1//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an instruction selector for the AArch64 target.
10//
11//===----------------------------------------------------------------------===//
12
13#include "AArch64MachineFunctionInfo.h"
14#include "AArch64TargetMachine.h"
15#include "MCTargetDesc/AArch64AddressingModes.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/CodeGen/ISDOpcodes.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/IR/Function.h" // To access function attributes.
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/IR/Intrinsics.h"
22#include "llvm/IR/IntrinsicsAArch64.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/KnownBits.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace llvm;
30
31#define DEBUG_TYPE "aarch64-isel"
32#define PASS_NAME "AArch64 Instruction Selection"
33
34//===--------------------------------------------------------------------===//
35/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
36/// instructions for SelectionDAG operations.
37///
38namespace {
39
40class AArch64DAGToDAGISel : public SelectionDAGISel {
41
42  /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
43  /// make the right decision when generating code for different targets.
44  const AArch64Subtarget *Subtarget;
45
46public:
47  static char ID;
48
49  AArch64DAGToDAGISel() = delete;
50
51  explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
52                               CodeGenOptLevel OptLevel)
53      : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr) {}
54
55  bool runOnMachineFunction(MachineFunction &MF) override {
56    Subtarget = &MF.getSubtarget<AArch64Subtarget>();
57    return SelectionDAGISel::runOnMachineFunction(MF);
58  }
59
60  void Select(SDNode *Node) override;
61
62  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63  /// inline asm expressions.
64  bool SelectInlineAsmMemoryOperand(const SDValue &Op,
65                                    InlineAsm::ConstraintCode ConstraintID,
66                                    std::vector<SDValue> &OutOps) override;
67
68  template <signed Low, signed High, signed Scale>
69  bool SelectRDVLImm(SDValue N, SDValue &Imm);
70
71  bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
72  bool SelectArithUXTXRegister(SDValue N, SDValue &Reg, SDValue &Shift);
73  bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
74  bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
75  bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
76    return SelectShiftedRegister(N, false, Reg, Shift);
77  }
78  bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
79    return SelectShiftedRegister(N, true, Reg, Shift);
80  }
81  bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
82    return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
83  }
84  bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
85    return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
86  }
87  bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
88    return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
89  }
90  bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
91    return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
92  }
93  bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
94    return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
95  }
96  bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) {
97    return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm);
98  }
99  bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) {
100    return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm);
101  }
102  bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
103    return SelectAddrModeIndexed(N, 1, Base, OffImm);
104  }
105  bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
106    return SelectAddrModeIndexed(N, 2, Base, OffImm);
107  }
108  bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
109    return SelectAddrModeIndexed(N, 4, Base, OffImm);
110  }
111  bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
112    return SelectAddrModeIndexed(N, 8, Base, OffImm);
113  }
114  bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
115    return SelectAddrModeIndexed(N, 16, Base, OffImm);
116  }
117  bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
118    return SelectAddrModeUnscaled(N, 1, Base, OffImm);
119  }
120  bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
121    return SelectAddrModeUnscaled(N, 2, Base, OffImm);
122  }
123  bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
124    return SelectAddrModeUnscaled(N, 4, Base, OffImm);
125  }
126  bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
127    return SelectAddrModeUnscaled(N, 8, Base, OffImm);
128  }
129  bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
130    return SelectAddrModeUnscaled(N, 16, Base, OffImm);
131  }
132  template <unsigned Size, unsigned Max>
133  bool SelectAddrModeIndexedUImm(SDValue N, SDValue &Base, SDValue &OffImm) {
134    // Test if there is an appropriate addressing mode and check if the
135    // immediate fits.
136    bool Found = SelectAddrModeIndexed(N, Size, Base, OffImm);
137    if (Found) {
138      if (auto *CI = dyn_cast<ConstantSDNode>(OffImm)) {
139        int64_t C = CI->getSExtValue();
140        if (C <= Max)
141          return true;
142      }
143    }
144
145    // Otherwise, base only, materialize address in register.
146    Base = N;
147    OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
148    return true;
149  }
150
151  template<int Width>
152  bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
153                         SDValue &SignExtend, SDValue &DoShift) {
154    return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
155  }
156
157  template<int Width>
158  bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
159                         SDValue &SignExtend, SDValue &DoShift) {
160    return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
161  }
162
163  bool SelectExtractHigh(SDValue N, SDValue &Res) {
164    if (Subtarget->isLittleEndian() && N->getOpcode() == ISD::BITCAST)
165      N = N->getOperand(0);
166    if (N->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
167        !isa<ConstantSDNode>(N->getOperand(1)))
168      return false;
169    EVT VT = N->getValueType(0);
170    EVT LVT = N->getOperand(0).getValueType();
171    unsigned Index = N->getConstantOperandVal(1);
172    if (!VT.is64BitVector() || !LVT.is128BitVector() ||
173        Index != VT.getVectorNumElements())
174      return false;
175    Res = N->getOperand(0);
176    return true;
177  }
178
179  bool SelectRoundingVLShr(SDValue N, SDValue &Res1, SDValue &Res2) {
180    if (N.getOpcode() != AArch64ISD::VLSHR)
181      return false;
182    SDValue Op = N->getOperand(0);
183    EVT VT = Op.getValueType();
184    unsigned ShtAmt = N->getConstantOperandVal(1);
185    if (ShtAmt > VT.getScalarSizeInBits() / 2 || Op.getOpcode() != ISD::ADD)
186      return false;
187
188    APInt Imm;
189    if (Op.getOperand(1).getOpcode() == AArch64ISD::MOVIshift)
190      Imm = APInt(VT.getScalarSizeInBits(),
191                  Op.getOperand(1).getConstantOperandVal(0)
192                      << Op.getOperand(1).getConstantOperandVal(1));
193    else if (Op.getOperand(1).getOpcode() == AArch64ISD::DUP &&
194             isa<ConstantSDNode>(Op.getOperand(1).getOperand(0)))
195      Imm = APInt(VT.getScalarSizeInBits(),
196                  Op.getOperand(1).getConstantOperandVal(0));
197    else
198      return false;
199
200    if (Imm != 1ULL << (ShtAmt - 1))
201      return false;
202
203    Res1 = Op.getOperand(0);
204    Res2 = CurDAG->getTargetConstant(ShtAmt, SDLoc(N), MVT::i32);
205    return true;
206  }
207
208  bool SelectDupZeroOrUndef(SDValue N) {
209    switch(N->getOpcode()) {
210    case ISD::UNDEF:
211      return true;
212    case AArch64ISD::DUP:
213    case ISD::SPLAT_VECTOR: {
214      auto Opnd0 = N->getOperand(0);
215      if (isNullConstant(Opnd0))
216        return true;
217      if (isNullFPConstant(Opnd0))
218        return true;
219      break;
220    }
221    default:
222      break;
223    }
224
225    return false;
226  }
227
228  bool SelectDupZero(SDValue N) {
229    switch(N->getOpcode()) {
230    case AArch64ISD::DUP:
231    case ISD::SPLAT_VECTOR: {
232      auto Opnd0 = N->getOperand(0);
233      if (isNullConstant(Opnd0))
234        return true;
235      if (isNullFPConstant(Opnd0))
236        return true;
237      break;
238    }
239    }
240
241    return false;
242  }
243
244  bool SelectDupNegativeZero(SDValue N) {
245    switch(N->getOpcode()) {
246    case AArch64ISD::DUP:
247    case ISD::SPLAT_VECTOR: {
248      ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
249      return Const && Const->isZero() && Const->isNegative();
250    }
251    }
252
253    return false;
254  }
255
256  template<MVT::SimpleValueType VT>
257  bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) {
258    return SelectSVEAddSubImm(N, VT, Imm, Shift);
259  }
260
261  template <MVT::SimpleValueType VT>
262  bool SelectSVECpyDupImm(SDValue N, SDValue &Imm, SDValue &Shift) {
263    return SelectSVECpyDupImm(N, VT, Imm, Shift);
264  }
265
266  template <MVT::SimpleValueType VT, bool Invert = false>
267  bool SelectSVELogicalImm(SDValue N, SDValue &Imm) {
268    return SelectSVELogicalImm(N, VT, Imm, Invert);
269  }
270
271  template <MVT::SimpleValueType VT>
272  bool SelectSVEArithImm(SDValue N, SDValue &Imm) {
273    return SelectSVEArithImm(N, VT, Imm);
274  }
275
276  template <unsigned Low, unsigned High, bool AllowSaturation = false>
277  bool SelectSVEShiftImm(SDValue N, SDValue &Imm) {
278    return SelectSVEShiftImm(N, Low, High, AllowSaturation, Imm);
279  }
280
281  bool SelectSVEShiftSplatImmR(SDValue N, SDValue &Imm) {
282    if (N->getOpcode() != ISD::SPLAT_VECTOR)
283      return false;
284
285    EVT EltVT = N->getValueType(0).getVectorElementType();
286    return SelectSVEShiftImm(N->getOperand(0), /* Low */ 1,
287                             /* High */ EltVT.getFixedSizeInBits(),
288                             /* AllowSaturation */ true, Imm);
289  }
290
291  // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
292  template<signed Min, signed Max, signed Scale, bool Shift>
293  bool SelectCntImm(SDValue N, SDValue &Imm) {
294    if (!isa<ConstantSDNode>(N))
295      return false;
296
297    int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
298    if (Shift)
299      MulImm = 1LL << MulImm;
300
301    if ((MulImm % std::abs(Scale)) != 0)
302      return false;
303
304    MulImm /= Scale;
305    if ((MulImm >= Min) && (MulImm <= Max)) {
306      Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
307      return true;
308    }
309
310    return false;
311  }
312
313  template <signed Max, signed Scale>
314  bool SelectEXTImm(SDValue N, SDValue &Imm) {
315    if (!isa<ConstantSDNode>(N))
316      return false;
317
318    int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
319
320    if (MulImm >= 0 && MulImm <= Max) {
321      MulImm *= Scale;
322      Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
323      return true;
324    }
325
326    return false;
327  }
328
329  template <unsigned BaseReg, unsigned Max>
330  bool ImmToReg(SDValue N, SDValue &Imm) {
331    if (auto *CI = dyn_cast<ConstantSDNode>(N)) {
332      uint64_t C = CI->getZExtValue();
333
334      if (C > Max)
335        return false;
336
337      Imm = CurDAG->getRegister(BaseReg + C, MVT::Other);
338      return true;
339    }
340    return false;
341  }
342
343  /// Form sequences of consecutive 64/128-bit registers for use in NEON
344  /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
345  /// between 1 and 4 elements. If it contains a single element that is returned
346  /// unchanged; otherwise a REG_SEQUENCE value is returned.
347  SDValue createDTuple(ArrayRef<SDValue> Vecs);
348  SDValue createQTuple(ArrayRef<SDValue> Vecs);
349  // Form a sequence of SVE registers for instructions using list of vectors,
350  // e.g. structured loads and stores (ldN, stN).
351  SDValue createZTuple(ArrayRef<SDValue> Vecs);
352
353  // Similar to above, except the register must start at a multiple of the
354  // tuple, e.g. z2 for a 2-tuple, or z8 for a 4-tuple.
