1//===- HexagonGenInsert.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "BitTracker.h"
10#include "HexagonBitTracker.h"
11#include "HexagonInstrInfo.h"
12#include "HexagonRegisterInfo.h"
13#include "HexagonSubtarget.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/GraphTraits.h"
17#include "llvm/ADT/PostOrderIterator.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/TargetRegisterInfo.h"
31#include "llvm/IR/DebugLoc.h"
32#include "llvm/InitializePasses.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Timer.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cassert>
41#include <cstdint>
42#include <iterator>
43#include <utility>
44#include <vector>
45
46#define DEBUG_TYPE "hexinsert"
47
48using namespace llvm;
49
50static cl::opt<unsigned>
51    VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), cl::Hidden,
52                    cl::desc("Vreg# cutoff for insert generation."));
53// The distance cutoff is selected based on the precheckin-perf results:
54// cutoffs 20, 25, 35, and 40 are worse than 30.
55static cl::opt<unsigned>
56    VRegDistCutoff("insert-dist-cutoff", cl::init(30U), cl::Hidden,
57                   cl::desc("Vreg distance cutoff for insert "
58                            "generation."));
59
60// Limit the container sizes for extreme cases where we run out of memory.
61static cl::opt<unsigned>
62    MaxORLSize("insert-max-orl", cl::init(4096), cl::Hidden,
63               cl::desc("Maximum size of OrderedRegisterList"));
64static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
65                                    cl::Hidden,
66                                    cl::desc("Maximum size of IFMap"));
67
68static cl::opt<bool> OptTiming("insert-timing", cl::Hidden,
69                               cl::desc("Enable timing of insert generation"));
70static cl::opt<bool>
71    OptTimingDetail("insert-timing-detail", cl::Hidden,
72                    cl::desc("Enable detailed timing of insert "
73                             "generation"));
74
75static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden);
76static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden);
77// Whether to construct constant values via "insert". Could eliminate constant
78// extenders, but often not practical.
79static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden);
80
81// The preprocessor gets confused when the DEBUG macro is passed larger
82// chunks of code. Use this function to detect debugging.
83inline static bool isDebug() {
84#ifndef NDEBUG
85  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
86#else
87  return false;
88#endif
89}
90
91namespace {
92
93  // Set of virtual registers, based on BitVector.
94  struct RegisterSet : private BitVector {
95    RegisterSet() = default;
96    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
97    RegisterSet(const RegisterSet &RS) = default;
98    RegisterSet &operator=(const RegisterSet &RS) = default;
99
100    using BitVector::clear;
101
102    unsigned find_first() const {
103      int First = BitVector::find_first();
104      if (First < 0)
105        return 0;
106      return x2v(First);
107    }
108
109    unsigned find_next(unsigned Prev) const {
110      int Next = BitVector::find_next(v2x(Prev));
111      if (Next < 0)
112        return 0;
113      return x2v(Next);
114    }
115
116    RegisterSet &insert(unsigned R) {
117      unsigned Idx = v2x(R);
118      ensure(Idx);
119      return static_cast<RegisterSet&>(BitVector::set(Idx));
120    }
121    RegisterSet &remove(unsigned R) {
122      unsigned Idx = v2x(R);
123      if (Idx >= size())
124        return *this;
125      return static_cast<RegisterSet&>(BitVector::reset(Idx));
126    }
127
128    RegisterSet &insert(const RegisterSet &Rs) {
129      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
130    }
131    RegisterSet &remove(const RegisterSet &Rs) {
132      return static_cast<RegisterSet&>(BitVector::reset(Rs));
133    }
134
135    reference operator[](unsigned R) {
136      unsigned Idx = v2x(R);
137      ensure(Idx);
138      return BitVector::operator[](Idx);
139    }
140    bool operator[](unsigned R) const {
141      unsigned Idx = v2x(R);
142      assert(Idx < size());
143      return BitVector::operator[](Idx);
144    }
145    bool has(unsigned R) const {
146      unsigned Idx = v2x(R);
147      if (Idx >= size())
148        return false;
149      return BitVector::test(Idx);
150    }
151
152    bool empty() const {
153      return !BitVector::any();
154    }
155    bool includes(const RegisterSet &Rs) const {
156      // A.BitVector::test(B)  <=>  A-B != {}
157      return !Rs.BitVector::test(*this);
158    }
159    bool intersects(const RegisterSet &Rs) const {
160      return BitVector::anyCommon(Rs);
161    }
162
163  private:
164    void ensure(unsigned Idx) {
165      if (size() <= Idx)
166        resize(std::max(Idx+1, 32U));
167    }
168
169    static inline unsigned v2x(unsigned v) {
170      return Register::virtReg2Index(v);
171    }
172
173    static inline unsigned x2v(unsigned x) {
174      return Register::index2VirtReg(x);
175    }
176  };
177
178  struct PrintRegSet {
179    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
180      : RS(S), TRI(RI) {}
181
182    friend raw_ostream &operator<< (raw_ostream &OS,
183          const PrintRegSet &P);
184
185  private:
186    const RegisterSet &RS;
187    const TargetRegisterInfo *TRI;
188  };
189
190  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
191    OS << '{';
192    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
193      OS << ' ' << printReg(R, P.TRI);
194    OS << " }";
195    return OS;
196  }
197
198  // A convenience class to associate unsigned numbers (such as virtual
199  // registers) with unsigned numbers.
200  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
201    UnsignedMap() = default;
202
203  private:
204    using BaseType = DenseMap<unsigned, unsigned>;
205  };
206
207  // A utility to establish an ordering between virtual registers:
208  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
209  // This is meant as a cache for the ordering of virtual registers defined
210  // by a potentially expensive comparison function, or obtained by a proce-
211  // dure that should not be repeated each time two registers are compared.
212  struct RegisterOrdering : public UnsignedMap {
213    RegisterOrdering() = default;
214
215    unsigned operator[](unsigned VR) const {
216      const_iterator F = find(VR);
217      assert(F != end());
218      return F->second;
219    }
220
221    // Add operator(), so that objects of this class can be used as
222    // comparators in std::sort et al.
223    bool operator() (unsigned VR1, unsigned VR2) const {
224      return operator[](VR1) < operator[](VR2);
225    }
226  };
227
228  // Ordering of bit values. This class does not have operator[], but
229  // is supplies a comparison operator() for use in std:: algorithms.
