1//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that Mips uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MipsISelLowering.h"
15#include "MCTargetDesc/MipsBaseInfo.h"
16#include "MCTargetDesc/MipsInstPrinter.h"
17#include "MCTargetDesc/MipsMCTargetDesc.h"
18#include "MipsCCState.h"
19#include "MipsInstrInfo.h"
20#include "MipsMachineFunction.h"
21#include "MipsRegisterInfo.h"
22#include "MipsSubtarget.h"
23#include "MipsTargetMachine.h"
24#include "MipsTargetObjectFile.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/StringSwitch.h"
31#include "llvm/CodeGen/CallingConvLower.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/ISDOpcodes.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineInstr.h"
38#include "llvm/CodeGen/MachineInstrBuilder.h"
39#include "llvm/CodeGen/MachineJumpTableInfo.h"
40#include "llvm/CodeGen/MachineMemOperand.h"
41#include "llvm/CodeGen/MachineOperand.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/MachineValueType.h"
44#include "llvm/CodeGen/RuntimeLibcalls.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/CodeGen/SelectionDAGNodes.h"
47#include "llvm/CodeGen/TargetFrameLowering.h"
48#include "llvm/CodeGen/TargetInstrInfo.h"
49#include "llvm/CodeGen/TargetRegisterInfo.h"
50#include "llvm/CodeGen/ValueTypes.h"
51#include "llvm/IR/CallingConv.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
54#include "llvm/IR/DebugLoc.h"
55#include "llvm/IR/DerivedTypes.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/GlobalValue.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/Value.h"
60#include "llvm/MC/MCContext.h"
61#include "llvm/MC/MCRegisterInfo.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/CodeGen.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
67#include "llvm/Support/MathExtras.h"
68#include "llvm/Target/TargetMachine.h"
69#include "llvm/Target/TargetOptions.h"
70#include <algorithm>
71#include <cassert>
72#include <cctype>
73#include <cstdint>
74#include <deque>
75#include <iterator>
76#include <utility>
77#include <vector>
78
79using namespace llvm;
80
81#define DEBUG_TYPE "mips-lower"
82
83STATISTIC(NumTailCalls, "Number of tail calls");
84
85static cl::opt<bool>
86NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
87               cl::desc("MIPS: Don't trap on integer division by zero."),
88               cl::init(false));
89
90extern cl::opt<bool> EmitJalrReloc;
91
92static const MCPhysReg Mips64DPRegs[8] = {
93  Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
94  Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
95};
96
97// The MIPS MSA ABI passes vector arguments in the integer register set.
98// The number of integer registers used is dependant on the ABI used.
99MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
100                                                      CallingConv::ID CC,
101                                                      EVT VT) const {
102  if (!VT.isVector())
103    return getRegisterType(Context, VT);
104
105  if (VT.isPow2VectorType() && VT.getVectorElementType().isRound())
106    return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32
107                                                             : MVT::i64;
108  return getRegisterType(Context, VT.getVectorElementType());
109}
110
111unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
112                                                           CallingConv::ID CC,
113                                                           EVT VT) const {
114  if (VT.isVector()) {
115    if (VT.isPow2VectorType() && VT.getVectorElementType().isRound())
116      return divideCeil(VT.getSizeInBits(), Subtarget.isABI_O32() ? 32 : 64);
117    return VT.getVectorNumElements() *
118           getNumRegisters(Context, VT.getVectorElementType());
119  }
120  return MipsTargetLowering::getNumRegisters(Context, VT);
121}
122
123unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
124    LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
125    unsigned &NumIntermediates, MVT &RegisterVT) const {
126  if (VT.isPow2VectorType()) {
127    IntermediateVT = getRegisterTypeForCallingConv(Context, CC, VT);
128    RegisterVT = IntermediateVT.getSimpleVT();
129    NumIntermediates = getNumRegistersForCallingConv(Context, CC, VT);
130    return NumIntermediates;
131  }
132  IntermediateVT = VT.getVectorElementType();
133  NumIntermediates = VT.getVectorNumElements();
134  RegisterVT = getRegisterType(Context, IntermediateVT);
135  return NumIntermediates * getNumRegisters(Context, IntermediateVT);
136}
137
138SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
139  MachineFunction &MF = DAG.getMachineFunction();
140  MipsFunctionInfo *FI = MF.getInfo<MipsFunctionInfo>();
141  return DAG.getRegister(FI->getGlobalBaseReg(MF), Ty);
142}
143
144SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
145                                          SelectionDAG &DAG,
146                                          unsigned Flag) const {
147  return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
148}
149
150SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
151                                          SelectionDAG &DAG,
152                                          unsigned Flag) const {
153  return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
154}
155
156SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
157                                          SelectionDAG &DAG,
158                                          unsigned Flag) const {
159  return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
160}
161
162SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
163                                          SelectionDAG &DAG,
164                                          unsigned Flag) const {
165  return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
166}
167
168SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
169                                          SelectionDAG &DAG,
170                                          unsigned Flag) const {
171  return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
172                                   N->getOffset(), Flag);
173}
174
175const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
176  switch ((MipsISD::NodeType)Opcode) {
177  case MipsISD::FIRST_NUMBER:      break;
178  case MipsISD::JmpLink:           return "MipsISD::JmpLink";
179  case MipsISD::TailCall:          return "MipsISD::TailCall";
180  case MipsISD::Highest:           return "MipsISD::Highest";
181  case MipsISD::Higher:            return "MipsISD::Higher";
182  case MipsISD::Hi:                return "MipsISD::Hi";
183  case MipsISD::Lo:                return "MipsISD::Lo";
184  case MipsISD::GotHi:             return "MipsISD::GotHi";
185  case MipsISD::TlsHi:             return "MipsISD::TlsHi";
186  case MipsISD::GPRel:             return "MipsISD::GPRel";
187  case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
188  case MipsISD::Ret:               return "MipsISD::Ret";
189  case MipsISD::ERet:              return "MipsISD::ERet";
190  case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
191  case MipsISD::FAbs:              return "MipsISD::FAbs";
192  case MipsISD::FMS:               return "MipsISD::FMS";
193  case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
194  case MipsISD::FPCmp:             return "MipsISD::FPCmp";
195  case MipsISD::FSELECT:           return "MipsISD::FSELECT";
196  case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64";
197  case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
198  case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
199  case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
200  case MipsISD::MFHI:              return "MipsISD::MFHI";
201  case MipsISD::MFLO:              return "MipsISD::MFLO";
202  case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
203  case MipsISD::Mult:              return "MipsISD::Mult";
204  case MipsISD::Multu:             return "MipsISD::Multu";
205  case MipsISD::MAdd:              return "MipsISD::MAdd";
206  case MipsISD::MAddu:             return "MipsISD::MAddu";
207  case MipsISD::MSub:              return "MipsISD::MSub";
208  case MipsISD::MSubu:             return "MipsISD::MSubu";
209  case MipsISD::DivRem:            return "MipsISD::DivRem";
210  case MipsISD::DivRemU:           return "MipsISD::DivRemU";
211  case MipsISD::DivRem16:          return "MipsISD::DivRem16";
212  case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
213  case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
214  case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
215  case MipsISD::Wrapper:           return "MipsISD::Wrapper";
216  case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
217  case MipsISD::Sync:              return "MipsISD::Sync";
218  case MipsISD::Ext:               return "MipsISD::Ext";
219  case MipsISD::Ins:               return "MipsISD::Ins";
220  case MipsISD::CIns:              return "MipsISD::CIns";
221  case MipsISD::LWL:               return "MipsISD::LWL";
222  case MipsISD::LWR:               return "MipsISD::LWR";
223  case MipsISD::SWL:               return "MipsISD::SWL";
224  case MipsISD::SWR:               return "MipsISD::SWR";
225  case MipsISD::LDL:               return "MipsISD::LDL";
226  case MipsISD::LDR:               return "MipsISD::LDR";
227  case MipsISD::SDL:               return "MipsISD::SDL";
228  case MipsISD::SDR:               return "MipsISD::SDR";
229  case MipsISD::EXTP:              return "MipsISD::EXTP";
230  case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
231  case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
232  case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
233  case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
234  case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
235  case MipsISD::SHILO:             return "MipsISD::SHILO";
236  case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
237  case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
238  case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
239  case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
240  case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
241  case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
242  case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
243  case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
244  case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
245  case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
246  case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
247  case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
248  case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
249  case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
250  case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
251  case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
252  case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
253  case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
254  case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
255  case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
256  case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
257  case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
258  case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
259  case MipsISD::MULT:              return "MipsISD::MULT";
260  case MipsISD::MULTU:             return "MipsISD::MULTU";
261  case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
262  case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
263  case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
264  case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
265  case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
266  case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
267  case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
268  case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
269  case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
270  case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
271  case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
272  case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
273  case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
274  case MipsISD::VCEQ:              return "MipsISD::VCEQ";
275  case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
276  case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
277  case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
278  case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
279  case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
280  case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
281  case MipsISD::VNOR:              return "MipsISD::VNOR";
282  case MipsISD::VSHF:              return "MipsISD::VSHF";
283  case MipsISD::SHF:               return "MipsISD::SHF";
284  case MipsISD::ILVEV:             return "MipsISD::ILVEV";
285  case MipsISD::ILVOD:             return "MipsISD::ILVOD";
286  case MipsISD::ILVL:              return "MipsISD::ILVL";
287  case MipsISD::ILVR:              return "MipsISD::ILVR";
288  case MipsISD::PCKEV:             return "MipsISD::PCKEV";
289  case MipsISD::PCKOD:             return "MipsISD::PCKOD";
290  case MipsISD::INSVE:             return "MipsISD::INSVE";
291  }
292  return nullptr;
293}
294
295MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
296                                       const MipsSubtarget &STI)
297    : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
298  // Mips does not have i1 type, so use i32 for
299  // setcc operations results (slt, sgt, ...).
300  setBooleanContents(ZeroOrOneBooleanContent);
301  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
302  // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
303  // does. Integer booleans still use 0 and 1.
304  if (Subtarget.hasMips32r6())
305    setBooleanContents(ZeroOrOneBooleanContent,
306                       ZeroOrNegativeOneBooleanContent);
307
308  // Load extented operations for i1 types must be promoted
309  for (MVT VT : MVT::integer_valuetypes()) {
310    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
311    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
312    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
313  }
314
315  // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
316  // for f32, f16
317  for (MVT VT : MVT::fp_valuetypes()) {
318    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
319    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
320  }
321
322  // Set LoadExtAction for f16 vectors to Expand
323  for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
324    MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
325    if (F16VT.isValid())
326      setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
327  }
328
329  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
330  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
331
332  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
333
334  // Used by legalize types to correctly generate the setcc result.
335  // Without this, every float setcc comes with a AND/OR with the result,
336  // we don't want this, since the fpcmp result goes to a flag register,
337  // which is used implicitly by brcond and select operations.
338  AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
339
340  // Mips Custom Operations
341  setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
342  setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
343  setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
344  setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
345  setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
346  setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
347  setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
348  setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
349  setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
350  setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
351  setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
352  setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
353  setOperationAction(ISD::FABS,               MVT::f32,   Custom);
354  setOperationAction(ISD::FABS,               MVT::f64,   Custom);
355  setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
356  setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
357  setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
358
359  if (Subtarget.isGP64bit()) {
360    setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
361    setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
362    setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
363    setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
364    setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
365    setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
366    setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
367    setOperationAction(ISD::STORE,              MVT::i64,   Custom);
368    setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
369    setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
370    setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
371    setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
372  }
373
374  if (!Subtarget.isGP64bit()) {
375    setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
376    setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
377    setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
378  }
379
380  setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom);
381  if (Subtarget.isGP64bit())
382    setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom);
383
384  setOperationAction(ISD::SDIV, MVT::i32, Expand);
385  setOperationAction(ISD::SREM, MVT::i32, Expand);
386  setOperationAction(ISD::UDIV, MVT::i32, Expand);
387  setOperationAction(ISD::UREM, MVT::i32, Expand);
388  setOperationAction(ISD::SDIV, MVT::i64, Expand);
389  setOperationAction(ISD::SREM, MVT::i64, Expand);
390  setOperationAction(ISD::UDIV, MVT::i64, Expand);
391  setOperationAction(ISD::UREM, MVT::i64, Expand);
392
393  // Operations not directly supported by Mips.
394  setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
395  setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
396  setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
397  setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
398  setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
399  setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
400  setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
401  setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
402  setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
403  setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
404  setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
405  setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
407  if (Subtarget.hasCnMips()) {
408    setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
409    setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
410  } else {
411    setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
412    setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
413  }
414  setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
415  setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
416  setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
417  setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
418  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
419  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
420
421  if (!Subtarget.hasMips32r2())
422    setOperationAction(ISD::ROTR, MVT::i32,   Expand);
423
424  if (!Subtarget.hasMips64r2())
425    setOperationAction(ISD::ROTR, MVT::i64,   Expand);
426
427  setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
428  setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
429  setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
430  setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
431  setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
432  setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
433  setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
434  setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
435  setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
436  setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
437  setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
438  setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
439  setOperationAction(ISD::FMA,               MVT::f32,   Expand);
440  setOperationAction(ISD::FMA,               MVT::f64,   Expand);
441  setOperationAction(ISD::FREM,              MVT::f32,   Expand);
442  setOperationAction(ISD::FREM,              MVT::f64,   Expand);
443
444  // Lower f16 conversion operations into library calls
445  setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
446  setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
447  setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
448  setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
449
450  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
451
452  setOperationAction(ISD::VASTART,           MVT::Other, Custom);
453  setOperationAction(ISD::VAARG,             MVT::Other, Custom);
454  setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
455  setOperationAction(ISD::VAEND,             MVT::Other, Expand);
456
457  // Use the default for now
458  setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
459  setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
460
461  if (!Subtarget.isGP64bit()) {
462    setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
463    setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
464  }
465
466  if (!Subtarget.hasMips32r2()) {
467    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
468    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
469  }
470
471  // MIPS16 lacks MIPS32's clz and clo instructions.
472  if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
473    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
474  if (!Subtarget.hasMips64())
475    setOperationAction(ISD::CTLZ, MVT::i64, Expand);
476
477  if (!Subtarget.hasMips32r2())
478    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
479  if (!Subtarget.hasMips64r2())
480    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
481
482  if (Subtarget.isGP64bit()) {
483    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
484    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
485    setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
486    setTruncStoreAction(MVT::i64, MVT::i32, Custom);
487  }
488
489  setOperationAction(ISD::TRAP, MVT::Other, Legal);
490
491  setTargetDAGCombine({ISD::SDIVREM, ISD::UDIVREM, ISD::SELECT, ISD::AND,
492                       ISD::OR, ISD::ADD, ISD::SUB, ISD::AssertZext, ISD::SHL});
493
494  if (ABI.IsO32()) {
495    // These libcalls are not available in 32-bit.
496    setLibcallName(RTLIB::SHL_I128, nullptr);
497    setLibcallName(RTLIB::SRL_I128, nullptr);
498    setLibcallName(RTLIB::SRA_I128, nullptr);
499    setLibcallName(RTLIB::MUL_I128, nullptr);
500    setLibcallName(RTLIB::MULO_I64, nullptr);
501    setLibcallName(RTLIB::MULO_I128, nullptr);
502  }
503
504  if (Subtarget.isGP64bit())
505    setMaxAtomicSizeInBitsSupported(64);
506  else
507    setMaxAtomicSizeInBitsSupported(32);
508
509  setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4));
510
511  // The arguments on the stack are defined in terms of 4-byte slots on O32
512  // and 8-byte slots on N32/N64.
513  setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8)
514                                                            : Align(4));
515
516  setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
517
518  MaxStoresPerMemcpy = 16;
519
520  isMicroMips = Subtarget.inMicroMipsMode();
521}
522
523const MipsTargetLowering *
524MipsTargetLowering::create(const MipsTargetMachine &TM,
525                           const MipsSubtarget &STI) {
526  if (STI.inMips16Mode())
527    return createMips16TargetLowering(TM, STI);
528
529  return createMipsSETargetLowering(TM, STI);
530}
531
532// Create a fast isel object.
533FastISel *
534MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
535                                  const TargetLibraryInfo *libInfo) const {
536  const MipsTargetMachine &TM =
537      static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
538
539  // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
540  bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
541                     !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
542                     !Subtarget.inMicroMipsMode();
543
544  // Disable if either of the following is true:
545  // We do not generate PIC, the ABI is not O32, XGOT is being used.
546  if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
547      Subtarget.useXGOT())
548    UseFastISel = false;
549
550  return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
551}
552
553EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
554                                           EVT VT) const {
555  if (!VT.isVector())
556    return MVT::i32;
557  return VT.changeVectorElementTypeToInteger();
558}
559
560static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
561                                    TargetLowering::DAGCombinerInfo &DCI,
562                                    const MipsSubtarget &Subtarget) {
563  if (DCI.isBeforeLegalizeOps())
564    return SDValue();
565
566  EVT Ty = N->getValueType(0);
567  unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
568  unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
569  unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
570                                                  MipsISD::DivRemU16;
571  SDLoc DL(N);
572
573  SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
574                               N->getOperand(0), N->getOperand(1));
575  SDValue InChain = DAG.getEntryNode();
576  SDValue InGlue = DivRem;
577
578  // insert MFLO
579  if (N->hasAnyUseOfValue(0)) {
580    SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
581                                            InGlue);
582    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
583    InChain = CopyFromLo.getValue(1);
584    InGlue = CopyFromLo.getValue(2);
585  }
586
587  // insert MFHI
588  if (N->hasAnyUseOfValue(1)) {
589    SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
590                                            HI, Ty, InGlue);
591    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
592  }
593
594  return SDValue();
595}
596
597static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
598  switch (CC) {
599  default: llvm_unreachable("Unknown fp condition code!");
600  case ISD::SETEQ:
601  case ISD::SETOEQ: return Mips::FCOND_OEQ;
602  case ISD::SETUNE: return Mips::FCOND_UNE;
603  case ISD::SETLT:
604  case ISD::SETOLT: return Mips::FCOND_OLT;
605  case ISD::SETGT:
606  case ISD::SETOGT: return Mips::FCOND_OGT;
607  case ISD::SETLE:
608  case ISD::SETOLE: return Mips::FCOND_OLE;
609  case ISD::SETGE:
610  case ISD::SETOGE: return Mips::FCOND_OGE;
611  case ISD::SETULT: return Mips::FCOND_ULT;
612  case ISD::SETULE: return Mips::FCOND_ULE;
613  case ISD::SETUGT: return Mips::FCOND_UGT;
614  case ISD::SETUGE: return Mips::FCOND_UGE;
615  case ISD::SETUO:  return Mips::FCOND_UN;
616  case ISD::SETO:   return Mips::FCOND_OR;
617  case ISD::SETNE:
618  case ISD::SETONE: return Mips::FCOND_ONE;
619  case ISD::SETUEQ: return Mips::FCOND_UEQ;
620  }
621}
622
623/// This function returns true if the floating point conditional branches and
624/// conditional moves which use condition code CC should be inverted.
625static bool invertFPCondCodeUser(Mips::CondCode CC) {
626  if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
627    return false;
628
629  assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
630         "Illegal Condition Code");
631
632  return true;
633}
634
635// Creates and returns an FPCmp node from a setcc node.
636// Returns Op if setcc is not a floating point comparison.
637static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
638  // must be a SETCC node
639  if (Op.getOpcode() != ISD::SETCC)
640    return Op;
641
642  SDValue LHS = Op.getOperand(0);
643
644  if (!LHS.getValueType().isFloatingPoint())
645    return Op;
646
647  SDValue RHS = Op.getOperand(1);
648  SDLoc DL(Op);
649
650  // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
651  // node if necessary.
652  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
653
654  return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
655                     DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
656}
657
658// Creates and returns a CMovFPT/F node.
659static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
660                            SDValue False, const SDLoc &DL) {
661  ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
662  bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
663  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
664
665  return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
666                     True.getValueType(), True, FCC0, False, Cond);
667}
668
669static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
670                                    TargetLowering::DAGCombinerInfo &DCI,
671                                    const MipsSubtarget &Subtarget) {
672  if (DCI.isBeforeLegalizeOps())
673    return SDValue();
674
675  SDValue SetCC = N->getOperand(0);
676
677  if ((SetCC.getOpcode() != ISD::SETCC) ||
678      !SetCC.getOperand(0).getValueType().isInteger())
679    return SDValue();
680
681  SDValue False = N->getOperand(2);
682  EVT FalseTy = False.getValueType();
683
684  if (!FalseTy.isInteger())
685    return SDValue();
686
687  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
688
689  // If the RHS (False) is 0, we swap the order of the operands
690  // of ISD::SELECT (obviously also inverting the condition) so that we can
691  // take advantage of conditional moves using the $0 register.