355  SDValue createZMulTuple(ArrayRef<SDValue> Regs);
356
357  /// Generic helper for the createDTuple/createQTuple
358  /// functions. Those should almost always be called instead.
359  SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
360                      const unsigned SubRegs[]);
361
362  void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
363
364  bool tryIndexedLoad(SDNode *N);
365
366  bool trySelectStackSlotTagP(SDNode *N);
367  void SelectTagP(SDNode *N);
368
369  void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
370                     unsigned SubRegIdx);
371  void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
372                         unsigned SubRegIdx);
373  void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
374  void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
375  void SelectPredicatedLoad(SDNode *N, unsigned NumVecs, unsigned Scale,
376                            unsigned Opc_rr, unsigned Opc_ri,
377                            bool IsIntr = false);
378  void SelectContiguousMultiVectorLoad(SDNode *N, unsigned NumVecs,
379                                       unsigned Scale, unsigned Opc_ri,
380                                       unsigned Opc_rr);
381  void SelectDestructiveMultiIntrinsic(SDNode *N, unsigned NumVecs,
382                                       bool IsZmMulti, unsigned Opcode,
383                                       bool HasPred = false);
384  void SelectPExtPair(SDNode *N, unsigned Opc);
385  void SelectWhilePair(SDNode *N, unsigned Opc);
386  void SelectCVTIntrinsic(SDNode *N, unsigned NumVecs, unsigned Opcode);
387  void SelectClamp(SDNode *N, unsigned NumVecs, unsigned Opcode);
388  void SelectUnaryMultiIntrinsic(SDNode *N, unsigned NumOutVecs,
389                                 bool IsTupleInput, unsigned Opc);
390  void SelectFrintFromVT(SDNode *N, unsigned NumVecs, unsigned Opcode);
391
392  template <unsigned MaxIdx, unsigned Scale>
393  void SelectMultiVectorMove(SDNode *N, unsigned NumVecs, unsigned BaseReg,
394                             unsigned Op);
395
396  bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm);
397  /// SVE Reg+Imm addressing mode.
398  template <int64_t Min, int64_t Max>
399  bool SelectAddrModeIndexedSVE(SDNode *Root, SDValue N, SDValue &Base,
400                                SDValue &OffImm);
401  /// SVE Reg+Reg address mode.
402  template <unsigned Scale>
403  bool SelectSVERegRegAddrMode(SDValue N, SDValue &Base, SDValue &Offset) {
404    return SelectSVERegRegAddrMode(N, Scale, Base, Offset);
405  }
406
407  void SelectMultiVectorLuti(SDNode *Node, unsigned NumOutVecs, unsigned Opc,
408                             uint32_t MaxImm);
409
410  template <unsigned MaxIdx, unsigned Scale>
411  bool SelectSMETileSlice(SDValue N, SDValue &Vector, SDValue &Offset) {
412    return SelectSMETileSlice(N, MaxIdx, Vector, Offset, Scale);
413  }
414
415  void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
416  void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
417  void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
418  void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
419  void SelectPredicatedStore(SDNode *N, unsigned NumVecs, unsigned Scale,
420                             unsigned Opc_rr, unsigned Opc_ri);
421  std::tuple<unsigned, SDValue, SDValue>
422  findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr, unsigned Opc_ri,
423                           const SDValue &OldBase, const SDValue &OldOffset,
424                           unsigned Scale);
425
426  bool tryBitfieldExtractOp(SDNode *N);
427  bool tryBitfieldExtractOpFromSExt(SDNode *N);
428  bool tryBitfieldInsertOp(SDNode *N);
429  bool tryBitfieldInsertInZeroOp(SDNode *N);
430  bool tryShiftAmountMod(SDNode *N);
431
432  bool tryReadRegister(SDNode *N);
433  bool tryWriteRegister(SDNode *N);
434
435  bool trySelectCastFixedLengthToScalableVector(SDNode *N);
436  bool trySelectCastScalableToFixedLengthVector(SDNode *N);
437
438  bool trySelectXAR(SDNode *N);
439
440// Include the pieces autogenerated from the target description.
441#include "AArch64GenDAGISel.inc"
442
443private:
444  bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
445                             SDValue &Shift);
446  bool SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg, SDValue &Shift);
447  bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
448                               SDValue &OffImm) {
449    return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm);
450  }
451  bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW,
452                                     unsigned Size, SDValue &Base,
453                                     SDValue &OffImm);
454  bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
455                             SDValue &OffImm);
456  bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
457                              SDValue &OffImm);
458  bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
459                         SDValue &Offset, SDValue &SignExtend,
460                         SDValue &DoShift);
461  bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
462                         SDValue &Offset, SDValue &SignExtend,
463                         SDValue &DoShift);
464  bool isWorthFoldingALU(SDValue V, bool LSL = false) const;
465  bool isWorthFoldingAddr(SDValue V) const;
466  bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
467                         SDValue &Offset, SDValue &SignExtend);
468
469  template<unsigned RegWidth>
470  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
471    return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
472  }
473
474  bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
475
476  template<unsigned RegWidth>
477  bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos) {
478    return SelectCVTFixedPosRecipOperand(N, FixedPos, RegWidth);
479  }
480
481  bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos,
482                                     unsigned Width);
483
484  bool SelectCMP_SWAP(SDNode *N);
485
486  bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
487  bool SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
488  bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm, bool Invert);
489
490  bool SelectSVESignedArithImm(SDValue N, SDValue &Imm);
491  bool SelectSVEShiftImm(SDValue N, uint64_t Low, uint64_t High,
492                         bool AllowSaturation, SDValue &Imm);
493
494  bool SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm);
495  bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base,
496                               SDValue &Offset);
497  bool SelectSMETileSlice(SDValue N, unsigned MaxSize, SDValue &Vector,
498                          SDValue &Offset, unsigned Scale = 1);
499
500  bool SelectAllActivePredicate(SDValue N);
501  bool SelectAnyPredicate(SDValue N);
502};
503} // end anonymous namespace
504
505char AArch64DAGToDAGISel::ID = 0;
506
507INITIALIZE_PASS(AArch64DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
508
509/// isIntImmediate - This method tests to see if the node is a constant
510/// operand. If so Imm will receive the 32-bit value.
511static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
512  if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
513    Imm = C->getZExtValue();
514    return true;
515  }
516  return false;
517}
518
519// isIntImmediate - This method tests to see if a constant operand.
520// If so Imm will receive the value.
521static bool isIntImmediate(SDValue N, uint64_t &Imm) {
522  return isIntImmediate(N.getNode(), Imm);
523}
524
525// isOpcWithIntImmediate - This method tests to see if the node is a specific
526// opcode and that it has a immediate integer right operand.
527// If so Imm will receive the 32 bit value.
528static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
529                                  uint64_t &Imm) {
530  return N->getOpcode() == Opc &&
531         isIntImmediate(N->getOperand(1).getNode(), Imm);
532}
533
534// isIntImmediateEq - This method tests to see if N is a constant operand that
535// is equivalent to 'ImmExpected'.
536#ifndef NDEBUG
537static bool isIntImmediateEq(SDValue N, const uint64_t ImmExpected) {
538  uint64_t Imm;
539  if (!isIntImmediate(N.getNode(), Imm))
540    return false;
541  return Imm == ImmExpected;
542}
543#endif
544
545bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
546    const SDValue &Op, const InlineAsm::ConstraintCode ConstraintID,
547    std::vector<SDValue> &OutOps) {
548  switch(ConstraintID) {
549  default:
550    llvm_unreachable("Unexpected asm memory constraint");
551  case InlineAsm::ConstraintCode::m:
552  case InlineAsm::ConstraintCode::o:
553  case InlineAsm::ConstraintCode::Q:
554    // We need to make sure that this one operand does not end up in XZR, thus
555    // require the address to be in a PointerRegClass register.
556    const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
557    const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
558    SDLoc dl(Op);
559    SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
560    SDValue NewOp =
561        SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
562                                       dl, Op.getValueType(),
563                                       Op, RC), 0);
564    OutOps.push_back(NewOp);
565    return false;
566  }
567  return true;
568}
569
570/// SelectArithImmed - Select an immediate value that can be represented as
571/// a 12-bit value shifted left by either 0 or 12.  If so, return true with
572/// Val set to the 12-bit value and Shift set to the shifter operand.
573bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
574                                           SDValue &Shift) {
575  // This function is called from the addsub_shifted_imm ComplexPattern,
576  // which lists [imm] as the list of opcode it's interested in, however
577  // we still need to check whether the operand is actually an immediate
578  // here because the ComplexPattern opcode list is only used in
579  // root-level opcode matching.
580  if (!isa<ConstantSDNode>(N.getNode()))
581    return false;
582
583  uint64_t Immed = N.getNode()->getAsZExtVal();
584  unsigned ShiftAmt;
585
586  if (Immed >> 12 == 0) {
587    ShiftAmt = 0;
588  } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
589    ShiftAmt = 12;
590    Immed = Immed >> 12;
591  } else
592    return false;
593
594  unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
595  SDLoc dl(N);
596  Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
597  Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
598  return true;
599}
600
601/// SelectNegArithImmed - As above, but negates the value before trying to
602/// select it.
603bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
604                                              SDValue &Shift) {
605  // This function is called from the addsub_shifted_imm ComplexPattern,
606  // which lists [imm] as the list of opcode it's interested in, however
607  // we still need to check whether the operand is actually an immediate
608  // here because the ComplexPattern opcode list is only used in
609  // root-level opcode matching.
610  if (!isa<ConstantSDNode>(N.getNode()))
611    return false;
612
613  // The immediate operand must be a 24-bit zero-extended immediate.
614  uint64_t Immed = N.getNode()->getAsZExtVal();
615
616  // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
617  // have the opposite effect on the C flag, so this pattern mustn't match under
618  // those circumstances.
619  if (Immed == 0)
620    return false;
621
622  if (N.getValueType() == MVT::i32)
623    Immed = ~((uint32_t)Immed) + 1;
624  else
625    Immed = ~Immed + 1ULL;
626  if (Immed & 0xFFFFFFFFFF000000ULL)
627    return false;
628
629  Immed &= 0xFFFFFFULL;
630  return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
631                          Shift);
632}
633
634/// getShiftTypeForNode - Translate a shift node to the corresponding
635/// ShiftType value.
636static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
637  switch (N.getOpcode()) {
638  default:
639    return AArch64_AM::InvalidShiftExtend;
640  case ISD::SHL:
641    return AArch64_AM::LSL;
642  case ISD::SRL:
643    return AArch64_AM::LSR;
644  case ISD::SRA:
645    return AArch64_AM::ASR;
646  case ISD::ROTR:
647    return AArch64_AM::ROR;
648  }
649}
650
651/// Determine whether it is worth it to fold SHL into the addressing
652/// mode.
653static bool isWorthFoldingSHL(SDValue V) {
654  assert(V.getOpcode() == ISD::SHL && "invalid opcode");
655  // It is worth folding logical shift of up to three places.