230  // The order is as follows:
231  // - 0 < 1 < ref
232  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
233  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
234  struct BitValueOrdering {
235    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
236
237    bool operator() (const BitTracker::BitValue &V1,
238          const BitTracker::BitValue &V2) const;
239
240    const RegisterOrdering &BaseOrd;
241  };
242
243} // end anonymous namespace
244
245bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
246      const BitTracker::BitValue &V2) const {
247  if (V1 == V2)
248    return false;
249  // V1==0 => true, V2==0 => false
250  if (V1.is(0) || V2.is(0))
251    return V1.is(0);
252  // Neither of V1,V2 is 0, and V1!=V2.
253  // V2==1 => false, V1==1 => true
254  if (V2.is(1) || V1.is(1))
255    return !V2.is(1);
256  // Both V1,V2 are refs.
257  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
258  if (Ind1 != Ind2)
259    return Ind1 < Ind2;
260  // If V1.Pos==V2.Pos
261  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
262  return V1.RefI.Pos < V2.RefI.Pos;
263}
264
265namespace {
266
267  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
268  // complexity, this class will memoize the lookup results to reduce
269  // the access time for repeated lookups of the same cell.
270  struct CellMapShadow {
271    CellMapShadow(const BitTracker &T) : BT(T) {}
272
273    const BitTracker::RegisterCell &lookup(unsigned VR) {
274      unsigned RInd = Register::virtReg2Index(VR);
275      // Grow the vector to at least 32 elements.
276      if (RInd >= CVect.size())
277        CVect.resize(std::max(RInd+16, 32U), nullptr);
278      const BitTracker::RegisterCell *CP = CVect[RInd];
279      if (CP == nullptr)
280        CP = CVect[RInd] = &BT.lookup(VR);
281      return *CP;
282    }
283
284    const BitTracker &BT;
285
286  private:
287    using CellVectType = std::vector<const BitTracker::RegisterCell *>;
288
289    CellVectType CVect;
290  };
291
292  // Comparator class for lexicographic ordering of virtual registers
293  // according to the corresponding BitTracker::RegisterCell objects.
294  struct RegisterCellLexCompare {
295    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
296      : BitOrd(BO), CM(M) {}
297
298    bool operator() (unsigned VR1, unsigned VR2) const;
299
300  private:
301    const BitValueOrdering &BitOrd;
302    CellMapShadow &CM;
303  };
304
305  // Comparator class for lexicographic ordering of virtual registers
306  // according to the specified bits of the corresponding BitTracker::
307  // RegisterCell objects.
308  // Specifically, this class will be used to compare bit B of a register
309  // cell for a selected virtual register R with bit N of any register
310  // other than R.
311  struct RegisterCellBitCompareSel {
312    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
313          const BitValueOrdering &BO, CellMapShadow &M)
314      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
315
316    bool operator() (unsigned VR1, unsigned VR2) const;
317
318  private:
319    const unsigned SelR, SelB;
320    const unsigned BitN;
321    const BitValueOrdering &BitOrd;
322    CellMapShadow &CM;
323  };
324
325} // end anonymous namespace
326
327bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
328  // Ordering of registers, made up from two given orderings:
329  // - the ordering of the register numbers, and
330  // - the ordering of register cells.
331  // Def. R1 < R2 if:
332  // - cell(R1) < cell(R2), or
333  // - cell(R1) == cell(R2), and index(R1) < index(R2).
334  //
335  // For register cells, the ordering is lexicographic, with index 0 being
336  // the most significant.
337  if (VR1 == VR2)
338    return false;
339
340  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
341  uint16_t W1 = RC1.width(), W2 = RC2.width();
342  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
343    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
344    if (V1 != V2)
345      return BitOrd(V1, V2);
346  }
347  // Cells are equal up until the common length.
348  if (W1 != W2)
349    return W1 < W2;
350
351  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
352}
353
354bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
355  if (VR1 == VR2)
356    return false;
357  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
358  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
359  uint16_t W1 = RC1.width(), W2 = RC2.width();
360  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
361  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
362  // If Bit1 exceeds the width of VR1, then:
363  // - return false, if at the same time Bit2 exceeds VR2, or
364  // - return true, otherwise.
365  // (I.e. "a bit value that does not exist is less than any bit value
366  // that does exist".)
367  if (W1 <= Bit1)
368    return Bit2 < W2;
369  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
370  if (W2 <= Bit2)
371    return false;
372
373  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
374  if (V1 != V2)
375    return BitOrd(V1, V2);
376  return false;
377}
378
379namespace {
380
381  class OrderedRegisterList {
382    using ListType = std::vector<unsigned>;
383    const unsigned MaxSize;
384
385  public:
386    OrderedRegisterList(const RegisterOrdering &RO)
387      : MaxSize(MaxORLSize), Ord(RO) {}
388
389    void insert(unsigned VR);
390    void remove(unsigned VR);
391
392    unsigned operator[](unsigned Idx) const {
393      assert(Idx < Seq.size());
394      return Seq[Idx];
395    }
396
397    unsigned size() const {
398      return Seq.size();
399    }
400
401    using iterator = ListType::iterator;
402    using const_iterator = ListType::const_iterator;
403
404    iterator begin() { return Seq.begin(); }
405    iterator end() { return Seq.end(); }
406    const_iterator begin() const { return Seq.begin(); }
407    const_iterator end() const { return Seq.end(); }
408
409    // Convenience function to convert an iterator to the corresponding index.
