.getIndices());
3505    }
3506    if (exti == exte && insi == inse)
3507      // Both iterators are at the end: Index lists are identical. Replace
3508      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3509      // %C = extractvalue { i32, { i32 } } %B, 1, 0
3510      // with "i32 42"
3511      return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3512    if (exti == exte) {
3513      // The extract list is a prefix of the insert list. i.e. replace
3514      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3515      // %E = extractvalue { i32, { i32 } } %I, 1
3516      // with
3517      // %X = extractvalue { i32, { i32 } } %A, 1
3518      // %E = insertvalue { i32 } %X, i32 42, 0
3519      // by switching the order of the insert and extract (though the
3520      // insertvalue should be left in, since it may have other uses).
3521      Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3522                                                EV.getIndices());
3523      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3524                                     ArrayRef(insi, inse));
3525    }
3526    if (insi == inse)
3527      // The insert list is a prefix of the extract list
3528      // We can simply remove the common indices from the extract and make it
3529      // operate on the inserted value instead of the insertvalue result.
3530      // i.e., replace
3531      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3532      // %E = extractvalue { i32, { i32 } } %I, 1, 0
3533      // with
3534      // %E extractvalue { i32 } { i32 42 }, 0
3535      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3536                                      ArrayRef(exti, exte));
3537  }
3538
3539  if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
3540    return R;
3541
3542  if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
3543    // Bail out if the aggregate contains scalable vector type
3544    if (auto *STy = dyn_cast<StructType>(Agg->getType());
3545        STy && STy->containsScalableVectorType())
3546      return nullptr;
3547
3548    // If the (non-volatile) load only has one use, we can rewrite this to a
3549    // load from a GEP. This reduces the size of the load. If a load is used
3550    // only by extractvalue instructions then this either must have been
3551    // optimized before, or it is a struct with padding, in which case we
3552    // don't want to do the transformation as it loses padding knowledge.
3553    if (L->isSimple() && L->hasOneUse()) {
3554      // extractvalue has integer indices, getelementptr has Value*s. Convert.
3555      SmallVector<Value*, 4> Indices;
3556      // Prefix an i32 0 since we need the first element.
3557      Indices.push_back(Builder.getInt32(0));
3558      for (unsigned Idx : EV.indices())
3559        Indices.push_back(Builder.getInt32(Idx));
3560
3561      // We need to insert these at the location of the old load, not at that of
3562      // the extractvalue.
3563      Builder.SetInsertPoint(L);
3564      Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3565                                             L->getPointerOperand(), Indices);
3566      Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3567      // Whatever aliasing information we had for the orignal load must also
3568      // hold for the smaller load, so propagate the annotations.
3569      NL->setAAMetadata(L->getAAMetadata());
3570      // Returning the load directly will cause the main loop to insert it in
3571      // the wrong spot, so use replaceInstUsesWith().
3572      return replaceInstUsesWith(EV, NL);
3573    }
3574  }
3575
3576  if (auto *PN = dyn_cast<PHINode>(Agg))
3577    if (Instruction *Res = foldOpIntoPhi(EV, PN))
3578      return Res;
3579
3580  // We could simplify extracts from other values. Note that nested extracts may
3581  // already be simplified implicitly by the above: extract (extract (insert) )
3582  // will be translated into extract ( insert ( extract ) ) first and then just
3583  // the value inserted, if appropriate. Similarly for extracts from single-use
3584  // loads: extract (extract (load)) will be translated to extract (load (gep))
3585  // and if again single-use then via load (gep (gep)) to load (gep).
3586  // However, double extracts from e.g. function arguments or return values
3587  // aren't handled yet.
3588  return nullptr;
3589}
3590
3591/// Return 'true' if the given typeinfo will match anything.
3592static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3593  switch (Personality) {
3594  case EHPersonality::GNU_C:
3595  case EHPersonality::GNU_C_SjLj:
3596  case EHPersonality::Rust:
3597    // The GCC C EH and Rust personality only exists to support cleanups, so
3598    // it's not clear what the semantics of catch clauses are.
3599    return false;
3600  case EHPersonality::Unknown:
3601    return false;
3602  case EHPersonality::GNU_Ada:
3603    // While __gnat_all_others_value will match any Ada exception, it doesn't
3604    // match foreign exceptions (or didn't, before gcc-4.7).
3605    return false;
3606  case EHPersonality::GNU_CXX:
3607  case EHPersonality::GNU_CXX_SjLj:
3608  case EHPersonality::GNU_ObjC:
3609  case EHPersonality::MSVC_X86SEH:
3610  case EHPersonality::MSVC_TableSEH:
3611  case EHPersonality::MSVC_CXX:
3612  case EHPersonality::CoreCLR:
3613  case EHPersonality::Wasm_CXX:
3614  case EHPersonality::XL_CXX:
3615    return TypeInfo->isNullValue();
3616  }
3617  llvm_unreachable("invalid enum");
3618}
3619
3620static bool shorter_filter(const Value *LHS, const Value *RHS) {
3621  return
3622    cast<ArrayType>(LHS->getType())->getNumElements()
3623  <
3624    cast<ArrayType>(RHS->getType())->getNumElements();
3625}
3626
3627Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3628  // The logic here should be correct for any real-world personality function.
3629  // However if that turns out not to be true, the offending logic can always
3630  // be conditioned on the personality function, like the catch-all logic is.
3631  EHPersonality Personality =
3632      classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3633
3634  // Simplify the list of clauses, eg by removing repeated catch clauses
3635  // (these are often created by inlining).
3636  bool MakeNewInstruction = false; // If true, recreate using the following:
3637  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3638  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3639
3640  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3641  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3642    bool isLastClause = i + 1 == e;
3643    if (LI.isCatch(i)) {
3644      // A catch clause.
3645      Constant *CatchClause = LI.getClause(i);
3646      Constant *TypeInfo = CatchClause->stripPointerCasts();
3647
3648      // If we already saw this clause, there is no point in having a second
3649      // copy of it.
3650      if (AlreadyCaught.insert(TypeInfo).second) {
3651        // This catch clause was not already seen.
3652        NewClauses.push_back(CatchClause);
3653      } else {
3654        // Repeated catch clause - drop the redundant copy.
3655        MakeNewInstruction = true;
3656      }
3657
3658      // If this is a catch-all then there is no point in keeping any following
3659      // clauses or marking the landingpad as having a cleanup.