656  auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
657  if (!CSD)
658    return false;
659  unsigned ShiftVal = CSD->getZExtValue();
660  if (ShiftVal > 3)
661    return false;
662
663  // Check if this particular node is reused in any non-memory related
664  // operation.  If yes, do not try to fold this node into the address
665  // computation, since the computation will be kept.
666  const SDNode *Node = V.getNode();
667  for (SDNode *UI : Node->uses())
668    if (!isa<MemSDNode>(*UI))
669      for (SDNode *UII : UI->uses())
670        if (!isa<MemSDNode>(*UII))
671          return false;
672  return true;
673}
674
675/// Determine whether it is worth to fold V into an extended register addressing
676/// mode.
677bool AArch64DAGToDAGISel::isWorthFoldingAddr(SDValue V) const {
678  // Trivial if we are optimizing for code size or if there is only
679  // one use of the value.
680  if (CurDAG->shouldOptForSize() || V.hasOneUse())
681    return true;
682  // If a subtarget has a fastpath LSL we can fold a logical shift into
683  // the addressing mode and save a cycle.
684  if (Subtarget->hasAddrLSLFast() && V.getOpcode() == ISD::SHL &&
685      isWorthFoldingSHL(V))
686    return true;
687  if (Subtarget->hasAddrLSLFast() && V.getOpcode() == ISD::ADD) {
688    const SDValue LHS = V.getOperand(0);
689    const SDValue RHS = V.getOperand(1);
690    if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
691      return true;
692    if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
693      return true;
694  }
695
696  // It hurts otherwise, since the value will be reused.
697  return false;
698}
699
700/// and (shl/srl/sra, x, c), mask --> shl (srl/sra, x, c1), c2
701/// to select more shifted register
702bool AArch64DAGToDAGISel::SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg,
703                                                       SDValue &Shift) {
704  EVT VT = N.getValueType();
705  if (VT != MVT::i32 && VT != MVT::i64)
706    return false;
707
708  if (N->getOpcode() != ISD::AND || !N->hasOneUse())
709    return false;
710  SDValue LHS = N.getOperand(0);
711  if (!LHS->hasOneUse())
712    return false;
713
714  unsigned LHSOpcode = LHS->getOpcode();
715  if (LHSOpcode != ISD::SHL && LHSOpcode != ISD::SRL && LHSOpcode != ISD::SRA)
716    return false;
717
718  ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
719  if (!ShiftAmtNode)
720    return false;
721
722  uint64_t ShiftAmtC = ShiftAmtNode->getZExtValue();
723  ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N.getOperand(1));
724  if (!RHSC)
725    return false;
726
727  APInt AndMask = RHSC->getAPIntValue();
728  unsigned LowZBits, MaskLen;
729  if (!AndMask.isShiftedMask(LowZBits, MaskLen))
730    return false;
731
732  unsigned BitWidth = N.getValueSizeInBits();
733  SDLoc DL(LHS);
734  uint64_t NewShiftC;
735  unsigned NewShiftOp;
736  if (LHSOpcode == ISD::SHL) {
737    // LowZBits <= ShiftAmtC will fall into isBitfieldPositioningOp
738    // BitWidth != LowZBits + MaskLen doesn't match the pattern
739    if (LowZBits <= ShiftAmtC || (BitWidth != LowZBits + MaskLen))
740      return false;
741
742    NewShiftC = LowZBits - ShiftAmtC;
743    NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri;
744  } else {
745    if (LowZBits == 0)
746      return false;
747
748    // NewShiftC >= BitWidth will fall into isBitfieldExtractOp
749    NewShiftC = LowZBits + ShiftAmtC;
750    if (NewShiftC >= BitWidth)
751      return false;
752
753    // SRA need all high bits
754    if (LHSOpcode == ISD::SRA && (BitWidth != (LowZBits + MaskLen)))
755      return false;
756
757    // SRL high bits can be 0 or 1
758    if (LHSOpcode == ISD::SRL && (BitWidth > (NewShiftC + MaskLen)))
759      return false;
760
761    if (LHSOpcode == ISD::SRL)
762      NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri;
763    else
764      NewShiftOp = VT == MVT::i64 ? AArch64::SBFMXri : AArch64::SBFMWri;
765  }
766
767  assert(NewShiftC < BitWidth && "Invalid shift amount");
768  SDValue NewShiftAmt = CurDAG->getTargetConstant(NewShiftC, DL, VT);
769  SDValue BitWidthMinus1 = CurDAG->getTargetConstant(BitWidth - 1, DL, VT);
770  Reg = SDValue(CurDAG->getMachineNode(NewShiftOp, DL, VT, LHS->getOperand(0),
771                                       NewShiftAmt, BitWidthMinus1),
772                0);
773  unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, LowZBits);
774  Shift = CurDAG->getTargetConstant(ShVal, DL, MVT::i32);
775  return true;
776}
777
778/// getExtendTypeForNode - Translate an extend node to the corresponding
779/// ExtendType value.
780static AArch64_AM::ShiftExtendType
781getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
782  if (N.getOpcode() == ISD::SIGN_EXTEND ||
783      N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
784    EVT SrcVT;
785    if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
786      SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
787    else
788      SrcVT = N.getOperand(0).getValueType();
789
790    if (!IsLoadStore && SrcVT == MVT::i8)
791      return AArch64_AM::SXTB;
792    else if (!IsLoadStore && SrcVT == MVT::i16)
793      return AArch64_AM::SXTH;
794    else if (SrcVT == MVT::i32)
795      return AArch64_AM::SXTW;
796    assert(SrcVT != MVT::i64 && "extend from 64-bits?");
797
798    return AArch64_AM::InvalidShiftExtend;
799  } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
800             N.getOpcode() == ISD::ANY_EXTEND) {
801    EVT SrcVT = N.getOperand(0).getValueType();
802    if (!IsLoadStore && SrcVT == MVT::i8)
803      return AArch64_AM::UXTB;
804    else if (!IsLoadStore && SrcVT == MVT::i16)
805      return AArch64_AM::UXTH;
806    else if (SrcVT == MVT::i32)
807      return AArch64_AM::UXTW;
808    assert(SrcVT != MVT::i64 && "extend from 64-bits?");
809
810    return AArch64_AM::InvalidShiftExtend;
811  } else if (N.getOpcode() == ISD::AND) {
812    ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
813    if (!CSD)
814      return AArch64_AM::InvalidShiftExtend;
815    uint64_t AndMask = CSD->getZExtValue();
816
817    switch (AndMask) {
818    default:
819      return AArch64_AM::InvalidShiftExtend;
820    case 0xFF:
821      return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
822    case 0xFFFF:
823      return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
824    case 0xFFFFFFFF:
825      return AArch64_AM::UXTW;
826    }
827  }
828
829  return AArch64_AM::InvalidShiftExtend;
830}
831
832/// Determine whether it is worth to fold V into an extended register of an
833/// Add/Sub. LSL means we are folding into an `add w0, w1, w2, lsl #N`
834/// instruction, and the shift should be treated as worth folding even if has
835/// multiple uses.
836bool AArch64DAGToDAGISel::isWorthFoldingALU(SDValue V, bool LSL) const {
837  // Trivial if we are optimizing for code size or if there is only
838  // one use of the value.
839  if (CurDAG->shouldOptForSize() || V.hasOneUse())
840    return true;
841
842  // If a subtarget has a fastpath LSL we can fold a logical shift into
843  // the add/sub and save a cycle.
844  if (LSL && Subtarget->hasALULSLFast() && V.getOpcode() == ISD::SHL &&
845      V.getConstantOperandVal(1) <= 4 &&
846      getExtendTypeForNode(V.getOperand(0)) == AArch64_AM::InvalidShiftExtend)
847    return true;
848
849  // It hurts otherwise, since the value will be reused.
850  return false;
851}
852
853/// SelectShiftedRegister - Select a "shifted register" operand.  If the value
854/// is not shifted, set the Shift operand to default of "LSL 0".  The logical
855/// instructions allow the shifted register to be rotated, but the arithmetic
856/// instructions do not.  The AllowROR parameter specifies whether ROR is
857/// supported.
858bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
859                                                SDValue &Reg, SDValue &Shift) {
860  if (SelectShiftedRegisterFromAnd(N, Reg, Shift))
861    return true;
862
863  AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
864  if (ShType == AArch64_AM::InvalidShiftExtend)
865    return false;
866  if (!AllowROR && ShType == AArch64_AM::ROR)
867    return false;
868
869  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
870    unsigned BitSize = N.getValueSizeInBits();
871    unsigned Val = RHS->getZExtValue() & (BitSize - 1);
872    unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
873
874    Reg = N.getOperand(0);
875    Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
876    return isWorthFoldingALU(N, true);
877  }
878
879  return false;
880}
881
882/// Instructions that accept extend modifiers like UXTW expect the register
883/// being extended to be a GPR32, but the incoming DAG might be acting on a
884/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
885/// this is the case.
886static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
887  if (N.getValueType() == MVT::i32)
888    return N;
889
890  SDLoc dl(N);
891  return CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl, MVT::i32, N);
892}
893
894// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
895template<signed Low, signed High, signed Scale>
896bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) {
897  if (!isa<ConstantSDNode>(N))
898    return false;
899
900  int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
901  if ((MulImm % std::abs(Scale)) == 0) {
902    int64_t RDVLImm = MulImm / Scale;
903    if ((RDVLImm >= Low) && (RDVLImm <= High)) {
904      Imm = CurDAG->getTargetConstant(RDVLImm, SDLoc(N), MVT::i32);
905      return true;
906    }
907  }
908
909  return false;
910}
911
912/// SelectArithExtendedRegister - Select a "extended register" operand.  This
913/// operand folds in an extend followed by an optional left shift.
914bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
915                                                      SDValue &Shift) {
916  unsigned ShiftVal = 0;
917  AArch64_AM::ShiftExtendType Ext;
918
919  if (N.getOpcode() == ISD::SHL) {
920    ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
921    if (!CSD)
922      return false;
923    ShiftVal = CSD->getZExtValue();
924    if (ShiftVal > 4)
925      return false;
926
927    Ext = getExtendTypeForNode(N.getOperand(0));
928    if (Ext == AArch64_AM::InvalidShiftExtend)
929      return false;
930
931    Reg = N.getOperand(0).getOperand(0);
932  } else {
933    Ext = getExtendTypeForNode(N);
934    if (Ext == AArch64_AM::InvalidShiftExtend)
935      return false;
936
937    Reg = N.getOperand(0);
938
939    // Don't match if free 32-bit -> 64-bit zext can be used instead. Use the
940    // isDef32 as a heuristic for when the operand is likely to be a 32bit def.