410    unsigned idx(iterator It) const { return It-begin(); }
411
412  private:
413    ListType Seq;
414    const RegisterOrdering &Ord;
415  };
416
417  struct PrintORL {
418    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
419      : RL(L), TRI(RI) {}
420
421    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
422
423  private:
424    const OrderedRegisterList &RL;
425    const TargetRegisterInfo *TRI;
426  };
427
428  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
429    OS << '(';
430    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
431    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
432      if (I != B)
433        OS << ", ";
434      OS << printReg(*I, P.TRI);
435    }
436    OS << ')';
437    return OS;
438  }
439
440} // end anonymous namespace
441
442void OrderedRegisterList::insert(unsigned VR) {
443  iterator L = llvm::lower_bound(Seq, VR, Ord);
444  if (L == Seq.end())
445    Seq.push_back(VR);
446  else
447    Seq.insert(L, VR);
448
449  unsigned S = Seq.size();
450  if (S > MaxSize)
451    Seq.resize(MaxSize);
452  assert(Seq.size() <= MaxSize);
453}
454
455void OrderedRegisterList::remove(unsigned VR) {
456  iterator L = llvm::lower_bound(Seq, VR, Ord);
457  if (L != Seq.end())
458    Seq.erase(L);
459}
460
461namespace {
462
463  // A record of the insert form. The fields correspond to the operands
464  // of the "insert" instruction:
465  // ... = insert(SrcR, InsR, #Wdh, #Off)
466  struct IFRecord {
467    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
468      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
469
470    unsigned SrcR, InsR;
471    uint16_t Wdh, Off;
472  };
473
474  struct PrintIFR {
475    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
476      : IFR(R), TRI(RI) {}
477
478  private:
479    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
480
481    const IFRecord &IFR;
482    const TargetRegisterInfo *TRI;
483  };
484
485  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
486    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
487    OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
488       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
489    return OS;
490  }
491
492  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
493
494} // end anonymous namespace
495
496namespace llvm {
497
498  void initializeHexagonGenInsertPass(PassRegistry&);
499  FunctionPass *createHexagonGenInsert();
500
501} // end namespace llvm
502
503namespace {
504
505  class HexagonGenInsert : public MachineFunctionPass {
506  public:
507    static char ID;
508
509    HexagonGenInsert() : MachineFunctionPass(ID) {
510      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
511    }
512
513    StringRef getPassName() const override {
514      return "Hexagon generate \"insert\" instructions";
515    }
516
517    void getAnalysisUsage(AnalysisUsage &AU) const override {
518      AU.addRequired<MachineDominatorTree>();
519      AU.addPreserved<MachineDominatorTree>();
520      MachineFunctionPass::getAnalysisUsage(AU);
521    }
522
523    bool runOnMachineFunction(MachineFunction &MF) override;
524
525  private:
526    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
527
528    void buildOrderingMF(RegisterOrdering &RO) const;
529    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
530    bool isIntClass(const TargetRegisterClass *RC) const;
531    bool isConstant(unsigned VR) const;
532    bool isSmallConstant(unsigned VR) const;
533    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
534          uint16_t L, uint16_t S) const;
535    bool findSelfReference(unsigned VR) const;
536    bool findNonSelfReference(unsigned VR) const;
537    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
538    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
539    unsigned distance(const MachineBasicBlock *FromB,
540          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
541          PairMapType &M) const;
542    unsigned distance(MachineBasicBlock::const_iterator FromI,
543          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
544          PairMapType &M) const;
545    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
546    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
547    void findRemovableRegisters(unsigned VR, IFRecord IF,
548          RegisterSet &RMs) const;
549    void computeRemovableRegisters();
550
551    void pruneEmptyLists();
552    void pruneCoveredSets(unsigned VR);
553    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
554    void pruneRegCopies(unsigned VR);
555    void pruneCandidates();
556    void selectCandidates();
557    bool generateInserts();
558
559    bool removeDeadCode(MachineDomTreeNode *N);
560
561    // IFRecord coupled with a set of potentially removable registers:
562    using IFListType = std::vector<IFRecordWithRegSet>;
563    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
564
565    void dump_map() const;
566
567    const HexagonInstrInfo *HII = nullptr;
568    const HexagonRegisterInfo *HRI = nullptr;
569
570    MachineFunction *MFN;
571    MachineRegisterInfo *MRI;
572    MachineDominatorTree *MDT;
573    CellMapShadow *CMS;
574
575    RegisterOrdering BaseOrd;
576    RegisterOrdering CellOrd;
577    IFMapType IFMap;
578  };
579
580} // end anonymous namespace
581
582char HexagonGenInsert::ID = 0;
583
584void HexagonGenInsert::dump_map() const {
585  for (const auto &I : IFMap) {
586    dbgs() << "  " << printReg(I.first, HRI) << ":\n";
587    const IFListType &LL = I.second;
588    for (const auto &J : LL)
589      dbgs() << "    " << PrintIFR(J.first, HRI) << ", "
590             << PrintRegSet(J.second, HRI) << '\n';
591  }
592}
593
594void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
595  unsigned Index = 0;
596
597  for (const MachineBasicBlock &B : *MFN) {
598    if (!CMS->BT.reached(&B))
599      continue;
600
601    for (const MachineInstr &MI : B) {
602      for (const MachineOperand &MO : MI.operands()) {
603        if (MO.isReg() && MO.isDef()) {
604          Register R = MO.getReg();
605          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
606          if (R.isVirtual())
607            RO.insert(std::make_pair(R, Index++));
608        }
609      }
610    }
611  }
612  // Since some virtual registers may have had their def and uses eliminated,
613  // they are no longer referenced in the code, and so they will not appear
614  // in the map.
615}
616
617void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
618      RegisterOrdering &RO) const {
619  // Create a vector of all virtual registers (collect them from the base
620  // ordering RB), and then sort it using the RegisterCell comparator.
621  BitValueOrdering BVO(RB);
622  RegisterCellLexCompare LexCmp(BVO, *CMS);
623
624  using SortableVectorType = std::vector<unsigned>;
625
626  SortableVectorType VRs;
627  for (auto &I : RB)
628    VRs.push_back(I.first);
629  llvm::sort(VRs, LexCmp);
630  // Transfer the results to the outgoing register ordering.
631  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
632    RO.insert(std::make_pair(VRs[i], i));
633}
634
635inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
636  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
637}
638
639bool HexagonGenInsert::isConstant(unsigned VR) const {
640  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
641  uint16_t W = RC.width();
642  for (uint16_t i = 0; i < W; ++i) {
643    const BitTracker::BitValue &BV = RC[i];
644    if (BV.is(0) || BV.is(1))
645      continue;
646    return false;
647  }
648  return true;
649}
650
651bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
652  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
653  uint16_t W = RC.width();
654  if (W > 64)
655    return false;
656  uint64_t V = 0, B = 1;
657  for (uint16_t i = 0; i < W; ++i) {
658    const BitTracker::BitValue &BV = RC[i];
659    if (BV.is(1))
660      V |= B;
661    else if (!BV.is(0))
662      return false;
663    B <<= 1;
664  }
665
666  // For 32-bit registers, consider: Rd = #s16.
