1//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates local data store, LDS, uses from non-kernel functions.
10// LDS is contiguous memory allocated per kernel execution.
11//
12// Background.
13//
14// The programming model is global variables, or equivalently function local
15// static variables, accessible from kernels or other functions. For uses from
16// kernels this is straightforward - assign an integer to the kernel for the
17// memory required by all the variables combined, allocate them within that.
18// For uses from functions there are performance tradeoffs to choose between.
19//
20// This model means the GPU runtime can specify the amount of memory allocated.
21// If this is more than the kernel assumed, the excess can be made available
22// using a language specific feature, which IR represents as a variable with
23// no initializer. This feature is referred to here as "Dynamic LDS" and is
24// lowered slightly differently to the normal case.
25//
26// Consequences of this GPU feature:
27// - memory is limited and exceeding it halts compilation
28// - a global accessed by one kernel exists independent of other kernels
29// - a global exists independent of simultaneous execution of the same kernel
30// - the address of the global may be different from different kernels as they
31//   do not alias, which permits only allocating variables they use
32// - if the address is allowed to differ, functions need help to find it
33//
34// Uses from kernels are implemented here by grouping them in a per-kernel
35// struct instance. This duplicates the variables, accurately modelling their
36// aliasing properties relative to a single global representation. It also
37// permits control over alignment via padding.
38//
39// Uses from functions are more complicated and the primary purpose of this
40// IR pass. Several different lowering are chosen between to meet requirements
41// to avoid allocating any LDS where it is not necessary, as that impacts
42// occupancy and may fail the compilation, while not imposing overhead on a
43// feature whose primary advantage over global memory is performance. The basic
44// design goal is to avoid one kernel imposing overhead on another.
45//
46// Implementation.
47//
48// LDS variables with constant annotation or non-undef initializer are passed
49// through unchanged for simplification or error diagnostics in later passes.
50// Non-undef initializers are not yet implemented for LDS.
51//
52// LDS variables that are always allocated at the same address can be found
53// by lookup at that address. Otherwise runtime information/cost is required.
54//
55// The simplest strategy possible is to group all LDS variables in a single
56// struct and allocate that struct in every kernel such that the original
57// variables are always at the same address. LDS is however a limited resource
58// so this strategy is unusable in practice. It is not implemented here.
59//
60// Strategy | Precise allocation | Zero runtime cost | General purpose |
61//  --------+--------------------+-------------------+-----------------+
62//   Module |                 No |               Yes |             Yes |
63//    Table |                Yes |                No |             Yes |
64//   Kernel |                Yes |               Yes |              No |
65//   Hybrid |                Yes |           Partial |             Yes |
66//
67// "Module" spends LDS memory to save cycles. "Table" spends cycles and global
68// memory to save LDS. "Kernel" is as fast as kernel allocation but only works
69// for variables that are known reachable from a single kernel. "Hybrid" picks
70// between all three. When forced to choose between LDS and cycles we minimise
71// LDS use.
72
73// The "module" lowering implemented here finds LDS variables which are used by
74// non-kernel functions and creates a new struct with a field for each of those
75// LDS variables. Variables that are only used from kernels are excluded.
76//
77// The "table" lowering implemented here has three components.
78// First kernels are assigned a unique integer identifier which is available in
79// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
80// is passed through a specific SGPR, thus works with indirect calls.
81// Second, each kernel allocates LDS variables independent of other kernels and
82// writes the addresses it chose for each variable into an array in consistent
83// order. If the kernel does not allocate a given variable, it writes undef to
84// the corresponding array location. These arrays are written to a constant
85// table in the order matching the kernel unique integer identifier.
86// Third, uses from non-kernel functions are replaced with a table lookup using
87// the intrinsic function to find the address of the variable.
88//
89// "Kernel" lowering is only applicable for variables that are unambiguously
90// reachable from exactly one kernel. For those cases, accesses to the variable
91// can be lowered to ConstantExpr address of a struct instance specific to that
92// one kernel. This is zero cost in space and in compute. It will raise a fatal
93// error on any variable that might be reachable from multiple kernels and is
94// thus most easily used as part of the hybrid lowering strategy.
95//
96// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
97// lowering where it can. It lowers the variable accessed by the greatest
98// number of kernels using the module strategy as that is free for the first
99// variable. Any futher variables that can be lowered with the module strategy
100// without incurring LDS memory overhead are. The remaining ones are lowered
101// via table.
102//
103// Consequences
104// - No heuristics or user controlled magic numbers, hybrid is the right choice
105// - Kernels that don't use functions (or have had them all inlined) are not
106//   affected by any lowering for kernels that do.
107// - Kernels that don't make indirect function calls are not affected by those
108//   that do.
109// - Variables which are used by lots of kernels, e.g. those injected by a
110//   language runtime in most kernels, are expected to have no overhead
111// - Implementations that instantiate templates per-kernel where those templates
112//   use LDS are expected to hit the "Kernel" lowering strategy
113// - The runtime properties impose a cost in compiler implementation complexity
114//
115// Dynamic LDS implementation
116// Dynamic LDS is lowered similarly to the "table" strategy above and uses the
117// same intrinsic to identify which kernel is at the root of the dynamic call
118// graph. This relies on the specified behaviour that all dynamic LDS variables
119// alias one another, i.e. are at the same address, with respect to a given
120// kernel. Therefore this pass creates new dynamic LDS variables for each kernel
121// that allocates any dynamic LDS and builds a table of addresses out of those.
122// The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS.
123// The corresponding optimisation for "kernel" lowering where the table lookup
124// is elided is not implemented.
125//
126//
127// Implementation notes / limitations
128// A single LDS global variable represents an instance per kernel that can reach
129// said variables. This pass essentially specialises said variables per kernel.
130// Handling ConstantExpr during the pass complicated this significantly so now
131// all ConstantExpr uses of LDS variables are expanded to instructions. This
132// may need amending when implementing non-undef initialisers.
133//
134// Lowering is split between this IR pass and the back end. This pass chooses
135// where given variables should be allocated and marks them with metadata,
136// MD_absolute_symbol. The backend places the variables in coincidentally the
137// same location and raises a fatal error if something has gone awry. This works
138// in practice because the only pass between this one and the backend that
139// changes LDS is PromoteAlloca and the changes it makes do not conflict.
140//
141// Addresses are written to constant global arrays based on the same metadata.
142//
143// The backend lowers LDS variables in the order of traversal of the function.
144// This is at odds with the deterministic layout required. The workaround is to
145// allocate the fixed-address variables immediately upon starting the function
146// where they can be placed as intended. This requires a means of mapping from
147// the function to the variables that it allocates. For the module scope lds,
148// this is via metadata indicating whether the variable is not required. If a
149// pass deletes that metadata, a fatal error on disagreement with the absolute
150// symbol metadata will occur. For kernel scope and dynamic, this is by _name_
151// correspondence between the function and the variable. It requires the
152// kernel to have a name (which is only a limitation for tests in practice) and
153// for nothing to rename the corresponding symbols. This is a hazard if the pass
154// is run multiple times during debugging. Alternative schemes considered all
155// involve bespoke metadata.
156//
157// If the name correspondence can be replaced, multiple distinct kernels that
158// have the same memory layout can map to the same kernel id (as the address
159// itself is handled by the absolute symbol metadata) and that will allow more
160// uses of the "kernel" style faster lowering and reduce the size of the lookup
161// tables.
162//
163// There is a test that checks this does not fire for a graphics shader. This
164// lowering is expected to work for graphics if the isKernel test is changed.