3660      if (isCatchAll(Personality, TypeInfo)) {
3661        if (!isLastClause)
3662          MakeNewInstruction = true;
3663        CleanupFlag = false;
3664        break;
3665      }
3666    } else {
3667      // A filter clause.  If any of the filter elements were already caught
3668      // then they can be dropped from the filter.  It is tempting to try to
3669      // exploit the filter further by saying that any typeinfo that does not
3670      // occur in the filter can't be caught later (and thus can be dropped).
3671      // However this would be wrong, since typeinfos can match without being
3672      // equal (for example if one represents a C++ class, and the other some
3673      // class derived from it).
3674      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3675      Constant *FilterClause = LI.getClause(i);
3676      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3677      unsigned NumTypeInfos = FilterType->getNumElements();
3678
3679      // An empty filter catches everything, so there is no point in keeping any
3680      // following clauses or marking the landingpad as having a cleanup.  By
3681      // dealing with this case here the following code is made a bit simpler.
3682      if (!NumTypeInfos) {
3683        NewClauses.push_back(FilterClause);
3684        if (!isLastClause)
3685          MakeNewInstruction = true;
3686        CleanupFlag = false;
3687        break;
3688      }
3689
3690      bool MakeNewFilter = false; // If true, make a new filter.
3691      SmallVector<Constant *, 16> NewFilterElts; // New elements.
3692      if (isa<ConstantAggregateZero>(FilterClause)) {
3693        // Not an empty filter - it contains at least one null typeinfo.
3694        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3695        Constant *TypeInfo =
3696          Constant::getNullValue(FilterType->getElementType());
3697        // If this typeinfo is a catch-all then the filter can never match.
3698        if (isCatchAll(Personality, TypeInfo)) {
3699          // Throw the filter away.
3700          MakeNewInstruction = true;
3701          continue;
3702        }
3703
3704        // There is no point in having multiple copies of this typeinfo, so
3705        // discard all but the first copy if there is more than one.
3706        NewFilterElts.push_back(TypeInfo);
3707        if (NumTypeInfos > 1)
3708          MakeNewFilter = true;
3709      } else {
3710        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3711        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3712        NewFilterElts.reserve(NumTypeInfos);
3713
3714        // Remove any filter elements that were already caught or that already
3715        // occurred in the filter.  While there, see if any of the elements are
3716        // catch-alls.  If so, the filter can be discarded.
3717        bool SawCatchAll = false;
3718        for (unsigned j = 0; j != NumTypeInfos; ++j) {
3719          Constant *Elt = Filter->getOperand(j);
3720          Constant *TypeInfo = Elt->stripPointerCasts();
3721          if (isCatchAll(Personality, TypeInfo)) {
3722            // This element is a catch-all.  Bail out, noting this fact.
3723            SawCatchAll = true;
3724            break;
3725          }
3726
3727          // Even if we've seen a type in a catch clause, we don't want to
3728          // remove it from the filter.  An unexpected type handler may be
3729          // set up for a call site which throws an exception of the same
3730          // type caught.  In order for the exception thrown by the unexpected
3731          // handler to propagate correctly, the filter must be correctly
3732          // described for the call site.
3733          //
3734          // Example:
3735          //
3736          // void unexpected() { throw 1;}
3737          // void foo() throw (int) {
3738          //   std::set_unexpected(unexpected);
3739          //   try {
3740          //     throw 2.0;
3741          //   } catch (int i) {}
3742          // }
3743
3744          // There is no point in having multiple copies of the same typeinfo in
3745          // a filter, so only add it if we didn't already.
3746          if (SeenInFilter.insert(TypeInfo).second)
3747            NewFilterElts.push_back(cast<Constant>(Elt));
3748        }
3749        // A filter containing a catch-all cannot match anything by definition.
3750        if (SawCatchAll) {
3751          // Throw the filter away.
3752          MakeNewInstruction = true;
3753          continue;
3754        }
3755
3756        // If we dropped something from the filter, make a new one.
3757        if (NewFilterElts.size() < NumTypeInfos)
3758          MakeNewFilter = true;
3759      }
3760      if (MakeNewFilter) {
3761        FilterType = ArrayType::get(FilterType->getElementType(),
3762                                    NewFilterElts.size());
3763        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3764        MakeNewInstruction = true;
3765      }
3766
3767      NewClauses.push_back(FilterClause);
3768
3769      // If the new filter is empty then it will catch everything so there is
3770      // no point in keeping any following clauses or marking the landingpad
3771      // as having a cleanup.  The case of the original filter being empty was
3772      // already handled above.
3773      if (MakeNewFilter && !NewFilterElts.size()) {
3774        assert(MakeNewInstruction && "New filter but not a new instruction!");
3775        CleanupFlag = false;
3776        break;
3777      }
3778    }
3779  }
3780
3781  // If several filters occur in a row then reorder them so that the shortest
3782  // filters come first (those with the smallest number of elements).  This is
3783  // advantageous because shorter filters are more likely to match, speeding up
3784  // unwinding, but mostly because it increases the effectiveness of the other
3785  // filter optimizations below.
3786  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3787    unsigned j;
3788    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3789    for (j = i; j != e; ++j)
3790      if (!isa<ArrayType>(NewClauses[j]->getType()))
3791        break;
3792
3793    // Check whether the filters are already sorted by length.  We need to know
3794    // if sorting them is actually going to do anything so that we only make a
3795    // new landingpad instruction if it does.
3796    for (unsigned k = i; k + 1 < j; ++k)
3797      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3798        // Not sorted, so sort the filters now.  Doing an unstable sort would be
3799        // correct too but reordering filters pointlessly might confuse users.
3800        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3801                         shorter_filter);
3802        MakeNewInstruction = true;
3803        break;
3804      }
3805
3806    // Look for the next batch of filters.
3807    i = j + 1;
3808  }
3809
3810  // If typeinfos matched if and only if equal, then the elements of a filter L
3811  // that occurs later than a filter F could be replaced by the intersection of
3812  // the elements of F and L.  In reality two typeinfos can match without being
3813  // equal (for example if one represents a C++ class, and the other some class
3814  // derived from it) so it would be wrong to perform this transform in general.
3815  // However the transform is correct and useful if F is a subset of L.  In that
3816  // case L can be replaced by F, and thus removed altogether since repeating a
3817  // filter is pointless.  So here we look at all pairs of filters F and L where
3818  // L follows F in the list of clauses, and remove L if every element of F is
3819  // an element of L.  This can occur when inlining C++ functions with exception
3820  // specifications.
