1//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11/// branches to help accelerate DSP applications. These two extensions,
12/// combined with a new form of predication called tail-predication, can be used
13/// to provide implicit vector predication within a low-overhead loop.
14/// This is implicit because the predicate of active/inactive lanes is
15/// calculated by hardware, and thus does not need to be explicitly passed
16/// to vector instructions. The instructions responsible for this are the
17/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18/// the total number of data elements processed by the loop. The loop-end
19/// LETP instruction is responsible for decrementing and setting the remaining
20/// elements to be processed and generating the mask of active lanes.
21///
22/// The HardwareLoops pass inserts intrinsics identifying loops that the
23/// backend will attempt to convert into a low-overhead loop. The vectorizer is
24/// responsible for generating a vectorized loop in which the lanes are
25/// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26/// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27/// instructions. This will be picked up by the ARM Low-overhead loop pass later
28/// in the backend, which performs the final transformation to a DLSTP or WLSTP
29/// tail-predicated loop.
30//
31//===----------------------------------------------------------------------===//
32
33#include "ARM.h"
34#include "ARMSubtarget.h"
35#include "ARMTargetTransformInfo.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Analysis/LoopPass.h"
38#include "llvm/Analysis/ScalarEvolution.h"
39#include "llvm/Analysis/ScalarEvolutionExpressions.h"
40#include "llvm/Analysis/TargetLibraryInfo.h"
41#include "llvm/Analysis/TargetTransformInfo.h"
42#include "llvm/Analysis/ValueTracking.h"
43#include "llvm/CodeGen/TargetPassConfig.h"
44#include "llvm/IR/IRBuilder.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicsARM.h"
47#include "llvm/IR/PatternMatch.h"
48#include "llvm/InitializePasses.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include "llvm/Transforms/Utils/LoopUtils.h"
53#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
54
55using namespace llvm;
56
57#define DEBUG_TYPE "mve-tail-predication"
58#define DESC "Transform predicated vector loops to use MVE tail predication"
59
60cl::opt<TailPredication::Mode> EnableTailPredication(
61   "tail-predication", cl::desc("MVE tail-predication pass options"),
62   cl::init(TailPredication::Enabled),
63   cl::values(clEnumValN(TailPredication::Disabled, "disabled",
64                         "Don't tail-predicate loops"),
65              clEnumValN(TailPredication::EnabledNoReductions,
66                         "enabled-no-reductions",
67                         "Enable tail-predication, but not for reduction loops"),
68              clEnumValN(TailPredication::Enabled,
69                         "enabled",
70                         "Enable tail-predication, including reduction loops"),
71              clEnumValN(TailPredication::ForceEnabledNoReductions,
72                         "force-enabled-no-reductions",
73                         "Enable tail-predication, but not for reduction loops, "
74                         "and force this which might be unsafe"),
75              clEnumValN(TailPredication::ForceEnabled,
76                         "force-enabled",
77                         "Enable tail-predication, including reduction loops, "
78                         "and force this which might be unsafe")));
79
80
81namespace {
82
83class MVETailPredication : public LoopPass {
84  SmallVector<IntrinsicInst*, 4> MaskedInsts;
85  Loop *L = nullptr;
86  ScalarEvolution *SE = nullptr;
87  TargetTransformInfo *TTI = nullptr;
88  const ARMSubtarget *ST = nullptr;
89
90public:
91  static char ID;
92
93  MVETailPredication() : LoopPass(ID) { }
94
95  void getAnalysisUsage(AnalysisUsage &AU) const override {
96    AU.addRequired<ScalarEvolutionWrapperPass>();
97    AU.addRequired<LoopInfoWrapperPass>();
98    AU.addRequired<TargetPassConfig>();
99    AU.addRequired<TargetTransformInfoWrapperPass>();
100    AU.addPreserved<LoopInfoWrapperPass>();
101    AU.setPreservesCFG();
102  }
103
104  bool runOnLoop(Loop *L, LPPassManager&) override;
105
106private:
107  /// Perform the relevant checks on the loop and convert active lane masks if
108  /// possible.