165//
166// The current markUsedByKernel is sufficient for PromoteAlloca but is elided
167// before codegen. Replacing this with an equivalent intrinsic which lasts until
168// shortly after the machine function lowering of LDS would help break the name
169// mapping. The other part needed is probably to amend PromoteAlloca to embed
170// the LDS variables it creates in the same struct created here. That avoids the
171// current hazard where a PromoteAlloca LDS variable might be allocated before
172// the kernel scope (and thus error on the address check). Given a new invariant
173// that no LDS variables exist outside of the structs managed here, and an
174// intrinsic that lasts until after the LDS frame lowering, it should be
175// possible to drop the name mapping and fold equivalent memory layouts.
176//
177//===----------------------------------------------------------------------===//
178
179#include "AMDGPU.h"
180#include "AMDGPUTargetMachine.h"
181#include "Utils/AMDGPUBaseInfo.h"
182#include "Utils/AMDGPUMemoryUtils.h"
183#include "llvm/ADT/BitVector.h"
184#include "llvm/ADT/DenseMap.h"
185#include "llvm/ADT/DenseSet.h"
186#include "llvm/ADT/STLExtras.h"
187#include "llvm/ADT/SetOperations.h"
188#include "llvm/Analysis/CallGraph.h"
189#include "llvm/CodeGen/TargetPassConfig.h"
190#include "llvm/IR/Constants.h"
191#include "llvm/IR/DerivedTypes.h"
192#include "llvm/IR/IRBuilder.h"
193#include "llvm/IR/InlineAsm.h"
194#include "llvm/IR/Instructions.h"
195#include "llvm/IR/IntrinsicsAMDGPU.h"
196#include "llvm/IR/MDBuilder.h"
197#include "llvm/IR/ReplaceConstant.h"
198#include "llvm/InitializePasses.h"
199#include "llvm/Pass.h"
200#include "llvm/Support/CommandLine.h"
201#include "llvm/Support/Debug.h"
202#include "llvm/Support/Format.h"
203#include "llvm/Support/OptimizedStructLayout.h"
204#include "llvm/Support/raw_ostream.h"
205#include "llvm/Transforms/Utils/BasicBlockUtils.h"
206#include "llvm/Transforms/Utils/ModuleUtils.h"
207
208#include <vector>
209
210#include <cstdio>
211
212#define DEBUG_TYPE "amdgpu-lower-module-lds"
213
214using namespace llvm;
215
216namespace {
217
218cl::opt<bool> SuperAlignLDSGlobals(
219    "amdgpu-super-align-lds-globals",
220    cl::desc("Increase alignment of LDS if it is not on align boundary"),
221    cl::init(true), cl::Hidden);
222
223enum class LoweringKind { module, table, kernel, hybrid };
224cl::opt<LoweringKind> LoweringKindLoc(
225    "amdgpu-lower-module-lds-strategy",
226    cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
227    cl::init(LoweringKind::hybrid),
228    cl::values(
229        clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
230        clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
231        clEnumValN(
232            LoweringKind::kernel, "kernel",
233            "Lower variables reachable from one kernel, otherwise abort"),
234        clEnumValN(LoweringKind::hybrid, "hybrid",
235                   "Lower via mixture of above strategies")));
236
237bool isKernelLDS(const Function *F) {
238  // Some weirdness here. AMDGPU::isKernelCC does not call into
239  // AMDGPU::isKernel with the calling conv, it instead calls into
240  // isModuleEntryFunction which returns true for more calling conventions
241  // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
242  // There's also a test that checks that the LDS lowering does not hit on
243  // a graphics shader, denoted amdgpu_ps, so stay with the limited case.
244  // Putting LDS in the name of the function to draw attention to this.
245  return AMDGPU::isKernel(F->getCallingConv());
246}
247
248template <typename T> std::vector<T> sortByName(std::vector<T> &&V) {
249  llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) {
250    return L->getName() < R->getName();
251  });
252  return {std::move(V)};
253}
254
255class AMDGPULowerModuleLDS {
256  const AMDGPUTargetMachine &TM;
257
258  static void
259  removeLocalVarsFromUsedLists(Module &M,
260                               const DenseSet<GlobalVariable *> &LocalVars) {
261    // The verifier rejects used lists containing an inttoptr of a constant
262    // so remove the variables from these lists before replaceAllUsesWith
263    SmallPtrSet<Constant *, 8> LocalVarsSet;
264    for (GlobalVariable *LocalVar : LocalVars)
265      LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
266
267    removeFromUsedLists(
268        M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
269
270    for (GlobalVariable *LocalVar : LocalVars)
271      LocalVar->removeDeadConstantUsers();
272  }
273
274  static void markUsedByKernel(Function *Func, GlobalVariable *SGV) {
275    // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
276    // that might call a function which accesses a field within it. This is
277    // presently approximated to 'all kernels' if there are any such functions
278    // in the module. This implicit use is redefined as an explicit use here so
279    // that later passes, specifically PromoteAlloca, account for the required
280    // memory without any knowledge of this transform.
281
282    // An operand bundle on llvm.donothing works because the call instruction
283    // survives until after the last pass that needs to account for LDS. It is
284    // better than inline asm as the latter survives until the end of codegen. A
285    // totally robust solution would be a function with the same semantics as
286    // llvm.donothing that takes a pointer to the instance and is lowered to a
287    // no-op after LDS is allocated, but that is not presently necessary.
288
289    // This intrinsic is eliminated shortly before instruction selection. It
290    // does not suffice to indicate to ISel that a given global which is not
291    // immediately used by the kernel must still be allocated by it. An
292    // equivalent target specific intrinsic which lasts until immediately after
293    // codegen would suffice for that, but one would still need to ensure that
294    // the variables are allocated in the anticpated order.
295    BasicBlock *Entry = &Func->getEntryBlock();
296    IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt());
297
298    Function *Decl =
299        Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
300
301    Value *UseInstance[1] = {
302        Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)};
303
304    Builder.CreateCall(
305        Decl, {}, {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)});
306  }
307
308  static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
309    // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
310    // global may have uses from multiple different functions as a result.
311    // This pass specialises LDS variables with respect to the kernel that
312    // allocates them.