692  // Example:
693  //   return (a != 0) ? x : 0;
694  //     load $reg, x
695  //     movz $reg, $0, a
696  if (!FalseC)
697    return SDValue();
698
699  const SDLoc DL(N);
700
701  if (!FalseC->getZExtValue()) {
702    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
703    SDValue True = N->getOperand(1);
704
705    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
706                         SetCC.getOperand(1),
707                         ISD::getSetCCInverse(CC, SetCC.getValueType()));
708
709    return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
710  }
711
712  // If both operands are integer constants there's a possibility that we
713  // can do some interesting optimizations.
714  SDValue True = N->getOperand(1);
715  ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
716
717  if (!TrueC || !True.getValueType().isInteger())
718    return SDValue();
719
720  // We'll also ignore MVT::i64 operands as this optimizations proves
721  // to be ineffective because of the required sign extensions as the result
722  // of a SETCC operator is always MVT::i32 for non-vector types.
723  if (True.getValueType() == MVT::i64)
724    return SDValue();
725
726  int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
727
728  // 1)  (a < x) ? y : y-1
729  //  slti $reg1, a, x
730  //  addiu $reg2, $reg1, y-1
731  if (Diff == 1)
732    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
733
734  // 2)  (a < x) ? y-1 : y
735  //  slti $reg1, a, x
736  //  xor $reg1, $reg1, 1
737  //  addiu $reg2, $reg1, y-1
738  if (Diff == -1) {
739    ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
740    SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
741                         SetCC.getOperand(1),
742                         ISD::getSetCCInverse(CC, SetCC.getValueType()));
743    return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
744  }
745
746  // Could not optimize.
747  return SDValue();
748}
749
750static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
751                                    TargetLowering::DAGCombinerInfo &DCI,
752                                    const MipsSubtarget &Subtarget) {
753  if (DCI.isBeforeLegalizeOps())
754    return SDValue();
755
756  SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
757
758  ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
759  if (!FalseC || FalseC->getZExtValue())
760    return SDValue();
761
762  // Since RHS (False) is 0, we swap the order of the True/False operands
763  // (obviously also inverting the condition) so that we can
764  // take advantage of conditional moves using the $0 register.
765  // Example:
766  //   return (a != 0) ? x : 0;
767  //     load $reg, x
768  //     movz $reg, $0, a
769  unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
770                                                         MipsISD::CMovFP_T;
771
772  SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
773  return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
774                     ValueIfFalse, FCC, ValueIfTrue, Glue);
775}
776
777static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
778                                 TargetLowering::DAGCombinerInfo &DCI,
779                                 const MipsSubtarget &Subtarget) {
780  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
781    return SDValue();
782
783  SDValue FirstOperand = N->getOperand(0);
784  unsigned FirstOperandOpc = FirstOperand.getOpcode();
785  SDValue Mask = N->getOperand(1);
786  EVT ValTy = N->getValueType(0);
787  SDLoc DL(N);
788
789  uint64_t Pos = 0;
790  unsigned SMPos, SMSize;
791  ConstantSDNode *CN;
792  SDValue NewOperand;
793  unsigned Opc;
794
795  // Op's second operand must be a shifted mask.
796  if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
797      !isShiftedMask_64(CN->getZExtValue(), SMPos, SMSize))
798    return SDValue();
799
800  if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
801    // Pattern match EXT.
802    //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
803    //  => ext $dst, $src, pos, size
804
805    // The second operand of the shift must be an immediate.
806    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
807      return SDValue();
808
809    Pos = CN->getZExtValue();
810
811    // Return if the shifted mask does not start at bit 0 or the sum of its size
812    // and Pos exceeds the word's size.
813    if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
814      return SDValue();
815
816    Opc = MipsISD::Ext;
817    NewOperand = FirstOperand.getOperand(0);
818  } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
819    // Pattern match CINS.
820    //  $dst = and (shl $src , pos), mask
821    //  => cins $dst, $src, pos, size
822    // mask is a shifted mask with consecutive 1's, pos = shift amount,
823    // size = population count.
824
825    // The second operand of the shift must be an immediate.
826    if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
827      return SDValue();
828
829    Pos = CN->getZExtValue();
830
831    if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
832        Pos + SMSize > ValTy.getSizeInBits())
833      return SDValue();
834
835    NewOperand = FirstOperand.getOperand(0);
836    // SMSize is 'location' (position) in this case, not size.
837    SMSize--;
838    Opc = MipsISD::CIns;
839  } else {
840    // Pattern match EXT.
841    //  $dst = and $src, (2**size - 1) , if size > 16
842    //  => ext $dst, $src, pos, size , pos = 0
843
844    // If the mask is <= 0xffff, andi can be used instead.
845    if (CN->getZExtValue() <= 0xffff)
846      return SDValue();
847
848    // Return if the mask doesn't start at position 0.
849    if (SMPos)
850      return SDValue();
851
852    Opc = MipsISD::Ext;
853    NewOperand = FirstOperand;
854  }
855  return DAG.getNode(Opc, DL, ValTy, NewOperand,
856                     DAG.getConstant(Pos, DL, MVT::i32),
857                     DAG.getConstant(SMSize, DL, MVT::i32));
858}
859
860static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
861                                TargetLowering::DAGCombinerInfo &DCI,
862                                const MipsSubtarget &Subtarget) {
863  // Pattern match INS.
864  //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
865  //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
866  //  => ins $dst, $src, size, pos, $src1
867  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
868    return SDValue();
869
870  SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
871  unsigned SMPos0, SMSize0, SMPos1, SMSize1;
872  ConstantSDNode *CN, *CN1;
873
874  // See if Op's first operand matches (and $src1 , mask0).
875  if (And0.getOpcode() != ISD::AND)
876    return SDValue();
877
878  if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
879      !isShiftedMask_64(~CN->getSExtValue(), SMPos0, SMSize0))
880    return SDValue();
881
882  // See if Op's second operand matches (and (shl $src, pos), mask1).
883  if (And1.getOpcode() == ISD::AND &&
884      And1.getOperand(0).getOpcode() == ISD::SHL) {
885
886    if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
887        !isShiftedMask_64(CN->getZExtValue(), SMPos1, SMSize1))
888      return SDValue();
889
890    // The shift masks must have the same position and size.
891    if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
892      return SDValue();
893
894    SDValue Shl = And1.getOperand(0);
895
896    if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
897      return SDValue();
898
899    unsigned Shamt = CN->getZExtValue();
900
901    // Return if the shift amount and the first bit position of mask are not the
902    // same.
903    EVT ValTy = N->getValueType(0);
904    if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
905      return SDValue();
906
907    SDLoc DL(N);
908    return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
909                       DAG.getConstant(SMPos0, DL, MVT::i32),
910                       DAG.getConstant(SMSize0, DL, MVT::i32),
911                       And0.getOperand(0));
912  } else {
913    // Pattern match DINS.
914    //  $dst = or (and $src, mask0), mask1
915    //  where mask0 = ((1 << SMSize0) -1) << SMPos0
916    //  => dins $dst, $src, pos, size
917    if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
918        ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
919         (SMSize0 + SMPos0 <= 32))) {
920      // Check if AND instruction has constant as argument
921      bool isConstCase = And1.getOpcode() != ISD::AND;
922      if (And1.getOpcode() == ISD::AND) {
923        if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
924          return SDValue();
925      } else {
926        if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
927          return SDValue();
928      }
929      // Don't generate INS if constant OR operand doesn't fit into bits
930      // cleared by constant AND operand.
931      if (CN->getSExtValue() & CN1->getSExtValue())
932        return SDValue();
933
934      SDLoc DL(N);
935      EVT ValTy = N->getOperand(0)->getValueType(0);
936      SDValue Const1;
937      SDValue SrlX;
938      if (!isConstCase) {
939        Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
940        SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
941      }
942      return DAG.getNode(
943          MipsISD::Ins, DL, N->getValueType(0),
944          isConstCase
945              ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
946              : SrlX,
947          DAG.getConstant(SMPos0, DL, MVT::i32),
948          DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
949                                                        : SMSize0,
950                          DL, MVT::i32),
951          And0->getOperand(0));
952
953    }
954    return SDValue();
955  }
956}
957
958static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
959                                       const MipsSubtarget &Subtarget) {
960  // ROOTNode must have a multiplication as an operand for the match to be
961  // successful.
962  if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
963      ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
964    return SDValue();
965
966  // In the case where we have a multiplication as the left operand of
967  // of a subtraction, we can't combine into a MipsISD::MSub node as the
968  // the instruction definition of msub(u) places the multiplication on
969  // on the right.
970  if (ROOTNode->getOpcode() == ISD::SUB &&
971      ROOTNode->getOperand(0).getOpcode() == ISD::MUL)
972    return SDValue();
973
974  // We don't handle vector types here.
975  if (ROOTNode->getValueType(0).isVector())
976    return SDValue();
977
978  // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
979  // arithmetic. E.g.
980  // (add (mul a b) c) =>
981  //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
982  //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
983  //   or
984  //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
985  //
986  // The overhead of setting up the Hi/Lo registers and reassembling the
987  // result makes this a dubious optimzation for MIPS64. The core of the
988  // problem is that Hi/Lo contain the upper and lower 32 bits of the
989  // operand and result.
990  //
991  // It requires a chain of 4 add/mul for MIPS64R2 to get better code
992  // density than doing it naively, 5 for MIPS64. Additionally, using
993  // madd/msub on MIPS64 requires the operands actually be 32 bit sign
994  // extended operands, not true 64 bit values.
995  //
996  // FIXME: For the moment, disable this completely for MIPS64.
997  if (Subtarget.hasMips64())
998    return SDValue();
999
1000  SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1001                     ? ROOTNode->getOperand(0)
1002                     : ROOTNode->getOperand(1);
1003
1004  SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1005                     ? ROOTNode->getOperand(1)
1006                     : ROOTNode->getOperand(0);
1007
1008  // Transform this to a MADD only if the user of this node is the add.
1009  // If there are other users of the mul, this function returns here.
1010  if (!Mult.hasOneUse())
1011    return SDValue();
1012
1013  // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1014  // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1015  // of the multiply must have 32 or more sign bits, otherwise we cannot
1016  // perform this optimization. We have to check this here as we're performing
1017  // this optimization pre-legalization.
1018  SDValue MultLHS = Mult->getOperand(0);
1019  SDValue MultRHS = Mult->getOperand(1);
1020
1021  bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1022                  MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1023  bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1024                    MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1025
1026  if (!IsSigned && !IsUnsigned)
1027    return SDValue();
1028
1029  // Initialize accumulator.
1030  SDLoc DL(ROOTNode);
1031  SDValue BottomHalf, TopHalf;
1032  std::tie(BottomHalf, TopHalf) =
1033      CurDAG.SplitScalar(AddOperand, DL, MVT::i32, MVT::i32);
1034  SDValue ACCIn =
1035      CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, BottomHalf, TopHalf);
1036
1037  // Create MipsMAdd(u) / MipsMSub(u) node.
1038  bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1039  unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1040                          : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1041  SDValue MAddOps[3] = {
1042      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1043      CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1044  EVT VTs[2] = {MVT::i32, MVT::i32};
1045  SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1046
1047  SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1048  SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1049  SDValue Combined =
1050      CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1051  return Combined;
1052}
1053
1054static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1055                                 TargetLowering::DAGCombinerInfo &DCI,
1056                                 const MipsSubtarget &Subtarget) {
1057  // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1058  if (DCI.isBeforeLegalizeOps()) {
1059    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1060        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1061      return performMADD_MSUBCombine(N, DAG, Subtarget);
1062
1063    return SDValue();
1064  }
1065
1066  return SDValue();
1067}
1068
1069static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1070                                 TargetLowering::DAGCombinerInfo &DCI,
1071                                 const MipsSubtarget &Subtarget) {
1072  // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1073  if (DCI.isBeforeLegalizeOps()) {
1074    if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1075        !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1076      return performMADD_MSUBCombine(N, DAG, Subtarget);
1077
1078    return SDValue();
1079  }
1080
1081  // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1082  SDValue Add = N->getOperand(1);
1083
1084  if (Add.getOpcode() != ISD::ADD)
1085    return SDValue();
1086
1087  SDValue Lo = Add.getOperand(1);
1088
1089  if ((Lo.getOpcode() != MipsISD::Lo) ||
1090      (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1091    return SDValue();
1092
1093  EVT ValTy = N->getValueType(0);
1094  SDLoc DL(N);
1095
1096  SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1097                             Add.getOperand(0));
1098  return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1099}
1100
1101static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1102                                 TargetLowering::DAGCombinerInfo &DCI,
1103                                 const MipsSubtarget &Subtarget) {
1104  // Pattern match CINS.
1105  //  $dst = shl (and $src , imm), pos
1106  //  => cins $dst, $src, pos, size
1107
1108  if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1109    return SDValue();
1110
1111  SDValue FirstOperand = N->getOperand(0);
1112  unsigned FirstOperandOpc = FirstOperand.getOpcode();
1113  SDValue SecondOperand = N->getOperand(1);
1114  EVT ValTy = N->getValueType(0);
1115  SDLoc DL(N);
1116
1117  uint64_t Pos = 0;
1118  unsigned SMPos, SMSize;
1119  ConstantSDNode *CN;
1120  SDValue NewOperand;
1121
1122  // The second operand of the shift must be an immediate.
1123  if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1124    return SDValue();
1125
1126  Pos = CN->getZExtValue();
1127
1128  if (Pos >= ValTy.getSizeInBits())
1129    return SDValue();
1130
1131  if (FirstOperandOpc != ISD::AND)
1132    return SDValue();
1133
1134  // AND's second operand must be a shifted mask.
1135  if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1136      !isShiftedMask_64(CN->getZExtValue(), SMPos, SMSize))
1137    return SDValue();
1138
1139  // Return if the shifted mask does not start at bit 0 or the sum of its size
1140  // and Pos exceeds the word's size.
1141  if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1142    return SDValue();
1143
1144  NewOperand = FirstOperand.getOperand(0);
1145  // SMSize is 'location' (position) in this case, not size.
1146  SMSize--;
1147
1148  return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1149                     DAG.getConstant(Pos, DL, MVT::i32),
1150                     DAG.getConstant(SMSize, DL, MVT::i32));
1151}
1152
1153SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1154  const {
1155  SelectionDAG &DAG = DCI.DAG;
1156  unsigned Opc = N->getOpcode();
1157
1158  switch (Opc) {
1159  default: break;
1160  case ISD::SDIVREM:
1161  case ISD::UDIVREM:
1162    return performDivRemCombine(N, DAG, DCI, Subtarget);
1163  case ISD::SELECT:
1164    return performSELECTCombine(N, DAG, DCI, Subtarget);
1165  case MipsISD::CMovFP_F:
1166  case MipsISD::CMovFP_T:
1167    return performCMovFPCombine(N, DAG, DCI, Subtarget);
1168  case ISD::AND:
1169    return performANDCombine(N, DAG, DCI, Subtarget);
1170  case ISD::OR:
1171    return performORCombine(N, DAG, DCI, Subtarget);
1172  case ISD::ADD:
1173    return performADDCombine(N, DAG, DCI, Subtarget);
1174  case ISD::SHL:
1175    return performSHLCombine(N, DAG, DCI, Subtarget);
1176  case ISD::SUB:
1177    return performSUBCombine(N, DAG, DCI, Subtarget);
1178  }
1179
1180  return SDValue();
1181}
1182
1183bool MipsTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
1184  return Subtarget.hasMips32();
1185}
1186
1187bool MipsTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
1188  return Subtarget.hasMips32();
1189}
1190
1191bool MipsTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1192  // We can use ANDI+SLTIU as a bit test. Y contains the bit position.
1193  // For MIPSR2 or later, we may be able to use the `ext` instruction or its'
1194  // double-word variants.
1195  if (auto *C = dyn_cast<ConstantSDNode>(Y))
1196    return C->getAPIntValue().ule(15);
1197
1198  return false;
1199}
1200
1201bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1202    const SDNode *N, CombineLevel Level) const {
1203  assert(((N->getOpcode() == ISD::SHL &&
1204           N->getOperand(0).getOpcode() == ISD::SRL) ||
1205          (N->getOpcode() == ISD::SRL &&
1206           N->getOperand(0).getOpcode() == ISD::SHL)) &&
1207         "Expected shift-shift mask");
1208
1209  if (N->getOperand(0).getValueType().isVector())
1210    return false;
1211  return true;
1212}
1213
1214void
1215MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1216                                       SmallVectorImpl<SDValue> &Results,
1217                                       SelectionDAG &DAG) const {
1218  return LowerOperationWrapper(N, Results, DAG);
1219}
1220
1221SDValue MipsTargetLowering::
1222LowerOperation(SDValue Op, SelectionDAG &DAG) const
1223{
1224  switch (Op.getOpcode())
1225  {
1226  case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
1227  case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
1228  case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
1229  case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
1230  case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
1231  case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
1232  case ISD::SELECT:             return lowerSELECT(Op, DAG);
1233  case ISD::SETCC:              return lowerSETCC(Op, DAG);
1234  case ISD::VASTART:            return lowerVASTART(Op, DAG);
1235  case ISD::VAARG:              return lowerVAARG(Op, DAG);
1236  case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
1237  case ISD::FABS:               return lowerFABS(Op, DAG);
1238  case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
1239  case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
1240  case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
1241  case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
1242  case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
1243  case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
1244  case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
1245  case ISD::LOAD:               return lowerLOAD(Op, DAG);
1246  case ISD::STORE:              return lowerSTORE(Op, DAG);
1247  case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG);
1248  case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
1249  }
1250  return SDValue();
1251}
1252
1253//===----------------------------------------------------------------------===//
1254//  Lower helper functions
1255//===----------------------------------------------------------------------===//
1256
1257// addLiveIn - This helper function adds the specified physical register to the
1258// MachineFunction as a live in value.  It also creates a corresponding
1259// virtual register for it.
1260static unsigned
1261addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1262{
1263  Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1264  MF.getRegInfo().addLiveIn(PReg, VReg);
1265  return VReg;
1266}
1267
1268static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1269                                              MachineBasicBlock &MBB,
1270                                              const TargetInstrInfo &TII,
1271                                              bool Is64Bit, bool IsMicroMips) {
1272  if (NoZeroDivCheck)
1273    return &MBB;
1274
1275  // Insert instruction "teq $divisor_reg, $zero, 7".
1276  MachineBasicBlock::iterator I(MI);
1277  MachineInstrBuilder MIB;
1278  MachineOperand &Divisor = MI.getOperand(2);
1279  MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1280                TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1281            .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1282            .addReg(Mips::ZERO)
1283            .addImm(7);
1284
1285  // Use the 32-bit sub-register if this is a 64-bit division.
1286  if (Is64Bit)
1287    MIB->getOperand(0).setSubReg(Mips::sub_32);
1288
1289  // Clear Divisor's kill flag.
1290  Divisor.setIsKill(false);
1291
1292  // We would normally delete the original instruction here but in this case
1293  // we only needed to inject an additional instruction rather than replace it.