667  if (W == 32)
668    return isInt<16>(V);
669
670  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
671  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
672}
673
674bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
675      unsigned InsR, uint16_t L, uint16_t S) const {
676  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
677  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
678  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
679  // Only integet (32-/64-bit) register classes.
680  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
681    return false;
682  // The "source" register must be of the same class as DstR.
683  if (DstRC != SrcRC)
684    return false;
685  if (DstRC == InsRC)
686    return true;
687  // A 64-bit register can only be generated from other 64-bit registers.
688  if (DstRC == &Hexagon::DoubleRegsRegClass)
689    return false;
690  // Otherwise, the L and S cannot span 32-bit word boundary.
691  if (S < 32 && S+L > 32)
692    return false;
693  return true;
694}
695
696bool HexagonGenInsert::findSelfReference(unsigned VR) const {
697  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
698  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
699    const BitTracker::BitValue &V = RC[i];
700    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
701      return true;
702  }
703  return false;
704}
705
706bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
707  BitTracker::RegisterCell RC = CMS->lookup(VR);
708  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
709    const BitTracker::BitValue &V = RC[i];
710    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
711      return true;
712  }
713  return false;
714}
715
716void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
717      RegisterSet &Defs) const {
718  for (const MachineOperand &MO : MI->operands()) {
719    if (!MO.isReg() || !MO.isDef())
720      continue;
721    Register R = MO.getReg();
722    if (!R.isVirtual())
723      continue;
724    Defs.insert(R);
725  }
726}
727
728void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
729      RegisterSet &Uses) const {
730  for (const MachineOperand &MO : MI->operands()) {
731    if (!MO.isReg() || !MO.isUse())
732      continue;
733    Register R = MO.getReg();
734    if (!R.isVirtual())
735      continue;
736    Uses.insert(R);
737  }
738}
739
740unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
741      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
742      PairMapType &M) const {
743  // Forward distance from the end of a block to the beginning of it does
744  // not make sense. This function should not be called with FromB == ToB.
745  assert(FromB != ToB);
746
747  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
748  // If we have already computed it, return the cached result.
749  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
750  if (F != M.end())
751    return F->second;
752  unsigned ToRPO = RPO.lookup(ToN);
753
754  unsigned MaxD = 0;
755
756  for (const MachineBasicBlock *PB : ToB->predecessors()) {
757    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
758    // along that path will be 0, and we don't need to do any calculations
759    // on it.
760    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
761      continue;
762    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
763    if (D > MaxD)
764      MaxD = D;
765  }
766
767  // Memoize the result for later lookup.
768  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
769  return MaxD;
770}
771
772unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
773      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
774      PairMapType &M) const {
775  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
776  if (FB == TB)
777    return std::distance(FromI, ToI);
778  unsigned D1 = std::distance(TB->begin(), ToI);
779  unsigned D2 = distance(FB, TB, RPO, M);
780  unsigned D3 = std::distance(FromI, FB->end());
781  return D1+D2+D3;
782}
783
784bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
785      OrderedRegisterList &AVs) {
786  if (isDebug()) {
787    dbgs() << __func__ << ": " << printReg(VR, HRI)
788           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
789  }
790  if (AVs.size() == 0)
791    return false;
792
793  using iterator = OrderedRegisterList::iterator;
794
795  BitValueOrdering BVO(BaseOrd);
796  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
797  uint16_t W = RC.width();
798
799  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
800  using RSListType = std::vector<RSRecord>;
801  // Have a map, with key being the matching prefix length, and the value
802  // being the list of pairs (R,S), where R's prefix matches VR at S.
803  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
804  using LRSMapType = DenseMap<unsigned, RSListType>;
805  LRSMapType LM;
806
807  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
808  // and find matching prefixes from AVs with the rotated RC. Such a prefix
809  // would match a string of bits (of length L) in RC starting at S.
810  for (uint16_t S = 0; S < W; ++S) {
811    iterator B = AVs.begin(), E = AVs.end();
812    // The registers in AVs are ordered according to the lexical order of
813    // the corresponding register cells. This means that the range of regis-
814    // ters in AVs that match a prefix of length L+1 will be contained in
815    // the range that matches a prefix of length L. This means that we can
816    // keep narrowing the search space as the prefix length goes up. This
817    // helps reduce the overall complexity of the search.
818    uint16_t L;
819    for (L = 0; L < W-S; ++L) {
820      // Compare against VR's bits starting at S, which emulates rotation
821      // of VR by S.
822      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
823      iterator NewB = std::lower_bound(B, E, VR, RCB);
824      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
825      // For the registers that are eliminated from the next range, L is
826      // the longest prefix matching VR at position S (their prefixes
827      // differ from VR at S+L). If L>0, record this information for later
828      // use.
829      if (L > 0) {
830        for (iterator I = B; I != NewB; ++I)
831          LM[L].push_back(std::make_pair(*I, S));
832        for (iterator I = NewE; I != E; ++I)
833          LM[L].push_back(std::make_pair(*I, S));
834      }
835      B = NewB, E = NewE;
836      if (B == E)
837        break;
838    }
839    // Record the final register range. If this range is non-empty, then
840    // L=W-S.
841    assert(B == E || L == W-S);
842    if (B != E) {
843      for (iterator I = B; I != E; ++I)
844        LM[L].push_back(std::make_pair(*I, S));
845      // If B!=E, then we found a range of registers whose prefixes cover the
846      // rest of VR from position S. There is no need to further advance S.
847      break;
848    }
849  }
850
851  if (isDebug()) {
852    dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
853    for (const auto &I : LM) {
854      dbgs() << "  L=" << I.first << ':';
855      const RSListType &LL = I.second;
856      for (const auto &J : LL)
857        dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')';
858      dbgs() << '\n';
859    }
860  }
861
862  bool Recorded = false;
863
864  for (unsigned SrcR : AVs) {
865    int FDi = -1, LDi = -1;   // First/last different bit.
866    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
867    uint16_t AW = AC.width();
868    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
869      if (RC[i] == AC[i])
870        continue;
871      if (FDi == -1)
872        FDi = i;
873      LDi = i;
874    }
875    if (FDi == -1)
876      continue;  // TODO (future): Record identical registers.