313
314    // This is semantically equivalent to (the unimplemented as slow):
315    // for (auto &F : M.functions())
316    //   for (auto &BB : F)
317    //     for (auto &I : BB)
318    //       for (Use &Op : I.operands())
319    //         if (constantExprUsesLDS(Op))
320    //           replaceConstantExprInFunction(I, Op);
321
322    SmallVector<Constant *> LDSGlobals;
323    for (auto &GV : M.globals())
324      if (AMDGPU::isLDSVariableToLower(GV))
325        LDSGlobals.push_back(&GV);
326
327    return convertUsersOfConstantsToInstructions(LDSGlobals);
328  }
329
330public:
331  AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {}
332
333  using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
334
335  using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
336
337  static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
338                                     FunctionVariableMap &kernels,
339                                     FunctionVariableMap &functions) {
340
341    // Get uses from the current function, excluding uses by called functions
342    // Two output variables to avoid walking the globals list twice
343    for (auto &GV : M.globals()) {
344      if (!AMDGPU::isLDSVariableToLower(GV)) {
345        continue;
346      }
347
348      if (GV.isAbsoluteSymbolRef()) {
349        report_fatal_error(
350            "LDS variables with absolute addresses are unimplemented.");
351      }
352
353      for (User *V : GV.users()) {
354        if (auto *I = dyn_cast<Instruction>(V)) {
355          Function *F = I->getFunction();
356          if (isKernelLDS(F)) {
357            kernels[F].insert(&GV);
358          } else {
359            functions[F].insert(&GV);
360          }
361        }
362      }
363    }
364  }
365
366  struct LDSUsesInfoTy {
367    FunctionVariableMap direct_access;
368    FunctionVariableMap indirect_access;
369  };
370
371  static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
372
373    FunctionVariableMap direct_map_kernel;
374    FunctionVariableMap direct_map_function;
375    getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
376
377    // Collect variables that are used by functions whose address has escaped
378    DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
379    for (Function &F : M.functions()) {
380      if (!isKernelLDS(&F))
381        if (F.hasAddressTaken(nullptr,
382                              /* IgnoreCallbackUses */ false,
383                              /* IgnoreAssumeLikeCalls */ false,
384                              /* IgnoreLLVMUsed */ true,
385                              /* IgnoreArcAttachedCall */ false)) {
386          set_union(VariablesReachableThroughFunctionPointer,
387                    direct_map_function[&F]);
388        }
389    }
390
391    auto functionMakesUnknownCall = [&](const Function *F) -> bool {
392      assert(!F->isDeclaration());
393      for (const CallGraphNode::CallRecord &R : *CG[F]) {
394        if (!R.second->getFunction()) {
395          return true;
396        }
397      }
398      return false;
399    };
400
401    // Work out which variables are reachable through function calls
402    FunctionVariableMap transitive_map_function = direct_map_function;
403
404    // If the function makes any unknown call, assume the worst case that it can
405    // access all variables accessed by functions whose address escaped
406    for (Function &F : M.functions()) {
407      if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
408        if (!isKernelLDS(&F)) {
409          set_union(transitive_map_function[&F],
410                    VariablesReachableThroughFunctionPointer);
411        }
412      }
413    }
414
415    // Direct implementation of collecting all variables reachable from each
416    // function
417    for (Function &Func : M.functions()) {
418      if (Func.isDeclaration() || isKernelLDS(&Func))
419        continue;
420
421      DenseSet<Function *> seen; // catches cycles
422      SmallVector<Function *, 4> wip{&Func};
423
424      while (!wip.empty()) {
425        Function *F = wip.pop_back_val();
426
427        // Can accelerate this by referring to transitive map for functions that
428        // have already been computed, with more care than this
429        set_union(transitive_map_function[&Func], direct_map_function[F]);
430
431        for (const CallGraphNode::CallRecord &R : *CG[F]) {
432          Function *ith = R.second->getFunction();
433          if (ith) {
434            if (!seen.contains(ith)) {
435              seen.insert(ith);
436              wip.push_back(ith);
437            }
438          }
439        }
440      }
441    }
442
443    // direct_map_kernel lists which variables are used by the kernel
444    // find the variables which are used through a function call
445    FunctionVariableMap indirect_map_kernel;
446
447    for (Function &Func : M.functions()) {
448      if (Func.isDeclaration() || !isKernelLDS(&Func))
449        continue;
450
451      for (const CallGraphNode::CallRecord &R : *CG[&Func]) {
452        Function *ith = R.second->getFunction();
453        if (ith) {
454          set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
455        } else {
456          set_union(indirect_map_kernel[&Func],
457                    VariablesReachableThroughFunctionPointer);
458        }
459      }
460    }
461
462    return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
463  }
464
465  struct LDSVariableReplacement {
466    GlobalVariable *SGV = nullptr;
467    DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
468  };
469
470  // remap from lds global to a constantexpr gep to where it has been moved to
471  // for each kernel
472  // an array with an element for each kernel containing where the corresponding
473  // variable was remapped to
474
475  static Constant *getAddressesOfVariablesInKernel(
476      LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
477      const DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
478    // Create a ConstantArray containing the address of each Variable within the
479    // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
480    // does not allocate it
481    // TODO: Drop the ptrtoint conversion
482
483    Type *I32 = Type::getInt32Ty(Ctx);
484
485    ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
486
487    SmallVector<Constant *> Elements;
488    for (size_t i = 0; i < Variables.size(); i++) {
489      GlobalVariable *GV = Variables[i];
490      auto ConstantGepIt = LDSVarsToConstantGEP.find(GV);
491      if (ConstantGepIt != LDSVarsToConstantGEP.end()) {
492        auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32);
493        Elements.push_back(elt);
494      } else {
495        Elements.push_back(PoisonValue::get(I32));
496      }
497    }
498    return ConstantArray::get(KernelOffsetsType, Elements);
499  }
500
501  static GlobalVariable *buildLookupTable(
502      Module &M, ArrayRef<GlobalVariable *> Variables,
503      ArrayRef<Function *> kernels,
504      DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
505    if (Variables.empty()) {
506      return nullptr;
507    }
508    LLVMContext &Ctx = M.getContext();
509
510    const size_t NumberVariables = Variables.size();
511    const size_t NumberKernels = kernels.size();
512
513    ArrayType *KernelOffsetsType =
514        ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
515
516    ArrayType *AllKernelsOffsetsType =
517        ArrayType::get(KernelOffsetsType, NumberKernels);
518
519    Constant *Missing = PoisonValue::get(KernelOffsetsType);
520    std::vector<Constant *> overallConstantExprElts(NumberKernels);
521    for (size_t i = 0; i < NumberKernels; i++) {
522      auto Replacement = KernelToReplacement.find(kernels[i]);
523      overallConstantExprElts[i] =
524          (Replacement == KernelToReplacement.end())
525              ? Missing
526              : getAddressesOfVariablesInKernel(
527                    Ctx, Variables, Replacement->second.LDSVarsToConstantGEP);
528    }
529
530    Constant *init =
531        ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
532
533    return new GlobalVariable(
534        M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
535        "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
536        AMDGPUAS::CONSTANT_ADDRESS);
537  }
538
539  void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder,
540                                 GlobalVariable *LookupTable,
541                                 GlobalVariable *GV, Use &U,
542                                 Value *OptionalIndex) {
543    // Table is a constant array of the same length as OrderedKernels
544    LLVMContext &Ctx = M.getContext();
545    Type *I32 = Type::getInt32Ty(Ctx);
546    auto *I = cast<Instruction>(U.getUser());
547
548    Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction());
549
550    if (auto *Phi = dyn_cast<PHINode>(I)) {
551      BasicBlock *BB = Phi->getIncomingBlock(U);
552      Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
553    } else {
554      Builder.SetInsertPoint(I);
555    }
556
557    SmallVector<Value *, 3> GEPIdx = {
558        ConstantInt::get(I32, 0),
559        tableKernelIndex,
560    };
561    if (OptionalIndex)
562      GEPIdx.push_back(OptionalIndex);