941    auto isDef32 = [](SDValue N) {
942      unsigned Opc = N.getOpcode();
943      return Opc != ISD::TRUNCATE && Opc != TargetOpcode::EXTRACT_SUBREG &&
944             Opc != ISD::CopyFromReg && Opc != ISD::AssertSext &&
945             Opc != ISD::AssertZext && Opc != ISD::AssertAlign &&
946             Opc != ISD::FREEZE;
947    };
948    if (Ext == AArch64_AM::UXTW && Reg->getValueType(0).getSizeInBits() == 32 &&
949        isDef32(Reg))
950      return false;
951  }
952
953  // AArch64 mandates that the RHS of the operation must use the smallest
954  // register class that could contain the size being extended from.  Thus,
955  // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
956  // there might not be an actual 32-bit value in the program.  We can
957  // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
958  assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
959  Reg = narrowIfNeeded(CurDAG, Reg);
960  Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
961                                    MVT::i32);
962  return isWorthFoldingALU(N);
963}
964
965/// SelectArithUXTXRegister - Select a "UXTX register" operand. This
966/// operand is refered by the instructions have SP operand
967bool AArch64DAGToDAGISel::SelectArithUXTXRegister(SDValue N, SDValue &Reg,
968                                                  SDValue &Shift) {
969  unsigned ShiftVal = 0;
970  AArch64_AM::ShiftExtendType Ext;
971
972  if (N.getOpcode() != ISD::SHL)
973    return false;
974
975  ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
976  if (!CSD)
977    return false;
978  ShiftVal = CSD->getZExtValue();
979  if (ShiftVal > 4)
980    return false;
981
982  Ext = AArch64_AM::UXTX;
983  Reg = N.getOperand(0);
984  Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
985                                    MVT::i32);
986  return isWorthFoldingALU(N);
987}
988
989/// If there's a use of this ADDlow that's not itself a load/store then we'll
990/// need to create a real ADD instruction from it anyway and there's no point in
991/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
992/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
993/// leads to duplicated ADRP instructions.
994static bool isWorthFoldingADDlow(SDValue N) {
995  for (auto *Use : N->uses()) {
996    if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
997        Use->getOpcode() != ISD::ATOMIC_LOAD &&
998        Use->getOpcode() != ISD::ATOMIC_STORE)
999      return false;
1000
1001    // ldar and stlr have much more restrictive addressing modes (just a
1002    // register).
1003    if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getSuccessOrdering()))
1004      return false;
1005  }
1006
1007  return true;
1008}
1009
1010/// Check if the immediate offset is valid as a scaled immediate.
1011static bool isValidAsScaledImmediate(int64_t Offset, unsigned Range,
1012                                     unsigned Size) {
1013  if ((Offset & (Size - 1)) == 0 && Offset >= 0 &&
1014      Offset < (Range << Log2_32(Size)))
1015    return true;
1016  return false;
1017}
1018
1019/// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
1020/// immediate" address.  The "Size" argument is the size in bytes of the memory
1021/// reference, which determines the scale.
1022bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm,
1023                                                        unsigned BW, unsigned Size,
1024                                                        SDValue &Base,
1025                                                        SDValue &OffImm) {
1026  SDLoc dl(N);
1027  const DataLayout &DL = CurDAG->getDataLayout();
1028  const TargetLowering *TLI = getTargetLowering();
1029  if (N.getOpcode() == ISD::FrameIndex) {
1030    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1031    Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1032    OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1033    return true;
1034  }
1035
1036  // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
1037  // selected here doesn't support labels/immediates, only base+offset.
1038  if (CurDAG->isBaseWithConstantOffset(N)) {
1039    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1040      if (IsSignedImm) {
1041        int64_t RHSC = RHS->getSExtValue();
1042        unsigned Scale = Log2_32(Size);
1043        int64_t Range = 0x1LL << (BW - 1);
1044
1045        if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) &&
1046            RHSC < (Range << Scale)) {
1047          Base = N.getOperand(0);
1048          if (Base.getOpcode() == ISD::FrameIndex) {
1049            int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1050            Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1051          }
1052          OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1053          return true;
1054        }
1055      } else {
1056        // unsigned Immediate
1057        uint64_t RHSC = RHS->getZExtValue();
1058        unsigned Scale = Log2_32(Size);
1059        uint64_t Range = 0x1ULL << BW;
1060
1061        if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) {
1062          Base = N.getOperand(0);
1063          if (Base.getOpcode() == ISD::FrameIndex) {
1064            int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1065            Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1066          }
1067          OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1068          return true;
1069        }
1070      }
1071    }
1072  }
1073  // Base only. The address will be materialized into a register before
1074  // the memory is accessed.
1075  //    add x0, Xbase, #offset
1076  //    stp x1, x2, [x0]
1077  Base = N;
1078  OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1079  return true;
1080}
1081
1082/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
1083/// immediate" address.  The "Size" argument is the size in bytes of the memory
1084/// reference, which determines the scale.
1085bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
1086                                              SDValue &Base, SDValue &OffImm) {
1087  SDLoc dl(N);
1088  const DataLayout &DL = CurDAG->getDataLayout();
1089  const TargetLowering *TLI = getTargetLowering();
1090  if (N.getOpcode() == ISD::FrameIndex) {
1091    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1092    Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1093    OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1094    return true;
1095  }
1096
1097  if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
1098    GlobalAddressSDNode *GAN =
1099        dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
1100    Base = N.getOperand(0);
1101    OffImm = N.getOperand(1);
1102    if (!GAN)
1103      return true;
1104
1105    if (GAN->getOffset() % Size == 0 &&
1106        GAN->getGlobal()->getPointerAlignment(DL) >= Size)
1107      return true;
1108  }
1109
1110  if (CurDAG->isBaseWithConstantOffset(N)) {
1111    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1112      int64_t RHSC = (int64_t)RHS->getZExtValue();
1113      unsigned Scale = Log2_32(Size);
1114      if (isValidAsScaledImmediate(RHSC, 0x1000, Size)) {
1115        Base = N.getOperand(0);
1116        if (Base.getOpcode() == ISD::FrameIndex) {
1117          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1118          Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1119        }
1120        OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1121        return true;
1122      }
1123    }
1124  }
1125
1126  // Before falling back to our general case, check if the unscaled
1127  // instructions can handle this. If so, that's preferable.
1128  if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
1129    return false;
1130
1131  // Base only. The address will be materialized into a register before
1132  // the memory is accessed.
1133  //    add x0, Xbase, #offset
1134  //    ldr x0, [x0]
1135  Base = N;
1136  OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1137  return true;
1138}
1139
1140/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
1141/// immediate" address.  This should only match when there is an offset that
1142/// is not valid for a scaled immediate addressing mode.  The "Size" argument
1143/// is the size in bytes of the memory reference, which is needed here to know
1144/// what is valid for a scaled immediate.
1145bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
1146                                                 SDValue &Base,
1147                                                 SDValue &OffImm) {
1148  if (!CurDAG->isBaseWithConstantOffset(N))
1149    return false;
1150  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1151    int64_t RHSC = RHS->getSExtValue();
1152    if (RHSC >= -256 && RHSC < 256) {
1153      Base = N.getOperand(0);
1154      if (Base.getOpcode() == ISD::FrameIndex) {
1155        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1156        const TargetLowering *TLI = getTargetLowering();
1157        Base = CurDAG->getTargetFrameIndex(
1158            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1159      }
1160      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
1161      return true;
1162    }
1163  }
1164  return false;
1165}
1166
1167static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
1168  SDLoc dl(N);
1169  SDValue ImpDef = SDValue(
1170      CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
1171  return CurDAG->getTargetInsertSubreg(AArch64::sub_32, dl, MVT::i64, ImpDef,
1172                                       N);
1173}
1174
1175/// Check if the given SHL node (\p N), can be used to form an
1176/// extended register for an addressing mode.
1177bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
1178                                            bool WantExtend, SDValue &Offset,
1179                                            SDValue &SignExtend) {
1180  assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
1181  ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
1182  if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
1183    return false;
1184
1185  SDLoc dl(N);
1186  if (WantExtend) {
1187    AArch64_AM::ShiftExtendType Ext =
1188        getExtendTypeForNode(N.getOperand(0), true);
1189    if (Ext == AArch64_AM::InvalidShiftExtend)
1190      return false;
1191
1192    Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
1193    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1194                                           MVT::i32);
1195  } else {
1196    Offset = N.getOperand(0);
1197    SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
1198  }
1199
1200  unsigned LegalShiftVal = Log2_32(Size);
1201  unsigned ShiftVal = CSD->getZExtValue();
1202
1203  if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
1204    return false;
1205
1206  return isWorthFoldingAddr(N);
1207}
1208
1209bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
1210                                            SDValue &Base, SDValue &Offset,
1211                                            SDValue &SignExtend,
1212                                            SDValue &DoShift) {
1213  if (N.getOpcode() != ISD::ADD)
1214    return false;
1215  SDValue LHS = N.getOperand(0);
1216  SDValue RHS = N.getOperand(1);
1217  SDLoc dl(N);
1218
1219  // We don't want to match immediate adds here, because they are better lowered
1220  // to the register-immediate addressing modes.
1221  if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
1222    return false;
1223
1224  // Check if this particular node is reused in any non-memory related
1225  // operation.  If yes, do not try to fold this node into the address
1226  // computation, since the computation will be kept.
1227  const SDNode *Node = N.getNode();
1228  for (SDNode *UI : Node->uses()) {
1229    if (!isa<MemSDNode>(*UI))
1230      return false;
1231  }
1232
1233  // Remember if it is worth folding N when it produces extended register.
1234  bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N);
1235
1236  // Try to match a shifted extend on the RHS.
1237  if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1238      SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
1239    Base = LHS;
1240    DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1241    return true;
1242  }
1243
1244  // Try to match a shifted extend on the LHS.
1245  if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1246      SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
1247    Base = RHS;
1248    DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1249    return true;
1250  }
1251
1252  // There was no shift, whatever else we find.
1253  DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
1254
1255  AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
1256  // Try to match an unshifted extend on the LHS.
1257  if (IsExtendedRegisterWorthFolding &&
1258      (Ext = getExtendTypeForNode(LHS, true)) !=
1259          AArch64_AM::InvalidShiftExtend) {
1260    Base = RHS;
1261    Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
1262    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1263                                           MVT::i32);
1264    if (isWorthFoldingAddr(LHS))
1265      return true;
1266  }
1267
1268  // Try to match an unshifted extend on the RHS.
1269  if (IsExtendedRegisterWorthFolding &&
1270      (Ext = getExtendTypeForNode(RHS, true)) !=
1271          AArch64_AM::InvalidShiftExtend) {
1272    Base = LHS;
1273    Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
1274    SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1275                                           MVT::i32);
1276    if (isWorthFoldingAddr(RHS))
1277      return true;
1278  }
1279
1280  return false;
1281}
1282
1283// Check if the given immediate is preferred by ADD. If an immediate can be
1284// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
1285// encoded by one MOVZ, return true.
1286static bool isPreferredADD(int64_t ImmOff) {
1287  // Constant in [0x0, 0xfff] can be encoded in ADD.
1288  if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
1289    return true;
1290  // Check if it can be encoded in an "ADD LSL #12".