3821  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3822    // Examine each filter in turn.
3823    Value *Filter = NewClauses[i];
3824    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3825    if (!FTy)
3826      // Not a filter - skip it.
3827      continue;
3828    unsigned FElts = FTy->getNumElements();
3829    // Examine each filter following this one.  Doing this backwards means that
3830    // we don't have to worry about filters disappearing under us when removed.
3831    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3832      Value *LFilter = NewClauses[j];
3833      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3834      if (!LTy)
3835        // Not a filter - skip it.
3836        continue;
3837      // If Filter is a subset of LFilter, i.e. every element of Filter is also
3838      // an element of LFilter, then discard LFilter.
3839      SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3840      // If Filter is empty then it is a subset of LFilter.
3841      if (!FElts) {
3842        // Discard LFilter.
3843        NewClauses.erase(J);
3844        MakeNewInstruction = true;
3845        // Move on to the next filter.
3846        continue;
3847      }
3848      unsigned LElts = LTy->getNumElements();
3849      // If Filter is longer than LFilter then it cannot be a subset of it.
3850      if (FElts > LElts)
3851        // Move on to the next filter.
3852        continue;
3853      // At this point we know that LFilter has at least one element.
3854      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3855        // Filter is a subset of LFilter iff Filter contains only zeros (as we
3856        // already know that Filter is not longer than LFilter).
3857        if (isa<ConstantAggregateZero>(Filter)) {
3858          assert(FElts <= LElts && "Should have handled this case earlier!");
3859          // Discard LFilter.
3860          NewClauses.erase(J);
3861          MakeNewInstruction = true;
3862        }
3863        // Move on to the next filter.
3864        continue;
3865      }
3866      ConstantArray *LArray = cast<ConstantArray>(LFilter);
3867      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3868        // Since Filter is non-empty and contains only zeros, it is a subset of
3869        // LFilter iff LFilter contains a zero.
3870        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3871        for (unsigned l = 0; l != LElts; ++l)
3872          if (LArray->getOperand(l)->isNullValue()) {
3873            // LFilter contains a zero - discard it.
3874            NewClauses.erase(J);
3875            MakeNewInstruction = true;
3876            break;
3877          }
3878        // Move on to the next filter.
3879        continue;
3880      }
3881      // At this point we know that both filters are ConstantArrays.  Loop over
3882      // operands to see whether every element of Filter is also an element of
3883      // LFilter.  Since filters tend to be short this is probably faster than
3884      // using a method that scales nicely.
3885      ConstantArray *FArray = cast<ConstantArray>(Filter);
3886      bool AllFound = true;
3887      for (unsigned f = 0; f != FElts; ++f) {
3888        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3889        AllFound = false;
3890        for (unsigned l = 0; l != LElts; ++l) {
3891          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3892          if (LTypeInfo == FTypeInfo) {
3893            AllFound = true;
3894            break;
3895          }
3896        }
3897        if (!AllFound)
3898          break;
3899      }
3900      if (AllFound) {
3901        // Discard LFilter.
3902        NewClauses.erase(J);
3903        MakeNewInstruction = true;
3904      }
3905      // Move on to the next filter.
3906    }
3907  }
3908
3909  // If we changed any of the clauses, replace the old landingpad instruction
3910  // with a new one.
3911  if (MakeNewInstruction) {
3912    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3913                                                 NewClauses.size());
3914    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3915      NLI->addClause(NewClauses[i]);
3916    // A landing pad with no clauses must have the cleanup flag set.  It is
3917    // theoretically possible, though highly unlikely, that we eliminated all
3918    // clauses.  If so, force the cleanup flag to true.
3919    if (NewClauses.empty())
3920      CleanupFlag = true;
3921    NLI->setCleanup(CleanupFlag);
3922    return NLI;
3923  }
3924
3925  // Even if none of the clauses changed, we may nonetheless have understood
3926  // that the cleanup flag is pointless.  Clear it if so.
3927  if (LI.isCleanup() != CleanupFlag) {
3928    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3929    LI.setCleanup(CleanupFlag);
3930    return &LI;
3931  }
3932
3933  return nullptr;
3934}
3935
3936Value *
3937InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3938  // Try to push freeze through instructions that propagate but don't produce
3939  // poison as far as possible.  If an operand of freeze follows three
3940  // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3941  // guaranteed-non-poison operands then push the freeze through to the one
3942  // operand that is not guaranteed non-poison.  The actual transform is as
3943  // follows.
3944  //   Op1 = ...                        ; Op1 can be posion
3945  //   Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3946  //                                    ; single guaranteed-non-poison operands
3947  //   ... = Freeze(Op0)
3948  // =>
3949  //   Op1 = ...
3950  //   Op1.fr = Freeze(Op1)
3951  //   ... = Inst(Op1.fr, NonPoisonOps...)
3952  auto *OrigOp = OrigFI.getOperand(0);
3953  auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3954
3955  // While we could change the other users of OrigOp to use freeze(OrigOp), that
3956  // potentially reduces their optimization potential, so let's only do this iff
3957  // the OrigOp is only used by the freeze.
3958  if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
3959    return nullptr;
3960
3961  // We can't push the freeze through an instruction which can itself create
3962  // poison.  If the only source of new poison is flags, we can simply
3963  // strip them (since we know the only use is the freeze and nothing can
3964  // benefit from them.)
3965  if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
3966                             /*ConsiderFlagsAndMetadata*/ false))
3967    return nullptr;
3968
3969  // If operand is guaranteed not to be poison, there is no need to add freeze
3970  // to the operand. So we first find the operand that is not guaranteed to be
3971  // poison.
3972  Use *MaybePoisonOperand = nullptr;
3973  for (Use &U : OrigOpInst->operands()) {
3974    if (isa<MetadataAsValue>(U.get()) ||
3975        isGuaranteedNotToBeUndefOrPoison(U.get()))
3976      continue;
3977    if (!MaybePoisonOperand)
3978      MaybePoisonOperand = &U;
3979    else
3980      return nullptr;
3981  }
3982
3983  OrigOpInst->dropPoisonGeneratingFlagsAndMetadata();
3984
3985  // If all operands are guaranteed to be non-poison, we can drop freeze.
3986  if (!MaybePoisonOperand)
3987    return OrigOp;
3988
3989  Builder.SetInsertPoint(OrigOpInst);
3990  auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
3991      MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3992
3993  replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3994  return OrigOp;
3995}
3996
3997Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
3998                                                        PHINode *PN) {
3999  // Detect whether this is a recurrence with a start value and some number of
4000  // backedge values. We'll check whether we can push the freeze through the
4001  // backedge values (possibly dropping poison flags along the way) until we
4002  // reach the phi again. In that case, we can move the freeze to the start
4003  // value.