563
564    Value *Address = Builder.CreateInBoundsGEP(
565        LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
566
567    Value *loaded = Builder.CreateLoad(I32, Address);
568
569    Value *replacement =
570        Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
571
572    U.set(replacement);
573  }
574
575  void replaceUsesInInstructionsWithTableLookup(
576      Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
577      GlobalVariable *LookupTable) {
578
579    LLVMContext &Ctx = M.getContext();
580    IRBuilder<> Builder(Ctx);
581    Type *I32 = Type::getInt32Ty(Ctx);
582
583    for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
584      auto *GV = ModuleScopeVariables[Index];
585
586      for (Use &U : make_early_inc_range(GV->uses())) {
587        auto *I = dyn_cast<Instruction>(U.getUser());
588        if (!I)
589          continue;
590
591        replaceUseWithTableLookup(M, Builder, LookupTable, GV, U,
592                                  ConstantInt::get(I32, Index));
593      }
594    }
595  }
596
597  static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
598      Module &M, LDSUsesInfoTy &LDSUsesInfo,
599      DenseSet<GlobalVariable *> const &VariableSet) {
600
601    DenseSet<Function *> KernelSet;
602
603    if (VariableSet.empty())
604      return KernelSet;
605
606    for (Function &Func : M.functions()) {
607      if (Func.isDeclaration() || !isKernelLDS(&Func))
608        continue;
609      for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
610        if (VariableSet.contains(GV)) {
611          KernelSet.insert(&Func);
612          break;
613        }
614      }
615    }
616
617    return KernelSet;
618  }
619
620  static GlobalVariable *
621  chooseBestVariableForModuleStrategy(const DataLayout &DL,
622                                      VariableFunctionMap &LDSVars) {
623    // Find the global variable with the most indirect uses from kernels
624
625    struct CandidateTy {
626      GlobalVariable *GV = nullptr;
627      size_t UserCount = 0;
628      size_t Size = 0;
629
630      CandidateTy() = default;
631
632      CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
633          : GV(GV), UserCount(UserCount), Size(AllocSize) {}
634
635      bool operator<(const CandidateTy &Other) const {
636        // Fewer users makes module scope variable less attractive
637        if (UserCount < Other.UserCount) {
638          return true;
639        }
640        if (UserCount > Other.UserCount) {
641          return false;
642        }
643
644        // Bigger makes module scope variable less attractive
645        if (Size < Other.Size) {
646          return false;
647        }
648
649        if (Size > Other.Size) {
650          return true;
651        }
652
653        // Arbitrary but consistent
654        return GV->getName() < Other.GV->getName();
655      }
656    };
657
658    CandidateTy MostUsed;
659
660    for (auto &K : LDSVars) {
661      GlobalVariable *GV = K.first;
662      if (K.second.size() <= 1) {
663        // A variable reachable by only one kernel is best lowered with kernel
664        // strategy
665        continue;
666      }
667      CandidateTy Candidate(
668          GV, K.second.size(),
669          DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
670      if (MostUsed < Candidate)
671        MostUsed = Candidate;
672    }
673
674    return MostUsed.GV;
675  }
676
677  static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
678                                       uint32_t Address) {
679    // Write the specified address into metadata where it can be retrieved by
680    // the assembler. Format is a half open range, [Address Address+1)
681    LLVMContext &Ctx = M->getContext();
682    auto *IntTy =
683        M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
684    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
685    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
686    GV->setMetadata(LLVMContext::MD_absolute_symbol,
687                    MDNode::get(Ctx, {MinC, MaxC}));
688  }
689
690  DenseMap<Function *, Value *> tableKernelIndexCache;
691  Value *getTableLookupKernelIndex(Module &M, Function *F) {
692    // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
693    // lowers to a read from a live in register. Emit it once in the entry
694    // block to spare deduplicating it later.
695    auto [It, Inserted] = tableKernelIndexCache.try_emplace(F);
696    if (Inserted) {
697      Function *Decl =
698          Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
699
700      auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
701      IRBuilder<> Builder(&*InsertAt);
702
703      It->second = Builder.CreateCall(Decl, {});
704    }
705
706    return It->second;
707  }
708
709  static std::vector<Function *> assignLDSKernelIDToEachKernel(
710      Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS,
711      DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS) {
712    // Associate kernels in the set with an arbirary but reproducible order and
713    // annotate them with that order in metadata. This metadata is recognised by
714    // the backend and lowered to a SGPR which can be read from using
715    // amdgcn_lds_kernel_id.
716
717    std::vector<Function *> OrderedKernels;
718    if (!KernelsThatAllocateTableLDS.empty() ||
719        !KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
720
721      for (Function &Func : M->functions()) {
722        if (Func.isDeclaration())
723          continue;
724        if (!isKernelLDS(&Func))
725          continue;
726
727        if (KernelsThatAllocateTableLDS.contains(&Func) ||
728            KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) {
729          assert(Func.hasName()); // else fatal error earlier
730          OrderedKernels.push_back(&Func);
731        }
732      }
733
734      // Put them in an arbitrary but reproducible order
735      OrderedKernels = sortByName(std::move(OrderedKernels));
736
737      // Annotate the kernels with their order in this vector
738      LLVMContext &Ctx = M->getContext();
739      IRBuilder<> Builder(Ctx);
740
741      if (OrderedKernels.size() > UINT32_MAX) {
742        // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
743        report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
744      }
745
746      for (size_t i = 0; i < OrderedKernels.size(); i++) {
747        Metadata *AttrMDArgs[1] = {
748            ConstantAsMetadata::get(Builder.getInt32(i)),
749        };
750        OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
751                                       MDNode::get(Ctx, AttrMDArgs));
752      }
753    }
754    return OrderedKernels;
755  }
756
757  static void partitionVariablesIntoIndirectStrategies(
758      Module &M, LDSUsesInfoTy const &LDSUsesInfo,
759      VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly,
760      DenseSet<GlobalVariable *> &ModuleScopeVariables,
761      DenseSet<GlobalVariable *> &TableLookupVariables,
762      DenseSet<GlobalVariable *> &KernelAccessVariables,
763      DenseSet<GlobalVariable *> &DynamicVariables) {
764
765    GlobalVariable *HybridModuleRoot =
766        LoweringKindLoc != LoweringKind::hybrid
767            ? nullptr
768            : chooseBestVariableForModuleStrategy(
769                  M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly);
770
771    DenseSet<Function *> const EmptySet;
772    DenseSet<Function *> const &HybridModuleRootKernels =
773        HybridModuleRoot
774            ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
775            : EmptySet;
776
777    for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
778      // Each iteration of this loop assigns exactly one global variable to
779      // exactly one of the implementation strategies.
780
781      GlobalVariable *GV = K.first;
782      assert(AMDGPU::isLDSVariableToLower(*GV));
783      assert(K.second.size() != 0);
784
785      if (AMDGPU::isDynamicLDS(*GV)) {
786        DynamicVariables.insert(GV);
787        continue;
788      }
789
790      switch (LoweringKindLoc) {
791      case LoweringKind::module:
792        ModuleScopeVariables.insert(GV);
793        break;
794
795      case LoweringKind::table:
796        TableLookupVariables.insert(GV);
797        break;
798
799      case LoweringKind::kernel:
800        if (K.second.size() == 1) {
801          KernelAccessVariables.insert(GV);
802        } else {
803          report_fatal_error(
804              "cannot lower LDS '" + GV->getName() +
805              "' to kernel access as it is reachable from multiple kernels");
806        }
807        break;
808
809      case LoweringKind::hybrid: {
810        if (GV == HybridModuleRoot) {
811          assert(K.second.size() != 1);
812          ModuleScopeVariables.insert(GV);
813        } else if (K.second.size() == 1) {
814          KernelAccessVariables.insert(GV);
815        } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
816          ModuleScopeVariables.insert(GV);
817        } else {
818          TableLookupVariables.insert(GV);
819        }
820        break;
821      }
822      }
823    }
824
825    // All LDS variables accessed indirectly have now been partitioned into
826    // the distinct lowering strategies.