1294
1295  return &MBB;
1296}
1297
1298MachineBasicBlock *
1299MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1300                                                MachineBasicBlock *BB) const {
1301  switch (MI.getOpcode()) {
1302  default:
1303    llvm_unreachable("Unexpected instr type to insert");
1304  case Mips::ATOMIC_LOAD_ADD_I8:
1305    return emitAtomicBinaryPartword(MI, BB, 1);
1306  case Mips::ATOMIC_LOAD_ADD_I16:
1307    return emitAtomicBinaryPartword(MI, BB, 2);
1308  case Mips::ATOMIC_LOAD_ADD_I32:
1309    return emitAtomicBinary(MI, BB);
1310  case Mips::ATOMIC_LOAD_ADD_I64:
1311    return emitAtomicBinary(MI, BB);
1312
1313  case Mips::ATOMIC_LOAD_AND_I8:
1314    return emitAtomicBinaryPartword(MI, BB, 1);
1315  case Mips::ATOMIC_LOAD_AND_I16:
1316    return emitAtomicBinaryPartword(MI, BB, 2);
1317  case Mips::ATOMIC_LOAD_AND_I32:
1318    return emitAtomicBinary(MI, BB);
1319  case Mips::ATOMIC_LOAD_AND_I64:
1320    return emitAtomicBinary(MI, BB);
1321
1322  case Mips::ATOMIC_LOAD_OR_I8:
1323    return emitAtomicBinaryPartword(MI, BB, 1);
1324  case Mips::ATOMIC_LOAD_OR_I16:
1325    return emitAtomicBinaryPartword(MI, BB, 2);
1326  case Mips::ATOMIC_LOAD_OR_I32:
1327    return emitAtomicBinary(MI, BB);
1328  case Mips::ATOMIC_LOAD_OR_I64:
1329    return emitAtomicBinary(MI, BB);
1330
1331  case Mips::ATOMIC_LOAD_XOR_I8:
1332    return emitAtomicBinaryPartword(MI, BB, 1);
1333  case Mips::ATOMIC_LOAD_XOR_I16:
1334    return emitAtomicBinaryPartword(MI, BB, 2);
1335  case Mips::ATOMIC_LOAD_XOR_I32:
1336    return emitAtomicBinary(MI, BB);
1337  case Mips::ATOMIC_LOAD_XOR_I64:
1338    return emitAtomicBinary(MI, BB);
1339
1340  case Mips::ATOMIC_LOAD_NAND_I8:
1341    return emitAtomicBinaryPartword(MI, BB, 1);
1342  case Mips::ATOMIC_LOAD_NAND_I16:
1343    return emitAtomicBinaryPartword(MI, BB, 2);
1344  case Mips::ATOMIC_LOAD_NAND_I32:
1345    return emitAtomicBinary(MI, BB);
1346  case Mips::ATOMIC_LOAD_NAND_I64:
1347    return emitAtomicBinary(MI, BB);
1348
1349  case Mips::ATOMIC_LOAD_SUB_I8:
1350    return emitAtomicBinaryPartword(MI, BB, 1);
1351  case Mips::ATOMIC_LOAD_SUB_I16:
1352    return emitAtomicBinaryPartword(MI, BB, 2);
1353  case Mips::ATOMIC_LOAD_SUB_I32:
1354    return emitAtomicBinary(MI, BB);
1355  case Mips::ATOMIC_LOAD_SUB_I64:
1356    return emitAtomicBinary(MI, BB);
1357
1358  case Mips::ATOMIC_SWAP_I8:
1359    return emitAtomicBinaryPartword(MI, BB, 1);
1360  case Mips::ATOMIC_SWAP_I16:
1361    return emitAtomicBinaryPartword(MI, BB, 2);
1362  case Mips::ATOMIC_SWAP_I32:
1363    return emitAtomicBinary(MI, BB);
1364  case Mips::ATOMIC_SWAP_I64:
1365    return emitAtomicBinary(MI, BB);
1366
1367  case Mips::ATOMIC_CMP_SWAP_I8:
1368    return emitAtomicCmpSwapPartword(MI, BB, 1);
1369  case Mips::ATOMIC_CMP_SWAP_I16:
1370    return emitAtomicCmpSwapPartword(MI, BB, 2);
1371  case Mips::ATOMIC_CMP_SWAP_I32:
1372    return emitAtomicCmpSwap(MI, BB);
1373  case Mips::ATOMIC_CMP_SWAP_I64:
1374    return emitAtomicCmpSwap(MI, BB);
1375
1376  case Mips::ATOMIC_LOAD_MIN_I8:
1377    return emitAtomicBinaryPartword(MI, BB, 1);
1378  case Mips::ATOMIC_LOAD_MIN_I16:
1379    return emitAtomicBinaryPartword(MI, BB, 2);
1380  case Mips::ATOMIC_LOAD_MIN_I32:
1381    return emitAtomicBinary(MI, BB);
1382  case Mips::ATOMIC_LOAD_MIN_I64:
1383    return emitAtomicBinary(MI, BB);
1384
1385  case Mips::ATOMIC_LOAD_MAX_I8:
1386    return emitAtomicBinaryPartword(MI, BB, 1);
1387  case Mips::ATOMIC_LOAD_MAX_I16:
1388    return emitAtomicBinaryPartword(MI, BB, 2);
1389  case Mips::ATOMIC_LOAD_MAX_I32:
1390    return emitAtomicBinary(MI, BB);
1391  case Mips::ATOMIC_LOAD_MAX_I64:
1392    return emitAtomicBinary(MI, BB);
1393
1394  case Mips::ATOMIC_LOAD_UMIN_I8:
1395    return emitAtomicBinaryPartword(MI, BB, 1);
1396  case Mips::ATOMIC_LOAD_UMIN_I16:
1397    return emitAtomicBinaryPartword(MI, BB, 2);
1398  case Mips::ATOMIC_LOAD_UMIN_I32:
1399    return emitAtomicBinary(MI, BB);
1400  case Mips::ATOMIC_LOAD_UMIN_I64:
1401    return emitAtomicBinary(MI, BB);
1402
1403  case Mips::ATOMIC_LOAD_UMAX_I8:
1404    return emitAtomicBinaryPartword(MI, BB, 1);
1405  case Mips::ATOMIC_LOAD_UMAX_I16:
1406    return emitAtomicBinaryPartword(MI, BB, 2);
1407  case Mips::ATOMIC_LOAD_UMAX_I32:
1408    return emitAtomicBinary(MI, BB);
1409  case Mips::ATOMIC_LOAD_UMAX_I64:
1410    return emitAtomicBinary(MI, BB);
1411
1412  case Mips::PseudoSDIV:
1413  case Mips::PseudoUDIV:
1414  case Mips::DIV:
1415  case Mips::DIVU:
1416  case Mips::MOD:
1417  case Mips::MODU:
1418    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1419                               false);
1420  case Mips::SDIV_MM_Pseudo:
1421  case Mips::UDIV_MM_Pseudo:
1422  case Mips::SDIV_MM:
1423  case Mips::UDIV_MM:
1424  case Mips::DIV_MMR6:
1425  case Mips::DIVU_MMR6:
1426  case Mips::MOD_MMR6:
1427  case Mips::MODU_MMR6:
1428    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1429  case Mips::PseudoDSDIV:
1430  case Mips::PseudoDUDIV:
1431  case Mips::DDIV:
1432  case Mips::DDIVU:
1433  case Mips::DMOD:
1434  case Mips::DMODU:
1435    return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1436
1437  case Mips::PseudoSELECT_I:
1438  case Mips::PseudoSELECT_I64:
1439  case Mips::PseudoSELECT_S:
1440  case Mips::PseudoSELECT_D32:
1441  case Mips::PseudoSELECT_D64:
1442    return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1443  case Mips::PseudoSELECTFP_F_I:
1444  case Mips::PseudoSELECTFP_F_I64:
1445  case Mips::PseudoSELECTFP_F_S:
1446  case Mips::PseudoSELECTFP_F_D32:
1447  case Mips::PseudoSELECTFP_F_D64:
1448    return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1449  case Mips::PseudoSELECTFP_T_I:
1450  case Mips::PseudoSELECTFP_T_I64:
1451  case Mips::PseudoSELECTFP_T_S:
1452  case Mips::PseudoSELECTFP_T_D32:
1453  case Mips::PseudoSELECTFP_T_D64:
1454    return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1455  case Mips::PseudoD_SELECT_I:
1456  case Mips::PseudoD_SELECT_I64:
1457    return emitPseudoD_SELECT(MI, BB);
1458  case Mips::LDR_W:
1459    return emitLDR_W(MI, BB);
1460  case Mips::LDR_D:
1461    return emitLDR_D(MI, BB);
1462  case Mips::STR_W:
1463    return emitSTR_W(MI, BB);
1464  case Mips::STR_D:
1465    return emitSTR_D(MI, BB);
1466  }
1467}
1468
1469// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1470// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1471MachineBasicBlock *
1472MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1473                                     MachineBasicBlock *BB) const {
1474
1475  MachineFunction *MF = BB->getParent();
1476  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1477  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1478  DebugLoc DL = MI.getDebugLoc();
1479
1480  unsigned AtomicOp;
1481  bool NeedsAdditionalReg = false;
1482  switch (MI.getOpcode()) {
1483  case Mips::ATOMIC_LOAD_ADD_I32:
1484    AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1485    break;
1486  case Mips::ATOMIC_LOAD_SUB_I32:
1487    AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1488    break;
1489  case Mips::ATOMIC_LOAD_AND_I32:
1490    AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1491    break;
1492  case Mips::ATOMIC_LOAD_OR_I32:
1493    AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1494    break;
1495  case Mips::ATOMIC_LOAD_XOR_I32:
1496    AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1497    break;
1498  case Mips::ATOMIC_LOAD_NAND_I32:
1499    AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1500    break;
1501  case Mips::ATOMIC_SWAP_I32:
1502    AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1503    break;
1504  case Mips::ATOMIC_LOAD_ADD_I64:
1505    AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1506    break;
1507  case Mips::ATOMIC_LOAD_SUB_I64:
1508    AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1509    break;
1510  case Mips::ATOMIC_LOAD_AND_I64:
1511    AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1512    break;
1513  case Mips::ATOMIC_LOAD_OR_I64:
1514    AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1515    break;
1516  case Mips::ATOMIC_LOAD_XOR_I64:
1517    AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1518    break;
1519  case Mips::ATOMIC_LOAD_NAND_I64:
1520    AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1521    break;
1522  case Mips::ATOMIC_SWAP_I64:
1523    AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1524    break;
1525  case Mips::ATOMIC_LOAD_MIN_I32:
1526    AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA;
1527    NeedsAdditionalReg = true;
1528    break;
1529  case Mips::ATOMIC_LOAD_MAX_I32:
1530    AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA;
1531    NeedsAdditionalReg = true;
1532    break;
1533  case Mips::ATOMIC_LOAD_UMIN_I32:
1534    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA;
1535    NeedsAdditionalReg = true;
1536    break;
1537  case Mips::ATOMIC_LOAD_UMAX_I32:
1538    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA;
1539    NeedsAdditionalReg = true;
1540    break;
1541  case Mips::ATOMIC_LOAD_MIN_I64:
1542    AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA;
1543    NeedsAdditionalReg = true;
1544    break;
1545  case Mips::ATOMIC_LOAD_MAX_I64:
1546    AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA;
1547    NeedsAdditionalReg = true;
1548    break;
1549  case Mips::ATOMIC_LOAD_UMIN_I64:
1550    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA;
1551    NeedsAdditionalReg = true;
1552    break;
1553  case Mips::ATOMIC_LOAD_UMAX_I64:
1554    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA;
1555    NeedsAdditionalReg = true;
1556    break;
1557  default:
1558    llvm_unreachable("Unknown pseudo atomic for replacement!");
1559  }
1560
1561  Register OldVal = MI.getOperand(0).getReg();
1562  Register Ptr = MI.getOperand(1).getReg();
1563  Register Incr = MI.getOperand(2).getReg();
1564  Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1565
1566  MachineBasicBlock::iterator II(MI);
1567
1568  // The scratch registers here with the EarlyClobber | Define | Implicit
1569  // flags is used to persuade the register allocator and the machine
1570  // verifier to accept the usage of this register. This has to be a real
1571  // register which has an UNDEF value but is dead after the instruction which
1572  // is unique among the registers chosen for the instruction.
1573
1574  // The EarlyClobber flag has the semantic properties that the operand it is
1575  // attached to is clobbered before the rest of the inputs are read. Hence it
1576  // must be unique among the operands to the instruction.
1577  // The Define flag is needed to coerce the machine verifier that an Undef
1578  // value isn't a problem.
1579  // The Dead flag is needed as the value in scratch isn't used by any other
1580  // instruction. Kill isn't used as Dead is more precise.
1581  // The implicit flag is here due to the interaction between the other flags
1582  // and the machine verifier.
1583
1584  // For correctness purpose, a new pseudo is introduced here. We need this
1585  // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1586  // that is spread over >1 basic blocks. A register allocator which
1587  // introduces (or any codegen infact) a store, can violate the expectations
1588  // of the hardware.
1589  //
1590  // An atomic read-modify-write sequence starts with a linked load
1591  // instruction and ends with a store conditional instruction. The atomic
1592  // read-modify-write sequence fails if any of the following conditions
1593  // occur between the execution of ll and sc:
1594  //   * A coherent store is completed by another process or coherent I/O
1595  //     module into the block of synchronizable physical memory containing
1596  //     the word. The size and alignment of the block is
1597  //     implementation-dependent.
1598  //   * A coherent store is executed between an LL and SC sequence on the
1599  //     same processor to the block of synchornizable physical memory
1600  //     containing the word.
1601  //
1602
1603  Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1604  Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1605
1606  BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1607  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1608
1609  MachineInstrBuilder MIB =
1610      BuildMI(*BB, II, DL, TII->get(AtomicOp))
1611          .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1612          .addReg(PtrCopy)
1613          .addReg(IncrCopy)
1614          .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1615                               RegState::Implicit | RegState::Dead);
1616  if (NeedsAdditionalReg) {
1617    Register Scratch2 =
1618        RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1619    MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber |
1620                             RegState::Implicit | RegState::Dead);
1621  }
1622
1623  MI.eraseFromParent();
1624
1625  return BB;
1626}
1627
1628MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1629    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1630    unsigned SrcReg) const {
1631  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1632  const DebugLoc &DL = MI.getDebugLoc();
1633
1634  if (Subtarget.hasMips32r2() && Size == 1) {
1635    BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1636    return BB;
1637  }
1638
1639  if (Subtarget.hasMips32r2() && Size == 2) {
1640    BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1641    return BB;
1642  }
1643
1644  MachineFunction *MF = BB->getParent();
1645  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1646  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1647  Register ScrReg = RegInfo.createVirtualRegister(RC);
1648
1649  assert(Size < 32);
1650  int64_t ShiftImm = 32 - (Size * 8);
1651
1652  BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1653  BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1654
1655  return BB;
1656}
1657
1658MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1659    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1660  assert((Size == 1 || Size == 2) &&
1661         "Unsupported size for EmitAtomicBinaryPartial.");
1662
1663  MachineFunction *MF = BB->getParent();
1664  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1665  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1666  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1667  const TargetRegisterClass *RCp =
1668    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1669  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1670  DebugLoc DL = MI.getDebugLoc();
1671
1672  Register Dest = MI.getOperand(0).getReg();
1673  Register Ptr = MI.getOperand(1).getReg();
1674  Register Incr = MI.getOperand(2).getReg();
1675
1676  Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1677  Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1678  Register Mask = RegInfo.createVirtualRegister(RC);
1679  Register Mask2 = RegInfo.createVirtualRegister(RC);
1680  Register Incr2 = RegInfo.createVirtualRegister(RC);
1681  Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1682  Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1683  Register MaskUpper = RegInfo.createVirtualRegister(RC);
1684  Register Scratch = RegInfo.createVirtualRegister(RC);
1685  Register Scratch2 = RegInfo.createVirtualRegister(RC);
1686  Register Scratch3 = RegInfo.createVirtualRegister(RC);
1687
1688  unsigned AtomicOp = 0;
1689  bool NeedsAdditionalReg = false;
1690  switch (MI.getOpcode()) {
1691  case Mips::ATOMIC_LOAD_NAND_I8:
1692    AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1693    break;
1694  case Mips::ATOMIC_LOAD_NAND_I16:
1695    AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1696    break;
1697  case Mips::ATOMIC_SWAP_I8:
1698    AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1699    break;
1700  case Mips::ATOMIC_SWAP_I16:
1701    AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1702    break;
1703  case Mips::ATOMIC_LOAD_ADD_I8:
1704    AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1705    break;
1706  case Mips::ATOMIC_LOAD_ADD_I16:
1707    AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1708    break;
1709  case Mips::ATOMIC_LOAD_SUB_I8:
1710    AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1711    break;
1712  case Mips::ATOMIC_LOAD_SUB_I16:
1713    AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1714    break;
1715  case Mips::ATOMIC_LOAD_AND_I8:
1716    AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1717    break;
1718  case Mips::ATOMIC_LOAD_AND_I16:
1719    AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1720    break;
1721  case Mips::ATOMIC_LOAD_OR_I8:
1722    AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1723    break;
1724  case Mips::ATOMIC_LOAD_OR_I16:
1725    AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1726    break;
1727  case Mips::ATOMIC_LOAD_XOR_I8:
1728    AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1729    break;
1730  case Mips::ATOMIC_LOAD_XOR_I16:
1731    AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1732    break;
1733  case Mips::ATOMIC_LOAD_MIN_I8:
1734    AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA;
1735    NeedsAdditionalReg = true;
1736    break;
1737  case Mips::ATOMIC_LOAD_MIN_I16:
1738    AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA;
1739    NeedsAdditionalReg = true;
1740    break;
1741  case Mips::ATOMIC_LOAD_MAX_I8:
1742    AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA;
1743    NeedsAdditionalReg = true;
1744    break;
1745  case Mips::ATOMIC_LOAD_MAX_I16:
1746    AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA;
1747    NeedsAdditionalReg = true;
1748    break;
1749  case Mips::ATOMIC_LOAD_UMIN_I8:
1750    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA;
1751    NeedsAdditionalReg = true;
1752    break;
1753  case Mips::ATOMIC_LOAD_UMIN_I16:
1754    AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA;
1755    NeedsAdditionalReg = true;
1756    break;
1757  case Mips::ATOMIC_LOAD_UMAX_I8:
1758    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA;
1759    NeedsAdditionalReg = true;
1760    break;
1761  case Mips::ATOMIC_LOAD_UMAX_I16:
1762    AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA;
1763    NeedsAdditionalReg = true;
1764    break;
1765  default:
1766    llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1767  }
1768
1769  // insert new blocks after the current block
1770  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1771  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1772  MachineFunction::iterator It = ++BB->getIterator();
1773  MF->insert(It, exitMBB);
1774
1775  // Transfer the remainder of BB and its successor edges to exitMBB.
1776  exitMBB->splice(exitMBB->begin(), BB,
1777                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1778  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1779
1780  BB->addSuccessor(exitMBB, BranchProbability::getOne());
1781
1782  //  thisMBB:
1783  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1784  //    and     alignedaddr,ptr,masklsb2
1785  //    andi    ptrlsb2,ptr,3
1786  //    sll     shiftamt,ptrlsb2,3
1787  //    ori     maskupper,$0,255               # 0xff
1788  //    sll     mask,maskupper,shiftamt
1789  //    nor     mask2,$0,mask
1790  //    sll     incr2,incr,shiftamt
1791
1792  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1793  BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1794    .addReg(ABI.GetNullPtr()).addImm(-4);
1795  BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1796    .addReg(Ptr).addReg(MaskLSB2);
1797  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1798      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1799  if (Subtarget.isLittle()) {
1800    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1801  } else {
1802    Register Off = RegInfo.createVirtualRegister(RC);
1803    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1804      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1805    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1806  }
1807  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1808    .addReg(Mips::ZERO).addImm(MaskImm);
1809  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1810    .addReg(MaskUpper).addReg(ShiftAmt);
1811  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1812  BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1813
1814
1815  // The purposes of the flags on the scratch registers is explained in
1816  // emitAtomicBinary. In summary, we need a scratch register which is going to
1817  // be undef, that is unique among registers chosen for the instruction.
1818
1819  MachineInstrBuilder MIB =
1820      BuildMI(BB, DL, TII->get(AtomicOp))
1821          .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1822          .addReg(AlignedAddr)
1823          .addReg(Incr2)
1824          .addReg(Mask)
1825          .addReg(Mask2)
1826          .addReg(ShiftAmt)
1827          .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1828                               RegState::Dead | RegState::Implicit)
1829          .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1830                                RegState::Dead | RegState::Implicit)
1831          .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1832                                RegState::Dead | RegState::Implicit);
1833  if (NeedsAdditionalReg) {
1834    Register Scratch4 = RegInfo.createVirtualRegister(RC);
1835    MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define |
1836                             RegState::Dead | RegState::Implicit);
1837  }
1838
1839  MI.eraseFromParent(); // The instruction is gone now.
1840
1841  return exitMBB;
1842}
1843
1844// Lower atomic compare and swap to a pseudo instruction, taking care to
1845// define a scratch register for the pseudo instruction's expansion. The
1846// instruction is expanded after the register allocator as to prevent
1847// the insertion of stores between the linked load and the store conditional.
1848
1849MachineBasicBlock *
1850MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1851                                      MachineBasicBlock *BB) const {
1852
1853  assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1854          MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1855         "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1856
1857  const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1858
1859  MachineFunction *MF = BB->getParent();
1860  MachineRegisterInfo &MRI = MF->getRegInfo();
1861  const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1862  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1863  DebugLoc DL = MI.getDebugLoc();
1864
1865  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1866                          ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1867                          : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1868  Register Dest = MI.getOperand(0).getReg();
1869  Register Ptr = MI.getOperand(1).getReg();
1870  Register OldVal = MI.getOperand(2).getReg();
1871  Register NewVal = MI.getOperand(3).getReg();
1872
1873  Register Scratch = MRI.createVirtualRegister(RC);
1874  MachineBasicBlock::iterator II(MI);
1875
1876  // We need to create copies of the various registers and kill them at the
1877  // atomic pseudo. If the copies are not made, when the atomic is expanded
1878  // after fast register allocation, the spills will end up outside of the
1879  // blocks that their values are defined in, causing livein errors.