4004  Use *StartU = nullptr;
4005  SmallVector<Value *> Worklist;
4006  for (Use &U : PN->incoming_values()) {
4007    if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
4008      // Add backedge value to worklist.
4009      Worklist.push_back(U.get());
4010      continue;
4011    }
4012
4013    // Don't bother handling multiple start values.
4014    if (StartU)
4015      return nullptr;
4016    StartU = &U;
4017  }
4018
4019  if (!StartU || Worklist.empty())
4020    return nullptr; // Not a recurrence.
4021
4022  Value *StartV = StartU->get();
4023  BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
4024  bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
4025  // We can't insert freeze if the start value is the result of the
4026  // terminator (e.g. an invoke).
4027  if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
4028    return nullptr;
4029
4030  SmallPtrSet<Value *, 32> Visited;
4031  SmallVector<Instruction *> DropFlags;
4032  while (!Worklist.empty()) {
4033    Value *V = Worklist.pop_back_val();
4034    if (!Visited.insert(V).second)
4035      continue;
4036
4037    if (Visited.size() > 32)
4038      return nullptr; // Limit the total number of values we inspect.
4039
4040    // Assume that PN is non-poison, because it will be after the transform.
4041    if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
4042      continue;
4043
4044    Instruction *I = dyn_cast<Instruction>(V);
4045    if (!I || canCreateUndefOrPoison(cast<Operator>(I),
4046                                     /*ConsiderFlagsAndMetadata*/ false))
4047      return nullptr;
4048
4049    DropFlags.push_back(I);
4050    append_range(Worklist, I->operands());
4051  }
4052
4053  for (Instruction *I : DropFlags)
4054    I->dropPoisonGeneratingFlagsAndMetadata();
4055
4056  if (StartNeedsFreeze) {
4057    Builder.SetInsertPoint(StartBB->getTerminator());
4058    Value *FrozenStartV = Builder.CreateFreeze(StartV,
4059                                               StartV->getName() + ".fr");
4060    replaceUse(*StartU, FrozenStartV);
4061  }
4062  return replaceInstUsesWith(FI, PN);
4063}
4064
4065bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
4066  Value *Op = FI.getOperand(0);
4067
4068  if (isa<Constant>(Op) || Op->hasOneUse())
4069    return false;
4070
4071  // Move the freeze directly after the definition of its operand, so that
4072  // it dominates the maximum number of uses. Note that it may not dominate
4073  // *all* uses if the operand is an invoke/callbr and the use is in a phi on
4074  // the normal/default destination. This is why the domination check in the
4075  // replacement below is still necessary.
4076  BasicBlock::iterator MoveBefore;
4077  if (isa<Argument>(Op)) {
4078    MoveBefore =
4079        FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
4080  } else {
4081    auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
4082    if (!MoveBeforeOpt)
4083      return false;
4084    MoveBefore = *MoveBeforeOpt;
4085  }
4086
4087  // Don't move to the position of a debug intrinsic.
4088  if (isa<DbgInfoIntrinsic>(MoveBefore))
4089    MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4090  // Re-point iterator to come after any debug-info records, if we're
4091  // running in "RemoveDIs" mode
4092  MoveBefore.setHeadBit(false);
4093
4094  bool Changed = false;
4095  if (&FI != &*MoveBefore) {
4096    FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
4097    Changed = true;
4098  }
4099
4100  Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
4101    bool Dominates = DT.dominates(&FI, U);
4102    Changed |= Dominates;
4103    return Dominates;
4104  });
4105
4106  return Changed;
4107}
4108
4109// Check if any direct or bitcast user of this value is a shuffle instruction.
4110static bool isUsedWithinShuffleVector(Value *V) {
4111  for (auto *U : V->users()) {
4112    if (isa<ShuffleVectorInst>(U))
4113      return true;
4114    else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
4115      return true;
4116  }
4117  return false;
4118}
4119
4120Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
4121  Value *Op0 = I.getOperand(0);
4122
4123  if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
4124    return replaceInstUsesWith(I, V);
4125
4126  // freeze (phi const, x) --> phi const, (freeze x)
4127  if (auto *PN = dyn_cast<PHINode>(Op0)) {
4128    if (Instruction *NV = foldOpIntoPhi(I, PN))
4129      return NV;
4130    if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
4131      return NV;
4132  }
4133
4134  if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
4135    return replaceInstUsesWith(I, NI);
4136
4137  // If I is freeze(undef), check its uses and fold it to a fixed constant.
4138  // - or: pick -1
4139  // - select's condition: if the true value is constant, choose it by making
4140  //                       the condition true.
4141  // - default: pick 0
4142  //
4143  // Note that this transform is intentionally done here rather than
4144  // via an analysis in InstSimplify or at individual user sites. That is
4145  // because we must produce the same value for all uses of the freeze -
4146  // it's the reason "freeze" exists!
4147  //
4148  // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4149  //       duplicating logic for binops at least.
4150  auto getUndefReplacement = [&I](Type *Ty) {
4151    Constant *BestValue = nullptr;
4152    Constant *NullValue = Constant::getNullValue(Ty);
4153    for (const auto *U : I.users()) {
4154      Constant *C = NullValue;
4155      if (match(U, m_Or(m_Value(), m_Value())))
4156        C = ConstantInt::getAllOnesValue(Ty);
4157      else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4158        C = ConstantInt::getTrue(Ty);
4159
4160      if (!BestValue)
4161        BestValue = C;
4162      else if (BestValue != C)
4163        BestValue = NullValue;
4164    }
4165    assert(BestValue && "Must have at least one use");
4166    return BestValue;
4167  };
4168
4169  if (match(Op0, m_Undef())) {
4170    // Don't fold freeze(undef/poison) if it's used as a vector operand in
4171    // a shuffle. This may improve codegen for shuffles that allow
4172    // unspecified inputs.
4173    if (isUsedWithinShuffleVector(&I))
4174      return nullptr;
4175    return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4176  }
4177
4178  Constant *C;
4179  if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4180    Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4181    return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
4182  }
4183
4184  // Replace uses of Op with freeze(Op).