827    assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
828               KernelAccessVariables.size() + DynamicVariables.size() ==
829           LDSToKernelsThatNeedToAccessItIndirectly.size());
830  }
831
832  static GlobalVariable *lowerModuleScopeStructVariables(
833      Module &M, DenseSet<GlobalVariable *> const &ModuleScopeVariables,
834      DenseSet<Function *> const &KernelsThatAllocateModuleLDS) {
835    // Create a struct to hold the ModuleScopeVariables
836    // Replace all uses of those variables from non-kernel functions with the
837    // new struct instance Replace only the uses from kernel functions that will
838    // allocate this instance. That is a space optimisation - kernels that use a
839    // subset of the module scope struct and do not need to allocate it for
840    // indirect calls will only allocate the subset they use (they do so as part
841    // of the per-kernel lowering).
842    if (ModuleScopeVariables.empty()) {
843      return nullptr;
844    }
845
846    LLVMContext &Ctx = M.getContext();
847
848    LDSVariableReplacement ModuleScopeReplacement =
849        createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
850                                     ModuleScopeVariables);
851
852    appendToCompilerUsed(M, {static_cast<GlobalValue *>(
853                                ConstantExpr::getPointerBitCastOrAddrSpaceCast(
854                                    cast<Constant>(ModuleScopeReplacement.SGV),
855                                    PointerType::getUnqual(Ctx)))});
856
857    // module.lds will be allocated at zero in any kernel that allocates it
858    recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
859
860    // historic
861    removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
862
863    // Replace all uses of module scope variable from non-kernel functions
864    replaceLDSVariablesWithStruct(
865        M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
866          Instruction *I = dyn_cast<Instruction>(U.getUser());
867          if (!I) {
868            return false;
869          }
870          Function *F = I->getFunction();
871          return !isKernelLDS(F);
872        });
873
874    // Replace uses of module scope variable from kernel functions that
875    // allocate the module scope variable, otherwise leave them unchanged
876    // Record on each kernel whether the module scope global is used by it
877
878    for (Function &Func : M.functions()) {
879      if (Func.isDeclaration() || !isKernelLDS(&Func))
880        continue;
881
882      if (KernelsThatAllocateModuleLDS.contains(&Func)) {
883        replaceLDSVariablesWithStruct(
884            M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
885              Instruction *I = dyn_cast<Instruction>(U.getUser());
886              if (!I) {
887                return false;
888              }
889              Function *F = I->getFunction();
890              return F == &Func;
891            });
892
893        markUsedByKernel(&Func, ModuleScopeReplacement.SGV);
894      }
895    }
896
897    return ModuleScopeReplacement.SGV;
898  }
899
900  static DenseMap<Function *, LDSVariableReplacement>
901  lowerKernelScopeStructVariables(
902      Module &M, LDSUsesInfoTy &LDSUsesInfo,
903      DenseSet<GlobalVariable *> const &ModuleScopeVariables,
904      DenseSet<Function *> const &KernelsThatAllocateModuleLDS,
905      GlobalVariable *MaybeModuleScopeStruct) {
906
907    // Create a struct for each kernel for the non-module-scope variables.
908
909    DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
910    for (Function &Func : M.functions()) {
911      if (Func.isDeclaration() || !isKernelLDS(&Func))
912        continue;
913
914      DenseSet<GlobalVariable *> KernelUsedVariables;
915      // Allocating variables that are used directly in this struct to get
916      // alignment aware allocation and predictable frame size.
917      for (auto &v : LDSUsesInfo.direct_access[&Func]) {
918        if (!AMDGPU::isDynamicLDS(*v)) {
919          KernelUsedVariables.insert(v);
920        }
921      }
922
923      // Allocating variables that are accessed indirectly so that a lookup of
924      // this struct instance can find them from nested functions.
925      for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
926        if (!AMDGPU::isDynamicLDS(*v)) {
927          KernelUsedVariables.insert(v);
928        }
929      }
930
931      // Variables allocated in module lds must all resolve to that struct,
932      // not to the per-kernel instance.
933      if (KernelsThatAllocateModuleLDS.contains(&Func)) {
934        for (GlobalVariable *v : ModuleScopeVariables) {
935          KernelUsedVariables.erase(v);
936        }
937      }
938
939      if (KernelUsedVariables.empty()) {
940        // Either used no LDS, or the LDS it used was all in the module struct
941        // or dynamically sized
942        continue;
943      }
944
945      // The association between kernel function and LDS struct is done by
946      // symbol name, which only works if the function in question has a
947      // name This is not expected to be a problem in practice as kernels
948      // are called by name making anonymous ones (which are named by the
949      // backend) difficult to use. This does mean that llvm test cases need
950      // to name the kernels.
951      if (!Func.hasName()) {
952        report_fatal_error("Anonymous kernels cannot use LDS variables");
953      }
954
955      std::string VarName =
956          (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
957
958      auto Replacement =
959          createLDSVariableReplacement(M, VarName, KernelUsedVariables);
960
961      // If any indirect uses, create a direct use to ensure allocation
962      // TODO: Simpler to unconditionally mark used but that regresses
963      // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll
964      auto Accesses = LDSUsesInfo.indirect_access.find(&Func);
965      if ((Accesses != LDSUsesInfo.indirect_access.end()) &&
966          !Accesses->second.empty())
967        markUsedByKernel(&Func, Replacement.SGV);
968
969      // remove preserves existing codegen
970      removeLocalVarsFromUsedLists(M, KernelUsedVariables);
971      KernelToReplacement[&Func] = Replacement;
972
973      // Rewrite uses within kernel to the new struct
974      replaceLDSVariablesWithStruct(
975          M, KernelUsedVariables, Replacement, [&Func](Use &U) {
976            Instruction *I = dyn_cast<Instruction>(U.getUser());
977            return I && I->getFunction() == &Func;
978          });
979    }
980    return KernelToReplacement;
981  }
982
983  static GlobalVariable *
984  buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo,
985                                        Function *func) {
986    // Create a dynamic lds variable with a name associated with the passed
987    // function that has the maximum alignment of any dynamic lds variable
988    // reachable from this kernel. Dynamic LDS is allocated after the static LDS
989    // allocation, possibly after alignment padding. The representative variable
990    // created here has the maximum alignment of any other dynamic variable
991    // reachable by that kernel. All dynamic LDS variables are allocated at the
992    // same address in each kernel in order to provide the documented aliasing
993    // semantics. Setting the alignment here allows this IR pass to accurately
994    // predict the exact constant at which it will be allocated.
995
996    assert(isKernelLDS(func));
997
998    LLVMContext &Ctx = M.getContext();
999    const DataLayout &DL = M.getDataLayout();
1000    Align MaxDynamicAlignment(1);
1001
1002    auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) {
1003      if (AMDGPU::isDynamicLDS(*GV)) {
1004        MaxDynamicAlignment =
1005            std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV));
1006      }
1007    };
1008
1009    for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) {
1010      UpdateMaxAlignment(GV);
1011    }
1012
1013    for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) {
1014      UpdateMaxAlignment(GV);
1015    }
1016
1017    assert(func->hasName()); // Checked by caller
1018    auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
1019    GlobalVariable *N = new GlobalVariable(
1020        M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr,
1021        Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1022        false);
1023    N->setAlignment(MaxDynamicAlignment);
1024
1025    assert(AMDGPU::isDynamicLDS(*N));
1026    return N;
1027  }
1028
1029  /// Strip "amdgpu-no-lds-kernel-id" from any functions where we may have
1030  /// introduced its use. If AMDGPUAttributor ran prior to the pass, we inferred
1031  /// the lack of llvm.amdgcn.lds.kernel.id calls.