1880
1881  Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1882  Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1883  Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1884
1885  BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1886  BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1887  BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1888
1889  // The purposes of the flags on the scratch registers is explained in
1890  // emitAtomicBinary. In summary, we need a scratch register which is going to
1891  // be undef, that is unique among registers chosen for the instruction.
1892
1893  BuildMI(*BB, II, DL, TII->get(AtomicOp))
1894      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1895      .addReg(PtrCopy, RegState::Kill)
1896      .addReg(OldValCopy, RegState::Kill)
1897      .addReg(NewValCopy, RegState::Kill)
1898      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1899                           RegState::Dead | RegState::Implicit);
1900
1901  MI.eraseFromParent(); // The instruction is gone now.
1902
1903  return BB;
1904}
1905
1906MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1907    MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1908  assert((Size == 1 || Size == 2) &&
1909      "Unsupported size for EmitAtomicCmpSwapPartial.");
1910
1911  MachineFunction *MF = BB->getParent();
1912  MachineRegisterInfo &RegInfo = MF->getRegInfo();
1913  const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1914  const bool ArePtrs64bit = ABI.ArePtrs64bit();
1915  const TargetRegisterClass *RCp =
1916    getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1917  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1918  DebugLoc DL = MI.getDebugLoc();
1919
1920  Register Dest = MI.getOperand(0).getReg();
1921  Register Ptr = MI.getOperand(1).getReg();
1922  Register CmpVal = MI.getOperand(2).getReg();
1923  Register NewVal = MI.getOperand(3).getReg();
1924
1925  Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1926  Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1927  Register Mask = RegInfo.createVirtualRegister(RC);
1928  Register Mask2 = RegInfo.createVirtualRegister(RC);
1929  Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1930  Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1931  Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1932  Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1933  Register MaskUpper = RegInfo.createVirtualRegister(RC);
1934  Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1935  Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1936  unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1937                          ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1938                          : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1939
1940  // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1941  // flags are used to coerce the register allocator and the machine verifier to
1942  // accept the usage of these registers.
1943  // The EarlyClobber flag has the semantic properties that the operand it is
1944  // attached to is clobbered before the rest of the inputs are read. Hence it
1945  // must be unique among the operands to the instruction.
1946  // The Define flag is needed to coerce the machine verifier that an Undef
1947  // value isn't a problem.
1948  // The Dead flag is needed as the value in scratch isn't used by any other
1949  // instruction. Kill isn't used as Dead is more precise.
1950  Register Scratch = RegInfo.createVirtualRegister(RC);
1951  Register Scratch2 = RegInfo.createVirtualRegister(RC);
1952
1953  // insert new blocks after the current block
1954  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1955  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1956  MachineFunction::iterator It = ++BB->getIterator();
1957  MF->insert(It, exitMBB);
1958
1959  // Transfer the remainder of BB and its successor edges to exitMBB.
1960  exitMBB->splice(exitMBB->begin(), BB,
1961                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
1962  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1963
1964  BB->addSuccessor(exitMBB, BranchProbability::getOne());
1965
1966  //  thisMBB:
1967  //    addiu   masklsb2,$0,-4                # 0xfffffffc
1968  //    and     alignedaddr,ptr,masklsb2
1969  //    andi    ptrlsb2,ptr,3
1970  //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
1971  //    sll     shiftamt,ptrlsb2,3
1972  //    ori     maskupper,$0,255               # 0xff
1973  //    sll     mask,maskupper,shiftamt
1974  //    nor     mask2,$0,mask
1975  //    andi    maskedcmpval,cmpval,255
1976  //    sll     shiftedcmpval,maskedcmpval,shiftamt
1977  //    andi    maskednewval,newval,255
1978  //    sll     shiftednewval,maskednewval,shiftamt
1979  int64_t MaskImm = (Size == 1) ? 255 : 65535;
1980  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1981    .addReg(ABI.GetNullPtr()).addImm(-4);
1982  BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1983    .addReg(Ptr).addReg(MaskLSB2);
1984  BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1985      .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1986  if (Subtarget.isLittle()) {
1987    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1988  } else {
1989    Register Off = RegInfo.createVirtualRegister(RC);
1990    BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1991      .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1992    BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1993  }
1994  BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1995    .addReg(Mips::ZERO).addImm(MaskImm);
1996  BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1997    .addReg(MaskUpper).addReg(ShiftAmt);
1998  BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1999  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
2000    .addReg(CmpVal).addImm(MaskImm);
2001  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
2002    .addReg(MaskedCmpVal).addReg(ShiftAmt);
2003  BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
2004    .addReg(NewVal).addImm(MaskImm);
2005  BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
2006    .addReg(MaskedNewVal).addReg(ShiftAmt);
2007
2008  // The purposes of the flags on the scratch registers are explained in
2009  // emitAtomicBinary. In summary, we need a scratch register which is going to
2010  // be undef, that is unique among the register chosen for the instruction.
2011
2012  BuildMI(BB, DL, TII->get(AtomicOp))
2013      .addReg(Dest, RegState::Define | RegState::EarlyClobber)
2014      .addReg(AlignedAddr)
2015      .addReg(Mask)
2016      .addReg(ShiftedCmpVal)
2017      .addReg(Mask2)
2018      .addReg(ShiftedNewVal)
2019      .addReg(ShiftAmt)
2020      .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
2021                           RegState::Dead | RegState::Implicit)
2022      .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
2023                            RegState::Dead | RegState::Implicit);
2024
2025  MI.eraseFromParent(); // The instruction is gone now.
2026
2027  return exitMBB;
2028}
2029
2030SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2031  // The first operand is the chain, the second is the condition, the third is
2032  // the block to branch to if the condition is true.
2033  SDValue Chain = Op.getOperand(0);
2034  SDValue Dest = Op.getOperand(2);
2035  SDLoc DL(Op);
2036
2037  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2038  SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
2039
2040  // Return if flag is not set by a floating point comparison.
2041  if (CondRes.getOpcode() != MipsISD::FPCmp)
2042    return Op;
2043
2044  SDValue CCNode  = CondRes.getOperand(2);
2045  Mips::CondCode CC = (Mips::CondCode)CCNode->getAsZExtVal();
2046  unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
2047  SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
2048  SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
2049  return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
2050                     FCC0, Dest, CondRes);
2051}
2052
2053SDValue MipsTargetLowering::
2054lowerSELECT(SDValue Op, SelectionDAG &DAG) const
2055{
2056  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2057  SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
2058
2059  // Return if flag is not set by a floating point comparison.
2060  if (Cond.getOpcode() != MipsISD::FPCmp)
2061    return Op;
2062
2063  return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2064                      SDLoc(Op));
2065}
2066
2067SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2068  assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2069  SDValue Cond = createFPCmp(DAG, Op);
2070
2071  assert(Cond.getOpcode() == MipsISD::FPCmp &&
2072         "Floating point operand expected.");
2073
2074  SDLoc DL(Op);
2075  SDValue True  = DAG.getConstant(1, DL, MVT::i32);
2076  SDValue False = DAG.getConstant(0, DL, MVT::i32);
2077
2078  return createCMovFP(DAG, Cond, True, False, DL);
2079}
2080
2081SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
2082                                               SelectionDAG &DAG) const {
2083  EVT Ty = Op.getValueType();
2084  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2085  const GlobalValue *GV = N->getGlobal();
2086
2087  if (!isPositionIndependent()) {
2088    const MipsTargetObjectFile *TLOF =
2089        static_cast<const MipsTargetObjectFile *>(
2090            getTargetMachine().getObjFileLowering());
2091    const GlobalObject *GO = GV->getAliaseeObject();
2092    if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
2093      // %gp_rel relocation
2094      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2095
2096                                // %hi/%lo relocation
2097    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2098                                // %highest/%higher/%hi/%lo relocation
2099                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2100  }
2101
2102  // Every other architecture would use shouldAssumeDSOLocal in here, but
2103  // mips is special.
2104  // * In PIC code mips requires got loads even for local statics!
2105  // * To save on got entries, for local statics the got entry contains the
2106  //   page and an additional add instruction takes care of the low bits.
2107  // * It is legal to access a hidden symbol with a non hidden undefined,
2108  //   so one cannot guarantee that all access to a hidden symbol will know
2109  //   it is hidden.
2110  // * Mips linkers don't support creating a page and a full got entry for
2111  //   the same symbol.
2112  // * Given all that, we have to use a full got entry for hidden symbols :-(
2113  if (GV->hasLocalLinkage())
2114    return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2115
2116  if (Subtarget.useXGOT())
2117    return getAddrGlobalLargeGOT(
2118        N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
2119        DAG.getEntryNode(),
2120        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2121
2122  return getAddrGlobal(
2123      N, SDLoc(N), Ty, DAG,
2124      (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
2125      DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2126}
2127
2128SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2129                                              SelectionDAG &DAG) const {
2130  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2131  EVT Ty = Op.getValueType();
2132
2133  if (!isPositionIndependent())
2134    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2135                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2136
2137  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2138}
2139
2140SDValue MipsTargetLowering::
2141lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2142{
2143  // If the relocation model is PIC, use the General Dynamic TLS Model or
2144  // Local Dynamic TLS model, otherwise use the Initial Exec or
2145  // Local Exec TLS Model.
2146
2147  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2148  if (DAG.getTarget().useEmulatedTLS())
2149    return LowerToTLSEmulatedModel(GA, DAG);
2150
2151  SDLoc DL(GA);
2152  const GlobalValue *GV = GA->getGlobal();
2153  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2154
2155  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2156
2157  if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2158    // General Dynamic and Local Dynamic TLS Model.
2159    unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2160                                                      : MipsII::MO_TLSGD;
2161
2162    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2163    SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2164                                   getGlobalReg(DAG, PtrVT), TGA);
2165    unsigned PtrSize = PtrVT.getSizeInBits();
2166    IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2167
2168    SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2169
2170    ArgListTy Args;
2171    ArgListEntry Entry;
2172    Entry.Node = Argument;
2173    Entry.Ty = PtrTy;
2174    Args.push_back(Entry);
2175
2176    TargetLowering::CallLoweringInfo CLI(DAG);
2177    CLI.setDebugLoc(DL)
2178        .setChain(DAG.getEntryNode())
2179        .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2180    std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2181
2182    SDValue Ret = CallResult.first;
2183
2184    if (model != TLSModel::LocalDynamic)
2185      return Ret;
2186
2187    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2188                                               MipsII::MO_DTPREL_HI);
2189    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2190    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2191                                               MipsII::MO_DTPREL_LO);
2192    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2193    SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2194    return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2195  }
2196
2197  SDValue Offset;
2198  if (model == TLSModel::InitialExec) {
2199    // Initial Exec TLS Model
2200    SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2201                                             MipsII::MO_GOTTPREL);
2202    TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2203                      TGA);
2204    Offset =
2205        DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2206  } else {
2207    // Local Exec TLS Model
2208    assert(model == TLSModel::LocalExec);
2209    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2210                                               MipsII::MO_TPREL_HI);
2211    SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2212                                               MipsII::MO_TPREL_LO);
2213    SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2214    SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2215    Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2216  }
2217
2218  SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2219  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2220}
2221
2222SDValue MipsTargetLowering::
2223lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2224{
2225  JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2226  EVT Ty = Op.getValueType();
2227
2228  if (!isPositionIndependent())
2229    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2230                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2231
2232  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2233}
2234
2235SDValue MipsTargetLowering::
2236lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2237{
2238  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2239  EVT Ty = Op.getValueType();
2240
2241  if (!isPositionIndependent()) {
2242    const MipsTargetObjectFile *TLOF =
2243        static_cast<const MipsTargetObjectFile *>(
2244            getTargetMachine().getObjFileLowering());
2245
2246    if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2247                                       getTargetMachine()))
2248      // %gp_rel relocation
2249      return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2250
2251    return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2252                                : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2253  }
2254
2255 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2256}
2257
2258SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2259  MachineFunction &MF = DAG.getMachineFunction();
2260  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2261
2262  SDLoc DL(Op);
2263  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2264                                 getPointerTy(MF.getDataLayout()));
2265
2266  // vastart just stores the address of the VarArgsFrameIndex slot into the
2267  // memory location argument.
2268  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2269  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2270                      MachinePointerInfo(SV));
2271}
2272
2273SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2274  SDNode *Node = Op.getNode();
2275  EVT VT = Node->getValueType(0);
2276  SDValue Chain = Node->getOperand(0);
2277  SDValue VAListPtr = Node->getOperand(1);
2278  const Align Align =
2279      llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2280  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2281  SDLoc DL(Node);
2282  unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2283
2284  SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2285                                   VAListPtr, MachinePointerInfo(SV));
2286  SDValue VAList = VAListLoad;
2287
2288  // Re-align the pointer if necessary.
2289  // It should only ever be necessary for 64-bit types on O32 since the minimum
2290  // argument alignment is the same as the maximum type alignment for N32/N64.
2291  //
2292  // FIXME: We currently align too often. The code generator doesn't notice
2293  //        when the pointer is still aligned from the last va_arg (or pair of
2294  //        va_args for the i64 on O32 case).
2295  if (Align > getMinStackArgumentAlignment()) {
2296    VAList = DAG.getNode(
2297        ISD::ADD, DL, VAList.getValueType(), VAList,
2298        DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2299
2300    VAList = DAG.getNode(
2301        ISD::AND, DL, VAList.getValueType(), VAList,
2302        DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2303  }
2304
2305  // Increment the pointer, VAList, to the next vaarg.
2306  auto &TD = DAG.getDataLayout();
2307  unsigned ArgSizeInBytes =
2308      TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2309  SDValue Tmp3 =
2310      DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2311                  DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2312                                  DL, VAList.getValueType()));
2313  // Store the incremented VAList to the legalized pointer
2314  Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2315                       MachinePointerInfo(SV));
2316
2317  // In big-endian mode we must adjust the pointer when the load size is smaller
2318  // than the argument slot size. We must also reduce the known alignment to
2319  // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2320  // the correct half of the slot, and reduce the alignment from 8 (slot
2321  // alignment) down to 4 (type alignment).
2322  if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2323    unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2324    VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2325                         DAG.getIntPtrConstant(Adjustment, DL));
2326  }
2327  // Load the actual argument out of the pointer VAList
2328  return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2329}
2330
2331static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2332                                bool HasExtractInsert) {
2333  EVT TyX = Op.getOperand(0).getValueType();
2334  EVT TyY = Op.getOperand(1).getValueType();
2335  SDLoc DL(Op);
2336  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2337  SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2338  SDValue Res;
2339
2340  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2341  // to i32.
2342  SDValue X = (TyX == MVT::f32) ?
2343    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2344    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2345                Const1);
2346  SDValue Y = (TyY == MVT::f32) ?
2347    DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2348    DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2349                Const1);
2350
2351  if (HasExtractInsert) {
2352    // ext  E, Y, 31, 1  ; extract bit31 of Y
2353    // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2354    SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2355    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2356  } else {
2357    // sll SllX, X, 1
2358    // srl SrlX, SllX, 1
2359    // srl SrlY, Y, 31
2360    // sll SllY, SrlX, 31
2361    // or  Or, SrlX, SllY
2362    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2363    SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2364    SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2365    SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2366    Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2367  }
2368
2369  if (TyX == MVT::f32)
2370    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2371
2372  SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2373                             Op.getOperand(0),
2374                             DAG.getConstant(0, DL, MVT::i32));
2375  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2376}
2377
2378static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2379                                bool HasExtractInsert) {
2380  unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2381  unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2382  EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2383  SDLoc DL(Op);
2384  SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2385
2386  // Bitcast to integer nodes.
2387  SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2388  SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2389
2390  if (HasExtractInsert) {
2391    // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2392    // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2393    SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2394                            DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2395
2396    if (WidthX > WidthY)
2397      E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2398    else if (WidthY > WidthX)
2399      E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2400
2401    SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2402                            DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2403                            X);
2404    return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2405  }
2406
2407  // (d)sll SllX, X, 1
2408  // (d)srl SrlX, SllX, 1
2409  // (d)srl SrlY, Y, width(Y)-1
2410  // (d)sll SllY, SrlX, width(Y)-1
2411  // or     Or, SrlX, SllY
2412  SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2413  SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2414  SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2415                             DAG.getConstant(WidthY - 1, DL, MVT::i32));
2416
2417  if (WidthX > WidthY)
2418    SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2419  else if (WidthY > WidthX)
2420    SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2421
2422  SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2423                             DAG.getConstant(WidthX - 1, DL, MVT::i32));
2424  SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2425  return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2426}
2427
2428SDValue
2429MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2430  if (Subtarget.isGP64bit())
2431    return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2432
2433  return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2434}
2435
2436SDValue MipsTargetLowering::lowerFABS32(SDValue Op, SelectionDAG &DAG,
2437                                        bool HasExtractInsert) const {
2438  SDLoc DL(Op);
2439  SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2440
2441  if (DAG.getTarget().Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())
2442    return DAG.getNode(MipsISD::FAbs, DL, Op.getValueType(), Op.getOperand(0));
2443
2444  // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2445  // to i32.
2446  SDValue X = (Op.getValueType() == MVT::f32)
2447                  ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2448                  : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2449                                Op.getOperand(0), Const1);
2450
2451  // Clear MSB.
2452  if (HasExtractInsert)
2453    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2454                      DAG.getRegister(Mips::ZERO, MVT::i32),
2455                      DAG.getConstant(31, DL, MVT::i32), Const1, X);
2456  else {
2457    // TODO: Provide DAG patterns which transform (and x, cst)
2458    // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2459    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2460    Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2461  }
2462
2463  if (Op.getValueType() == MVT::f32)
2464    return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2465
2466  // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2467  // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2468  // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2469  // place.
2470  SDValue LowX =
2471      DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2472                  DAG.getConstant(0, DL, MVT::i32));
2473  return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2474}
2475
2476SDValue MipsTargetLowering::lowerFABS64(SDValue Op, SelectionDAG &DAG,
2477                                        bool HasExtractInsert) const {
2478  SDLoc DL(Op);
2479  SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2480
2481  if (DAG.getTarget().Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())
2482    return DAG.getNode(MipsISD::FAbs, DL, Op.getValueType(), Op.getOperand(0));
2483
2484  // Bitcast to integer node.
2485  SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2486
2487  // Clear MSB.
2488  if (HasExtractInsert)
2489    Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2490                      DAG.getRegister(Mips::ZERO_64, MVT::i64),
2491                      DAG.getConstant(63, DL, MVT::i32), Const1, X);
2492  else {
2493    SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2494    Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2495  }
2496
2497  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2498}
2499
2500SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2501  if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2502    return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2503
2504  return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2505}
2506
2507SDValue MipsTargetLowering::
2508lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2509  // check the depth
2510  if (Op.getConstantOperandVal(0) != 0) {
2511    DAG.getContext()->emitError(
2512        "return address can be determined only for current frame");
2513    return SDValue();
2514  }
2515
2516  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2517  MFI.setFrameAddressIsTaken(true);
2518  EVT VT = Op.getValueType();
2519  SDLoc DL(Op);
2520  SDValue FrameAddr = DAG.getCopyFromReg(
2521      DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2522  return FrameAddr;
2523}
2524
2525SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2526                                            SelectionDAG &DAG) const {
2527  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2528    return SDValue();
2529
2530  // check the depth
2531  if (Op.getConstantOperandVal(0) != 0) {
2532    DAG.getContext()->emitError(
2533        "return address can be determined only for current frame");
2534    return SDValue();
2535  }
2536
2537  MachineFunction &MF = DAG.getMachineFunction();
2538  MachineFrameInfo &MFI = MF.getFrameInfo();
2539  MVT VT = Op.getSimpleValueType();
2540  unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2541  MFI.setReturnAddressIsTaken(true);
2542
2543  // Return RA, which contains the return address. Mark it an implicit live-in.
2544  Register Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2545  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2546}
2547
2548// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2549// generated from __builtin_eh_return (offset, handler)
2550// The effect of this is to adjust the stack pointer by "offset"
2551// and then branch to "handler".
2552SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2553                                                                     const {
2554  MachineFunction &MF = DAG.getMachineFunction();
2555  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2556
2557  MipsFI->setCallsEhReturn();
2558  SDValue Chain     = Op.getOperand(0);
2559  SDValue Offset    = Op.getOperand(1);
2560  SDValue Handler   = Op.getOperand(2);
2561  SDLoc DL(Op);
2562  EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2563
2564  // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2565  // EH_RETURN nodes, so that instructions are emitted back-to-back.