4185  if (freezeOtherUses(I))
4186    return &I;
4187
4188  return nullptr;
4189}
4190
4191/// Check for case where the call writes to an otherwise dead alloca.  This
4192/// shows up for unused out-params in idiomatic C/C++ code.   Note that this
4193/// helper *only* analyzes the write; doesn't check any other legality aspect.
4194static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
4195  auto *CB = dyn_cast<CallBase>(I);
4196  if (!CB)
4197    // TODO: handle e.g. store to alloca here - only worth doing if we extend
4198    // to allow reload along used path as described below.  Otherwise, this
4199    // is simply a store to a dead allocation which will be removed.
4200    return false;
4201  std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4202  if (!Dest)
4203    return false;
4204  auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4205  if (!AI)
4206    // TODO: allow malloc?
4207    return false;
4208  // TODO: allow memory access dominated by move point?  Note that since AI
4209  // could have a reference to itself captured by the call, we would need to
4210  // account for cycles in doing so.
4211  SmallVector<const User *> AllocaUsers;
4212  SmallPtrSet<const User *, 4> Visited;
4213  auto pushUsers = [&](const Instruction &I) {
4214    for (const User *U : I.users()) {
4215      if (Visited.insert(U).second)
4216        AllocaUsers.push_back(U);
4217    }
4218  };
4219  pushUsers(*AI);
4220  while (!AllocaUsers.empty()) {
4221    auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4222    if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4223        isa<AddrSpaceCastInst>(UserI)) {
4224      pushUsers(*UserI);
4225      continue;
4226    }
4227    if (UserI == CB)
4228      continue;
4229    // TODO: support lifetime.start/end here
4230    return false;
4231  }
4232  return true;
4233}
4234
4235/// Try to move the specified instruction from its current block into the
4236/// beginning of DestBlock, which can only happen if it's safe to move the
4237/// instruction past all of the instructions between it and the end of its
4238/// block.
4239bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
4240                                            BasicBlock *DestBlock) {
4241  BasicBlock *SrcBlock = I->getParent();
4242
4243  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4244  if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4245      I->isTerminator())
4246    return false;
4247
4248  // Do not sink static or dynamic alloca instructions. Static allocas must
4249  // remain in the entry block, and dynamic allocas must not be sunk in between
4250  // a stacksave / stackrestore pair, which would incorrectly shorten its
4251  // lifetime.
4252  if (isa<AllocaInst>(I))
4253    return false;
4254
4255  // Do not sink into catchswitch blocks.
4256  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4257    return false;
4258
4259  // Do not sink convergent call instructions.
4260  if (auto *CI = dyn_cast<CallInst>(I)) {
4261    if (CI->isConvergent())
4262      return false;
4263  }
4264
4265  // Unless we can prove that the memory write isn't visibile except on the
4266  // path we're sinking to, we must bail.
4267  if (I->mayWriteToMemory()) {
4268    if (!SoleWriteToDeadLocal(I, TLI))
4269      return false;
4270  }
4271
4272  // We can only sink load instructions if there is nothing between the load and
4273  // the end of block that could change the value.
4274  if (I->mayReadFromMemory()) {
4275    // We don't want to do any sophisticated alias analysis, so we only check
4276    // the instructions after I in I's parent block if we try to sink to its
4277    // successor block.
4278    if (DestBlock->getUniquePredecessor() != I->getParent())
4279      return false;
4280    for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4281                              E = I->getParent()->end();
4282         Scan != E; ++Scan)
4283      if (Scan->mayWriteToMemory())
4284        return false;
4285  }
4286
4287  I->dropDroppableUses([&](const Use *U) {
4288    auto *I = dyn_cast<Instruction>(U->getUser());
4289    if (I && I->getParent() != DestBlock) {
4290      Worklist.add(I);
4291      return true;
4292    }
4293    return false;
4294  });
4295  /// FIXME: We could remove droppable uses that are not dominated by
4296  /// the new position.
4297
4298  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4299  I->moveBefore(*DestBlock, InsertPos);
4300  ++NumSunkInst;
4301
4302  // Also sink all related debug uses from the source basic block. Otherwise we
4303  // get debug use before the def. Attempt to salvage debug uses first, to
4304  // maximise the range variables have location for. If we cannot salvage, then
4305  // mark the location undef: we know it was supposed to receive a new location
4306  // here, but that computation has been sunk.
4307  SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4308  findDbgUsers(DbgUsers, I);
4309
4310  // For all debug values in the destination block, the sunk instruction
4311  // will still be available, so they do not need to be dropped.
4312  SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
4313  SmallVector<DPValue *, 2> DPValuesToSalvage;
4314  for (auto &DbgUser : DbgUsers)
4315    if (DbgUser->getParent() != DestBlock)
4316      DbgUsersToSalvage.push_back(DbgUser);
4317
4318  // Process the sinking DbgUsersToSalvage in reverse order, as we only want
4319  // to clone the last appearing debug intrinsic for each given variable.
4320  SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4321  for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
4322    if (DVI->getParent() == SrcBlock)
4323      DbgUsersToSink.push_back(DVI);
4324  llvm::sort(DbgUsersToSink,
4325             [](auto *A, auto *B) { return B->comesBefore(A); });
4326
4327  SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4328  SmallSet<DebugVariable, 4> SunkVariables;
4329  for (auto *User : DbgUsersToSink) {
4330    // A dbg.declare instruction should not be cloned, since there can only be
4331    // one per variable fragment. It should be left in the original place
4332    // because the sunk instruction is not an alloca (otherwise we could not be
4333    // here).
4334    if (isa<DbgDeclareInst>(User))
4335      continue;
4336
4337    DebugVariable DbgUserVariable =
4338        DebugVariable(User->getVariable(), User->getExpression(),
4339                      User->getDebugLoc()->getInlinedAt());
4340
4341    if (!SunkVariables.insert(DbgUserVariable).second)
4342      continue;
4343
4344    // Leave dbg.assign intrinsics in their original positions and there should
4345    // be no need to insert a clone.
4346    if (isa<DbgAssignIntrinsic>(User))
4347      continue;
4348
4349    DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4350    if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4351      DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4352    LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4353  }
4354
4355  // Perform salvaging without the clones, then sink the clones.
4356  if (!DIIClones.empty()) {
4357    // RemoveDIs: pass in empty vector of DPValues until we get to instrumenting
4358    // this pass.
4359    SmallVector<DPValue *, 1> DummyDPValues;
4360    salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues);
4361    // The clones are in reverse order of original appearance, reverse again to
4362    // maintain the original order.