1291  if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
1292    // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
1293    return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
1294           (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
1295  return false;
1296}
1297
1298bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
1299                                            SDValue &Base, SDValue &Offset,
1300                                            SDValue &SignExtend,
1301                                            SDValue &DoShift) {
1302  if (N.getOpcode() != ISD::ADD)
1303    return false;
1304  SDValue LHS = N.getOperand(0);
1305  SDValue RHS = N.getOperand(1);
1306  SDLoc DL(N);
1307
1308  // Check if this particular node is reused in any non-memory related
1309  // operation.  If yes, do not try to fold this node into the address
1310  // computation, since the computation will be kept.
1311  const SDNode *Node = N.getNode();
1312  for (SDNode *UI : Node->uses()) {
1313    if (!isa<MemSDNode>(*UI))
1314      return false;
1315  }
1316
1317  // Watch out if RHS is a wide immediate, it can not be selected into
1318  // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1319  // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1320  // instructions like:
1321  //     MOV  X0, WideImmediate
1322  //     ADD  X1, BaseReg, X0
1323  //     LDR  X2, [X1, 0]
1324  // For such situation, using [BaseReg, XReg] addressing mode can save one
1325  // ADD/SUB:
1326  //     MOV  X0, WideImmediate
1327  //     LDR  X2, [BaseReg, X0]
1328  if (isa<ConstantSDNode>(RHS)) {
1329    int64_t ImmOff = (int64_t)RHS->getAsZExtVal();
1330    // Skip the immediate can be selected by load/store addressing mode.
1331    // Also skip the immediate can be encoded by a single ADD (SUB is also
1332    // checked by using -ImmOff).
1333    if (isValidAsScaledImmediate(ImmOff, 0x1000, Size) ||
1334        isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
1335      return false;
1336
1337    SDValue Ops[] = { RHS };
1338    SDNode *MOVI =
1339        CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
1340    SDValue MOVIV = SDValue(MOVI, 0);
1341    // This ADD of two X register will be selected into [Reg+Reg] mode.
1342    N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
1343  }
1344
1345  // Remember if it is worth folding N when it produces extended register.
1346  bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N);
1347
1348  // Try to match a shifted extend on the RHS.
1349  if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1350      SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
1351    Base = LHS;
1352    DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1353    return true;
1354  }
1355
1356  // Try to match a shifted extend on the LHS.
1357  if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1358      SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
1359    Base = RHS;
1360    DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1361    return true;
1362  }
1363
1364  // Match any non-shifted, non-extend, non-immediate add expression.
1365  Base = LHS;
1366  Offset = RHS;
1367  SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
1368  DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
1369  // Reg1 + Reg2 is free: no check needed.
1370  return true;
1371}
1372
1373SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
1374  static const unsigned RegClassIDs[] = {
1375      AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
1376  static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
1377                                     AArch64::dsub2, AArch64::dsub3};
1378
1379  return createTuple(Regs, RegClassIDs, SubRegs);
1380}
1381
1382SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
1383  static const unsigned RegClassIDs[] = {
1384      AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
1385  static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
1386                                     AArch64::qsub2, AArch64::qsub3};
1387
1388  return createTuple(Regs, RegClassIDs, SubRegs);
1389}
1390
1391SDValue AArch64DAGToDAGISel::createZTuple(ArrayRef<SDValue> Regs) {
1392  static const unsigned RegClassIDs[] = {AArch64::ZPR2RegClassID,
1393                                         AArch64::ZPR3RegClassID,
1394                                         AArch64::ZPR4RegClassID};
1395  static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
1396                                     AArch64::zsub2, AArch64::zsub3};
1397
1398  return createTuple(Regs, RegClassIDs, SubRegs);
1399}
1400
1401SDValue AArch64DAGToDAGISel::createZMulTuple(ArrayRef<SDValue> Regs) {
1402  assert(Regs.size() == 2 || Regs.size() == 4);
1403
1404  // The createTuple interface requires 3 RegClassIDs for each possible
1405  // tuple type even though we only have them for ZPR2 and ZPR4.
1406  static const unsigned RegClassIDs[] = {AArch64::ZPR2Mul2RegClassID, 0,
1407                                         AArch64::ZPR4Mul4RegClassID};
1408  static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
1409                                     AArch64::zsub2, AArch64::zsub3};
1410  return createTuple(Regs, RegClassIDs, SubRegs);
1411}
1412
1413SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
1414                                         const unsigned RegClassIDs[],
1415                                         const unsigned SubRegs[]) {
1416  // There's no special register-class for a vector-list of 1 element: it's just
1417  // a vector.
1418  if (Regs.size() == 1)
1419    return Regs[0];
1420
1421  assert(Regs.size() >= 2 && Regs.size() <= 4);
1422
1423  SDLoc DL(Regs[0]);
1424
1425  SmallVector<SDValue, 4> Ops;
1426
1427  // First operand of REG_SEQUENCE is the desired RegClass.
1428  Ops.push_back(
1429      CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1430
1431  // Then we get pairs of source & subregister-position for the components.
1432  for (unsigned i = 0; i < Regs.size(); ++i) {
1433    Ops.push_back(Regs[i]);
1434    Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1435  }
1436
1437  SDNode *N =
1438      CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1439  return SDValue(N, 0);
1440}
1441
1442void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1443                                      bool isExt) {
1444  SDLoc dl(N);
1445  EVT VT = N->getValueType(0);
1446
1447  unsigned ExtOff = isExt;
1448
1449  // Form a REG_SEQUENCE to force register allocation.
1450  unsigned Vec0Off = ExtOff + 1;
1451  SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1452                               N->op_begin() + Vec0Off + NumVecs);
1453  SDValue RegSeq = createQTuple(Regs);
1454
1455  SmallVector<SDValue, 6> Ops;
1456  if (isExt)
1457    Ops.push_back(N->getOperand(1));
1458  Ops.push_back(RegSeq);
1459  Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1460  ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1461}
1462
1463bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1464  LoadSDNode *LD = cast<LoadSDNode>(N);
1465  if (LD->isUnindexed())
1466    return false;
1467  EVT VT = LD->getMemoryVT();
1468  EVT DstVT = N->getValueType(0);
1469  ISD::MemIndexedMode AM = LD->getAddressingMode();
1470  bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1471
1472  // We're not doing validity checking here. That was done when checking
1473  // if we should mark the load as indexed or not. We're just selecting
1474  // the right instruction.
1475  unsigned Opcode = 0;
1476
1477  ISD::LoadExtType ExtType = LD->getExtensionType();
1478  bool InsertTo64 = false;
1479  if (VT == MVT::i64)
1480    Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1481  else if (VT == MVT::i32) {
1482    if (ExtType == ISD::NON_EXTLOAD)
1483      Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1484    else if (ExtType == ISD::SEXTLOAD)
1485      Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1486    else {
1487      Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1488      InsertTo64 = true;
1489      // The result of the load is only i32. It's the subreg_to_reg that makes
1490      // it into an i64.
1491      DstVT = MVT::i32;
1492    }
1493  } else if (VT == MVT::i16) {
1494    if (ExtType == ISD::SEXTLOAD) {
1495      if (DstVT == MVT::i64)
1496        Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1497      else
1498        Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1499    } else {
1500      Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1501      InsertTo64 = DstVT == MVT::i64;
1502      // The result of the load is only i32. It's the subreg_to_reg that makes
1503      // it into an i64.
1504      DstVT = MVT::i32;
1505    }
1506  } else if (VT == MVT::i8) {
1507    if (ExtType == ISD::SEXTLOAD) {
1508      if (DstVT == MVT::i64)
1509        Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1510      else
1511        Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1512    } else {
1513      Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1514      InsertTo64 = DstVT == MVT::i64;
1515      // The result of the load is only i32. It's the subreg_to_reg that makes
1516      // it into an i64.
1517      DstVT = MVT::i32;
1518    }
1519  } else if (VT == MVT::f16) {
1520    Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1521  } else if (VT == MVT::bf16) {
1522    Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1523  } else if (VT == MVT::f32) {
1524    Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1525  } else if (VT == MVT::f64 || VT.is64BitVector()) {
1526    Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1527  } else if (VT.is128BitVector()) {
1528    Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1529  } else
1530    return false;
1531  SDValue Chain = LD->getChain();
1532  SDValue Base = LD->getBasePtr();
1533  ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1534  int OffsetVal = (int)OffsetOp->getZExtValue();
1535  SDLoc dl(N);
1536  SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1537  SDValue Ops[] = { Base, Offset, Chain };
1538  SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1539                                       MVT::Other, Ops);
1540
1541  // Transfer memoperands.
1542  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1543  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Res), {MemOp});
1544
1545  // Either way, we're replacing the node, so tell the caller that.
1546  SDValue LoadedVal = SDValue(Res, 1);
1547  if (InsertTo64) {
1548    SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1549    LoadedVal =
1550        SDValue(CurDAG->getMachineNode(
1551                    AArch64::SUBREG_TO_REG, dl, MVT::i64,
1552                    CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1553                    SubReg),
1554                0);
1555  }
1556
1557  ReplaceUses(SDValue(N, 0), LoadedVal);
1558  ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1559  ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1560  CurDAG->RemoveDeadNode(N);
1561  return true;
1562}
1563
1564void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1565                                     unsigned SubRegIdx) {
1566  SDLoc dl(N);
1567  EVT VT = N->getValueType(0);
1568  SDValue Chain = N->getOperand(0);
1569
1570  SDValue Ops[] = {N->getOperand(2), // Mem operand;
1571                   Chain};
1572
1573  const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1574
1575  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1576  SDValue SuperReg = SDValue(Ld, 0);
1577  for (unsigned i = 0; i < NumVecs; ++i)
1578    ReplaceUses(SDValue(N, i),
1579        CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1580
1581  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1582
1583  // Transfer memoperands. In the case of AArch64::LD64B, there won't be one,
1584  // because it's too simple to have needed special treatment during lowering.
1585  if (auto *MemIntr = dyn_cast<MemIntrinsicSDNode>(N)) {
1586    MachineMemOperand *MemOp = MemIntr->getMemOperand();
1587    CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
1588  }
1589
1590  CurDAG->RemoveDeadNode(N);
1591}
1592
1593void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1594                                         unsigned Opc, unsigned SubRegIdx) {
1595  SDLoc dl(N);
1596  EVT VT = N->getValueType(0);
1597  SDValue Chain = N->getOperand(0);
1598
1599  SDValue Ops[] = {N->getOperand(1), // Mem operand
1600                   N->getOperand(2), // Incremental
1601                   Chain};
1602
1603  const EVT ResTys[] = {MVT::i64, // Type of the write back register
1604                        MVT::Untyped, MVT::Other};
1605
1606  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1607
1608  // Update uses of write back register
1609  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1610
1611  // Update uses of vector list
1612  SDValue SuperReg = SDValue(Ld, 1);
1613  if (NumVecs == 1)
1614    ReplaceUses(SDValue(N, 0), SuperReg);
1615  else
1616    for (unsigned i = 0; i < NumVecs; ++i)
1617      ReplaceUses(SDValue(N, i),
1618          CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1619
1620  // Update the chain
1621  ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1622  CurDAG->RemoveDeadNode(N);
1623}
1624
1625/// Optimize \param OldBase and \param OldOffset selecting the best addressing
1626/// mode. Returns a tuple consisting of an Opcode, an SDValue representing the
1627/// new Base and an SDValue representing the new offset.