109  bool TryConvertActiveLaneMask(Value *TripCount);
110
111  /// Perform several checks on the arguments of @llvm.get.active.lane.mask
112  /// intrinsic. E.g., check that the loop induction variable and the element
113  /// count are of the form we expect, and also perform overflow checks for
114  /// the new expressions that are created.
115  const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
116
117  /// Insert the intrinsic to represent the effect of tail predication.
118  void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start);
119};
120
121} // end namespace
122
123bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
124  if (skipLoop(L) || !EnableTailPredication)
125    return false;
126
127  MaskedInsts.clear();
128  Function &F = *L->getHeader()->getParent();
129  auto &TPC = getAnalysis<TargetPassConfig>();
130  auto &TM = TPC.getTM<TargetMachine>();
131  ST = &TM.getSubtarget<ARMSubtarget>(F);
132  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
133  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
134  this->L = L;
135
136  // The MVE and LOB extensions are combined to enable tail-predication, but
137  // there's nothing preventing us from generating VCTP instructions for v8.1m.
138  if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
139    LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
140    return false;
141  }
142
143  BasicBlock *Preheader = L->getLoopPreheader();
144  if (!Preheader)
145    return false;
146
147  auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
148    for (auto &I : *BB) {
149      auto *Call = dyn_cast<IntrinsicInst>(&I);
150      if (!Call)
151        continue;
152
153      Intrinsic::ID ID = Call->getIntrinsicID();
154      if (ID == Intrinsic::start_loop_iterations ||
155          ID == Intrinsic::test_start_loop_iterations)
156        return cast<IntrinsicInst>(&I);
157    }
158    return nullptr;
159  };
160
161  // Look for the hardware loop intrinsic that sets the iteration count.
162  IntrinsicInst *Setup = FindLoopIterations(Preheader);
163
164  // The test.set iteration could live in the pre-preheader.
165  if (!Setup) {
166    if (!Preheader->getSinglePredecessor())
167      return false;
168    Setup = FindLoopIterations(Preheader->getSinglePredecessor());
169    if (!Setup)
170      return false;
171  }
172
173  LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
174
175  bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
176
177  return Changed;
178}
179
180// The active lane intrinsic has this form:
181//
182//    @llvm.get.active.lane.mask(IV, TC)
183//
184// Here we perform checks that this intrinsic behaves as expected,
185// which means:
186//
187// 1) Check that the TripCount (TC) belongs to this loop (originally).
188// 2) The element count (TC) needs to be sufficiently large that the decrement
189//    of element counter doesn't overflow, which means that we need to prove:
190//        ceil(ElementCount / VectorWidth) >= TripCount
191//    by rounding up ElementCount up:
192//        ((ElementCount + (VectorWidth - 1)) / VectorWidth
193//    and evaluate if expression isKnownNonNegative:
194//        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
195// 3) The IV must be an induction phi with an increment equal to the
196//    vector width.
197const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
198                                                 Value *TripCount) {
199  bool ForceTailPredication =
200    EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
201    EnableTailPredication == TailPredication::ForceEnabled;
202
203  Value *ElemCount = ActiveLaneMask->getOperand(1);
204  bool Changed = false;
205  if (!L->makeLoopInvariant(ElemCount, Changed))
206    return nullptr;
207
208  auto *EC= SE->getSCEV(ElemCount);
209  auto *TC = SE->getSCEV(TripCount);
210  int VectorWidth =
211      cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
212  if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 &&
213      VectorWidth != 16)
214    return nullptr;
215  ConstantInt *ConstElemCount = nullptr;
216
217  // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
218  // this loop.  The scalar tripcount corresponds the number of elements
219  // processed by the loop, so we will refer to that from this point on.
220  if (!SE->isLoopInvariant(EC, L)) {
221    LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
222    return nullptr;
223  }
224
225  // 2) Find out if IV is an induction phi. Note that we can't use Loop
226  // helpers here to get the induction variable, because the hardware loop is
227  // no longer in loopsimplify form, and also the hwloop intrinsic uses a
228  // different counter. Using SCEV, we check that the induction is of the
229  // form i = i + 4, where the increment must be equal to the VectorWidth.