4363    for (auto &DIIClone : llvm::reverse(DIIClones)) {
4364      DIIClone->insertBefore(&*InsertPos);
4365      LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4366    }
4367  }
4368
4369  return true;
4370}
4371
4372bool InstCombinerImpl::run() {
4373  while (!Worklist.isEmpty()) {
4374    // Walk deferred instructions in reverse order, and push them to the
4375    // worklist, which means they'll end up popped from the worklist in-order.
4376    while (Instruction *I = Worklist.popDeferred()) {
4377      // Check to see if we can DCE the instruction. We do this already here to
4378      // reduce the number of uses and thus allow other folds to trigger.
4379      // Note that eraseInstFromFunction() may push additional instructions on
4380      // the deferred worklist, so this will DCE whole instruction chains.
4381      if (isInstructionTriviallyDead(I, &TLI)) {
4382        eraseInstFromFunction(*I);
4383        ++NumDeadInst;
4384        continue;
4385      }
4386
4387      Worklist.push(I);
4388    }
4389
4390    Instruction *I = Worklist.removeOne();
4391    if (I == nullptr) continue;  // skip null values.
4392
4393    // Check to see if we can DCE the instruction.
4394    if (isInstructionTriviallyDead(I, &TLI)) {
4395      eraseInstFromFunction(*I);
4396      ++NumDeadInst;
4397      continue;
4398    }
4399
4400    if (!DebugCounter::shouldExecute(VisitCounter))
4401      continue;
4402
4403    // See if we can trivially sink this instruction to its user if we can
4404    // prove that the successor is not executed more frequently than our block.
4405    // Return the UserBlock if successful.
4406    auto getOptionalSinkBlockForInst =
4407        [this](Instruction *I) -> std::optional<BasicBlock *> {
4408      if (!EnableCodeSinking)
4409        return std::nullopt;
4410
4411      BasicBlock *BB = I->getParent();
4412      BasicBlock *UserParent = nullptr;
4413      unsigned NumUsers = 0;
4414
4415      for (auto *U : I->users()) {
4416        if (U->isDroppable())
4417          continue;
4418        if (NumUsers > MaxSinkNumUsers)
4419          return std::nullopt;
4420
4421        Instruction *UserInst = cast<Instruction>(U);
4422        // Special handling for Phi nodes - get the block the use occurs in.
4423        if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
4424          for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
4425            if (PN->getIncomingValue(i) == I) {
4426              // Bail out if we have uses in different blocks. We don't do any
4427              // sophisticated analysis (i.e finding NearestCommonDominator of
4428              // these use blocks).
4429              if (UserParent && UserParent != PN->getIncomingBlock(i))
4430                return std::nullopt;
4431              UserParent = PN->getIncomingBlock(i);
4432            }
4433          }
4434          assert(UserParent && "expected to find user block!");
4435        } else {
4436          if (UserParent && UserParent != UserInst->getParent())
4437            return std::nullopt;
4438          UserParent = UserInst->getParent();
4439        }
4440
4441        // Make sure these checks are done only once, naturally we do the checks
4442        // the first time we get the userparent, this will save compile time.
4443        if (NumUsers == 0) {
4444          // Try sinking to another block. If that block is unreachable, then do
4445          // not bother. SimplifyCFG should handle it.
4446          if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
4447            return std::nullopt;
4448
4449          auto *Term = UserParent->getTerminator();
4450          // See if the user is one of our successors that has only one
4451          // predecessor, so that we don't have to split the critical edge.
4452          // Another option where we can sink is a block that ends with a
4453          // terminator that does not pass control to other block (such as
4454          // return or unreachable or resume). In this case:
4455          //   - I dominates the User (by SSA form);
4456          //   - the User will be executed at most once.
4457          // So sinking I down to User is always profitable or neutral.
4458          if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
4459            return std::nullopt;
4460
4461          assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
4462        }
4463
4464        NumUsers++;
4465      }
4466
4467      // No user or only has droppable users.
4468      if (!UserParent)
4469        return std::nullopt;
4470
4471      return UserParent;
4472    };
4473
4474    auto OptBB = getOptionalSinkBlockForInst(I);
4475    if (OptBB) {
4476      auto *UserParent = *OptBB;
4477      // Okay, the CFG is simple enough, try to sink this instruction.
4478      if (tryToSinkInstruction(I, UserParent)) {
4479        LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
4480        MadeIRChange = true;
4481        // We'll add uses of the sunk instruction below, but since
4482        // sinking can expose opportunities for it's *operands* add
4483        // them to the worklist
4484        for (Use &U : I->operands())
4485          if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
4486            Worklist.push(OpI);
4487      }
4488    }
4489
4490    // Now that we have an instruction, try combining it to simplify it.
4491    Builder.SetInsertPoint(I);
4492    Builder.CollectMetadataToCopy(
4493        I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4494
4495#ifndef NDEBUG
4496    std::string OrigI;
4497#endif
4498    LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
4499    LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
4500
4501    if (Instruction *Result = visit(*I)) {
4502      ++NumCombined;
4503      // Should we replace the old instruction with a new one?
4504      if (Result != I) {
4505        LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
4506                          << "    New = " << *Result << '\n');
4507
4508        Result->copyMetadata(*I,
4509                             {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
4510        // Everything uses the new instruction now.
4511        I->replaceAllUsesWith(Result);
4512
4513        // Move the name to the new instruction first.
4514        Result->takeName(I);
4515
4516        // Insert the new instruction into the basic block...
4517        BasicBlock *InstParent = I->getParent();
4518        BasicBlock::iterator InsertPos = I->getIterator();
4519
4520        // Are we replace a PHI with something that isn't a PHI, or vice versa?
4521        if (isa<PHINode>(Result) != isa<PHINode>(I)) {
4522          // We need to fix up the insertion point.
4523          if (isa<PHINode>(I)) // PHI -> Non-PHI
4524            InsertPos = InstParent->getFirstInsertionPt();
4525          else // Non-PHI -> PHI
4526            InsertPos = InstParent->getFirstNonPHIIt();
4527        }
4528
4529        Result->insertInto(InstParent, InsertPos);
4530
4531        // Push the new instruction and any users onto the worklist.
4532        Worklist.pushUsersToWorkList(*Result);
4533        Worklist.push(Result);
4534
4535        eraseInstFromFunction(*I);
4536      } else {
4537        LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
4538                          << "    New = " << *I << '\n');
4539
4540        // If the instruction was modified, it's possible that it is now dead.