877    // Look for a register whose prefix could patch the range [FD..LD]
878    // where VR and SrcR differ.
879    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
880    uint16_t MinL = LD-FD+1;
881    for (uint16_t L = MinL; L < W; ++L) {
882      LRSMapType::iterator F = LM.find(L);
883      if (F == LM.end())
884        continue;
885      RSListType &LL = F->second;
886      for (const auto &I : LL) {
887        uint16_t S = I.second;
888        // MinL is the minimum length of the prefix. Any length above MinL
889        // allows some flexibility as to where the prefix can start:
890        // given the extra length EL=L-MinL, the prefix must start between
891        // max(0,FD-EL) and FD.
892        if (S > FD)   // Starts too late.
893          continue;
894        uint16_t EL = L-MinL;
895        uint16_t LowS = (EL < FD) ? FD-EL : 0;
896        if (S < LowS) // Starts too early.
897          continue;
898        unsigned InsR = I.first;
899        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
900          continue;
901        if (isDebug()) {
902          dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
903                 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
904                 << S << ")\n";
905        }
906        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
907        IFMap[VR].push_back(RR);
908        Recorded = true;
909      }
910    }
911  }
912
913  return Recorded;
914}
915
916void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
917      OrderedRegisterList &AVs) {
918  if (isDebug())
919    dbgs() << "visiting block " << printMBBReference(*B) << "\n";
920
921  // First, check if this block is reachable at all. If not, the bit tracker
922  // will not have any information about registers in it.
923  if (!CMS->BT.reached(B))
924    return;
925
926  bool DoConst = OptConst;
927  // Keep a separate set of registers defined in this block, so that we
928  // can remove them from the list of available registers once all DT
929  // successors have been processed.
930  RegisterSet BlockDefs, InsDefs;
931  for (MachineInstr &MI : *B) {
932    InsDefs.clear();
933    getInstrDefs(&MI, InsDefs);
934    // Leave those alone. They are more transparent than "insert".
935    bool Skip = MI.isCopy() || MI.isRegSequence();
936
937    if (!Skip) {
938      // Visit all defined registers, and attempt to find the corresponding
939      // "insert" representations.
940      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
941        // Do not collect registers that are known to be compile-time cons-
942        // tants, unless requested.
943        if (!DoConst && isConstant(VR))
944          continue;
945        // If VR's cell contains a reference to VR, then VR cannot be defined
946        // via "insert". If VR is a constant that can be generated in a single
947        // instruction (without constant extenders), generating it via insert
948        // makes no sense.
949        if (findSelfReference(VR) || isSmallConstant(VR))
950          continue;
951
952        findRecordInsertForms(VR, AVs);
953        // Stop if the map size is too large.
954        if (IFMap.size() > MaxIFMSize)
955          return;
956      }
957    }
958
959    // Insert the defined registers into the list of available registers
960    // after they have been processed.
961    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
962      AVs.insert(VR);
963    BlockDefs.insert(InsDefs);
964  }
965
966  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
967    MachineBasicBlock *SB = DTN->getBlock();
968    collectInBlock(SB, AVs);
969  }
970
971  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
972    AVs.remove(VR);
973}
974
975void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
976      RegisterSet &RMs) const {
977  // For a given register VR and a insert form, find the registers that are
978  // used by the current definition of VR, and which would no longer be
979  // needed for it after the definition of VR is replaced with the insert
980  // form. These are the registers that could potentially become dead.
981  RegisterSet Regs[2];
982
983  unsigned S = 0;  // Register set selector.
984  Regs[S].insert(VR);
985
986  while (!Regs[S].empty()) {
987    // Breadth-first search.
988    unsigned OtherS = 1-S;
989    Regs[OtherS].clear();
990    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
991      Regs[S].remove(R);
992      if (R == IF.SrcR || R == IF.InsR)
993        continue;
994      // Check if a given register has bits that are references to any other
995      // registers. This is to detect situations where the instruction that
996      // defines register R takes register Q as an operand, but R itself does
997      // not contain any bits from Q. Loads are examples of how this could
998      // happen:
999      //   R = load Q
1000      // In this case (assuming we do not have any knowledge about the loaded
1001      // value), we must not treat R as a "conveyance" of the bits from Q.
1002      // (The information in BT about R's bits would have them as constants,
1003      // in case of zero-extending loads, or refs to R.)
1004      if (!findNonSelfReference(R))
1005        continue;
1006      RMs.insert(R);
1007      const MachineInstr *DefI = MRI->getVRegDef(R);
1008      assert(DefI);
1009      // Do not iterate past PHI nodes to avoid infinite loops. This can
1010      // make the final set a bit less accurate, but the removable register
1011      // sets are an approximation anyway.
1012      if (DefI->isPHI())
1013        continue;
1014      getInstrUses(DefI, Regs[OtherS]);
1015    }
1016    S = OtherS;
1017  }
1018  // The register VR is added to the list as a side-effect of the algorithm,
1019  // but it is not "potentially removable". A potentially removable register
1020  // is one that may become unused (dead) after conversion to the insert form
1021  // IF, and obviously VR (or its replacement) will not become dead by apply-
1022  // ing IF.
1023  RMs.remove(VR);
1024}
1025
1026void HexagonGenInsert::computeRemovableRegisters() {
1027  for (auto &I : IFMap) {
1028    IFListType &LL = I.second;
1029    for (auto &J : LL)
1030      findRemovableRegisters(I.first, J.first, J.second);
1031  }
1032}
1033
1034void HexagonGenInsert::pruneEmptyLists() {
1035  // Remove all entries from the map, where the register has no insert forms
1036  // associated with it.
1037  using IterListType = SmallVector<IFMapType::iterator, 16>;
1038  IterListType Prune;
1039  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1040    if (I->second.empty())
1041      Prune.push_back(I);
1042  }
1043  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
1044    IFMap.erase(Prune[i]);
1045}
1046
1047void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1048  IFMapType::iterator F = IFMap.find(VR);
1049  assert(F != IFMap.end());
1050  IFListType &LL = F->second;
1051
1052  // First, examine the IF candidates for register VR whose removable-regis-
1053  // ter sets are empty. This means that a given candidate will not help eli-
1054  // minate any registers, but since "insert" is not a constant-extendable
1055  // instruction, using such a candidate may reduce code size if the defini-
1056  // tion of VR is constant-extended.