1032  void removeNoLdsKernelIdFromReachable(CallGraph &CG, Function *KernelRoot) {
1033    KernelRoot->removeFnAttr("amdgpu-no-lds-kernel-id");
1034
1035    SmallVector<Function *> Tmp({CG[KernelRoot]->getFunction()});
1036    if (!Tmp.back())
1037      return;
1038
1039    SmallPtrSet<Function *, 8> Visited;
1040    bool SeenUnknownCall = false;
1041
1042    do {
1043      Function *F = Tmp.pop_back_val();
1044
1045      for (auto &N : *CG[F]) {
1046        if (!N.second)
1047          continue;
1048
1049        Function *Callee = N.second->getFunction();
1050        if (!Callee) {
1051          if (!SeenUnknownCall) {
1052            SeenUnknownCall = true;
1053
1054            // If we see any indirect calls, assume nothing about potential
1055            // targets.
1056            // TODO: This could be refined to possible LDS global users.
1057            for (auto &N : *CG.getExternalCallingNode()) {
1058              Function *PotentialCallee = N.second->getFunction();
1059              if (!isKernelLDS(PotentialCallee))
1060                PotentialCallee->removeFnAttr("amdgpu-no-lds-kernel-id");
1061            }
1062
1063            continue;
1064          }
1065        }
1066
1067        Callee->removeFnAttr("amdgpu-no-lds-kernel-id");
1068        if (Visited.insert(Callee).second)
1069          Tmp.push_back(Callee);
1070      }
1071    } while (!Tmp.empty());
1072  }
1073
1074  DenseMap<Function *, GlobalVariable *> lowerDynamicLDSVariables(
1075      Module &M, LDSUsesInfoTy &LDSUsesInfo,
1076      DenseSet<Function *> const &KernelsThatIndirectlyAllocateDynamicLDS,
1077      DenseSet<GlobalVariable *> const &DynamicVariables,
1078      std::vector<Function *> const &OrderedKernels) {
1079    DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS;
1080    if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) {
1081      LLVMContext &Ctx = M.getContext();
1082      IRBuilder<> Builder(Ctx);
1083      Type *I32 = Type::getInt32Ty(Ctx);
1084
1085      std::vector<Constant *> newDynamicLDS;
1086
1087      // Table is built in the same order as OrderedKernels
1088      for (auto &func : OrderedKernels) {
1089
1090        if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) {
1091          assert(isKernelLDS(func));
1092          if (!func->hasName()) {
1093            report_fatal_error("Anonymous kernels cannot use LDS variables");
1094          }
1095
1096          GlobalVariable *N =
1097              buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func);
1098
1099          KernelToCreatedDynamicLDS[func] = N;
1100
1101          markUsedByKernel(func, N);
1102
1103          auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0);
1104          auto GEP = ConstantExpr::getGetElementPtr(
1105              emptyCharArray, N, ConstantInt::get(I32, 0), true);
1106          newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32));
1107        } else {
1108          newDynamicLDS.push_back(PoisonValue::get(I32));
1109        }
1110      }
1111      assert(OrderedKernels.size() == newDynamicLDS.size());
1112
1113      ArrayType *t = ArrayType::get(I32, newDynamicLDS.size());
1114      Constant *init = ConstantArray::get(t, newDynamicLDS);
1115      GlobalVariable *table = new GlobalVariable(
1116          M, t, true, GlobalValue::InternalLinkage, init,
1117          "llvm.amdgcn.dynlds.offset.table", nullptr,
1118          GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS);
1119
1120      for (GlobalVariable *GV : DynamicVariables) {
1121        for (Use &U : make_early_inc_range(GV->uses())) {
1122          auto *I = dyn_cast<Instruction>(U.getUser());
1123          if (!I)
1124            continue;
1125          if (isKernelLDS(I->getFunction()))
1126            continue;
1127
1128          replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr);
1129        }
1130      }
1131    }
1132    return KernelToCreatedDynamicLDS;
1133  }
1134
1135  bool runOnModule(Module &M) {
1136    CallGraph CG = CallGraph(M);
1137    bool Changed = superAlignLDSGlobals(M);
1138
1139    Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
1140
1141    Changed = true; // todo: narrow this down
1142
1143    // For each kernel, what variables does it access directly or through
1144    // callees
1145    LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
1146
1147    // For each variable accessed through callees, which kernels access it
1148    VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
1149    for (auto &K : LDSUsesInfo.indirect_access) {
1150      Function *F = K.first;
1151      assert(isKernelLDS(F));
1152      for (GlobalVariable *GV : K.second) {
1153        LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
1154      }
1155    }
1156
1157    // Partition variables accessed indirectly into the different strategies
1158    DenseSet<GlobalVariable *> ModuleScopeVariables;
1159    DenseSet<GlobalVariable *> TableLookupVariables;
1160    DenseSet<GlobalVariable *> KernelAccessVariables;
1161    DenseSet<GlobalVariable *> DynamicVariables;
1162    partitionVariablesIntoIndirectStrategies(
1163        M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly,
1164        ModuleScopeVariables, TableLookupVariables, KernelAccessVariables,
1165        DynamicVariables);
1166
1167    // If the kernel accesses a variable that is going to be stored in the
1168    // module instance through a call then that kernel needs to allocate the
1169    // module instance
1170    const DenseSet<Function *> KernelsThatAllocateModuleLDS =
1171        kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
1172                                                        ModuleScopeVariables);
1173    const DenseSet<Function *> KernelsThatAllocateTableLDS =
1174        kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
1175                                                        TableLookupVariables);
1176
1177    const DenseSet<Function *> KernelsThatIndirectlyAllocateDynamicLDS =
1178        kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
1179                                                        DynamicVariables);
1180
1181    GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables(
1182        M, ModuleScopeVariables, KernelsThatAllocateModuleLDS);
1183
1184    DenseMap<Function *, LDSVariableReplacement> KernelToReplacement =
1185        lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables,
1186                                        KernelsThatAllocateModuleLDS,
1187                                        MaybeModuleScopeStruct);
1188
1189    // Lower zero cost accesses to the kernel instances just created
1190    for (auto &GV : KernelAccessVariables) {
1191      auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
1192      assert(funcs.size() == 1); // Only one kernel can access it
1193      LDSVariableReplacement Replacement =
1194          KernelToReplacement[*(funcs.begin())];
1195
1196      DenseSet<GlobalVariable *> Vec;
1197      Vec.insert(GV);
1198
1199      replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
1200        return isa<Instruction>(U.getUser());
1201      });
1202    }
1203
1204    // The ith element of this vector is kernel id i
1205    std::vector<Function *> OrderedKernels =
1206        assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS,
1207                                      KernelsThatIndirectlyAllocateDynamicLDS);
1208
1209    if (!KernelsThatAllocateTableLDS.empty()) {
1210      LLVMContext &Ctx = M.getContext();
1211      IRBuilder<> Builder(Ctx);
1212
1213      // The order must be consistent between lookup table and accesses to
1214      // lookup table
1215      auto TableLookupVariablesOrdered =
1216          sortByName(std::vector<GlobalVariable *>(TableLookupVariables.begin(),
1217                                                   TableLookupVariables.end()));
1218
1219      GlobalVariable *LookupTable = buildLookupTable(
1220          M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
1221      replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
1222                                               LookupTable);
1223
1224      // Strip amdgpu-no-lds-kernel-id from all functions reachable from the
1225      // kernel. We may have inferred this wasn't used prior to the pass.