1628std::tuple<unsigned, SDValue, SDValue>
1629AArch64DAGToDAGISel::findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr,
1630                                              unsigned Opc_ri,
1631                                              const SDValue &OldBase,
1632                                              const SDValue &OldOffset,
1633                                              unsigned Scale) {
1634  SDValue NewBase = OldBase;
1635  SDValue NewOffset = OldOffset;
1636  // Detect a possible Reg+Imm addressing mode.
1637  const bool IsRegImm = SelectAddrModeIndexedSVE</*Min=*/-8, /*Max=*/7>(
1638      N, OldBase, NewBase, NewOffset);
1639
1640  // Detect a possible reg+reg addressing mode, but only if we haven't already
1641  // detected a Reg+Imm one.
1642  const bool IsRegReg =
1643      !IsRegImm && SelectSVERegRegAddrMode(OldBase, Scale, NewBase, NewOffset);
1644
1645  // Select the instruction.
1646  return std::make_tuple(IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset);
1647}
1648
1649enum class SelectTypeKind {
1650  Int1 = 0,
1651  Int = 1,
1652  FP = 2,
1653  AnyType = 3,
1654};
1655
1656/// This function selects an opcode from a list of opcodes, which is
1657/// expected to be the opcode for { 8-bit, 16-bit, 32-bit, 64-bit }
1658/// element types, in this order.
1659template <SelectTypeKind Kind>
1660static unsigned SelectOpcodeFromVT(EVT VT, ArrayRef<unsigned> Opcodes) {
1661  // Only match scalable vector VTs
1662  if (!VT.isScalableVector())
1663    return 0;
1664
1665  EVT EltVT = VT.getVectorElementType();
1666  switch (Kind) {
1667  case SelectTypeKind::AnyType:
1668    break;
1669  case SelectTypeKind::Int:
1670    if (EltVT != MVT::i8 && EltVT != MVT::i16 && EltVT != MVT::i32 &&
1671        EltVT != MVT::i64)
1672      return 0;
1673    break;
1674  case SelectTypeKind::Int1:
1675    if (EltVT != MVT::i1)
1676      return 0;
1677    break;
1678  case SelectTypeKind::FP:
1679    if (EltVT != MVT::f16 && EltVT != MVT::f32 && EltVT != MVT::f64)
1680      return 0;
1681    break;
1682  }
1683
1684  unsigned Offset;
1685  switch (VT.getVectorMinNumElements()) {
1686  case 16: // 8-bit
1687    Offset = 0;
1688    break;
1689  case 8: // 16-bit
1690    Offset = 1;
1691    break;
1692  case 4: // 32-bit
1693    Offset = 2;
1694    break;
1695  case 2: // 64-bit
1696    Offset = 3;
1697    break;
1698  default:
1699    return 0;
1700  }
1701
1702  return (Opcodes.size() <= Offset) ? 0 : Opcodes[Offset];
1703}
1704
1705// This function is almost identical to SelectWhilePair, but has an
1706// extra check on the range of the immediate operand.
1707// TODO: Merge these two functions together at some point?
1708void AArch64DAGToDAGISel::SelectPExtPair(SDNode *N, unsigned Opc) {
1709  // Immediate can be either 0 or 1.
1710  if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1711    if (Imm->getZExtValue() > 1)
1712      return;
1713
1714  SDLoc DL(N);
1715  EVT VT = N->getValueType(0);
1716  SDValue Ops[] = {N->getOperand(1), N->getOperand(2)};
1717  SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
1718  SDValue SuperReg = SDValue(WhilePair, 0);
1719
1720  for (unsigned I = 0; I < 2; ++I)
1721    ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
1722                                   AArch64::psub0 + I, DL, VT, SuperReg));
1723
1724  CurDAG->RemoveDeadNode(N);
1725}
1726
1727void AArch64DAGToDAGISel::SelectWhilePair(SDNode *N, unsigned Opc) {
1728  SDLoc DL(N);
1729  EVT VT = N->getValueType(0);
1730
1731  SDValue Ops[] = {N->getOperand(1), N->getOperand(2)};
1732
1733  SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
1734  SDValue SuperReg = SDValue(WhilePair, 0);
1735
1736  for (unsigned I = 0; I < 2; ++I)
1737    ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
1738                                   AArch64::psub0 + I, DL, VT, SuperReg));
1739
1740  CurDAG->RemoveDeadNode(N);
1741}
1742
1743void AArch64DAGToDAGISel::SelectCVTIntrinsic(SDNode *N, unsigned NumVecs,
1744                                             unsigned Opcode) {
1745  EVT VT = N->getValueType(0);
1746  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1747  SDValue Ops = createZTuple(Regs);
1748  SDLoc DL(N);
1749  SDNode *Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Ops);
1750  SDValue SuperReg = SDValue(Intrinsic, 0);
1751  for (unsigned i = 0; i < NumVecs; ++i)
1752    ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1753                                   AArch64::zsub0 + i, DL, VT, SuperReg));
1754
1755  CurDAG->RemoveDeadNode(N);
1756}
1757
1758void AArch64DAGToDAGISel::SelectDestructiveMultiIntrinsic(SDNode *N,
1759                                                          unsigned NumVecs,
1760                                                          bool IsZmMulti,
1761                                                          unsigned Opcode,
1762                                                          bool HasPred) {
1763  assert(Opcode != 0 && "Unexpected opcode");
1764
1765  SDLoc DL(N);
1766  EVT VT = N->getValueType(0);
1767  unsigned FirstVecIdx = HasPred ? 2 : 1;
1768
1769  auto GetMultiVecOperand = [=](unsigned StartIdx) {
1770    SmallVector<SDValue, 4> Regs(N->op_begin() + StartIdx,
1771                                 N->op_begin() + StartIdx + NumVecs);
1772    return createZMulTuple(Regs);
1773  };
1774
1775  SDValue Zdn = GetMultiVecOperand(FirstVecIdx);
1776
1777  SDValue Zm;
1778  if (IsZmMulti)
1779    Zm = GetMultiVecOperand(NumVecs + FirstVecIdx);
1780  else
1781    Zm = N->getOperand(NumVecs + FirstVecIdx);
1782
1783  SDNode *Intrinsic;
1784  if (HasPred)
1785    Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped,
1786                                       N->getOperand(1), Zdn, Zm);
1787  else
1788    Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Zdn, Zm);
1789  SDValue SuperReg = SDValue(Intrinsic, 0);
1790  for (unsigned i = 0; i < NumVecs; ++i)
1791    ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1792                                   AArch64::zsub0 + i, DL, VT, SuperReg));
1793
1794  CurDAG->RemoveDeadNode(N);
1795}
1796
1797void AArch64DAGToDAGISel::SelectPredicatedLoad(SDNode *N, unsigned NumVecs,
1798                                               unsigned Scale, unsigned Opc_ri,
1799                                               unsigned Opc_rr, bool IsIntr) {
1800  assert(Scale < 5 && "Invalid scaling value.");
1801  SDLoc DL(N);
1802  EVT VT = N->getValueType(0);
1803  SDValue Chain = N->getOperand(0);
1804
1805  // Optimize addressing mode.
1806  SDValue Base, Offset;
1807  unsigned Opc;
1808  std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
1809      N, Opc_rr, Opc_ri, N->getOperand(IsIntr ? 3 : 2),
1810      CurDAG->getTargetConstant(0, DL, MVT::i64), Scale);
1811
1812  SDValue Ops[] = {N->getOperand(IsIntr ? 2 : 1), // Predicate
1813                   Base,                          // Memory operand
1814                   Offset, Chain};
1815
1816  const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1817
1818  SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
1819  SDValue SuperReg = SDValue(Load, 0);
1820  for (unsigned i = 0; i < NumVecs; ++i)
1821    ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1822                                   AArch64::zsub0 + i, DL, VT, SuperReg));
1823
1824  // Copy chain
1825  unsigned ChainIdx = NumVecs;
1826  ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
1827  CurDAG->RemoveDeadNode(N);
1828}
1829
1830void AArch64DAGToDAGISel::SelectContiguousMultiVectorLoad(SDNode *N,
1831                                                          unsigned NumVecs,
1832                                                          unsigned Scale,
1833                                                          unsigned Opc_ri,
1834                                                          unsigned Opc_rr) {
1835  assert(Scale < 4 && "Invalid scaling value.");
1836  SDLoc DL(N);
1837  EVT VT = N->getValueType(0);
1838  SDValue Chain = N->getOperand(0);
1839
1840  SDValue PNg = N->getOperand(2);
1841  SDValue Base = N->getOperand(3);
1842  SDValue Offset = CurDAG->getTargetConstant(0, DL, MVT::i64);
1843  unsigned Opc;
1844  std::tie(Opc, Base, Offset) =
1845      findAddrModeSVELoadStore(N, Opc_rr, Opc_ri, Base, Offset, Scale);
1846
1847  SDValue Ops[] = {PNg,            // Predicate-as-counter
1848                   Base,           // Memory operand
1849                   Offset, Chain};
1850
1851  const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1852
1853  SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
1854  SDValue SuperReg = SDValue(Load, 0);
1855  for (unsigned i = 0; i < NumVecs; ++i)
1856    ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1857                                   AArch64::zsub0 + i, DL, VT, SuperReg));
1858
1859  // Copy chain
1860  unsigned ChainIdx = NumVecs;
1861  ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
1862  CurDAG->RemoveDeadNode(N);
1863}
1864
1865void AArch64DAGToDAGISel::SelectFrintFromVT(SDNode *N, unsigned NumVecs,
1866                                            unsigned Opcode) {
1867  if (N->getValueType(0) != MVT::nxv4f32)
1868    return;
1869  SelectUnaryMultiIntrinsic(N, NumVecs, true, Opcode);
1870}
1871
1872void AArch64DAGToDAGISel::SelectMultiVectorLuti(SDNode *Node,
1873                                                unsigned NumOutVecs,
1874                                                unsigned Opc, uint32_t MaxImm) {
1875  if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Node->getOperand(4)))
1876    if (Imm->getZExtValue() > MaxImm)
1877      return;
1878
1879  SDValue ZtValue;
1880  if (!ImmToReg<AArch64::ZT0, 0>(Node->getOperand(2), ZtValue))
1881    return;
1882  SDValue Ops[] = {ZtValue, Node->getOperand(3), Node->getOperand(4)};
1883  SDLoc DL(Node);
1884  EVT VT = Node->getValueType(0);
1885
1886  SDNode *Instruction =
1887      CurDAG->getMachineNode(Opc, DL, {MVT::Untyped, MVT::Other}, Ops);
1888  SDValue SuperReg = SDValue(Instruction, 0);
1889
1890  for (unsigned I = 0; I < NumOutVecs; ++I)
1891    ReplaceUses(SDValue(Node, I), CurDAG->getTargetExtractSubreg(
1892                                      AArch64::zsub0 + I, DL, VT, SuperReg));
1893
1894  // Copy chain
1895  unsigned ChainIdx = NumOutVecs;
1896  ReplaceUses(SDValue(Node, ChainIdx), SDValue(Instruction, 1));
1897  CurDAG->RemoveDeadNode(Node);
1898}
1899
1900void AArch64DAGToDAGISel::SelectClamp(SDNode *N, unsigned NumVecs,
1901                                      unsigned Op) {
1902  SDLoc DL(N);
1903  EVT VT = N->getValueType(0);
1904
1905  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1906  SDValue Zd = createZMulTuple(Regs);
1907  SDValue Zn = N->getOperand(1 + NumVecs);
1908  SDValue Zm = N->getOperand(2 + NumVecs);
1909
1910  SDValue Ops[] = {Zd, Zn, Zm};
1911
1912  SDNode *Intrinsic = CurDAG->getMachineNode(Op, DL, MVT::Untyped, Ops);
1913  SDValue SuperReg = SDValue(Intrinsic, 0);
1914  for (unsigned i = 0; i < NumVecs; ++i)
1915    ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1916                                   AArch64::zsub0 + i, DL, VT, SuperReg));
1917
1918  CurDAG->RemoveDeadNode(N);
1919}
1920
1921bool SelectSMETile(unsigned &BaseReg, unsigned TileNum) {
1922  switch (BaseReg) {
1923  default:
1924    return false;
1925  case AArch64::ZA:
1926  case AArch64::ZAB0:
1927    if (TileNum == 0)
1928      break;
1929    return false;