230  auto *IV = ActiveLaneMask->getOperand(0);
231  auto *IVExpr = SE->getSCEV(IV);
232  auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
233
234  if (!AddExpr) {
235    LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
236    return nullptr;
237  }
238  // Check that this AddRec is associated with this loop.
239  if (AddExpr->getLoop() != L) {
240    LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
241    return nullptr;
242  }
243  auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
244  if (!Step) {
245    LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
246               AddExpr->getOperand(1)->dump());
247    return nullptr;
248  }
249  auto StepValue = Step->getValue()->getSExtValue();
250  if (VectorWidth != StepValue) {
251    LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
252                      << " doesn't match vector width " << VectorWidth << "\n");
253    return nullptr;
254  }
255
256  if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
257    ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
258    if (!TC) {
259      LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
260                           "set.loop.iterations\n");
261      return nullptr;
262    }
263
264    // Calculate 2 tripcount values and check that they are consistent with
265    // each other. The TripCount for a predicated vector loop body is
266    // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
267    // work it out here.
268    uint64_t TC1 = TC->getZExtValue();
269    uint64_t TC2 =
270        (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
271
272    // If the tripcount values are inconsistent, we can't insert the VCTP and
273    // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
274    // and legalize this.
275    if (TC1 != TC2) {
276      LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
277                 << TC1 << " from set.loop.iterations, and "
278                 << TC2 << " from get.active.lane.mask\n");
279      return nullptr;
280    }
281  } else if (!ForceTailPredication) {
282    // 3) We need to prove that the sub expression that we create in the
283    // tail-predicated loop body, which calculates the remaining elements to be
284    // processed, is non-negative, i.e. it doesn't overflow:
285    //
286    //   ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
287    //
288    // This is true if:
289    //
290    //    TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
291    //
292    // which what we will be using here.
293    //
294    auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
295    // ElementCount + (VW-1):
296    auto *Start = AddExpr->getStart();
297    auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
298        SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
299
300    // Ceil = ElementCount + (VW-1) / VW
301    auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
302
303    // Prevent unused variable warnings with TC
304    (void)TC;
305    LLVM_DEBUG({
306      dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
307      dbgs() << "ARM TP: - TripCount = " << *TC << "\n";
308      dbgs() << "ARM TP: - ElemCount = " << *EC << "\n";
309      dbgs() << "ARM TP: - Start = " << *Start << "\n";
310      dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n";
311      dbgs() << "ARM TP: - VecWidth =  " << VectorWidth << "\n";
312      dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n";
313    });
314
315    // As an example, almost all the tripcount expressions (produced by the
316    // vectoriser) look like this:
317    //
318    //   TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4)
319    //
320    // and "ElementCount + (VW-1) / VW":
321    //
322    //   Ceil = ((3 + %N) /u 4)
323    //
324    // Check for equality of TC and Ceil by calculating SCEV expression
325    // TC - Ceil and test it for zero.
326    //
327    const SCEV *Div = SE->getUDivExpr(
328        SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW),
329                       SE->getNegativeSCEV(Start)),
330        VW);
331    const SCEV *Sub = SE->getMinusSCEV(SE->getBackedgeTakenCount(L), Div);
332    LLVM_DEBUG(dbgs() << "ARM TP: - Sub       = "; Sub->dump());
333
334    // Use context sensitive facts about the path to the loop to refine.  This
335    // comes up as the backedge taken count can incorporate context sensitive
336    // reasoning, and our RHS just above doesn't.
337    Sub = SE->applyLoopGuards(Sub, L);
338    LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub->dump());
339
340    if (!Sub->isZero()) {
341      LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
342      return nullptr;
343    }
344  }
345
346  // Check that the start value is a multiple of the VectorWidth.
347  // TODO: This could do with a method to check if the scev is a multiple of
348  // VectorWidth. For the moment we just check for constants, muls and unknowns
349  // (which use MaskedValueIsZero and seems to be the most common).