4541        // if so, remove it.
4542        if (isInstructionTriviallyDead(I, &TLI)) {
4543          eraseInstFromFunction(*I);
4544        } else {
4545          Worklist.pushUsersToWorkList(*I);
4546          Worklist.push(I);
4547        }
4548      }
4549      MadeIRChange = true;
4550    }
4551  }
4552
4553  Worklist.zap();
4554  return MadeIRChange;
4555}
4556
4557// Track the scopes used by !alias.scope and !noalias. In a function, a
4558// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
4559// by both sets. If not, the declaration of the scope can be safely omitted.
4560// The MDNode of the scope can be omitted as well for the instructions that are
4561// part of this function. We do not do that at this point, as this might become
4562// too time consuming to do.
4563class AliasScopeTracker {
4564  SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
4565  SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
4566
4567public:
4568  void analyse(Instruction *I) {
4569    // This seems to be faster than checking 'mayReadOrWriteMemory()'.
4570    if (!I->hasMetadataOtherThanDebugLoc())
4571      return;
4572
4573    auto Track = [](Metadata *ScopeList, auto &Container) {
4574      const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
4575      if (!MDScopeList || !Container.insert(MDScopeList).second)
4576        return;
4577      for (const auto &MDOperand : MDScopeList->operands())
4578        if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
4579          Container.insert(MDScope);
4580    };
4581
4582    Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
4583    Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
4584  }
4585
4586  bool isNoAliasScopeDeclDead(Instruction *Inst) {
4587    NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
4588    if (!Decl)
4589      return false;
4590
4591    assert(Decl->use_empty() &&
4592           "llvm.experimental.noalias.scope.decl in use ?");
4593    const MDNode *MDSL = Decl->getScopeList();
4594    assert(MDSL->getNumOperands() == 1 &&
4595           "llvm.experimental.noalias.scope should refer to a single scope");
4596    auto &MDOperand = MDSL->getOperand(0);
4597    if (auto *MD = dyn_cast<MDNode>(MDOperand))
4598      return !UsedAliasScopesAndLists.contains(MD) ||
4599             !UsedNoAliasScopesAndLists.contains(MD);
4600
4601    // Not an MDNode ? throw away.
4602    return true;
4603  }
4604};
4605
4606/// Populate the IC worklist from a function, by walking it in reverse
4607/// post-order and adding all reachable code to the worklist.
4608///
4609/// This has a couple of tricks to make the code faster and more powerful.  In
4610/// particular, we constant fold and DCE instructions as we go, to avoid adding
4611/// them to the worklist (this significantly speeds up instcombine on code where
4612/// many instructions are dead or constant).  Additionally, if we find a branch
4613/// whose condition is a known constant, we only visit the reachable successors.
4614bool InstCombinerImpl::prepareWorklist(
4615    Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) {
4616  bool MadeIRChange = false;
4617  SmallPtrSet<BasicBlock *, 32> LiveBlocks;
4618  SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4619  DenseMap<Constant *, Constant *> FoldedConstants;
4620  AliasScopeTracker SeenAliasScopes;
4621
4622  auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
4623    for (BasicBlock *Succ : successors(BB))
4624      if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
4625        for (PHINode &PN : Succ->phis())
4626          for (Use &U : PN.incoming_values())
4627            if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
4628              U.set(PoisonValue::get(PN.getType()));
4629              MadeIRChange = true;
4630            }
4631  };
4632
4633  for (BasicBlock *BB : RPOT) {
4634    if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
4635          return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4636        })) {
4637      HandleOnlyLiveSuccessor(BB, nullptr);
4638      continue;
4639    }
4640    LiveBlocks.insert(BB);
4641
4642    for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4643      // ConstantProp instruction if trivially constant.
4644      if (!Inst.use_empty() &&
4645          (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4646        if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
4647          LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
4648                            << '\n');
4649          Inst.replaceAllUsesWith(C);
4650          ++NumConstProp;
4651          if (isInstructionTriviallyDead(&Inst, &TLI))
4652            Inst.eraseFromParent();
4653          MadeIRChange = true;
4654          continue;
4655        }
4656
4657      // See if we can constant fold its operands.
4658      for (Use &U : Inst.operands()) {
4659        if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4660          continue;
4661
4662        auto *C = cast<Constant>(U);
4663        Constant *&FoldRes = FoldedConstants[C];
4664        if (!FoldRes)
4665          FoldRes = ConstantFoldConstant(C, DL, &TLI);
4666
4667        if (FoldRes != C) {
4668          LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
4669                            << "\n    Old = " << *C
4670                            << "\n    New = " << *FoldRes << '\n');
4671          U = FoldRes;
4672          MadeIRChange = true;
4673        }
4674      }
4675
4676      // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4677      // these call instructions consumes non-trivial amount of time and
4678      // provides no value for the optimization.
4679      if (!Inst.isDebugOrPseudoInst()) {
4680        InstrsForInstructionWorklist.push_back(&Inst);
4681        SeenAliasScopes.analyse(&Inst);
4682      }
4683    }
4684
4685    // If this is a branch or switch on a constant, mark only the single
4686    // live successor. Otherwise assume all successors are live.
4687    Instruction *TI = BB->getTerminator();
4688    if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
4689      if (isa<UndefValue>(BI->getCondition())) {
4690        // Branch on undef is UB.
4691        HandleOnlyLiveSuccessor(BB, nullptr);
4692        continue;
4693      }
4694      if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
4695        bool CondVal = Cond->getZExtValue();
4696        HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
4697        continue;
4698      }
4699    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4700      if (isa<UndefValue>(SI->getCondition())) {
4701        // Switch on undef is UB.
4702        HandleOnlyLiveSuccessor(BB, nullptr);
4703        continue;
4704      }
4705      if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4706        HandleOnlyLiveSuccessor(BB,
4707                                SI->findCaseValue(Cond)->getCaseSuccessor());
4708        continue;
4709      }
4710    }
4711  }
4712
4713  // Remove instructions inside unreachable blocks. This prevents the
4714  // instcombine code from having to deal with some bad special cases, and
4715  // reduces use counts of instructions.
4716  for (BasicBlock &BB : F) {
4717    if (LiveBlocks.count(&BB))
4718      continue;
4719
4720    unsigned NumDeadInstInBB;
4721    unsigned NumDeadDbgInstInBB;
4722    std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4723        removeAllNonTerminatorAndEHPadInstructions(&BB);
4724
4725    MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4726    NumDeadInst += NumDeadInstInBB;
4727  }
4728
4729  // Once we've found all of the instructions to add to instcombine's worklist,
4730  // add them in reverse order.  This way instcombine will visit from the top
4731  // of the function down.  This jives well with the way that it adds all uses
4732  // of instructions to the worklist after doing a transformation, thus avoiding
4733  // some N^2 behavior in pathological cases.