2566  unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2567  unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2568  Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2569  Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2570  return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2571                     DAG.getRegister(OffsetReg, Ty),
2572                     DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2573                     Chain.getValue(1));
2574}
2575
2576SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2577                                              SelectionDAG &DAG) const {
2578  // FIXME: Need pseudo-fence for 'singlethread' fences
2579  // FIXME: Set SType for weaker fences where supported/appropriate.
2580  unsigned SType = 0;
2581  SDLoc DL(Op);
2582  return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2583                     DAG.getConstant(SType, DL, MVT::i32));
2584}
2585
2586SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2587                                                SelectionDAG &DAG) const {
2588  SDLoc DL(Op);
2589  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2590
2591  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2592  SDValue Shamt = Op.getOperand(2);
2593  // if shamt < (VT.bits):
2594  //  lo = (shl lo, shamt)
2595  //  hi = (or (shl hi, shamt) (srl (srl lo, 1), (xor shamt, (VT.bits-1))))
2596  // else:
2597  //  lo = 0
2598  //  hi = (shl lo, shamt[4:0])
2599  SDValue Not =
2600      DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2601                  DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32));
2602  SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2603                                      DAG.getConstant(1, DL, VT));
2604  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2605  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2606  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2607  SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2608  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2609                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2610  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2611                   DAG.getConstant(0, DL, VT), ShiftLeftLo);
2612  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2613
2614  SDValue Ops[2] = {Lo, Hi};
2615  return DAG.getMergeValues(Ops, DL);
2616}
2617
2618SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2619                                                 bool IsSRA) const {
2620  SDLoc DL(Op);
2621  SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2622  SDValue Shamt = Op.getOperand(2);
2623  MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2624
2625  // if shamt < (VT.bits):
2626  //  lo = (or (shl (shl hi, 1), (xor shamt, (VT.bits-1))) (srl lo, shamt))
2627  //  if isSRA:
2628  //    hi = (sra hi, shamt)
2629  //  else:
2630  //    hi = (srl hi, shamt)
2631  // else:
2632  //  if isSRA:
2633  //   lo = (sra hi, shamt[4:0])
2634  //   hi = (sra hi, 31)
2635  //  else:
2636  //   lo = (srl hi, shamt[4:0])
2637  //   hi = 0
2638  SDValue Not =
2639      DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2640                  DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32));
2641  SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2642                                     DAG.getConstant(1, DL, VT));
2643  SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2644  SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2645  SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2646  SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2647                                     DL, VT, Hi, Shamt);
2648  SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2649                             DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2650  SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2651                            DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2652
2653  if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2654    SDVTList VTList = DAG.getVTList(VT, VT);
2655    return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2656                                             : Mips::PseudoD_SELECT_I,
2657                       DL, VTList, Cond, ShiftRightHi,
2658                       IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2659                       ShiftRightHi);
2660  }
2661
2662  Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2663  Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2664                   IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2665
2666  SDValue Ops[2] = {Lo, Hi};
2667  return DAG.getMergeValues(Ops, DL);
2668}
2669
2670static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2671                            SDValue Chain, SDValue Src, unsigned Offset) {
2672  SDValue Ptr = LD->getBasePtr();
2673  EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2674  EVT BasePtrVT = Ptr.getValueType();
2675  SDLoc DL(LD);
2676  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2677
2678  if (Offset)
2679    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2680                      DAG.getConstant(Offset, DL, BasePtrVT));
2681
2682  SDValue Ops[] = { Chain, Ptr, Src };
2683  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2684                                 LD->getMemOperand());
2685}
2686
2687// Expand an unaligned 32 or 64-bit integer load node.
2688SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2689  LoadSDNode *LD = cast<LoadSDNode>(Op);
2690  EVT MemVT = LD->getMemoryVT();
2691
2692  if (Subtarget.systemSupportsUnalignedAccess())
2693    return Op;
2694
2695  // Return if load is aligned or if MemVT is neither i32 nor i64.
2696  if ((LD->getAlign().value() >= (MemVT.getSizeInBits() / 8)) ||
2697      ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2698    return SDValue();
2699
2700  bool IsLittle = Subtarget.isLittle();
2701  EVT VT = Op.getValueType();
2702  ISD::LoadExtType ExtType = LD->getExtensionType();
2703  SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2704
2705  assert((VT == MVT::i32) || (VT == MVT::i64));
2706
2707  // Expand
2708  //  (set dst, (i64 (load baseptr)))
2709  // to
2710  //  (set tmp, (ldl (add baseptr, 7), undef))
2711  //  (set dst, (ldr baseptr, tmp))
2712  if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2713    SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2714                               IsLittle ? 7 : 0);
2715    return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2716                        IsLittle ? 0 : 7);
2717  }
2718
2719  SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2720                             IsLittle ? 3 : 0);
2721  SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2722                             IsLittle ? 0 : 3);
2723
2724  // Expand
2725  //  (set dst, (i32 (load baseptr))) or
2726  //  (set dst, (i64 (sextload baseptr))) or
2727  //  (set dst, (i64 (extload baseptr)))
2728  // to
2729  //  (set tmp, (lwl (add baseptr, 3), undef))
2730  //  (set dst, (lwr baseptr, tmp))
2731  if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2732      (ExtType == ISD::EXTLOAD))
2733    return LWR;
2734
2735  assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2736
2737  // Expand
2738  //  (set dst, (i64 (zextload baseptr)))
2739  // to
2740  //  (set tmp0, (lwl (add baseptr, 3), undef))
2741  //  (set tmp1, (lwr baseptr, tmp0))
2742  //  (set tmp2, (shl tmp1, 32))
2743  //  (set dst, (srl tmp2, 32))
2744  SDLoc DL(LD);
2745  SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2746  SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2747  SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2748  SDValue Ops[] = { SRL, LWR.getValue(1) };
2749  return DAG.getMergeValues(Ops, DL);
2750}
2751
2752static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2753                             SDValue Chain, unsigned Offset) {
2754  SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2755  EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2756  SDLoc DL(SD);
2757  SDVTList VTList = DAG.getVTList(MVT::Other);
2758
2759  if (Offset)
2760    Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2761                      DAG.getConstant(Offset, DL, BasePtrVT));
2762
2763  SDValue Ops[] = { Chain, Value, Ptr };
2764  return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2765                                 SD->getMemOperand());
2766}
2767
2768// Expand an unaligned 32 or 64-bit integer store node.
2769static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2770                                      bool IsLittle) {
2771  SDValue Value = SD->getValue(), Chain = SD->getChain();
2772  EVT VT = Value.getValueType();
2773
2774  // Expand
2775  //  (store val, baseptr) or
2776  //  (truncstore val, baseptr)
2777  // to
2778  //  (swl val, (add baseptr, 3))
2779  //  (swr val, baseptr)
2780  if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2781    SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2782                                IsLittle ? 3 : 0);
2783    return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2784  }
2785
2786  assert(VT == MVT::i64);
2787
2788  // Expand
2789  //  (store val, baseptr)
2790  // to
2791  //  (sdl val, (add baseptr, 7))
2792  //  (sdr val, baseptr)
2793  SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2794  return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2795}
2796
2797// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2798static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2799                                     bool SingleFloat) {
2800  SDValue Val = SD->getValue();
2801
2802  if (Val.getOpcode() != ISD::FP_TO_SINT ||
2803      (Val.getValueSizeInBits() > 32 && SingleFloat))
2804    return SDValue();
2805
2806  EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2807  SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2808                           Val.getOperand(0));
2809  return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2810                      SD->getPointerInfo(), SD->getAlign(),
2811                      SD->getMemOperand()->getFlags());
2812}
2813
2814SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2815  StoreSDNode *SD = cast<StoreSDNode>(Op);
2816  EVT MemVT = SD->getMemoryVT();
2817
2818  // Lower unaligned integer stores.
2819  if (!Subtarget.systemSupportsUnalignedAccess() &&
2820      (SD->getAlign().value() < (MemVT.getSizeInBits() / 8)) &&
2821      ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2822    return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2823
2824  return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2825}
2826
2827SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2828                                              SelectionDAG &DAG) const {
2829
2830  // Return a fixed StackObject with offset 0 which points to the old stack
2831  // pointer.
2832  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2833  EVT ValTy = Op->getValueType(0);
2834  int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2835  return DAG.getFrameIndex(FI, ValTy);
2836}
2837
2838SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2839                                            SelectionDAG &DAG) const {
2840  if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2841    return SDValue();
2842
2843  EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2844  SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2845                              Op.getOperand(0));
2846  return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2847}
2848
2849//===----------------------------------------------------------------------===//
2850//                      Calling Convention Implementation
2851//===----------------------------------------------------------------------===//
2852
2853//===----------------------------------------------------------------------===//
2854// TODO: Implement a generic logic using tblgen that can support this.
2855// Mips O32 ABI rules:
2856// ---
2857// i32 - Passed in A0, A1, A2, A3 and stack
2858// f32 - Only passed in f32 registers if no int reg has been used yet to hold
2859//       an argument. Otherwise, passed in A1, A2, A3 and stack.
2860// f64 - Only passed in two aliased f32 registers if no int reg has been used
2861//       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2862//       not used, it must be shadowed. If only A3 is available, shadow it and
2863//       go to stack.
2864// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2865// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2866//         with the remainder spilled to the stack.
2867// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2868//         spilling the remainder to the stack.
2869//
2870//  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2871//===----------------------------------------------------------------------===//
2872
2873static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2874                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2875                       CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2876  const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2877      State.getMachineFunction().getSubtarget());
2878
2879  static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2880
2881  const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2882
2883  static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2884
2885  static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2886
2887  // Do not process byval args here.
2888  if (ArgFlags.isByVal())
2889    return true;
2890
2891  // Promote i8 and i16
2892  if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2893    if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2894      LocVT = MVT::i32;
2895      if (ArgFlags.isSExt())
2896        LocInfo = CCValAssign::SExtUpper;
2897      else if (ArgFlags.isZExt())
2898        LocInfo = CCValAssign::ZExtUpper;
2899      else
2900        LocInfo = CCValAssign::AExtUpper;
2901    }
2902  }
2903
2904  // Promote i8 and i16
2905  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2906    LocVT = MVT::i32;
2907    if (ArgFlags.isSExt())
2908      LocInfo = CCValAssign::SExt;
2909    else if (ArgFlags.isZExt())
2910      LocInfo = CCValAssign::ZExt;
2911    else
2912      LocInfo = CCValAssign::AExt;
2913  }
2914
2915  unsigned Reg;
2916
2917  // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2918  // is true: function is vararg, argument is 3rd or higher, there is previous
2919  // argument which is not f32 or f64.
2920  bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2921                                State.getFirstUnallocated(F32Regs) != ValNo;
2922  Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
2923  bool isI64 = (ValVT == MVT::i32 && OrigAlign == Align(8));
2924  bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2925
2926  // The MIPS vector ABI for floats passes them in a pair of registers
2927  if (ValVT == MVT::i32 && isVectorFloat) {
2928    // This is the start of an vector that was scalarized into an unknown number
2929    // of components. It doesn't matter how many there are. Allocate one of the
2930    // notional 8 byte aligned registers which map onto the argument stack, and
2931    // shadow the register lost to alignment requirements.
2932    if (ArgFlags.isSplit()) {
2933      Reg = State.AllocateReg(FloatVectorIntRegs);
2934      if (Reg == Mips::A2)
2935        State.AllocateReg(Mips::A1);
2936      else if (Reg == 0)
2937        State.AllocateReg(Mips::A3);
2938    } else {
2939      // If we're an intermediate component of the split, we can just attempt to
2940      // allocate a register directly.
2941      Reg = State.AllocateReg(IntRegs);
2942    }
2943  } else if (ValVT == MVT::i32 ||
2944             (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2945    Reg = State.AllocateReg(IntRegs);
2946    // If this is the first part of an i64 arg,
2947    // the allocated register must be either A0 or A2.
2948    if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2949      Reg = State.AllocateReg(IntRegs);
2950    LocVT = MVT::i32;
2951  } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2952    // Allocate int register and shadow next int register. If first
2953    // available register is Mips::A1 or Mips::A3, shadow it too.
2954    Reg = State.AllocateReg(IntRegs);
2955    if (Reg == Mips::A1 || Reg == Mips::A3)
2956      Reg = State.AllocateReg(IntRegs);
2957
2958    if (Reg) {
2959      LocVT = MVT::i32;
2960
2961      State.addLoc(
2962          CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2963      MCRegister HiReg = State.AllocateReg(IntRegs);
2964      assert(HiReg);
2965      State.addLoc(
2966          CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo));
2967      return false;
2968    }
2969  } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2970    // we are guaranteed to find an available float register
2971    if (ValVT == MVT::f32) {
2972      Reg = State.AllocateReg(F32Regs);
2973      // Shadow int register
2974      State.AllocateReg(IntRegs);
2975    } else {
2976      Reg = State.AllocateReg(F64Regs);
2977      // Shadow int registers
2978      unsigned Reg2 = State.AllocateReg(IntRegs);
2979      if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2980        State.AllocateReg(IntRegs);
2981      State.AllocateReg(IntRegs);
2982    }
2983  } else
2984    llvm_unreachable("Cannot handle this ValVT.");
2985
2986  if (!Reg) {
2987    unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2988    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2989  } else
2990    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2991
2992  return false;
2993}
2994
2995static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2996                            MVT LocVT, CCValAssign::LocInfo LocInfo,
2997                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2998  static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2999
3000  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
3001}
3002
3003static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
3004                            MVT LocVT, CCValAssign::LocInfo LocInfo,
3005                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
3006  static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
3007
3008  return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
3009}
3010
3011static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
3012                       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
3013                       CCState &State) LLVM_ATTRIBUTE_UNUSED;
3014
3015#include "MipsGenCallingConv.inc"
3016
3017 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
3018   return CC_Mips_FixedArg;
3019 }
3020
3021 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
3022   return RetCC_Mips;
3023 }
3024//===----------------------------------------------------------------------===//
3025//                  Call Calling Convention Implementation
3026//===----------------------------------------------------------------------===//
3027
3028SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3029                                           SDValue Chain, SDValue Arg,
3030                                           const SDLoc &DL, bool IsTailCall,
3031                                           SelectionDAG &DAG) const {
3032  if (!IsTailCall) {
3033    SDValue PtrOff =
3034        DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
3035                    DAG.getIntPtrConstant(Offset, DL));
3036    return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
3037  }
3038
3039  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3040  int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3041  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3042  return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), MaybeAlign(),
3043                      MachineMemOperand::MOVolatile);
3044}
3045
3046void MipsTargetLowering::
3047getOpndList(SmallVectorImpl<SDValue> &Ops,
3048            std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3049            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
3050            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
3051            SDValue Chain) const {
3052  // Insert node "GP copy globalreg" before call to function.
3053  //
3054  // R_MIPS_CALL* operators (emitted when non-internal functions are called
3055  // in PIC mode) allow symbols to be resolved via lazy binding.
3056  // The lazy binding stub requires GP to point to the GOT.
3057  // Note that we don't need GP to point to the GOT for indirect calls
3058  // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3059  // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3060  // used for the function (that is, Mips linker doesn't generate lazy binding
3061  // stub for a function whose address is taken in the program).
3062  if (IsPICCall && !InternalLinkage && IsCallReloc) {
3063    unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
3064    EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
3065    RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
3066  }
3067
3068  // Build a sequence of copy-to-reg nodes chained together with token
3069  // chain and flag operands which copy the outgoing args into registers.
3070  // The InGlue in necessary since all emitted instructions must be
3071  // stuck together.
3072  SDValue InGlue;
3073
3074  for (auto &R : RegsToPass) {
3075    Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, R.first, R.second, InGlue);
3076    InGlue = Chain.getValue(1);
3077  }
3078
3079  // Add argument registers to the end of the list so that they are
3080  // known live into the call.
3081  for (auto &R : RegsToPass)
3082    Ops.push_back(CLI.DAG.getRegister(R.first, R.second.getValueType()));
3083
3084  // Add a register mask operand representing the call-preserved registers.
3085  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3086  const uint32_t *Mask =
3087      TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
3088  assert(Mask && "Missing call preserved mask for calling convention");
3089  if (Subtarget.inMips16HardFloat()) {
3090    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
3091      StringRef Sym = G->getGlobal()->getName();
3092      Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3093      if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3094        Mask = MipsRegisterInfo::getMips16RetHelperMask();
3095      }
3096    }
3097  }
3098  Ops.push_back(CLI.DAG.getRegisterMask(Mask));
3099
3100  if (InGlue.getNode())
3101    Ops.push_back(InGlue);
3102}
3103
3104void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3105                                                       SDNode *Node) const {
3106  switch (MI.getOpcode()) {
3107    default:
3108      return;
3109    case Mips::JALR:
3110    case Mips::JALRPseudo:
3111    case Mips::JALR64:
3112    case Mips::JALR64Pseudo:
3113    case Mips::JALR16_MM:
3114    case Mips::JALRC16_MMR6:
3115    case Mips::TAILCALLREG:
3116    case Mips::TAILCALLREG64:
3117    case Mips::TAILCALLR6REG:
3118    case Mips::TAILCALL64R6REG:
3119    case Mips::TAILCALLREG_MM:
3120    case Mips::TAILCALLREG_MMR6: {
3121      if (!EmitJalrReloc ||
3122          Subtarget.inMips16Mode() ||
3123          !isPositionIndependent() ||
3124          Node->getNumOperands() < 1 ||
3125          Node->getOperand(0).getNumOperands() < 2) {
3126        return;
3127      }
3128      // We are after the callee address, set by LowerCall().
3129      // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3130      // symbol.
3131      const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
3132      StringRef Sym;
3133      if (const GlobalAddressSDNode *G =
3134              dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
3135        // We must not emit the R_MIPS_JALR relocation against data symbols
3136        // since this will cause run-time crashes if the linker replaces the
3137        // call instruction with a relative branch to the data symbol.
3138        if (!isa<Function>(G->getGlobal())) {
3139          LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3140                            << G->getGlobal()->getName() << "\n");
3141          return;
3142        }
3143        Sym = G->getGlobal()->getName();
3144      }
3145      else if (const ExternalSymbolSDNode *ES =
3146                   dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3147        Sym = ES->getSymbol();
3148      }
3149
3150      if (Sym.empty())
3151        return;
3152
3153      MachineFunction *MF = MI.getParent()->getParent();
3154      MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3155      LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n");
3156      MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3157    }
3158  }
3159}
3160
3161/// LowerCall - functions arguments are copied from virtual regs to
3162/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3163SDValue
3164MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3165                              SmallVectorImpl<SDValue> &InVals) const {
3166  SelectionDAG &DAG                     = CLI.DAG;
3167  SDLoc DL                              = CLI.DL;
3168  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3169  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3170  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3171  SDValue Chain                         = CLI.Chain;
3172  SDValue Callee                        = CLI.Callee;
3173  bool &IsTailCall                      = CLI.IsTailCall;
3174  CallingConv::ID CallConv              = CLI.CallConv;
3175  bool IsVarArg                         = CLI.IsVarArg;
3176
3177  MachineFunction &MF = DAG.getMachineFunction();
3178  MachineFrameInfo &MFI = MF.getFrameInfo();
3179  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3180  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3181  bool IsPIC = isPositionIndependent();
3182
3183  // Analyze operands of the call, assigning locations to each operand.
3184  SmallVector<CCValAssign, 16> ArgLocs;
3185  MipsCCState CCInfo(
3186      CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3187      MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3188
3189  const ExternalSymbolSDNode *ES =
3190      dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3191
3192  // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3193  // is during the lowering of a call with a byval argument which produces
3194  // a call to memcpy. For the O32 case, this causes the caller to allocate
3195  // stack space for the reserved argument area for the callee, then recursively
3196  // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3197  // ABIs mandate that the callee allocates the reserved argument area. We do
3198  // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3199  //
3200  // If the callee has a byval argument and memcpy is used, we are mandated
3201  // to already have produced a reserved argument area for the callee for O32.
3202  // Therefore, the reserved argument area can be reused for both calls.
3203  //
3204  // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3205  // present, as we have yet to hook that node onto the chain.
3206  //
3207  // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3208  // case. GCC does a similar trick, in that wherever possible, it calculates
3209  // the maximum out going argument area (including the reserved area), and
3210  // preallocates the stack space on entrance to the caller.
3211  //
3212  // FIXME: We should do the same for efficiency and space.