1057  // If there exists a candidate with a non-empty set, the ones with empty
1058  // sets will not be used and can be removed.
1059  MachineInstr *DefVR = MRI->getVRegDef(VR);
1060  bool DefEx = HII->isConstExtended(*DefVR);
1061  bool HasNE = false;
1062  for (const auto &I : LL) {
1063    if (I.second.empty())
1064      continue;
1065    HasNE = true;
1066    break;
1067  }
1068  if (!DefEx || HasNE) {
1069    // The definition of VR is not constant-extended, or there is a candidate
1070    // with a non-empty set. Remove all candidates with empty sets.
1071    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1072      return IR.second.empty();
1073    };
1074    llvm::erase_if(LL, IsEmpty);
1075  } else {
1076    // The definition of VR is constant-extended, and all candidates have
1077    // empty removable-register sets. Pick the maximum candidate, and remove
1078    // all others. The "maximum" does not have any special meaning here, it
1079    // is only so that the candidate that will remain on the list is selec-
1080    // ted deterministically.
1081    IFRecord MaxIF = LL[0].first;
1082    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1083      // If LL[MaxI] < LL[i], then MaxI = i.
1084      const IFRecord &IF = LL[i].first;
1085      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1086      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1087      if (M0 > R0)
1088        continue;
1089      if (M0 == R0) {
1090        if (M1 > R1)
1091          continue;
1092        if (M1 == R1) {
1093          if (MaxIF.Wdh > IF.Wdh)
1094            continue;
1095          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1096            continue;
1097        }
1098      }
1099      // MaxIF < IF.
1100      MaxIF = IF;
1101    }
1102    // Remove everything except the maximum candidate. All register sets
1103    // are empty, so no need to preserve anything.
1104    LL.clear();
1105    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1106  }
1107
1108  // Now, remove those whose sets of potentially removable registers are
1109  // contained in another IF candidate for VR. For example, given these
1110  // candidates for %45,
1111  //   %45:
1112  //     (%44,%41,#9,#8), { %42 }
1113  //     (%43,%41,#9,#8), { %42 %44 }
1114  // remove the first one, since it is contained in the second one.
1115  for (unsigned i = 0, n = LL.size(); i < n; ) {
1116    const RegisterSet &RMi = LL[i].second;
1117    unsigned j = 0;
1118    while (j < n) {
1119      if (j != i && LL[j].second.includes(RMi))
1120        break;
1121      j++;
1122    }
1123    if (j == n) {   // RMi not contained in anything else.
1124      i++;
1125      continue;
1126    }
1127    LL.erase(LL.begin()+i);
1128    n = LL.size();
1129  }
1130}
1131
1132void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1133      PairMapType &M) {
1134  IFMapType::iterator F = IFMap.find(VR);
1135  assert(F != IFMap.end());
1136  IFListType &LL = F->second;
1137  unsigned Cutoff = VRegDistCutoff;
1138  const MachineInstr *DefV = MRI->getVRegDef(VR);
1139
1140  for (unsigned i = LL.size(); i > 0; --i) {
1141    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1142    const MachineInstr *DefS = MRI->getVRegDef(SR);
1143    const MachineInstr *DefI = MRI->getVRegDef(IR);
1144    unsigned DSV = distance(DefS, DefV, RPO, M);
1145    if (DSV < Cutoff) {
1146      unsigned DIV = distance(DefI, DefV, RPO, M);
1147      if (DIV < Cutoff)
1148        continue;
1149    }
1150    LL.erase(LL.begin()+(i-1));
1151  }
1152}
1153
1154void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1155  IFMapType::iterator F = IFMap.find(VR);
1156  assert(F != IFMap.end());
1157  IFListType &LL = F->second;
1158
1159  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1160    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1161  };
1162  llvm::erase_if(LL, IsCopy);
1163}
1164
1165void HexagonGenInsert::pruneCandidates() {
1166  // Remove candidates that are not beneficial, regardless of the final
1167  // selection method.
1168  // First, remove candidates whose potentially removable set is a subset
1169  // of another candidate's set.
1170  for (const auto &I : IFMap)
1171    pruneCoveredSets(I.first);
1172
1173  UnsignedMap RPO;
1174
1175  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1176
1177  RPOTType RPOT(MFN);
1178  unsigned RPON = 0;
1179  for (const auto &I : RPOT)
1180    RPO[I->getNumber()] = RPON++;
1181
1182  PairMapType Memo; // Memoization map for distance calculation.
1183  // Remove candidates that would use registers defined too far away.
1184  for (const auto &I : IFMap)
1185    pruneUsesTooFar(I.first, RPO, Memo);
1186
1187  pruneEmptyLists();
1188
1189  for (const auto &I : IFMap)
1190    pruneRegCopies(I.first);
1191}
1192
1193namespace {
1194
1195  // Class for comparing IF candidates for registers that have multiple of
1196  // them. The smaller the candidate, according to this ordering, the better.
1197  // First, compare the number of zeros in the associated potentially remova-
1198  // ble register sets. "Zero" indicates that the register is very likely to
1199  // become dead after this transformation.
1200  // Second, compare "averages", i.e. use-count per size. The lower wins.
1201  // After that, it does not really matter which one is smaller. Resolve
1202  // the tie in some deterministic way.
1203  struct IFOrdering {
1204    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1205      : UseC(UC), BaseOrd(BO) {}
1206
1207    bool operator() (const IFRecordWithRegSet &A,
1208                     const IFRecordWithRegSet &B) const;
1209
1210  private:
1211    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1212          unsigned &Sum) const;
1213
1214    const UnsignedMap &UseC;
1215    const RegisterOrdering &BaseOrd;
1216  };
1217
1218} // end anonymous namespace
1219
1220bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1221      const IFRecordWithRegSet &B) const {
1222  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1223  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1224  stats(A.second, SizeA, ZeroA, SumA);
1225  stats(B.second, SizeB, ZeroB, SumB);
1226
1227  // We will pick the minimum element. The more zeros, the better.
1228  if (ZeroA != ZeroB)
1229    return ZeroA > ZeroB;
1230  // Compare SumA/SizeA with SumB/SizeB, lower is better.