4734  Worklist.reserve(InstrsForInstructionWorklist.size());
4735  for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4736    // DCE instruction if trivially dead. As we iterate in reverse program
4737    // order here, we will clean up whole chains of dead instructions.
4738    if (isInstructionTriviallyDead(Inst, &TLI) ||
4739        SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4740      ++NumDeadInst;
4741      LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
4742      salvageDebugInfo(*Inst);
4743      Inst->eraseFromParent();
4744      MadeIRChange = true;
4745      continue;
4746    }
4747
4748    Worklist.push(Inst);
4749  }
4750
4751  return MadeIRChange;
4752}
4753
4754static bool combineInstructionsOverFunction(
4755    Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4756    AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4757    DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4758    ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) {
4759  auto &DL = F.getParent()->getDataLayout();
4760
4761  /// Builder - This is an IRBuilder that automatically inserts new
4762  /// instructions into the worklist when they are created.
4763  IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4764      F.getContext(), TargetFolder(DL),
4765      IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4766        Worklist.add(I);
4767        if (auto *Assume = dyn_cast<AssumeInst>(I))
4768          AC.registerAssumption(Assume);
4769      }));
4770
4771  ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
4772
4773  // Lower dbg.declare intrinsics otherwise their value may be clobbered
4774  // by instcombiner.
4775  bool MadeIRChange = false;
4776  if (ShouldLowerDbgDeclare)
4777    MadeIRChange = LowerDbgDeclare(F);
4778
4779  // Iterate while there is work to do.
4780  unsigned Iteration = 0;
4781  while (true) {
4782    ++Iteration;
4783
4784    if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
4785      LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
4786                        << " on " << F.getName()
4787                        << " reached; stopping without verifying fixpoint\n");
4788      break;
4789    }
4790
4791    ++NumWorklistIterations;
4792    LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4793                      << F.getName() << "\n");
4794
4795    InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4796                        ORE, BFI, PSI, DL, LI);
4797    IC.MaxArraySizeForCombine = MaxArraySize;
4798    bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
4799    MadeChangeInThisIteration |= IC.run();
4800    if (!MadeChangeInThisIteration)
4801      break;
4802
4803    MadeIRChange = true;
4804    if (Iteration > Opts.MaxIterations) {
4805      report_fatal_error(
4806          "Instruction Combining did not reach a fixpoint after " +
4807          Twine(Opts.MaxIterations) + " iterations");
4808    }
4809  }
4810
4811  if (Iteration == 1)
4812    ++NumOneIteration;
4813  else if (Iteration == 2)
4814    ++NumTwoIterations;
4815  else if (Iteration == 3)
4816    ++NumThreeIterations;
4817  else
4818    ++NumFourOrMoreIterations;
4819
4820  return MadeIRChange;
4821}
4822
4823InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
4824
4825void InstCombinePass::printPipeline(
4826    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
4827  static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
4828      OS, MapClassName2PassName);
4829  OS << '<';
4830  OS << "max-iterations=" << Options.MaxIterations << ";";
4831  OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
4832  OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
4833  OS << '>';
4834}
4835
4836PreservedAnalyses InstCombinePass::run(Function &F,
4837                                       FunctionAnalysisManager &AM) {
4838  auto &AC = AM.getResult<AssumptionAnalysis>(F);
4839  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4840  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4841  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4842  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4843
4844  // TODO: Only use LoopInfo when the option is set. This requires that the
4845  //       callers in the pass pipeline explicitly set the option.
4846  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4847  if (!LI && Options.UseLoopInfo)
4848    LI = &AM.getResult<LoopAnalysis>(F);
4849
4850  auto *AA = &AM.getResult<AAManager>(F);
4851  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4852  ProfileSummaryInfo *PSI =
4853      MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4854  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4855      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4856
4857  if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4858                                       BFI, PSI, LI, Options))
4859    // No changes, all analyses are preserved.
4860    return PreservedAnalyses::all();
4861
4862  // Mark all the analyses that instcombine updates as preserved.
4863  PreservedAnalyses PA;
4864  PA.preserveSet<CFGAnalyses>();
4865  return PA;
4866}
4867
4868void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4869  AU.setPreservesCFG();
4870  AU.addRequired<AAResultsWrapperPass>();
4871  AU.addRequired<AssumptionCacheTracker>();
4872  AU.addRequired<TargetLibraryInfoWrapperPass>();
4873  AU.addRequired<TargetTransformInfoWrapperPass>();
4874  AU.addRequired<DominatorTreeWrapperPass>();
4875  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4876  AU.addPreserved<DominatorTreeWrapperPass>();
4877  AU.addPreserved<AAResultsWrapperPass>();
4878  AU.addPreserved<BasicAAWrapperPass>();
4879  AU.addPreserved<GlobalsAAWrapperPass>();
4880  AU.addRequired<ProfileSummaryInfoWrapperPass>();
4881  LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4882}
4883
4884bool InstructionCombiningPass::runOnFunction(Function &F) {
4885  if (skipFunction(F))
4886    return false;
4887
4888  // Required analyses.
4889  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4890  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4891  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4892  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4893  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4894  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4895
4896  // Optional analyses.
4897  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4898  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4899  ProfileSummaryInfo *PSI =
4900      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4901  BlockFrequencyInfo *BFI =
4902      (PSI && PSI->hasProfileSummary()) ?
4903      &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4904      nullptr;
4905
4906  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4907                                         BFI, PSI, LI, InstCombineOptions());
4908}
4909
4910char InstructionCombiningPass::ID = 0;
4911
4912InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
4913  initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4914}
4915
4916INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4917                      "Combine redundant instructions", false, false)
4918INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4919INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4920INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4921INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4922INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4923INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4924INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4925INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4926INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4927INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4928                    "Combine redundant instructions", false, false)
4929
4930// Initialization Routines
4931void llvm::initializeInstCombine(PassRegistry &Registry) {
4932  initializeInstructionCombiningPassPass(Registry);
4933}
4934
4935FunctionPass *llvm::createInstructionCombiningPass() {
4936  return new InstructionCombiningPass();
4937}
4938