3213
3214  // Note: The check on the calling convention below must match
3215  //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3216  bool MemcpyInByVal = ES &&
3217                       StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3218                       CallConv != CallingConv::Fast &&
3219                       Chain.getOpcode() == ISD::CALLSEQ_START;
3220
3221  // Allocate the reserved argument area. It seems strange to do this from the
3222  // caller side but removing it breaks the frame size calculation.
3223  unsigned ReservedArgArea =
3224      MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3225  CCInfo.AllocateStack(ReservedArgArea, Align(1));
3226
3227  CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3228                             ES ? ES->getSymbol() : nullptr);
3229
3230  // Get a count of how many bytes are to be pushed on the stack.
3231  unsigned StackSize = CCInfo.getStackSize();
3232
3233  // Call site info for function parameters tracking.
3234  MachineFunction::CallSiteInfo CSInfo;
3235
3236  // Check if it's really possible to do a tail call. Restrict it to functions
3237  // that are part of this compilation unit.
3238  bool InternalLinkage = false;
3239  if (IsTailCall) {
3240    IsTailCall = isEligibleForTailCallOptimization(
3241        CCInfo, StackSize, *MF.getInfo<MipsFunctionInfo>());
3242    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3243      InternalLinkage = G->getGlobal()->hasInternalLinkage();
3244      IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3245                     G->getGlobal()->hasPrivateLinkage() ||
3246                     G->getGlobal()->hasHiddenVisibility() ||
3247                     G->getGlobal()->hasProtectedVisibility());
3248     }
3249  }
3250  if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall())
3251    report_fatal_error("failed to perform tail call elimination on a call "
3252                       "site marked musttail");
3253
3254  if (IsTailCall)
3255    ++NumTailCalls;
3256
3257  // Chain is the output chain of the last Load/Store or CopyToReg node.
3258  // ByValChain is the output chain of the last Memcpy node created for copying
3259  // byval arguments to the stack.
3260  unsigned StackAlignment = TFL->getStackAlignment();
3261  StackSize = alignTo(StackSize, StackAlignment);
3262
3263  if (!(IsTailCall || MemcpyInByVal))
3264    Chain = DAG.getCALLSEQ_START(Chain, StackSize, 0, DL);
3265
3266  SDValue StackPtr =
3267      DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3268                         getPointerTy(DAG.getDataLayout()));
3269
3270  std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3271  SmallVector<SDValue, 8> MemOpChains;
3272
3273  CCInfo.rewindByValRegsInfo();
3274
3275  // Walk the register/memloc assignments, inserting copies/loads.
3276  for (unsigned i = 0, e = ArgLocs.size(), OutIdx = 0; i != e; ++i, ++OutIdx) {
3277    SDValue Arg = OutVals[OutIdx];
3278    CCValAssign &VA = ArgLocs[i];
3279    MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3280    ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags;
3281    bool UseUpperBits = false;
3282
3283    // ByVal Arg.
3284    if (Flags.isByVal()) {
3285      unsigned FirstByValReg, LastByValReg;
3286      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3287      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3288
3289      assert(Flags.getByValSize() &&
3290             "ByVal args of size 0 should have been ignored by front-end.");
3291      assert(ByValIdx < CCInfo.getInRegsParamsCount());
3292      assert(!IsTailCall &&
3293             "Do not tail-call optimize if there is a byval argument.");
3294      passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3295                   FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3296                   VA);
3297      CCInfo.nextInRegsParam();
3298      continue;
3299    }
3300
3301    // Promote the value if needed.
3302    switch (VA.getLocInfo()) {
3303    default:
3304      llvm_unreachable("Unknown loc info!");
3305    case CCValAssign::Full:
3306      if (VA.isRegLoc()) {
3307        if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3308            (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3309            (ValVT == MVT::i64 && LocVT == MVT::f64))
3310          Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3311        else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3312          SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3313                                   Arg, DAG.getConstant(0, DL, MVT::i32));
3314          SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3315                                   Arg, DAG.getConstant(1, DL, MVT::i32));
3316          if (!Subtarget.isLittle())
3317            std::swap(Lo, Hi);
3318
3319          assert(VA.needsCustom());
3320
3321          Register LocRegLo = VA.getLocReg();
3322          Register LocRegHigh = ArgLocs[++i].getLocReg();
3323          RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3324          RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3325          continue;
3326        }
3327      }
3328      break;
3329    case CCValAssign::BCvt:
3330      Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3331      break;
3332    case CCValAssign::SExtUpper:
3333      UseUpperBits = true;
3334      [[fallthrough]];
3335    case CCValAssign::SExt:
3336      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3337      break;
3338    case CCValAssign::ZExtUpper:
3339      UseUpperBits = true;
3340      [[fallthrough]];
3341    case CCValAssign::ZExt:
3342      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3343      break;
3344    case CCValAssign::AExtUpper:
3345      UseUpperBits = true;
3346      [[fallthrough]];
3347    case CCValAssign::AExt:
3348      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3349      break;
3350    }
3351
3352    if (UseUpperBits) {
3353      unsigned ValSizeInBits = Outs[OutIdx].ArgVT.getSizeInBits();
3354      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3355      Arg = DAG.getNode(
3356          ISD::SHL, DL, VA.getLocVT(), Arg,
3357          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3358    }
3359
3360    // Arguments that can be passed on register must be kept at
3361    // RegsToPass vector
3362    if (VA.isRegLoc()) {
3363      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3364
3365      // If the parameter is passed through reg $D, which splits into
3366      // two physical registers, avoid creating call site info.
3367      if (Mips::AFGR64RegClass.contains(VA.getLocReg()))
3368        continue;
3369
3370      // Collect CSInfo about which register passes which parameter.
3371      const TargetOptions &Options = DAG.getTarget().Options;
3372      if (Options.SupportsDebugEntryValues)
3373        CSInfo.emplace_back(VA.getLocReg(), i);
3374
3375      continue;
3376    }
3377
3378    // Register can't get to this point...
3379    assert(VA.isMemLoc());
3380
3381    // emit ISD::STORE whichs stores the
3382    // parameter value to a stack Location
3383    MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3384                                         Chain, Arg, DL, IsTailCall, DAG));
3385  }
3386
3387  // Transform all store nodes into one single node because all store
3388  // nodes are independent of each other.
3389  if (!MemOpChains.empty())
3390    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3391
3392  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3393  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3394  // node so that legalize doesn't hack it.
3395
3396  EVT Ty = Callee.getValueType();
3397  bool GlobalOrExternal = false, IsCallReloc = false;
3398
3399  // The long-calls feature is ignored in case of PIC.
3400  // While we do not support -mshared / -mno-shared properly,
3401  // ignore long-calls in case of -mabicalls too.
3402  if (!Subtarget.isABICalls() && !IsPIC) {
3403    // If the function should be called using "long call",
3404    // get its address into a register to prevent using
3405    // of the `jal` instruction for the direct call.
3406    if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3407      if (Subtarget.useLongCalls())
3408        Callee = Subtarget.hasSym32()
3409                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3410                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3411    } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3412      bool UseLongCalls = Subtarget.useLongCalls();
3413      // If the function has long-call/far/near attribute
3414      // it overrides command line switch pased to the backend.
3415      if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3416        if (F->hasFnAttribute("long-call"))
3417          UseLongCalls = true;
3418        else if (F->hasFnAttribute("short-call"))
3419          UseLongCalls = false;
3420      }
3421      if (UseLongCalls)
3422        Callee = Subtarget.hasSym32()
3423                     ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3424                     : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3425    }
3426  }
3427
3428  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3429    if (IsPIC) {
3430      const GlobalValue *Val = G->getGlobal();
3431      InternalLinkage = Val->hasInternalLinkage();
3432
3433      if (InternalLinkage)
3434        Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3435      else if (Subtarget.useXGOT()) {
3436        Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3437                                       MipsII::MO_CALL_LO16, Chain,
3438                                       FuncInfo->callPtrInfo(MF, Val));
3439        IsCallReloc = true;
3440      } else {
3441        Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3442                               FuncInfo->callPtrInfo(MF, Val));
3443        IsCallReloc = true;
3444      }
3445    } else
3446      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3447                                          getPointerTy(DAG.getDataLayout()), 0,
3448                                          MipsII::MO_NO_FLAG);
3449    GlobalOrExternal = true;
3450  }
3451  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3452    const char *Sym = S->getSymbol();
3453
3454    if (!IsPIC) // static
3455      Callee = DAG.getTargetExternalSymbol(
3456          Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3457    else if (Subtarget.useXGOT()) {
3458      Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3459                                     MipsII::MO_CALL_LO16, Chain,
3460                                     FuncInfo->callPtrInfo(MF, Sym));
3461      IsCallReloc = true;
3462    } else { // PIC
3463      Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3464                             FuncInfo->callPtrInfo(MF, Sym));
3465      IsCallReloc = true;
3466    }
3467
3468    GlobalOrExternal = true;
3469  }
3470
3471  SmallVector<SDValue, 8> Ops(1, Chain);
3472  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3473
3474  getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3475              IsCallReloc, CLI, Callee, Chain);
3476
3477  if (IsTailCall) {
3478    MF.getFrameInfo().setHasTailCall();
3479    SDValue Ret = DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3480    DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
3481    return Ret;
3482  }
3483
3484  Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3485  SDValue InGlue = Chain.getValue(1);
3486
3487  DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
3488
3489  // Create the CALLSEQ_END node in the case of where it is not a call to
3490  // memcpy.
3491  if (!(MemcpyInByVal)) {
3492    Chain = DAG.getCALLSEQ_END(Chain, StackSize, 0, InGlue, DL);
3493    InGlue = Chain.getValue(1);
3494  }
3495
3496  // Handle result values, copying them out of physregs into vregs that we
3497  // return.
3498  return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
3499                         InVals, CLI);
3500}
3501
3502/// LowerCallResult - Lower the result values of a call into the
3503/// appropriate copies out of appropriate physical registers.
3504SDValue MipsTargetLowering::LowerCallResult(
3505    SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
3506    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3507    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3508    TargetLowering::CallLoweringInfo &CLI) const {
3509  // Assign locations to each value returned by this call.
3510  SmallVector<CCValAssign, 16> RVLocs;
3511  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3512                     *DAG.getContext());
3513
3514  const ExternalSymbolSDNode *ES =
3515      dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3516  CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3517                           ES ? ES->getSymbol() : nullptr);
3518
3519  // Copy all of the result registers out of their specified physreg.
3520  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3521    CCValAssign &VA = RVLocs[i];
3522    assert(VA.isRegLoc() && "Can only return in registers!");
3523
3524    SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3525                                     RVLocs[i].getLocVT(), InGlue);
3526    Chain = Val.getValue(1);
3527    InGlue = Val.getValue(2);
3528
3529    if (VA.isUpperBitsInLoc()) {
3530      unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3531      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3532      unsigned Shift =
3533          VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3534      Val = DAG.getNode(
3535          Shift, DL, VA.getLocVT(), Val,
3536          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3537    }
3538
3539    switch (VA.getLocInfo()) {
3540    default:
3541      llvm_unreachable("Unknown loc info!");
3542    case CCValAssign::Full:
3543      break;
3544    case CCValAssign::BCvt:
3545      Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3546      break;
3547    case CCValAssign::AExt:
3548    case CCValAssign::AExtUpper:
3549      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3550      break;
3551    case CCValAssign::ZExt:
3552    case CCValAssign::ZExtUpper:
3553      Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3554                        DAG.getValueType(VA.getValVT()));
3555      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3556      break;
3557    case CCValAssign::SExt:
3558    case CCValAssign::SExtUpper:
3559      Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3560                        DAG.getValueType(VA.getValVT()));
3561      Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3562      break;
3563    }
3564
3565    InVals.push_back(Val);
3566  }
3567
3568  return Chain;
3569}
3570
3571static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3572                                      EVT ArgVT, const SDLoc &DL,
3573                                      SelectionDAG &DAG) {
3574  MVT LocVT = VA.getLocVT();
3575  EVT ValVT = VA.getValVT();
3576
3577  // Shift into the upper bits if necessary.
3578  switch (VA.getLocInfo()) {
3579  default:
3580    break;
3581  case CCValAssign::AExtUpper:
3582  case CCValAssign::SExtUpper:
3583  case CCValAssign::ZExtUpper: {
3584    unsigned ValSizeInBits = ArgVT.getSizeInBits();
3585    unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3586    unsigned Opcode =
3587        VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3588    Val = DAG.getNode(
3589        Opcode, DL, VA.getLocVT(), Val,
3590        DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3591    break;
3592  }
3593  }
3594
3595  // If this is an value smaller than the argument slot size (32-bit for O32,
3596  // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3597  // size. Extract the value and insert any appropriate assertions regarding
3598  // sign/zero extension.
3599  switch (VA.getLocInfo()) {
3600  default:
3601    llvm_unreachable("Unknown loc info!");
3602  case CCValAssign::Full:
3603    break;
3604  case CCValAssign::AExtUpper:
3605  case CCValAssign::AExt:
3606    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3607    break;
3608  case CCValAssign::SExtUpper:
3609  case CCValAssign::SExt:
3610    Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3611    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3612    break;
3613  case CCValAssign::ZExtUpper:
3614  case CCValAssign::ZExt:
3615    Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3616    Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3617    break;
3618  case CCValAssign::BCvt:
3619    Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3620    break;
3621  }
3622
3623  return Val;
3624}
3625
3626//===----------------------------------------------------------------------===//
3627//             Formal Arguments Calling Convention Implementation
3628//===----------------------------------------------------------------------===//
3629/// LowerFormalArguments - transform physical registers into virtual registers
3630/// and generate load operations for arguments places on the stack.
3631SDValue MipsTargetLowering::LowerFormalArguments(
3632    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3633    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3634    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3635  MachineFunction &MF = DAG.getMachineFunction();
3636  MachineFrameInfo &MFI = MF.getFrameInfo();
3637  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3638
3639  MipsFI->setVarArgsFrameIndex(0);
3640
3641  // Used with vargs to acumulate store chains.
3642  std::vector<SDValue> OutChains;
3643
3644  // Assign locations to all of the incoming arguments.
3645  SmallVector<CCValAssign, 16> ArgLocs;
3646  MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3647                     *DAG.getContext());
3648  CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), Align(1));
3649  const Function &Func = DAG.getMachineFunction().getFunction();
3650  Function::const_arg_iterator FuncArg = Func.arg_begin();
3651
3652  if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3653    report_fatal_error(
3654        "Functions with the interrupt attribute cannot have arguments!");
3655
3656  CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3657  MipsFI->setFormalArgInfo(CCInfo.getStackSize(),
3658                           CCInfo.getInRegsParamsCount() > 0);
3659
3660  unsigned CurArgIdx = 0;
3661  CCInfo.rewindByValRegsInfo();
3662
3663  for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
3664    CCValAssign &VA = ArgLocs[i];
3665    if (Ins[InsIdx].isOrigArg()) {
3666      std::advance(FuncArg, Ins[InsIdx].getOrigArgIndex() - CurArgIdx);
3667      CurArgIdx = Ins[InsIdx].getOrigArgIndex();
3668    }
3669    EVT ValVT = VA.getValVT();
3670    ISD::ArgFlagsTy Flags = Ins[InsIdx].Flags;
3671    bool IsRegLoc = VA.isRegLoc();
3672
3673    if (Flags.isByVal()) {
3674      assert(Ins[InsIdx].isOrigArg() && "Byval arguments cannot be implicit");
3675      unsigned FirstByValReg, LastByValReg;
3676      unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3677      CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3678
3679      assert(Flags.getByValSize() &&
3680             "ByVal args of size 0 should have been ignored by front-end.");
3681      assert(ByValIdx < CCInfo.getInRegsParamsCount());
3682      copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3683                    FirstByValReg, LastByValReg, VA, CCInfo);
3684      CCInfo.nextInRegsParam();
3685      continue;
3686    }
3687
3688    // Arguments stored on registers
3689    if (IsRegLoc) {
3690      MVT RegVT = VA.getLocVT();
3691      Register ArgReg = VA.getLocReg();
3692      const TargetRegisterClass *RC = getRegClassFor(RegVT);
3693
3694      // Transform the arguments stored on
3695      // physical registers into virtual ones
3696      unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3697      SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3698
3699      ArgValue =
3700          UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG);
3701
3702      // Handle floating point arguments passed in integer registers and
3703      // long double arguments passed in floating point registers.
3704      if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3705          (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3706          (RegVT == MVT::f64 && ValVT == MVT::i64))
3707        ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3708      else if (ABI.IsO32() && RegVT == MVT::i32 &&
3709               ValVT == MVT::f64) {
3710        assert(VA.needsCustom() && "Expected custom argument for f64 split");
3711        CCValAssign &NextVA = ArgLocs[++i];
3712        unsigned Reg2 =
3713            addLiveIn(DAG.getMachineFunction(), NextVA.getLocReg(), RC);
3714        SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3715        if (!Subtarget.isLittle())
3716          std::swap(ArgValue, ArgValue2);
3717        ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3718                               ArgValue, ArgValue2);
3719      }
3720
3721      InVals.push_back(ArgValue);
3722    } else { // VA.isRegLoc()
3723      MVT LocVT = VA.getLocVT();
3724
3725      assert(!VA.needsCustom() && "unexpected custom memory argument");
3726
3727      // Only arguments pased on the stack should make it here.
3728      assert(VA.isMemLoc());
3729
3730      // The stack pointer offset is relative to the caller stack frame.
3731      int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3732                                     VA.getLocMemOffset(), true);
3733
3734      // Create load nodes to retrieve arguments from the stack
3735      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3736      SDValue ArgValue = DAG.getLoad(
3737          LocVT, DL, Chain, FIN,
3738          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3739      OutChains.push_back(ArgValue.getValue(1));
3740
3741      ArgValue =
3742          UnpackFromArgumentSlot(ArgValue, VA, Ins[InsIdx].ArgVT, DL, DAG);
3743
3744      InVals.push_back(ArgValue);
3745    }
3746  }
3747
3748  for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
3749
3750    if (ArgLocs[i].needsCustom()) {
3751      ++i;
3752      continue;
3753    }
3754
3755    // The mips ABIs for returning structs by value requires that we copy
3756    // the sret argument into $v0 for the return. Save the argument into
3757    // a virtual register so that we can access it from the return points.
3758    if (Ins[InsIdx].Flags.isSRet()) {
3759      unsigned Reg = MipsFI->getSRetReturnReg();
3760      if (!Reg) {
3761        Reg = MF.getRegInfo().createVirtualRegister(
3762            getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3763        MipsFI->setSRetReturnReg(Reg);
3764      }
3765      SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3766      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3767      break;
3768    }
3769  }
3770
3771  if (IsVarArg)
3772    writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3773
3774  // All stores are grouped in one node to allow the matching between
3775  // the size of Ins and InVals. This only happens when on varg functions
3776  if (!OutChains.empty()) {
3777    OutChains.push_back(Chain);
3778    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3779  }
3780
3781  return Chain;
3782}
3783
3784//===----------------------------------------------------------------------===//
3785//               Return Value Calling Convention Implementation
3786//===----------------------------------------------------------------------===//
3787
3788bool
3789MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3790                                   MachineFunction &MF, bool IsVarArg,
3791                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3792                                   LLVMContext &Context) const {
3793  SmallVector<CCValAssign, 16> RVLocs;
3794  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3795  return CCInfo.CheckReturn(Outs, RetCC_Mips);
3796}
3797
3798bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type,
3799                                                       bool IsSigned) const {
3800  if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3801      return true;
3802
3803  return IsSigned;
3804}
3805
3806SDValue
3807MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3808                                         const SDLoc &DL,
3809                                         SelectionDAG &DAG) const {
3810  MachineFunction &MF = DAG.getMachineFunction();
3811  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3812
3813  MipsFI->setISR();
3814
3815  return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3816}
3817
3818SDValue
3819MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3820                                bool IsVarArg,
3821                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3822                                const SmallVectorImpl<SDValue> &OutVals,
3823                                const SDLoc &DL, SelectionDAG &DAG) const {
3824  // CCValAssign - represent the assignment of
3825  // the return value to a location
3826  SmallVector<CCValAssign, 16> RVLocs;
3827  MachineFunction &MF = DAG.getMachineFunction();
3828
3829  // CCState - Info about the registers and stack slot.
3830  MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3831
3832  // Analyze return values.
3833  CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3834
3835  SDValue Glue;
3836  SmallVector<SDValue, 4> RetOps(1, Chain);
3837
3838  // Copy the result values into the output registers.