1930  case AArch64::ZAH0:
1931    if (TileNum <= 1)
1932      break;
1933    return false;
1934  case AArch64::ZAS0:
1935    if (TileNum <= 3)
1936      break;
1937    return false;
1938  case AArch64::ZAD0:
1939    if (TileNum <= 7)
1940      break;
1941    return false;
1942  }
1943
1944  BaseReg += TileNum;
1945  return true;
1946}
1947
1948template <unsigned MaxIdx, unsigned Scale>
1949void AArch64DAGToDAGISel::SelectMultiVectorMove(SDNode *N, unsigned NumVecs,
1950                                                unsigned BaseReg, unsigned Op) {
1951  unsigned TileNum = 0;
1952  if (BaseReg != AArch64::ZA)
1953    TileNum = N->getConstantOperandVal(2);
1954
1955  if (!SelectSMETile(BaseReg, TileNum))
1956    return;
1957
1958  SDValue SliceBase, Base, Offset;
1959  if (BaseReg == AArch64::ZA)
1960    SliceBase = N->getOperand(2);
1961  else
1962    SliceBase = N->getOperand(3);
1963
1964  if (!SelectSMETileSlice(SliceBase, MaxIdx, Base, Offset, Scale))
1965    return;
1966
1967  SDLoc DL(N);
1968  SDValue SubReg = CurDAG->getRegister(BaseReg, MVT::Other);
1969  SDValue Ops[] = {SubReg, Base, Offset, /*Chain*/ N->getOperand(0)};
1970  SDNode *Mov = CurDAG->getMachineNode(Op, DL, {MVT::Untyped, MVT::Other}, Ops);
1971
1972  EVT VT = N->getValueType(0);
1973  for (unsigned I = 0; I < NumVecs; ++I)
1974    ReplaceUses(SDValue(N, I),
1975                CurDAG->getTargetExtractSubreg(AArch64::zsub0 + I, DL, VT,
1976                                               SDValue(Mov, 0)));
1977  // Copy chain
1978  unsigned ChainIdx = NumVecs;
1979  ReplaceUses(SDValue(N, ChainIdx), SDValue(Mov, 1));
1980  CurDAG->RemoveDeadNode(N);
1981}
1982
1983void AArch64DAGToDAGISel::SelectUnaryMultiIntrinsic(SDNode *N,
1984                                                    unsigned NumOutVecs,
1985                                                    bool IsTupleInput,
1986                                                    unsigned Opc) {
1987  SDLoc DL(N);
1988  EVT VT = N->getValueType(0);
1989  unsigned NumInVecs = N->getNumOperands() - 1;
1990
1991  SmallVector<SDValue, 6> Ops;
1992  if (IsTupleInput) {
1993    assert((NumInVecs == 2 || NumInVecs == 4) &&
1994           "Don't know how to handle multi-register input!");
1995    SmallVector<SDValue, 4> Regs(N->op_begin() + 1,
1996                                 N->op_begin() + 1 + NumInVecs);
1997    Ops.push_back(createZMulTuple(Regs));
1998  } else {
1999    // All intrinsic nodes have the ID as the first operand, hence the "1 + I".
2000    for (unsigned I = 0; I < NumInVecs; I++)
2001      Ops.push_back(N->getOperand(1 + I));
2002  }
2003
2004  SDNode *Res = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
2005  SDValue SuperReg = SDValue(Res, 0);
2006
2007  for (unsigned I = 0; I < NumOutVecs; I++)
2008    ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
2009                                   AArch64::zsub0 + I, DL, VT, SuperReg));
2010  CurDAG->RemoveDeadNode(N);
2011}
2012
2013void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
2014                                      unsigned Opc) {
2015  SDLoc dl(N);
2016  EVT VT = N->getOperand(2)->getValueType(0);
2017
2018  // Form a REG_SEQUENCE to force register allocation.
2019  bool Is128Bit = VT.getSizeInBits() == 128;
2020  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2021  SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
2022
2023  SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
2024  SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
2025
2026  // Transfer memoperands.
2027  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2028  CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2029
2030  ReplaceNode(N, St);
2031}
2032
2033void AArch64DAGToDAGISel::SelectPredicatedStore(SDNode *N, unsigned NumVecs,
2034                                                unsigned Scale, unsigned Opc_rr,
2035                                                unsigned Opc_ri) {
2036  SDLoc dl(N);
2037
2038  // Form a REG_SEQUENCE to force register allocation.
2039  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2040  SDValue RegSeq = createZTuple(Regs);
2041
2042  // Optimize addressing mode.
2043  unsigned Opc;
2044  SDValue Offset, Base;
2045  std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
2046      N, Opc_rr, Opc_ri, N->getOperand(NumVecs + 3),
2047      CurDAG->getTargetConstant(0, dl, MVT::i64), Scale);
2048
2049  SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), // predicate
2050                   Base,                               // address
2051                   Offset,                             // offset
2052                   N->getOperand(0)};                  // chain
2053  SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
2054
2055  ReplaceNode(N, St);
2056}
2057
2058bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base,
2059                                                      SDValue &OffImm) {
2060  SDLoc dl(N);
2061  const DataLayout &DL = CurDAG->getDataLayout();
2062  const TargetLowering *TLI = getTargetLowering();
2063
2064  // Try to match it for the frame address
2065  if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) {
2066    int FI = FINode->getIndex();
2067    Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
2068    OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
2069    return true;
2070  }
2071
2072  return false;
2073}
2074
2075void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
2076                                          unsigned Opc) {
2077  SDLoc dl(N);
2078  EVT VT = N->getOperand(2)->getValueType(0);
2079  const EVT ResTys[] = {MVT::i64,    // Type of the write back register
2080                        MVT::Other}; // Type for the Chain
2081
2082  // Form a REG_SEQUENCE to force register allocation.
2083  bool Is128Bit = VT.getSizeInBits() == 128;
2084  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2085  SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
2086
2087  SDValue Ops[] = {RegSeq,
2088                   N->getOperand(NumVecs + 1), // base register
2089                   N->getOperand(NumVecs + 2), // Incremental
2090                   N->getOperand(0)};          // Chain
2091  SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2092
2093  ReplaceNode(N, St);
2094}
2095
2096namespace {
2097/// WidenVector - Given a value in the V64 register class, produce the
2098/// equivalent value in the V128 register class.
2099class WidenVector {
2100  SelectionDAG &DAG;
2101
2102public:
2103  WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
2104
2105  SDValue operator()(SDValue V64Reg) {
2106    EVT VT = V64Reg.getValueType();
2107    unsigned NarrowSize = VT.getVectorNumElements();
2108    MVT EltTy = VT.getVectorElementType().getSimpleVT();
2109    MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
2110    SDLoc DL(V64Reg);
2111
2112    SDValue Undef =
2113        SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
2114    return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
2115  }
2116};
2117} // namespace
2118
2119/// NarrowVector - Given a value in the V128 register class, produce the
2120/// equivalent value in the V64 register class.
2121static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
2122  EVT VT = V128Reg.getValueType();
2123  unsigned WideSize = VT.getVectorNumElements();
2124  MVT EltTy = VT.getVectorElementType().getSimpleVT();
2125  MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
2126
2127  return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
2128                                    V128Reg);
2129}
2130
2131void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
2132                                         unsigned Opc) {
2133  SDLoc dl(N);
2134  EVT VT = N->getValueType(0);
2135  bool Narrow = VT.getSizeInBits() == 64;
2136
2137  // Form a REG_SEQUENCE to force register allocation.
2138  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2139
2140  if (Narrow)
2141    transform(Regs, Regs.begin(),
2142                   WidenVector(*CurDAG));
2143
2144  SDValue RegSeq = createQTuple(Regs);
2145
2146  const EVT ResTys[] = {MVT::Untyped, MVT::Other};
2147
2148  unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2);
2149
2150  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2151                   N->getOperand(NumVecs + 3), N->getOperand(0)};
2152  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2153  SDValue SuperReg = SDValue(Ld, 0);
2154
2155  EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
2156  static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
2157                                    AArch64::qsub2, AArch64::qsub3 };
2158  for (unsigned i = 0; i < NumVecs; ++i) {
2159    SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
2160    if (Narrow)
2161      NV = NarrowVector(NV, *CurDAG);
2162    ReplaceUses(SDValue(N, i), NV);
2163  }
2164
2165  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
2166  CurDAG->RemoveDeadNode(N);
2167}
2168
2169void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
2170                                             unsigned Opc) {
2171  SDLoc dl(N);
2172  EVT VT = N->getValueType(0);
2173  bool Narrow = VT.getSizeInBits() == 64;
2174
2175  // Form a REG_SEQUENCE to force register allocation.
2176  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2177
2178  if (Narrow)
2179    transform(Regs, Regs.begin(),
2180                   WidenVector(*CurDAG));
2181
2182  SDValue RegSeq = createQTuple(Regs);
2183
2184  const EVT ResTys[] = {MVT::i64, // Type of the write back register
2185                        RegSeq->getValueType(0), MVT::Other};
2186
2187  unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1);
2188
2189  SDValue Ops[] = {RegSeq,
2190                   CurDAG->getTargetConstant(LaneNo, dl,
2191                                             MVT::i64),         // Lane Number
2192                   N->getOperand(NumVecs + 2),                  // Base register
2193                   N->getOperand(NumVecs + 3),                  // Incremental
2194                   N->getOperand(0)};
2195  SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2196
2197  // Update uses of the write back register
2198  ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
2199
2200  // Update uses of the vector list
2201  SDValue SuperReg = SDValue(Ld, 1);
2202  if (NumVecs == 1) {
2203    ReplaceUses(SDValue(N, 0),
2204                Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
2205  } else {
2206    EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
2207    static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
2208                                      AArch64::qsub2, AArch64::qsub3 };
2209    for (unsigned i = 0; i < NumVecs; ++i) {
2210      SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
2211                                                  SuperReg);
2212      if (Narrow)
2213        NV = NarrowVector(NV, *CurDAG);
2214      ReplaceUses(SDValue(N, i), NV);
2215    }
2216  }
2217
2218  // Update the Chain
2219  ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
2220  CurDAG->RemoveDeadNode(N);
2221}
2222
2223void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
2224                                          unsigned Opc) {
2225  SDLoc dl(N);
2226  EVT VT = N->getOperand(2)->getValueType(0);
2227  bool Narrow = VT.getSizeInBits() == 64;
2228
2229  // Form a REG_SEQUENCE to force register allocation.