350  if (auto *BaseC = dyn_cast<SCEVConstant>(AddExpr->getStart())) {
351    if (BaseC->getAPInt().urem(VectorWidth) == 0)
352      return SE->getMinusSCEV(EC, BaseC);
353  } else if (auto *BaseV = dyn_cast<SCEVUnknown>(AddExpr->getStart())) {
354    Type *Ty = BaseV->getType();
355    APInt Mask = APInt::getLowBitsSet(Ty->getPrimitiveSizeInBits(),
356                                      Log2_64(VectorWidth));
357    if (MaskedValueIsZero(BaseV->getValue(), Mask,
358                          L->getHeader()->getModule()->getDataLayout()))
359      return SE->getMinusSCEV(EC, BaseV);
360  } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(AddExpr->getStart())) {
361    if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(0)))
362      if (BaseC->getAPInt().urem(VectorWidth) == 0)
363        return SE->getMinusSCEV(EC, BaseC);
364    if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(1)))
365      if (BaseC->getAPInt().urem(VectorWidth) == 0)
366        return SE->getMinusSCEV(EC, BaseC);
367  }
368
369  LLVM_DEBUG(
370      dbgs() << "ARM TP: induction base is not know to be a multiple of VF: "
371             << *AddExpr->getOperand(0) << "\n");
372  return nullptr;
373}
374
375void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
376                                             Value *Start) {
377  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
378  Module *M = L->getHeader()->getModule();
379  Type *Ty = IntegerType::get(M->getContext(), 32);
380  unsigned VectorWidth =
381      cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
382
383  // Insert a phi to count the number of elements processed by the loop.
384  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->getFirstNonPHIIt());
385  PHINode *Processed = Builder.CreatePHI(Ty, 2);
386  Processed->addIncoming(Start, L->getLoopPreheader());
387
388  // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
389  // thus represent the effect of tail predication.
390  Builder.SetInsertPoint(ActiveLaneMask);
391  ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
392
393  Intrinsic::ID VCTPID;
394  switch (VectorWidth) {
395  default:
396    llvm_unreachable("unexpected number of lanes");
397  case 2:  VCTPID = Intrinsic::arm_mve_vctp64; break;
398  case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
399  case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
400  case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
401  }
402  Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
403  Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
404  ActiveLaneMask->replaceAllUsesWith(VCTPCall);
405
406  // Add the incoming value to the new phi.
407  // TODO: This add likely already exists in the loop.
408  Value *Remaining = Builder.CreateSub(Processed, Factor);
409  Processed->addIncoming(Remaining, L->getLoopLatch());
410  LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
411             << *Processed << "\n"
412             << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
413}
414
415bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
416  SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
417  for (auto *BB : L->getBlocks())
418    for (auto &I : *BB)
419      if (auto *Int = dyn_cast<IntrinsicInst>(&I))
420        if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
421          ActiveLaneMasks.push_back(Int);
422
423  if (ActiveLaneMasks.empty())
424    return false;
425
426  LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
427
428  for (auto *ActiveLaneMask : ActiveLaneMasks) {
429    LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
430                      << *ActiveLaneMask << "\n");
431
432    const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount);
433    if (!StartSCEV) {
434      LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
435      return false;
436    }
437    LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV
438                      << "\n");
439    SCEVExpander Expander(*SE, L->getHeader()->getModule()->getDataLayout(),
440                          "start");
441    Instruction *Ins = L->getLoopPreheader()->getTerminator();
442    Value *Start = Expander.expandCodeFor(StartSCEV, StartSCEV->getType(), Ins);
443    LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n");
444    InsertVCTPIntrinsic(ActiveLaneMask, Start);
445  }
446
447  // Remove dead instructions and now dead phis.
448  for (auto *II : ActiveLaneMasks)
449    RecursivelyDeleteTriviallyDeadInstructions(II);
450  for (auto *I : L->blocks())
451    DeleteDeadPHIs(I);
452  return true;
453}
454
455Pass *llvm::createMVETailPredicationPass() {
456  return new MVETailPredication();
457}
458
459char MVETailPredication::ID = 0;
460
461INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
462INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
463