3839  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3840    SDValue Val = OutVals[i];
3841    CCValAssign &VA = RVLocs[i];
3842    assert(VA.isRegLoc() && "Can only return in registers!");
3843    bool UseUpperBits = false;
3844
3845    switch (VA.getLocInfo()) {
3846    default:
3847      llvm_unreachable("Unknown loc info!");
3848    case CCValAssign::Full:
3849      break;
3850    case CCValAssign::BCvt:
3851      Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3852      break;
3853    case CCValAssign::AExtUpper:
3854      UseUpperBits = true;
3855      [[fallthrough]];
3856    case CCValAssign::AExt:
3857      Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3858      break;
3859    case CCValAssign::ZExtUpper:
3860      UseUpperBits = true;
3861      [[fallthrough]];
3862    case CCValAssign::ZExt:
3863      Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3864      break;
3865    case CCValAssign::SExtUpper:
3866      UseUpperBits = true;
3867      [[fallthrough]];
3868    case CCValAssign::SExt:
3869      Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3870      break;
3871    }
3872
3873    if (UseUpperBits) {
3874      unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3875      unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3876      Val = DAG.getNode(
3877          ISD::SHL, DL, VA.getLocVT(), Val,
3878          DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3879    }
3880
3881    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
3882
3883    // Guarantee that all emitted copies are stuck together with flags.
3884    Glue = Chain.getValue(1);
3885    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3886  }
3887
3888  // The mips ABIs for returning structs by value requires that we copy
3889  // the sret argument into $v0 for the return. We saved the argument into
3890  // a virtual register in the entry block, so now we copy the value out
3891  // and into $v0.
3892  if (MF.getFunction().hasStructRetAttr()) {
3893    MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3894    unsigned Reg = MipsFI->getSRetReturnReg();
3895
3896    if (!Reg)
3897      llvm_unreachable("sret virtual register not created in the entry block");
3898    SDValue Val =
3899        DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3900    unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3901
3902    Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Glue);
3903    Glue = Chain.getValue(1);
3904    RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3905  }
3906
3907  RetOps[0] = Chain;  // Update chain.
3908
3909  // Add the glue if we have it.
3910  if (Glue.getNode())
3911    RetOps.push_back(Glue);
3912
3913  // ISRs must use "eret".
3914  if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3915    return LowerInterruptReturn(RetOps, DL, DAG);
3916
3917  // Standard return on Mips is a "jr $ra"
3918  return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3919}
3920
3921//===----------------------------------------------------------------------===//
3922//                           Mips Inline Assembly Support
3923//===----------------------------------------------------------------------===//
3924
3925/// getConstraintType - Given a constraint letter, return the type of
3926/// constraint it is for this target.
3927MipsTargetLowering::ConstraintType
3928MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3929  // Mips specific constraints
3930  // GCC config/mips/constraints.md
3931  //
3932  // 'd' : An address register. Equivalent to r
3933  //       unless generating MIPS16 code.
3934  // 'y' : Equivalent to r; retained for
3935  //       backwards compatibility.
3936  // 'c' : A register suitable for use in an indirect
3937  //       jump. This will always be $25 for -mabicalls.
3938  // 'l' : The lo register. 1 word storage.
3939  // 'x' : The hilo register pair. Double word storage.
3940  if (Constraint.size() == 1) {
3941    switch (Constraint[0]) {
3942      default : break;
3943      case 'd':
3944      case 'y':
3945      case 'f':
3946      case 'c':
3947      case 'l':
3948      case 'x':
3949        return C_RegisterClass;
3950      case 'R':
3951        return C_Memory;
3952    }
3953  }
3954
3955  if (Constraint == "ZC")
3956    return C_Memory;
3957
3958  return TargetLowering::getConstraintType(Constraint);
3959}
3960
3961/// Examine constraint type and operand type and determine a weight value.
3962/// This object must already have been set up with the operand type
3963/// and the current alternative constraint selected.
3964TargetLowering::ConstraintWeight
3965MipsTargetLowering::getSingleConstraintMatchWeight(
3966    AsmOperandInfo &info, const char *constraint) const {
3967  ConstraintWeight weight = CW_Invalid;
3968  Value *CallOperandVal = info.CallOperandVal;
3969    // If we don't have a value, we can't do a match,
3970    // but allow it at the lowest weight.
3971  if (!CallOperandVal)
3972    return CW_Default;
3973  Type *type = CallOperandVal->getType();
3974  // Look at the constraint type.
3975  switch (*constraint) {
3976  default:
3977    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3978    break;
3979  case 'd':
3980  case 'y':
3981    if (type->isIntegerTy())
3982      weight = CW_Register;
3983    break;
3984  case 'f': // FPU or MSA register
3985    if (Subtarget.hasMSA() && type->isVectorTy() &&
3986        type->getPrimitiveSizeInBits().getFixedValue() == 128)
3987      weight = CW_Register;
3988    else if (type->isFloatTy())
3989      weight = CW_Register;
3990    break;
3991  case 'c': // $25 for indirect jumps
3992  case 'l': // lo register
3993  case 'x': // hilo register pair
3994    if (type->isIntegerTy())
3995      weight = CW_SpecificReg;
3996    break;
3997  case 'I': // signed 16 bit immediate
3998  case 'J': // integer zero
3999  case 'K': // unsigned 16 bit immediate
4000  case 'L': // signed 32 bit immediate where lower 16 bits are 0
4001  case 'N': // immediate in the range of -65535 to -1 (inclusive)
4002  case 'O': // signed 15 bit immediate (+- 16383)
4003  case 'P': // immediate in the range of 65535 to 1 (inclusive)
4004    if (isa<ConstantInt>(CallOperandVal))
4005      weight = CW_Constant;
4006    break;
4007  case 'R':
4008    weight = CW_Memory;
4009    break;
4010  }
4011  return weight;
4012}
4013
4014/// This is a helper function to parse a physical register string and split it
4015/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4016/// that is returned indicates whether parsing was successful. The second flag
4017/// is true if the numeric part exists.
4018static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
4019                                              unsigned long long &Reg) {
4020  if (C.front() != '{' || C.back() != '}')
4021    return std::make_pair(false, false);
4022
4023  // Search for the first numeric character.
4024  StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
4025  I = std::find_if(B, E, isdigit);
4026
4027  Prefix = StringRef(B, I - B);
4028
4029  // The second flag is set to false if no numeric characters were found.
4030  if (I == E)
4031    return std::make_pair(true, false);
4032
4033  // Parse the numeric characters.
4034  return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
4035                        true);
4036}
4037
4038EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
4039                                            ISD::NodeType) const {
4040  bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
4041  EVT MinVT = getRegisterType(Cond ? MVT::i64 : MVT::i32);
4042  return VT.bitsLT(MinVT) ? MinVT : VT;
4043}
4044
4045std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
4046parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
4047  const TargetRegisterInfo *TRI =
4048      Subtarget.getRegisterInfo();
4049  const TargetRegisterClass *RC;
4050  StringRef Prefix;
4051  unsigned long long Reg;
4052
4053  std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
4054
4055  if (!R.first)
4056    return std::make_pair(0U, nullptr);
4057
4058  if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
4059    // No numeric characters follow "hi" or "lo".
4060    if (R.second)
4061      return std::make_pair(0U, nullptr);
4062
4063    RC = TRI->getRegClass(Prefix == "hi" ?
4064                          Mips::HI32RegClassID : Mips::LO32RegClassID);
4065    return std::make_pair(*(RC->begin()), RC);
4066  } else if (Prefix.starts_with("$msa")) {
4067    // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4068
4069    // No numeric characters follow the name.
4070    if (R.second)
4071      return std::make_pair(0U, nullptr);
4072
4073    Reg = StringSwitch<unsigned long long>(Prefix)
4074              .Case("$msair", Mips::MSAIR)
4075              .Case("$msacsr", Mips::MSACSR)
4076              .Case("$msaaccess", Mips::MSAAccess)
4077              .Case("$msasave", Mips::MSASave)
4078              .Case("$msamodify", Mips::MSAModify)
4079              .Case("$msarequest", Mips::MSARequest)
4080              .Case("$msamap", Mips::MSAMap)
4081              .Case("$msaunmap", Mips::MSAUnmap)
4082              .Default(0);
4083
4084    if (!Reg)
4085      return std::make_pair(0U, nullptr);
4086
4087    RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
4088    return std::make_pair(Reg, RC);
4089  }
4090
4091  if (!R.second)
4092    return std::make_pair(0U, nullptr);
4093
4094  if (Prefix == "$f") { // Parse $f0-$f31.
4095    // If the size of FP registers is 64-bit or Reg is an even number, select
4096    // the 64-bit register class. Otherwise, select the 32-bit register class.
4097    if (VT == MVT::Other)
4098      VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
4099
4100    RC = getRegClassFor(VT);
4101
4102    if (RC == &Mips::AFGR64RegClass) {
4103      assert(Reg % 2 == 0);
4104      Reg >>= 1;
4105    }
4106  } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
4107    RC = TRI->getRegClass(Mips::FCCRegClassID);
4108  else if (Prefix == "$w") { // Parse $w0-$w31.
4109    RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
4110  } else { // Parse $0-$31.
4111    assert(Prefix == "$");
4112    RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
4113  }
4114
4115  assert(Reg < RC->getNumRegs());
4116  return std::make_pair(*(RC->begin() + Reg), RC);
4117}
4118
4119/// Given a register class constraint, like 'r', if this corresponds directly
4120/// to an LLVM register class, return a register of 0 and the register class
4121/// pointer.
4122std::pair<unsigned, const TargetRegisterClass *>
4123MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4124                                                 StringRef Constraint,
4125                                                 MVT VT) const {
4126  if (Constraint.size() == 1) {
4127    switch (Constraint[0]) {
4128    case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4129    case 'y': // Same as 'r'. Exists for compatibility.
4130    case 'r':
4131      if ((VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8 ||
4132           VT == MVT::i1) ||
4133          (VT == MVT::f32 && Subtarget.useSoftFloat())) {
4134        if (Subtarget.inMips16Mode())
4135          return std::make_pair(0U, &Mips::CPU16RegsRegClass);
4136        return std::make_pair(0U, &Mips::GPR32RegClass);
4137      }
4138      if ((VT == MVT::i64 || (VT == MVT::f64 && Subtarget.useSoftFloat())) &&
4139          !Subtarget.isGP64bit())
4140        return std::make_pair(0U, &Mips::GPR32RegClass);
4141      if ((VT == MVT::i64 || (VT == MVT::f64 && Subtarget.useSoftFloat())) &&
4142          Subtarget.isGP64bit())
4143        return std::make_pair(0U, &Mips::GPR64RegClass);
4144      // This will generate an error message
4145      return std::make_pair(0U, nullptr);
4146    case 'f': // FPU or MSA register
4147      if (VT == MVT::v16i8)
4148        return std::make_pair(0U, &Mips::MSA128BRegClass);
4149      else if (VT == MVT::v8i16 || VT == MVT::v8f16)
4150        return std::make_pair(0U, &Mips::MSA128HRegClass);
4151      else if (VT == MVT::v4i32 || VT == MVT::v4f32)
4152        return std::make_pair(0U, &Mips::MSA128WRegClass);
4153      else if (VT == MVT::v2i64 || VT == MVT::v2f64)
4154        return std::make_pair(0U, &Mips::MSA128DRegClass);
4155      else if (VT == MVT::f32)
4156        return std::make_pair(0U, &Mips::FGR32RegClass);
4157      else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
4158        if (Subtarget.isFP64bit())
4159          return std::make_pair(0U, &Mips::FGR64RegClass);
4160        return std::make_pair(0U, &Mips::AFGR64RegClass);
4161      }
4162      break;
4163    case 'c': // register suitable for indirect jump
4164      if (VT == MVT::i32)
4165        return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
4166      if (VT == MVT::i64)
4167        return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
4168      // This will generate an error message
4169      return std::make_pair(0U, nullptr);
4170    case 'l': // use the `lo` register to store values
4171              // that are no bigger than a word
4172      if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4173        return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4174      return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4175    case 'x': // use the concatenated `hi` and `lo` registers
4176              // to store doubleword values
4177      // Fixme: Not triggering the use of both hi and low
4178      // This will generate an error message
4179      return std::make_pair(0U, nullptr);
4180    }
4181  }
4182
4183  if (!Constraint.empty()) {
4184    std::pair<unsigned, const TargetRegisterClass *> R;
4185    R = parseRegForInlineAsmConstraint(Constraint, VT);
4186
4187    if (R.second)
4188      return R;
4189  }
4190
4191  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4192}
4193
4194/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4195/// vector.  If it is invalid, don't add anything to Ops.
4196void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4197                                                      StringRef Constraint,
4198                                                      std::vector<SDValue> &Ops,
4199                                                      SelectionDAG &DAG) const {
4200  SDLoc DL(Op);
4201  SDValue Result;
4202
4203  // Only support length 1 constraints for now.
4204  if (Constraint.size() > 1)
4205    return;
4206
4207  char ConstraintLetter = Constraint[0];
4208  switch (ConstraintLetter) {
4209  default: break; // This will fall through to the generic implementation
4210  case 'I': // Signed 16 bit constant
4211    // If this fails, the parent routine will give an error
4212    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4213      EVT Type = Op.getValueType();
4214      int64_t Val = C->getSExtValue();
4215      if (isInt<16>(Val)) {
4216        Result = DAG.getTargetConstant(Val, DL, Type);
4217        break;
4218      }
4219    }
4220    return;
4221  case 'J': // integer zero
4222    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4223      EVT Type = Op.getValueType();
4224      int64_t Val = C->getZExtValue();
4225      if (Val == 0) {
4226        Result = DAG.getTargetConstant(0, DL, Type);
4227        break;
4228      }
4229    }
4230    return;
4231  case 'K': // unsigned 16 bit immediate
4232    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4233      EVT Type = Op.getValueType();
4234      uint64_t Val = (uint64_t)C->getZExtValue();
4235      if (isUInt<16>(Val)) {
4236        Result = DAG.getTargetConstant(Val, DL, Type);
4237        break;
4238      }
4239    }
4240    return;
4241  case 'L': // signed 32 bit immediate where lower 16 bits are 0
4242    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4243      EVT Type = Op.getValueType();
4244      int64_t Val = C->getSExtValue();
4245      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4246        Result = DAG.getTargetConstant(Val, DL, Type);
4247        break;
4248      }
4249    }
4250    return;
4251  case 'N': // immediate in the range of -65535 to -1 (inclusive)
4252    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4253      EVT Type = Op.getValueType();
4254      int64_t Val = C->getSExtValue();
4255      if ((Val >= -65535) && (Val <= -1)) {
4256        Result = DAG.getTargetConstant(Val, DL, Type);
4257        break;
4258      }
4259    }
4260    return;
4261  case 'O': // signed 15 bit immediate
4262    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4263      EVT Type = Op.getValueType();
4264      int64_t Val = C->getSExtValue();
4265      if ((isInt<15>(Val))) {
4266        Result = DAG.getTargetConstant(Val, DL, Type);
4267        break;
4268      }
4269    }
4270    return;
4271  case 'P': // immediate in the range of 1 to 65535 (inclusive)
4272    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4273      EVT Type = Op.getValueType();
4274      int64_t Val = C->getSExtValue();
4275      if ((Val <= 65535) && (Val >= 1)) {
4276        Result = DAG.getTargetConstant(Val, DL, Type);
4277        break;
4278      }
4279    }
4280    return;
4281  }
4282
4283  if (Result.getNode()) {
4284    Ops.push_back(Result);
4285    return;
4286  }
4287
4288  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4289}
4290
4291bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4292                                               const AddrMode &AM, Type *Ty,
4293                                               unsigned AS,
4294                                               Instruction *I) const {
4295  // No global is ever allowed as a base.
4296  if (AM.BaseGV)
4297    return false;
4298
4299  switch (AM.Scale) {
4300  case 0: // "r+i" or just "i", depending on HasBaseReg.
4301    break;
4302  case 1:
4303    if (!AM.HasBaseReg) // allow "r+i".
4304      break;
4305    return false; // disallow "r+r" or "r+r+i".
4306  default:
4307    return false;
4308  }
4309
4310  return true;
4311}
4312
4313bool
4314MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4315  // The Mips target isn't yet aware of offsets.
4316  return false;
4317}
4318
4319EVT MipsTargetLowering::getOptimalMemOpType(
4320    const MemOp &Op, const AttributeList &FuncAttributes) const {
4321  if (Subtarget.hasMips64())
4322    return MVT::i64;
4323
4324  return MVT::i32;
4325}
4326
4327bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4328                                      bool ForCodeSize) const {
4329  if (VT != MVT::f32 && VT != MVT::f64)
4330    return false;
4331  if (Imm.isNegZero())
4332    return false;
4333  return Imm.isZero();
4334}
4335
4336unsigned MipsTargetLowering::getJumpTableEncoding() const {
4337
4338  // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4339  if (ABI.IsN64() && isPositionIndependent())
4340    return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4341
4342  return TargetLowering::getJumpTableEncoding();
4343}
4344
4345bool MipsTargetLowering::useSoftFloat() const {
4346  return Subtarget.useSoftFloat();
4347}
4348
4349void MipsTargetLowering::copyByValRegs(
4350    SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4351    SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4352    SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4353    unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4354    MipsCCState &State) const {
4355  MachineFunction &MF = DAG.getMachineFunction();
4356  MachineFrameInfo &MFI = MF.getFrameInfo();
4357  unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4358  unsigned NumRegs = LastReg - FirstReg;
4359  unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4360  unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4361  int FrameObjOffset;
4362  ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4363
4364  if (RegAreaSize)
4365    FrameObjOffset =
4366        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4367        (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4368  else
4369    FrameObjOffset = VA.getLocMemOffset();
4370
4371  // Create frame object.
4372  EVT PtrTy = getPointerTy(DAG.getDataLayout());
4373  // Make the fixed object stored to mutable so that the load instructions
4374  // referencing it have their memory dependencies added.
4375  // Set the frame object as isAliased which clears the underlying objects
4376  // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4377  // stores as dependencies for loads referencing this fixed object.
4378  int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4379  SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4380  InVals.push_back(FIN);
4381
4382  if (!NumRegs)
4383    return;
4384
4385  // Copy arg registers.
4386  MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4387  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4388
4389  for (unsigned I = 0; I < NumRegs; ++I) {
4390    unsigned ArgReg = ByValArgRegs[FirstReg + I];
4391    unsigned VReg = addLiveIn(MF, ArgReg, RC);
4392    unsigned Offset = I * GPRSizeInBytes;
4393    SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4394                                   DAG.getConstant(Offset, DL, PtrTy));
4395    SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4396                                 StorePtr, MachinePointerInfo(FuncArg, Offset));
4397    OutChains.push_back(Store);
4398  }
4399}
4400
4401// Copy byVal arg to registers and stack.
4402void MipsTargetLowering::passByValArg(
4403    SDValue Chain, const SDLoc &DL,
4404    std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4405    SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4406    MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4407    unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4408    const CCValAssign &VA) const {
4409  unsigned ByValSizeInBytes = Flags.getByValSize();
4410  unsigned OffsetInBytes = 0; // From beginning of struct
4411  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4412  Align Alignment =
4413      std::min(Flags.getNonZeroByValAlign(), Align(RegSizeInBytes));
4414  EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4415      RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4416  unsigned NumRegs = LastReg - FirstReg;
4417
4418  if (NumRegs) {
4419    ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4420    bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4421    unsigned I = 0;
4422
4423    // Copy words to registers.
4424    for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4425      SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4426                                    DAG.getConstant(OffsetInBytes, DL, PtrTy));
4427      SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4428                                    MachinePointerInfo(), Alignment);
4429      MemOpChains.push_back(LoadVal.getValue(1));
4430      unsigned ArgReg = ArgRegs[FirstReg + I];
4431      RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4432    }
4433
4434    // Return if the struct has been fully copied.
4435    if (ByValSizeInBytes == OffsetInBytes)
4436      return;
4437
4438    // Copy the remainder of the byval argument with sub-word loads and shifts.
4439    if (LeftoverBytes) {
4440      SDValue Val;
4441
4442      for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4443           OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4444        unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4445
4446        if (RemainingSizeInBytes < LoadSizeInBytes)
4447          continue;
4448
4449        // Load subword.
4450        SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4451                                      DAG.getConstant(OffsetInBytes, DL,
4452                                                      PtrTy));
4453        SDValue LoadVal = DAG.getExtLoad(
4454            ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4455            MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4456        MemOpChains.push_back(LoadVal.getValue(1));
4457
4458        // Shift the loaded value.
4459        unsigned Shamt;
4460
4461        if (isLittle)
4462          Shamt = TotalBytesLoaded * 8;
4463        else
4464          Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4465
4466        SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4467                                    DAG.getConstant(Shamt, DL, MVT::i32));
4468
4469        if (Val.getNode())
4470          Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4471        else
4472          Val = Shift;
4473
4474        OffsetInBytes += LoadSizeInBytes;
4475        TotalBytesLoaded += LoadSizeInBytes;
4476        Alignment = std::min(Alignment, Align(LoadSizeInBytes));
4477      }
4478
4479      unsigned ArgReg = ArgRegs[FirstReg + I];
4480      RegsToPass.push_back(std::make_pair(ArgReg, Val));
4481      return;
4482    }
4483  }
4484
4485  // Copy remainder of byval arg to it with memcpy.