1226      //
1227      // TODO: We could filter out subgraphs that do not access LDS globals.
1228      for (Function *F : KernelsThatAllocateTableLDS)
1229        removeNoLdsKernelIdFromReachable(CG, F);
1230    }
1231
1232    DenseMap<Function *, GlobalVariable *> KernelToCreatedDynamicLDS =
1233        lowerDynamicLDSVariables(M, LDSUsesInfo,
1234                                 KernelsThatIndirectlyAllocateDynamicLDS,
1235                                 DynamicVariables, OrderedKernels);
1236
1237    // All kernel frames have been allocated. Calculate and record the
1238    // addresses.
1239    {
1240      const DataLayout &DL = M.getDataLayout();
1241
1242      for (Function &Func : M.functions()) {
1243        if (Func.isDeclaration() || !isKernelLDS(&Func))
1244          continue;
1245
1246        // All three of these are optional. The first variable is allocated at
1247        // zero. They are allocated by AMDGPUMachineFunction as one block.
1248        // Layout:
1249        //{
1250        //  module.lds
1251        //  alignment padding
1252        //  kernel instance
1253        //  alignment padding
1254        //  dynamic lds variables
1255        //}
1256
1257        const bool AllocateModuleScopeStruct =
1258            MaybeModuleScopeStruct &&
1259            KernelsThatAllocateModuleLDS.contains(&Func);
1260
1261        auto Replacement = KernelToReplacement.find(&Func);
1262        const bool AllocateKernelScopeStruct =
1263            Replacement != KernelToReplacement.end();
1264
1265        const bool AllocateDynamicVariable =
1266            KernelToCreatedDynamicLDS.contains(&Func);
1267
1268        uint32_t Offset = 0;
1269
1270        if (AllocateModuleScopeStruct) {
1271          // Allocated at zero, recorded once on construction, not once per
1272          // kernel
1273          Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
1274        }
1275
1276        if (AllocateKernelScopeStruct) {
1277          GlobalVariable *KernelStruct = Replacement->second.SGV;
1278          Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct));
1279          recordLDSAbsoluteAddress(&M, KernelStruct, Offset);
1280          Offset += DL.getTypeAllocSize(KernelStruct->getValueType());
1281        }
1282
1283        // If there is dynamic allocation, the alignment needed is included in
1284        // the static frame size. There may be no reference to the dynamic
1285        // variable in the kernel itself, so without including it here, that
1286        // alignment padding could be missed.
1287        if (AllocateDynamicVariable) {
1288          GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func];
1289          Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable));
1290          recordLDSAbsoluteAddress(&M, DynamicVariable, Offset);
1291        }
1292
1293        if (Offset != 0) {
1294          (void)TM; // TODO: Account for target maximum LDS
1295          std::string Buffer;
1296          raw_string_ostream SS{Buffer};
1297          SS << format("%u", Offset);
1298
1299          // Instead of explictly marking kernels that access dynamic variables
1300          // using special case metadata, annotate with min-lds == max-lds, i.e.
1301          // that there is no more space available for allocating more static
1302          // LDS variables. That is the right condition to prevent allocating
1303          // more variables which would collide with the addresses assigned to
1304          // dynamic variables.
1305          if (AllocateDynamicVariable)
1306            SS << format(",%u", Offset);
1307
1308          Func.addFnAttr("amdgpu-lds-size", Buffer);
1309        }
1310      }
1311    }
1312
1313    for (auto &GV : make_early_inc_range(M.globals()))
1314      if (AMDGPU::isLDSVariableToLower(GV)) {
1315        // probably want to remove from used lists
1316        GV.removeDeadConstantUsers();
1317        if (GV.use_empty())
1318          GV.eraseFromParent();
1319      }
1320
1321    return Changed;
1322  }
1323
1324private:
1325  // Increase the alignment of LDS globals if necessary to maximise the chance
1326  // that we can use aligned LDS instructions to access them.
1327  static bool superAlignLDSGlobals(Module &M) {
1328    const DataLayout &DL = M.getDataLayout();
1329    bool Changed = false;
1330    if (!SuperAlignLDSGlobals) {
1331      return Changed;
1332    }
1333
1334    for (auto &GV : M.globals()) {
1335      if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
1336        // Only changing alignment of LDS variables
1337        continue;
1338      }
1339      if (!GV.hasInitializer()) {
1340        // cuda/hip extern __shared__ variable, leave alignment alone
1341        continue;
1342      }
1343
1344      Align Alignment = AMDGPU::getAlign(DL, &GV);
1345      TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1346
1347      if (GVSize > 8) {
1348        // We might want to use a b96 or b128 load/store
1349        Alignment = std::max(Alignment, Align(16));
1350      } else if (GVSize > 4) {
1351        // We might want to use a b64 load/store
1352        Alignment = std::max(Alignment, Align(8));
1353      } else if (GVSize > 2) {
1354        // We might want to use a b32 load/store
1355        Alignment = std::max(Alignment, Align(4));
1356      } else if (GVSize > 1) {
1357        // We might want to use a b16 load/store
1358        Alignment = std::max(Alignment, Align(2));
1359      }
1360
1361      if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1362        Changed = true;
1363        GV.setAlignment(Alignment);
1364      }
1365    }
1366    return Changed;
1367  }
1368
1369  static LDSVariableReplacement createLDSVariableReplacement(
1370      Module &M, std::string VarName,
1371      DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1372    // Create a struct instance containing LDSVarsToTransform and map from those
1373    // variables to ConstantExprGEP
1374    // Variables may be introduced to meet alignment requirements. No aliasing
1375    // metadata is useful for these as they have no uses. Erased before return.
1376
1377    LLVMContext &Ctx = M.getContext();
1378    const DataLayout &DL = M.getDataLayout();
1379    assert(!LDSVarsToTransform.empty());
1380
1381    SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1382    LayoutFields.reserve(LDSVarsToTransform.size());
1383    {
1384      // The order of fields in this struct depends on the order of
1385      // varables in the argument which varies when changing how they
1386      // are identified, leading to spurious test breakage.