1231  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1232  if (AvgA != AvgB)
1233    return AvgA < AvgB;
1234
1235  // The sets compare identical so far. Resort to comparing the IF records.
1236  // The actual values don't matter, this is only for determinism.
1237  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1238  if (OSA != OSB)
1239    return OSA < OSB;
1240  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1241  if (OIA != OIB)
1242    return OIA < OIB;
1243  if (A.first.Wdh != B.first.Wdh)
1244    return A.first.Wdh < B.first.Wdh;
1245  return A.first.Off < B.first.Off;
1246}
1247
1248void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1249      unsigned &Sum) const {
1250  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1251    UnsignedMap::const_iterator F = UseC.find(R);
1252    assert(F != UseC.end());
1253    unsigned UC = F->second;
1254    if (UC == 0)
1255      Zero++;
1256    Sum += UC;
1257    Size++;
1258  }
1259}
1260
1261void HexagonGenInsert::selectCandidates() {
1262  // Some registers may have multiple valid candidates. Pick the best one
1263  // (or decide not to use any).
1264
1265  // Compute the "removability" measure of R:
1266  // For each potentially removable register R, record the number of regis-
1267  // ters with IF candidates, where R appears in at least one set.
1268  RegisterSet AllRMs;
1269  UnsignedMap UseC, RemC;
1270  IFMapType::iterator End = IFMap.end();
1271
1272  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1273    const IFListType &LL = I->second;
1274    RegisterSet TT;
1275    for (const auto &J : LL)
1276      TT.insert(J.second);
1277    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1278      RemC[R]++;
1279    AllRMs.insert(TT);
1280  }
1281
1282  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1283    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1284    using InstrSet = SmallSet<const MachineInstr *, 16>;
1285
1286    InstrSet UIs;
1287    // Count as the number of instructions in which R is used, not the
1288    // number of operands.
1289    use_iterator E = MRI->use_nodbg_end();
1290    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1291      UIs.insert(I->getParent());
1292    unsigned C = UIs.size();
1293    // Calculate a measure, which is the number of instructions using R,
1294    // minus the "removability" count computed earlier.
1295    unsigned D = RemC[R];
1296    UseC[R] = (C > D) ? C-D : 0;  // doz
1297  }
1298
1299  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1300  if (!SelectAll0 && !SelectHas0)
1301    SelectAll0 = true;
1302
1303  // The smaller the number UseC for a given register R, the "less used"
1304  // R is aside from the opportunities for removal offered by generating
1305  // "insert" instructions.
1306  // Iterate over the IF map, and for those registers that have multiple
1307  // candidates, pick the minimum one according to IFOrdering.
1308  IFOrdering IFO(UseC, BaseOrd);
1309  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1310    IFListType &LL = I->second;
1311    if (LL.empty())
1312      continue;
1313    // Get the minimum element, remember it and clear the list. If the
1314    // element found is adequate, we will put it back on the list, other-
1315    // wise the list will remain empty, and the entry for this register
1316    // will be removed (i.e. this register will not be replaced by insert).
1317    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
1318    assert(MinI != LL.end());
1319    IFRecordWithRegSet M = *MinI;
1320    LL.clear();
1321
1322    // We want to make sure that this replacement will have a chance to be
1323    // beneficial, and that means that we want to have indication that some
1324    // register will be removed. The most likely registers to be eliminated
1325    // are the use operands in the definition of I->first. Accept/reject a
1326    // candidate based on how many of its uses it can potentially eliminate.
1327
1328    RegisterSet Us;
1329    const MachineInstr *DefI = MRI->getVRegDef(I->first);
1330    getInstrUses(DefI, Us);
1331    bool Accept = false;
1332
1333    if (SelectAll0) {
1334      bool All0 = true;
1335      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1336        if (UseC[R] == 0)
1337          continue;
1338        All0 = false;
1339        break;
1340      }
1341      Accept = All0;
1342    } else if (SelectHas0) {
1343      bool Has0 = false;
1344      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1345        if (UseC[R] != 0)
1346          continue;
1347        Has0 = true;
1348        break;
1349      }
1350      Accept = Has0;
1351    }
1352    if (Accept)
1353      LL.push_back(M);
1354  }
1355
1356  // Remove candidates that add uses of removable registers, unless the
1357  // removable registers are among replacement candidates.
1358  // Recompute the removable registers, since some candidates may have
1359  // been eliminated.
1360  AllRMs.clear();
1361  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1362    const IFListType &LL = I->second;
1363    if (!LL.empty())
1364      AllRMs.insert(LL[0].second);
1365  }
1366  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1367    IFListType &LL = I->second;
1368    if (LL.empty())
1369      continue;
1370    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1371    if (AllRMs[SR] || AllRMs[IR])
1372      LL.clear();
1373  }
1374
1375  pruneEmptyLists();
1376}
1377
1378bool HexagonGenInsert::generateInserts() {
1379  // Create a new register for each one from IFMap, and store them in the
1380  // map.
1381  UnsignedMap RegMap;
1382  for (auto &I : IFMap) {
1383    unsigned VR = I.first;
1384    const TargetRegisterClass *RC = MRI->getRegClass(VR);
1385    Register NewVR = MRI->createVirtualRegister(RC);
1386    RegMap[VR] = NewVR;
1387  }
1388
1389  // We can generate the "insert" instructions using potentially stale re-
1390  // gisters: SrcR and InsR for a given VR may be among other registers that
1391  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1392  for (auto &I : IFMap) {
1393    MachineInstr *MI = MRI->getVRegDef(I.first);
1394    MachineBasicBlock &B = *MI->getParent();
1395    DebugLoc DL = MI->getDebugLoc();
1396    unsigned NewR = RegMap[I.first];
1397    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1398    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1399                               : HII->get(Hexagon::S2_insertp);
1400    IFRecord IF = I.second[0].first;
1401    unsigned Wdh = IF.Wdh, Off = IF.Off;
1402    unsigned InsS = 0;
1403    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1404      InsS = Hexagon::isub_lo;
1405      if (Off >= 32) {
1406        InsS = Hexagon::isub_hi;
1407        Off -= 32;
1408      }
1409    }
1410    // Advance to the proper location for inserting instructions. This could
1411    // be B.end().