4486  unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4487  SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4488                            DAG.getConstant(OffsetInBytes, DL, PtrTy));
4489  SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4490                            DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4491  Chain = DAG.getMemcpy(
4492      Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, DL, PtrTy),
4493      Align(Alignment), /*isVolatile=*/false, /*AlwaysInline=*/false,
4494      /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
4495  MemOpChains.push_back(Chain);
4496}
4497
4498void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4499                                         SDValue Chain, const SDLoc &DL,
4500                                         SelectionDAG &DAG,
4501                                         CCState &State) const {
4502  ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4503  unsigned Idx = State.getFirstUnallocated(ArgRegs);
4504  unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4505  MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4506  const TargetRegisterClass *RC = getRegClassFor(RegTy);
4507  MachineFunction &MF = DAG.getMachineFunction();
4508  MachineFrameInfo &MFI = MF.getFrameInfo();
4509  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4510
4511  // Offset of the first variable argument from stack pointer.
4512  int VaArgOffset;
4513
4514  if (ArgRegs.size() == Idx)
4515    VaArgOffset = alignTo(State.getStackSize(), RegSizeInBytes);
4516  else {
4517    VaArgOffset =
4518        (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4519        (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4520  }
4521
4522  // Record the frame index of the first variable argument
4523  // which is a value necessary to VASTART.
4524  int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4525  MipsFI->setVarArgsFrameIndex(FI);
4526
4527  // Copy the integer registers that have not been used for argument passing
4528  // to the argument register save area. For O32, the save area is allocated
4529  // in the caller's stack frame, while for N32/64, it is allocated in the
4530  // callee's stack frame.
4531  for (unsigned I = Idx; I < ArgRegs.size();
4532       ++I, VaArgOffset += RegSizeInBytes) {
4533    unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4534    SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4535    FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4536    SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4537    SDValue Store =
4538        DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4539    cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4540        (Value *)nullptr);
4541    OutChains.push_back(Store);
4542  }
4543}
4544
4545void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4546                                     Align Alignment) const {
4547  const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4548
4549  assert(Size && "Byval argument's size shouldn't be 0.");
4550
4551  Alignment = std::min(Alignment, TFL->getStackAlign());
4552
4553  unsigned FirstReg = 0;
4554  unsigned NumRegs = 0;
4555
4556  if (State->getCallingConv() != CallingConv::Fast) {
4557    unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4558    ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4559    // FIXME: The O32 case actually describes no shadow registers.
4560    const MCPhysReg *ShadowRegs =
4561        ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4562
4563    // We used to check the size as well but we can't do that anymore since
4564    // CCState::HandleByVal() rounds up the size after calling this function.
4565    assert(
4566        Alignment >= Align(RegSizeInBytes) &&
4567        "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4568
4569    FirstReg = State->getFirstUnallocated(IntArgRegs);
4570
4571    // If Alignment > RegSizeInBytes, the first arg register must be even.
4572    // FIXME: This condition happens to do the right thing but it's not the
4573    //        right way to test it. We want to check that the stack frame offset
4574    //        of the register is aligned.
4575    if ((Alignment > RegSizeInBytes) && (FirstReg % 2)) {
4576      State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4577      ++FirstReg;
4578    }
4579
4580    // Mark the registers allocated.
4581    Size = alignTo(Size, RegSizeInBytes);
4582    for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4583         Size -= RegSizeInBytes, ++I, ++NumRegs)
4584      State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4585  }
4586
4587  State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4588}
4589
4590MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4591                                                        MachineBasicBlock *BB,
4592                                                        bool isFPCmp,
4593                                                        unsigned Opc) const {
4594  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4595         "Subtarget already supports SELECT nodes with the use of"
4596         "conditional-move instructions.");
4597
4598  const TargetInstrInfo *TII =
4599      Subtarget.getInstrInfo();
4600  DebugLoc DL = MI.getDebugLoc();
4601
4602  // To "insert" a SELECT instruction, we actually have to insert the
4603  // diamond control-flow pattern.  The incoming instruction knows the
4604  // destination vreg to set, the condition code register to branch on, the
4605  // true/false values to select between, and a branch opcode to use.
4606  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4607  MachineFunction::iterator It = ++BB->getIterator();
4608
4609  //  thisMBB:
4610  //  ...
4611  //   TrueVal = ...
4612  //   setcc r1, r2, r3
4613  //   bNE   r1, r0, copy1MBB
4614  //   fallthrough --> copy0MBB
4615  MachineBasicBlock *thisMBB  = BB;
4616  MachineFunction *F = BB->getParent();
4617  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4618  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4619  F->insert(It, copy0MBB);
4620  F->insert(It, sinkMBB);
4621
4622  // Transfer the remainder of BB and its successor edges to sinkMBB.
4623  sinkMBB->splice(sinkMBB->begin(), BB,
4624                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
4625  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4626
4627  // Next, add the true and fallthrough blocks as its successors.
4628  BB->addSuccessor(copy0MBB);
4629  BB->addSuccessor(sinkMBB);
4630
4631  if (isFPCmp) {
4632    // bc1[tf] cc, sinkMBB
4633    BuildMI(BB, DL, TII->get(Opc))
4634        .addReg(MI.getOperand(1).getReg())
4635        .addMBB(sinkMBB);
4636  } else {
4637    // bne rs, $0, sinkMBB
4638    BuildMI(BB, DL, TII->get(Opc))
4639        .addReg(MI.getOperand(1).getReg())
4640        .addReg(Mips::ZERO)
4641        .addMBB(sinkMBB);
4642  }
4643
4644  //  copy0MBB:
4645  //   %FalseValue = ...
4646  //   # fallthrough to sinkMBB
4647  BB = copy0MBB;
4648
4649  // Update machine-CFG edges
4650  BB->addSuccessor(sinkMBB);
4651
4652  //  sinkMBB:
4653  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4654  //  ...
4655  BB = sinkMBB;
4656
4657  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4658      .addReg(MI.getOperand(2).getReg())
4659      .addMBB(thisMBB)
4660      .addReg(MI.getOperand(3).getReg())
4661      .addMBB(copy0MBB);
4662
4663  MI.eraseFromParent(); // The pseudo instruction is gone now.
4664
4665  return BB;
4666}
4667
4668MachineBasicBlock *
4669MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4670                                       MachineBasicBlock *BB) const {
4671  assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4672         "Subtarget already supports SELECT nodes with the use of"
4673         "conditional-move instructions.");
4674
4675  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4676  DebugLoc DL = MI.getDebugLoc();
4677
4678  // D_SELECT substitutes two SELECT nodes that goes one after another and
4679  // have the same condition operand. On machines which don't have
4680  // conditional-move instruction, it reduces unnecessary branch instructions
4681  // which are result of using two diamond patterns that are result of two
4682  // SELECT pseudo instructions.
4683  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4684  MachineFunction::iterator It = ++BB->getIterator();
4685
4686  //  thisMBB:
4687  //  ...
4688  //   TrueVal = ...
4689  //   setcc r1, r2, r3
4690  //   bNE   r1, r0, copy1MBB
4691  //   fallthrough --> copy0MBB
4692  MachineBasicBlock *thisMBB = BB;
4693  MachineFunction *F = BB->getParent();
4694  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4695  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4696  F->insert(It, copy0MBB);
4697  F->insert(It, sinkMBB);
4698
4699  // Transfer the remainder of BB and its successor edges to sinkMBB.
4700  sinkMBB->splice(sinkMBB->begin(), BB,
4701                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
4702  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4703
4704  // Next, add the true and fallthrough blocks as its successors.
4705  BB->addSuccessor(copy0MBB);
4706  BB->addSuccessor(sinkMBB);
4707
4708  // bne rs, $0, sinkMBB
4709  BuildMI(BB, DL, TII->get(Mips::BNE))
4710      .addReg(MI.getOperand(2).getReg())
4711      .addReg(Mips::ZERO)
4712      .addMBB(sinkMBB);
4713
4714  //  copy0MBB:
4715  //   %FalseValue = ...
4716  //   # fallthrough to sinkMBB
4717  BB = copy0MBB;
4718
4719  // Update machine-CFG edges
4720  BB->addSuccessor(sinkMBB);
4721
4722  //  sinkMBB:
4723  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4724  //  ...
4725  BB = sinkMBB;
4726
4727  // Use two PHI nodes to select two reults
4728  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4729      .addReg(MI.getOperand(3).getReg())
4730      .addMBB(thisMBB)
4731      .addReg(MI.getOperand(5).getReg())
4732      .addMBB(copy0MBB);
4733  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4734      .addReg(MI.getOperand(4).getReg())
4735      .addMBB(thisMBB)
4736      .addReg(MI.getOperand(6).getReg())
4737      .addMBB(copy0MBB);
4738
4739  MI.eraseFromParent(); // The pseudo instruction is gone now.
4740
4741  return BB;
4742}
4743
4744// FIXME? Maybe this could be a TableGen attribute on some registers and
4745// this table could be generated automatically from RegInfo.
4746Register
4747MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT,
4748                                      const MachineFunction &MF) const {
4749  // The Linux kernel uses $28 and sp.
4750  if (Subtarget.isGP64bit()) {
4751    Register Reg = StringSwitch<Register>(RegName)
4752                       .Case("$28", Mips::GP_64)
4753                       .Case("sp", Mips::SP_64)
4754                       .Default(Register());
4755    if (Reg)
4756      return Reg;
4757  } else {
4758    Register Reg = StringSwitch<Register>(RegName)
4759                       .Case("$28", Mips::GP)
4760                       .Case("sp", Mips::SP)
4761                       .Default(Register());
4762    if (Reg)
4763      return Reg;
4764  }
4765  report_fatal_error("Invalid register name global variable");
4766}
4767
4768MachineBasicBlock *MipsTargetLowering::emitLDR_W(MachineInstr &MI,
4769                                                 MachineBasicBlock *BB) const {
4770  MachineFunction *MF = BB->getParent();
4771  MachineRegisterInfo &MRI = MF->getRegInfo();
4772  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4773  const bool IsLittle = Subtarget.isLittle();
4774  DebugLoc DL = MI.getDebugLoc();
4775
4776  Register Dest = MI.getOperand(0).getReg();
4777  Register Address = MI.getOperand(1).getReg();
4778  unsigned Imm = MI.getOperand(2).getImm();
4779
4780  MachineBasicBlock::iterator I(MI);
4781
4782  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4783    // Mips release 6 can load from adress that is not naturally-aligned.
4784    Register Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4785    BuildMI(*BB, I, DL, TII->get(Mips::LW))
4786        .addDef(Temp)
4787        .addUse(Address)
4788        .addImm(Imm);
4789    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(Temp);
4790  } else {
4791    // Mips release 5 needs to use instructions that can load from an unaligned
4792    // memory address.
4793    Register LoadHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4794    Register LoadFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4795    Register Undef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4796    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(Undef);
4797    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4798        .addDef(LoadHalf)
4799        .addUse(Address)
4800        .addImm(Imm + (IsLittle ? 0 : 3))
4801        .addUse(Undef);
4802    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4803        .addDef(LoadFull)
4804        .addUse(Address)
4805        .addImm(Imm + (IsLittle ? 3 : 0))
4806        .addUse(LoadHalf);
4807    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Dest).addUse(LoadFull);
4808  }
4809
4810  MI.eraseFromParent();
4811  return BB;
4812}
4813
4814MachineBasicBlock *MipsTargetLowering::emitLDR_D(MachineInstr &MI,
4815                                                 MachineBasicBlock *BB) const {
4816  MachineFunction *MF = BB->getParent();
4817  MachineRegisterInfo &MRI = MF->getRegInfo();
4818  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4819  const bool IsLittle = Subtarget.isLittle();
4820  DebugLoc DL = MI.getDebugLoc();
4821
4822  Register Dest = MI.getOperand(0).getReg();
4823  Register Address = MI.getOperand(1).getReg();
4824  unsigned Imm = MI.getOperand(2).getImm();
4825
4826  MachineBasicBlock::iterator I(MI);
4827
4828  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4829    // Mips release 6 can load from adress that is not naturally-aligned.
4830    if (Subtarget.isGP64bit()) {
4831      Register Temp = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4832      BuildMI(*BB, I, DL, TII->get(Mips::LD))
4833          .addDef(Temp)
4834          .addUse(Address)
4835          .addImm(Imm);
4836      BuildMI(*BB, I, DL, TII->get(Mips::FILL_D)).addDef(Dest).addUse(Temp);
4837    } else {
4838      Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4839      Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4840      Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4841      BuildMI(*BB, I, DL, TII->get(Mips::LW))
4842          .addDef(Lo)
4843          .addUse(Address)
4844          .addImm(Imm + (IsLittle ? 0 : 4));
4845      BuildMI(*BB, I, DL, TII->get(Mips::LW))
4846          .addDef(Hi)
4847          .addUse(Address)
4848          .addImm(Imm + (IsLittle ? 4 : 0));
4849      BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(Lo);
4850      BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4851          .addUse(Wtemp)
4852          .addUse(Hi)
4853          .addImm(1);
4854    }
4855  } else {
4856    // Mips release 5 needs to use instructions that can load from an unaligned
4857    // memory address.
4858    Register LoHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4859    Register LoFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4860    Register LoUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4861    Register HiHalf = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4862    Register HiFull = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4863    Register HiUndef = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4864    Register Wtemp = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4865    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(LoUndef);
4866    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4867        .addDef(LoHalf)
4868        .addUse(Address)
4869        .addImm(Imm + (IsLittle ? 0 : 7))
4870        .addUse(LoUndef);
4871    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4872        .addDef(LoFull)
4873        .addUse(Address)
4874        .addImm(Imm + (IsLittle ? 3 : 4))
4875        .addUse(LoHalf);
4876    BuildMI(*BB, I, DL, TII->get(Mips::IMPLICIT_DEF)).addDef(HiUndef);
4877    BuildMI(*BB, I, DL, TII->get(Mips::LWR))
4878        .addDef(HiHalf)
4879        .addUse(Address)
4880        .addImm(Imm + (IsLittle ? 4 : 3))
4881        .addUse(HiUndef);
4882    BuildMI(*BB, I, DL, TII->get(Mips::LWL))
4883        .addDef(HiFull)
4884        .addUse(Address)
4885        .addImm(Imm + (IsLittle ? 7 : 0))
4886        .addUse(HiHalf);
4887    BuildMI(*BB, I, DL, TII->get(Mips::FILL_W)).addDef(Wtemp).addUse(LoFull);
4888    BuildMI(*BB, I, DL, TII->get(Mips::INSERT_W), Dest)
4889        .addUse(Wtemp)
4890        .addUse(HiFull)
4891        .addImm(1);
4892  }
4893
4894  MI.eraseFromParent();
4895  return BB;
4896}
4897
4898MachineBasicBlock *MipsTargetLowering::emitSTR_W(MachineInstr &MI,
4899                                                 MachineBasicBlock *BB) const {
4900  MachineFunction *MF = BB->getParent();
4901  MachineRegisterInfo &MRI = MF->getRegInfo();
4902  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4903  const bool IsLittle = Subtarget.isLittle();
4904  DebugLoc DL = MI.getDebugLoc();
4905
4906  Register StoreVal = MI.getOperand(0).getReg();
4907  Register Address = MI.getOperand(1).getReg();
4908  unsigned Imm = MI.getOperand(2).getImm();
4909
4910  MachineBasicBlock::iterator I(MI);
4911
4912  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4913    // Mips release 6 can store to adress that is not naturally-aligned.
4914    Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4915    Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4916    BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(BitcastW).addUse(StoreVal);
4917    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4918        .addDef(Tmp)
4919        .addUse(BitcastW)
4920        .addImm(0);
4921    BuildMI(*BB, I, DL, TII->get(Mips::SW))
4922        .addUse(Tmp)
4923        .addUse(Address)
4924        .addImm(Imm);
4925  } else {
4926    // Mips release 5 needs to use instructions that can store to an unaligned
4927    // memory address.
4928    Register Tmp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4929    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4930        .addDef(Tmp)
4931        .addUse(StoreVal)
4932        .addImm(0);
4933    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
4934        .addUse(Tmp)
4935        .addUse(Address)
4936        .addImm(Imm + (IsLittle ? 0 : 3));
4937    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
4938        .addUse(Tmp)
4939        .addUse(Address)
4940        .addImm(Imm + (IsLittle ? 3 : 0));
4941  }
4942
4943  MI.eraseFromParent();
4944
4945  return BB;
4946}
4947
4948MachineBasicBlock *MipsTargetLowering::emitSTR_D(MachineInstr &MI,
4949                                                 MachineBasicBlock *BB) const {
4950  MachineFunction *MF = BB->getParent();
4951  MachineRegisterInfo &MRI = MF->getRegInfo();
4952  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4953  const bool IsLittle = Subtarget.isLittle();
4954  DebugLoc DL = MI.getDebugLoc();
4955
4956  Register StoreVal = MI.getOperand(0).getReg();
4957  Register Address = MI.getOperand(1).getReg();
4958  unsigned Imm = MI.getOperand(2).getImm();
4959
4960  MachineBasicBlock::iterator I(MI);
4961
4962  if (Subtarget.hasMips32r6() || Subtarget.hasMips64r6()) {
4963    // Mips release 6 can store to adress that is not naturally-aligned.
4964    if (Subtarget.isGP64bit()) {
4965      Register BitcastD = MRI.createVirtualRegister(&Mips::MSA128DRegClass);
4966      Register Lo = MRI.createVirtualRegister(&Mips::GPR64RegClass);
4967      BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4968          .addDef(BitcastD)
4969          .addUse(StoreVal);
4970      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_D))
4971          .addDef(Lo)
4972          .addUse(BitcastD)
4973          .addImm(0);
4974      BuildMI(*BB, I, DL, TII->get(Mips::SD))
4975          .addUse(Lo)
4976          .addUse(Address)
4977          .addImm(Imm);
4978    } else {
4979      Register BitcastW = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
4980      Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4981      Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
4982      BuildMI(*BB, I, DL, TII->get(Mips::COPY))
4983          .addDef(BitcastW)
4984          .addUse(StoreVal);
4985      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4986          .addDef(Lo)
4987          .addUse(BitcastW)
4988          .addImm(0);
4989      BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
4990          .addDef(Hi)
4991          .addUse(BitcastW)
4992          .addImm(1);
4993      BuildMI(*BB, I, DL, TII->get(Mips::SW))
4994          .addUse(Lo)
4995          .addUse(Address)
4996          .addImm(Imm + (IsLittle ? 0 : 4));
4997      BuildMI(*BB, I, DL, TII->get(Mips::SW))
4998          .addUse(Hi)
4999          .addUse(Address)
5000          .addImm(Imm + (IsLittle ? 4 : 0));
5001    }
5002  } else {
5003    // Mips release 5 needs to use instructions that can store to an unaligned
5004    // memory address.
5005    Register Bitcast = MRI.createVirtualRegister(&Mips::MSA128WRegClass);
5006    Register Lo = MRI.createVirtualRegister(&Mips::GPR32RegClass);
5007    Register Hi = MRI.createVirtualRegister(&Mips::GPR32RegClass);
5008    BuildMI(*BB, I, DL, TII->get(Mips::COPY)).addDef(Bitcast).addUse(StoreVal);
5009    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
5010        .addDef(Lo)
5011        .addUse(Bitcast)
5012        .addImm(0);
5013    BuildMI(*BB, I, DL, TII->get(Mips::COPY_S_W))
5014        .addDef(Hi)
5015        .addUse(Bitcast)
5016        .addImm(1);
5017    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5018        .addUse(Lo)
5019        .addUse(Address)
5020        .addImm(Imm + (IsLittle ? 0 : 3));
5021    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5022        .addUse(Lo)
5023        .addUse(Address)
5024        .addImm(Imm + (IsLittle ? 3 : 0));
5025    BuildMI(*BB, I, DL, TII->get(Mips::SWR))
5026        .addUse(Hi)
5027        .addUse(Address)
5028        .addImm(Imm + (IsLittle ? 4 : 7));
5029    BuildMI(*BB, I, DL, TII->get(Mips::SWL))
5030        .addUse(Hi)
5031        .addUse(Address)
5032        .addImm(Imm + (IsLittle ? 7 : 4));
5033  }
5034
5035  MI.eraseFromParent();
5036  return BB;
5037}
5038