1387      auto Sorted = sortByName(std::vector<GlobalVariable *>(
1388          LDSVarsToTransform.begin(), LDSVarsToTransform.end()));
1389
1390      for (GlobalVariable *GV : Sorted) {
1391        OptimizedStructLayoutField F(GV,
1392                                     DL.getTypeAllocSize(GV->getValueType()),
1393                                     AMDGPU::getAlign(DL, GV));
1394        LayoutFields.emplace_back(F);
1395      }
1396    }
1397
1398    performOptimizedStructLayout(LayoutFields);
1399
1400    std::vector<GlobalVariable *> LocalVars;
1401    BitVector IsPaddingField;
1402    LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1403    IsPaddingField.reserve(LDSVarsToTransform.size());
1404    {
1405      uint64_t CurrentOffset = 0;
1406      for (size_t I = 0; I < LayoutFields.size(); I++) {
1407        GlobalVariable *FGV = static_cast<GlobalVariable *>(
1408            const_cast<void *>(LayoutFields[I].Id));
1409        Align DataAlign = LayoutFields[I].Alignment;
1410
1411        uint64_t DataAlignV = DataAlign.value();
1412        if (uint64_t Rem = CurrentOffset % DataAlignV) {
1413          uint64_t Padding = DataAlignV - Rem;
1414
1415          // Append an array of padding bytes to meet alignment requested
1416          // Note (o +      (a - (o % a)) ) % a == 0
1417          //      (offset + Padding       ) % align == 0
1418
1419          Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1420          LocalVars.push_back(new GlobalVariable(
1421              M, ATy, false, GlobalValue::InternalLinkage,
1422              PoisonValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal,
1423              AMDGPUAS::LOCAL_ADDRESS, false));
1424          IsPaddingField.push_back(true);
1425          CurrentOffset += Padding;
1426        }
1427
1428        LocalVars.push_back(FGV);
1429        IsPaddingField.push_back(false);
1430        CurrentOffset += LayoutFields[I].Size;
1431      }
1432    }
1433
1434    std::vector<Type *> LocalVarTypes;
1435    LocalVarTypes.reserve(LocalVars.size());
1436    std::transform(
1437        LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1438        [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1439
1440    StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1441
1442    Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1443
1444    GlobalVariable *SGV = new GlobalVariable(
1445        M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy),
1446        VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1447        false);
1448    SGV->setAlignment(StructAlign);
1449
1450    DenseMap<GlobalVariable *, Constant *> Map;
1451    Type *I32 = Type::getInt32Ty(Ctx);
1452    for (size_t I = 0; I < LocalVars.size(); I++) {
1453      GlobalVariable *GV = LocalVars[I];
1454      Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1455      Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1456      if (IsPaddingField[I]) {
1457        assert(GV->use_empty());
1458        GV->eraseFromParent();
1459      } else {
1460        Map[GV] = GEP;
1461      }
1462    }
1463    assert(Map.size() == LDSVarsToTransform.size());
1464    return {SGV, std::move(Map)};
1465  }
1466
1467  template <typename PredicateTy>
1468  static void replaceLDSVariablesWithStruct(
1469      Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1470      const LDSVariableReplacement &Replacement, PredicateTy Predicate) {
1471    LLVMContext &Ctx = M.getContext();
1472    const DataLayout &DL = M.getDataLayout();
1473
1474    // A hack... we need to insert the aliasing info in a predictable order for
1475    // lit tests. Would like to have them in a stable order already, ideally the
1476    // same order they get allocated, which might mean an ordered set container
1477    auto LDSVarsToTransform = sortByName(std::vector<GlobalVariable *>(
1478        LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()));
1479
1480    // Create alias.scope and their lists. Each field in the new structure
1481    // does not alias with all other fields.
1482    SmallVector<MDNode *> AliasScopes;
1483    SmallVector<Metadata *> NoAliasList;
1484    const size_t NumberVars = LDSVarsToTransform.size();
1485    if (NumberVars > 1) {
1486      MDBuilder MDB(Ctx);
1487      AliasScopes.reserve(NumberVars);
1488      MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1489      for (size_t I = 0; I < NumberVars; I++) {
1490        MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1491        AliasScopes.push_back(Scope);
1492      }
1493      NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1494    }
1495
1496    // Replace uses of ith variable with a constantexpr to the corresponding
1497    // field of the instance that will be allocated by AMDGPUMachineFunction
1498    for (size_t I = 0; I < NumberVars; I++) {
1499      GlobalVariable *GV = LDSVarsToTransform[I];
1500      Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV);
1501
1502      GV->replaceUsesWithIf(GEP, Predicate);
1503
1504      APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1505      GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1506      uint64_t Offset = APOff.getZExtValue();
1507
1508      Align A =
1509          commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1510
1511      if (I)
1512        NoAliasList[I - 1] = AliasScopes[I - 1];
1513      MDNode *NoAlias =
1514          NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1515      MDNode *AliasScope =
1516          AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1517
1518      refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1519    }
1520  }
1521
1522  static void refineUsesAlignmentAndAA(Value *Ptr, Align A,
1523                                       const DataLayout &DL, MDNode *AliasScope,
1524                                       MDNode *NoAlias, unsigned MaxDepth = 5) {
1525    if (!MaxDepth || (A == 1 && !AliasScope))
1526      return;
1527
1528    for (User *U : Ptr->users()) {
1529      if (auto *I = dyn_cast<Instruction>(U)) {
1530        if (AliasScope && I->mayReadOrWriteMemory()) {
1531          MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1532          AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1533                   : AliasScope);
1534          I->setMetadata(LLVMContext::MD_alias_scope, AS);
1535
1536          MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1537          NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1538          I->setMetadata(LLVMContext::MD_noalias, NA);
1539        }
1540      }
1541
1542      if (auto *LI = dyn_cast<LoadInst>(U)) {
1543        LI->setAlignment(std::max(A, LI->getAlign()));
1544        continue;
1545      }
1546      if (auto *SI = dyn_cast<StoreInst>(U)) {
1547        if (SI->getPointerOperand() == Ptr)
1548          SI->setAlignment(std::max(A, SI->getAlign()));
1549        continue;
1550      }
1551      if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1552        // None of atomicrmw operations can work on pointers, but let's
1553        // check it anyway in case it will or we will process ConstantExpr.
1554        if (AI->getPointerOperand() == Ptr)
1555          AI->setAlignment(std::max(A, AI->getAlign()));
1556        continue;
1557      }
1558      if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1559        if (AI->getPointerOperand() == Ptr)
1560          AI->setAlignment(std::max(A, AI->getAlign()));
1561        continue;
1562      }
1563      if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1564        unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1565        APInt Off(BitWidth, 0);
1566        if (GEP->getPointerOperand() == Ptr) {
1567          Align GA;
1568          if (GEP->accumulateConstantOffset(DL, Off))
1569            GA = commonAlignment(A, Off.getLimitedValue());
1570          refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1571                                   MaxDepth - 1);
1572        }
1573        continue;
1574      }
1575      if (auto *I = dyn_cast<Instruction>(U)) {
1576        if (I->getOpcode() == Instruction::BitCast ||
1577            I->getOpcode() == Instruction::AddrSpaceCast)
1578          refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1579      }
1580    }
1581  }
1582};
1583
1584class AMDGPULowerModuleLDSLegacy : public ModulePass {
1585public:
1586  const AMDGPUTargetMachine *TM;
1587  static char ID;
1588
1589  AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM_ = nullptr)
1590      : ModulePass(ID), TM(TM_) {
1591    initializeAMDGPULowerModuleLDSLegacyPass(*PassRegistry::getPassRegistry());
1592  }
1593
1594  void getAnalysisUsage(AnalysisUsage &AU) const override {
1595    if (!TM)
1596      AU.addRequired<TargetPassConfig>();
1597  }
1598
1599  bool runOnModule(Module &M) override {
1600    if (!TM) {
1601      auto &TPC = getAnalysis<TargetPassConfig>();
1602      TM = &TPC.getTM<AMDGPUTargetMachine>();
1603    }
1604
1605    return AMDGPULowerModuleLDS(*TM).runOnModule(M);
1606  }
1607};
1608
1609} // namespace
1610char AMDGPULowerModuleLDSLegacy::ID = 0;
1611
1612char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID;
1613
1614INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1615                      "Lower uses of LDS variables from non-kernel functions",
1616                      false, false)
1617INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1618INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE,
1619                    "Lower uses of LDS variables from non-kernel functions",
1620                    false, false)
1621
1622ModulePass *
1623llvm::createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM) {
1624  return new AMDGPULowerModuleLDSLegacy(TM);
1625}
1626
1627PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1628                                                ModuleAnalysisManager &) {
1629  return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none()
1630                                                 : PreservedAnalyses::all();
1631}
1632