1412    MachineBasicBlock::iterator At = MI;
1413    if (MI->isPHI())
1414      At = B.getFirstNonPHI();
1415
1416    BuildMI(B, At, DL, D, NewR)
1417      .addReg(IF.SrcR)
1418      .addReg(IF.InsR, 0, InsS)
1419      .addImm(Wdh)
1420      .addImm(Off);
1421
1422    MRI->clearKillFlags(IF.SrcR);
1423    MRI->clearKillFlags(IF.InsR);
1424  }
1425
1426  for (const auto &I : IFMap) {
1427    MachineInstr *DefI = MRI->getVRegDef(I.first);
1428    MRI->replaceRegWith(I.first, RegMap[I.first]);
1429    DefI->eraseFromParent();
1430  }
1431
1432  return true;
1433}
1434
1435bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1436  bool Changed = false;
1437
1438  for (auto *DTN : children<MachineDomTreeNode*>(N))
1439    Changed |= removeDeadCode(DTN);
1440
1441  MachineBasicBlock *B = N->getBlock();
1442  std::vector<MachineInstr*> Instrs;
1443  for (MachineInstr &MI : llvm::reverse(*B))
1444    Instrs.push_back(&MI);
1445
1446  for (MachineInstr *MI : Instrs) {
1447    unsigned Opc = MI->getOpcode();
1448    // Do not touch lifetime markers. This is why the target-independent DCE
1449    // cannot be used.
1450    if (Opc == TargetOpcode::LIFETIME_START ||
1451        Opc == TargetOpcode::LIFETIME_END)
1452      continue;
1453    bool Store = false;
1454    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1455      continue;
1456
1457    bool AllDead = true;
1458    SmallVector<unsigned,2> Regs;
1459    for (const MachineOperand &MO : MI->operands()) {
1460      if (!MO.isReg() || !MO.isDef())
1461        continue;
1462      Register R = MO.getReg();
1463      if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) {
1464        AllDead = false;
1465        break;
1466      }
1467      Regs.push_back(R);
1468    }
1469    if (!AllDead)
1470      continue;
1471
1472    B->erase(MI);
1473    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
1474      MRI->markUsesInDebugValueAsUndef(Regs[I]);
1475    Changed = true;
1476  }
1477
1478  return Changed;
1479}
1480
1481bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1482  if (skipFunction(MF.getFunction()))
1483    return false;
1484
1485  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1486  bool Changed = false;
1487
1488  // Verify: one, but not both.
1489  assert(!OptSelectAll0 || !OptSelectHas0);
1490
1491  IFMap.clear();
1492  BaseOrd.clear();
1493  CellOrd.clear();
1494
1495  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1496  HII = ST.getInstrInfo();
1497  HRI = ST.getRegisterInfo();
1498  MFN = &MF;
1499  MRI = &MF.getRegInfo();
1500  MDT = &getAnalysis<MachineDominatorTree>();
1501
1502  // Clean up before any further processing, so that dead code does not
1503  // get used in a newly generated "insert" instruction. Have a custom
1504  // version of DCE that preserves lifetime markers. Without it, merging
1505  // of stack objects can fail to recognize and merge disjoint objects
1506  // leading to unnecessary stack growth.
1507  Changed = removeDeadCode(MDT->getRootNode());
1508
1509  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1510  BitTracker BTLoc(HE, MF);
1511  BTLoc.trace(isDebug());
1512  BTLoc.run();
1513  CellMapShadow MS(BTLoc);
1514  CMS = &MS;
1515
1516  buildOrderingMF(BaseOrd);
1517  buildOrderingBT(BaseOrd, CellOrd);
1518
1519  if (isDebug()) {
1520    dbgs() << "Cell ordering:\n";
1521    for (const auto &I : CellOrd) {
1522      unsigned VR = I.first, Pos = I.second;
1523      dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1524    }
1525  }
1526
1527  // Collect candidates for conversion into the insert forms.
1528  MachineBasicBlock *RootB = MDT->getRoot();
1529  OrderedRegisterList AvailR(CellOrd);
1530
1531  const char *const TGName = "hexinsert";
1532  const char *const TGDesc = "Generate Insert Instructions";
1533
1534  {
1535    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1536                        TimingDetail);
1537    collectInBlock(RootB, AvailR);
1538    // Complete the information gathered in IFMap.
1539    computeRemovableRegisters();
1540  }
1541
1542  if (isDebug()) {
1543    dbgs() << "Candidates after collection:\n";
1544    dump_map();
1545  }
1546
1547  if (IFMap.empty())
1548    return Changed;
1549
1550  {
1551    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1552    pruneCandidates();
1553  }
1554
1555  if (isDebug()) {
1556    dbgs() << "Candidates after pruning:\n";
1557    dump_map();
1558  }
1559
1560  if (IFMap.empty())
1561    return Changed;
1562
1563  {
1564    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1565    selectCandidates();
1566  }
1567
1568  if (isDebug()) {
1569    dbgs() << "Candidates after selection:\n";
1570    dump_map();
1571  }
1572
1573  // Filter out vregs beyond the cutoff.
1574  if (VRegIndexCutoff.getPosition()) {
1575    unsigned Cutoff = VRegIndexCutoff;
1576
1577    using IterListType = SmallVector<IFMapType::iterator, 16>;
1578
1579    IterListType Out;
1580    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1581      unsigned Idx = Register::virtReg2Index(I->first);
1582      if (Idx >= Cutoff)
1583        Out.push_back(I);
1584    }
1585    for (unsigned i = 0, n = Out.size(); i < n; ++i)
1586      IFMap.erase(Out[i]);
1587  }
1588  if (IFMap.empty())
1589    return Changed;
1590
1591  {
1592    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1593                        TimingDetail);
1594    generateInserts();
1595  }
1596
1597  return true;
1598}
1599
1600FunctionPass *llvm::createHexagonGenInsert() {
1601  return new HexagonGenInsert();
1602}
1603
1604//===----------------------------------------------------------------------===//
1605//                         Public Constructor Functions
1606//===----------------------------------------------------------------------===//
1607
1608INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1609  "Hexagon generate \"insert\" instructions", false, false)
1610INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1611INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1612  "Hexagon generate \"insert\" instructions", false, false)
1613