2230  SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2231
2232  if (Narrow)
2233    transform(Regs, Regs.begin(),
2234                   WidenVector(*CurDAG));
2235
2236  SDValue RegSeq = createQTuple(Regs);
2237
2238  unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2);
2239
2240  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2241                   N->getOperand(NumVecs + 3), N->getOperand(0)};
2242  SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
2243
2244  // Transfer memoperands.
2245  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2246  CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2247
2248  ReplaceNode(N, St);
2249}
2250
2251void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
2252                                              unsigned Opc) {
2253  SDLoc dl(N);
2254  EVT VT = N->getOperand(2)->getValueType(0);
2255  bool Narrow = VT.getSizeInBits() == 64;
2256
2257  // Form a REG_SEQUENCE to force register allocation.
2258  SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2259
2260  if (Narrow)
2261    transform(Regs, Regs.begin(),
2262                   WidenVector(*CurDAG));
2263
2264  SDValue RegSeq = createQTuple(Regs);
2265
2266  const EVT ResTys[] = {MVT::i64, // Type of the write back register
2267                        MVT::Other};
2268
2269  unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1);
2270
2271  SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2272                   N->getOperand(NumVecs + 2), // Base Register
2273                   N->getOperand(NumVecs + 3), // Incremental
2274                   N->getOperand(0)};
2275  SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2276
2277  // Transfer memoperands.
2278  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2279  CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2280
2281  ReplaceNode(N, St);
2282}
2283
2284static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
2285                                       unsigned &Opc, SDValue &Opd0,
2286                                       unsigned &LSB, unsigned &MSB,
2287                                       unsigned NumberOfIgnoredLowBits,
2288                                       bool BiggerPattern) {
2289  assert(N->getOpcode() == ISD::AND &&
2290         "N must be a AND operation to call this function");
2291
2292  EVT VT = N->getValueType(0);
2293
2294  // Here we can test the type of VT and return false when the type does not
2295  // match, but since it is done prior to that call in the current context
2296  // we turned that into an assert to avoid redundant code.
2297  assert((VT == MVT::i32 || VT == MVT::i64) &&
2298         "Type checking must have been done before calling this function");
2299
2300  // FIXME: simplify-demanded-bits in DAGCombine will probably have
2301  // changed the AND node to a 32-bit mask operation. We'll have to
2302  // undo that as part of the transform here if we want to catch all
2303  // the opportunities.
2304  // Currently the NumberOfIgnoredLowBits argument helps to recover
2305  // from these situations when matching bigger pattern (bitfield insert).
2306
2307  // For unsigned extracts, check for a shift right and mask
2308  uint64_t AndImm = 0;
2309  if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
2310    return false;
2311
2312  const SDNode *Op0 = N->getOperand(0).getNode();
2313
2314  // Because of simplify-demanded-bits in DAGCombine, the mask may have been
2315  // simplified. Try to undo that
2316  AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
2317
2318  // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2319  if (AndImm & (AndImm + 1))
2320    return false;
2321
2322  bool ClampMSB = false;
2323  uint64_t SrlImm = 0;
2324  // Handle the SRL + ANY_EXTEND case.
2325  if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
2326      isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
2327    // Extend the incoming operand of the SRL to 64-bit.
2328    Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
2329    // Make sure to clamp the MSB so that we preserve the semantics of the
2330    // original operations.
2331    ClampMSB = true;
2332  } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
2333             isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
2334                                   SrlImm)) {
2335    // If the shift result was truncated, we can still combine them.
2336    Opd0 = Op0->getOperand(0).getOperand(0);
2337
2338    // Use the type of SRL node.
2339    VT = Opd0->getValueType(0);
2340  } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
2341    Opd0 = Op0->getOperand(0);
2342    ClampMSB = (VT == MVT::i32);
2343  } else if (BiggerPattern) {
2344    // Let's pretend a 0 shift right has been performed.
2345    // The resulting code will be at least as good as the original one
2346    // plus it may expose more opportunities for bitfield insert pattern.
2347    // FIXME: Currently we limit this to the bigger pattern, because
2348    // some optimizations expect AND and not UBFM.
2349    Opd0 = N->getOperand(0);
2350  } else
2351    return false;
2352
2353  // Bail out on large immediates. This happens when no proper
2354  // combining/constant folding was performed.
2355  if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
2356    LLVM_DEBUG(
2357        (dbgs() << N
2358                << ": Found large shift immediate, this should not happen\n"));
2359    return false;
2360  }
2361
2362  LSB = SrlImm;
2363  MSB = SrlImm +
2364        (VT == MVT::i32 ? llvm::countr_one<uint32_t>(AndImm)
2365                        : llvm::countr_one<uint64_t>(AndImm)) -
2366        1;
2367  if (ClampMSB)
2368    // Since we're moving the extend before the right shift operation, we need
2369    // to clamp the MSB to make sure we don't shift in undefined bits instead of
2370    // the zeros which would get shifted in with the original right shift
2371    // operation.
2372    MSB = MSB > 31 ? 31 : MSB;
2373
2374  Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2375  return true;
2376}
2377
2378static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
2379                                             SDValue &Opd0, unsigned &Immr,
2380                                             unsigned &Imms) {
2381  assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
2382
2383  EVT VT = N->getValueType(0);
2384  unsigned BitWidth = VT.getSizeInBits();
2385  assert((VT == MVT::i32 || VT == MVT::i64) &&
2386         "Type checking must have been done before calling this function");
2387
2388  SDValue Op = N->getOperand(0);
2389  if (Op->getOpcode() == ISD::TRUNCATE) {
2390    Op = Op->getOperand(0);
2391    VT = Op->getValueType(0);
2392    BitWidth = VT.getSizeInBits();
2393  }
2394
2395  uint64_t ShiftImm;
2396  if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
2397      !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
2398    return false;
2399
2400  unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2401  if (ShiftImm + Width > BitWidth)
2402    return false;
2403
2404  Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
2405  Opd0 = Op.getOperand(0);
2406  Immr = ShiftImm;
2407  Imms = ShiftImm + Width - 1;
2408  return true;
2409}
2410
2411static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
2412                                          SDValue &Opd0, unsigned &LSB,
2413                                          unsigned &MSB) {
2414  // We are looking for the following pattern which basically extracts several
2415  // continuous bits from the source value and places it from the LSB of the
2416  // destination value, all other bits of the destination value or set to zero:
2417  //
2418  // Value2 = AND Value, MaskImm
2419  // SRL Value2, ShiftImm
2420  //
2421  // with MaskImm >> ShiftImm to search for the bit width.
2422  //
2423  // This gets selected into a single UBFM:
2424  //
2425  // UBFM Value, ShiftImm, Log2_64(MaskImm)
2426  //
2427
2428  if (N->getOpcode() != ISD::SRL)
2429    return false;
2430
2431  uint64_t AndMask = 0;
2432  if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
2433    return false;
2434
2435  Opd0 = N->getOperand(0).getOperand(0);
2436
2437  uint64_t SrlImm = 0;
2438  if (!isIntImmediate(N->getOperand(1), SrlImm))
2439    return false;
2440
2441  // Check whether we really have several bits extract here.
2442  if (!isMask_64(AndMask >> SrlImm))
2443    return false;
2444
2445  Opc = N->getValueType(0) == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2446  LSB = SrlImm;
2447  MSB = llvm::Log2_64(AndMask);
2448  return true;
2449}
2450
2451static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
2452                                       unsigned &Immr, unsigned &Imms,
2453                                       bool BiggerPattern) {
2454  assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
2455         "N must be a SHR/SRA operation to call this function");
2456
2457  EVT VT = N->getValueType(0);
2458
2459  // Here we can test the type of VT and return false when the type does not
2460  // match, but since it is done prior to that call in the current context
2461  // we turned that into an assert to avoid redundant code.
2462  assert((VT == MVT::i32 || VT == MVT::i64) &&
2463         "Type checking must have been done before calling this function");
2464
2465  // Check for AND + SRL doing several bits extract.
2466  if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
2467    return true;
2468
2469  // We're looking for a shift of a shift.
2470  uint64_t ShlImm = 0;
2471  uint64_t TruncBits = 0;
2472  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
2473    Opd0 = N->getOperand(0).getOperand(0);
2474  } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
2475             N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
2476    // We are looking for a shift of truncate. Truncate from i64 to i32 could
2477    // be considered as setting high 32 bits as zero. Our strategy here is to
2478    // always generate 64bit UBFM. This consistency will help the CSE pass
2479    // later find more redundancy.
2480    Opd0 = N->getOperand(0).getOperand(0);
2481    TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
2482    VT = Opd0.getValueType();
2483    assert(VT == MVT::i64 && "the promoted type should be i64");
2484  } else if (BiggerPattern) {
2485    // Let's pretend a 0 shift left has been performed.
2486    // FIXME: Currently we limit this to the bigger pattern case,
2487    // because some optimizations expect AND and not UBFM
2488    Opd0 = N->getOperand(0);
2489  } else
2490    return false;
2491
2492  // Missing combines/constant folding may have left us with strange
2493  // constants.
2494  if (ShlImm >= VT.getSizeInBits()) {
2495    LLVM_DEBUG(
2496        (dbgs() << N
2497                << ": Found large shift immediate, this should not happen\n"));
2498    return false;
2499  }
2500
2501  uint64_t SrlImm = 0;
2502  if (!isIntImmediate(N->getOperand(1), SrlImm))
2503    return false;
2504
2505  assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
2506         "bad amount in shift node!");
2507  int immr = SrlImm - ShlImm;
2508  Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
2509  Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
2510  // SRA requires a signed extraction
2511  if (VT == MVT::i32)
2512    Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
2513  else
2514    Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
2515  return true;
2516}
2517
2518bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
2519  assert(N->getOpcode() == ISD::SIGN_EXTEND);
2520
2521  EVT VT = N->getValueType(0);
2522  EVT NarrowVT = N->getOperand(0)->getValueType(0);
2523  if (VT != MVT::i64 || NarrowVT != MVT::i32)
2524    return false;
2525
2526  uint64_t ShiftImm;
2527  SDValue Op = N->getOperand(0);
2528  if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
2529    return false;
2530
2531  SDLoc dl(N);
2532  // Extend the incoming operand of the shift to 64-bits.
2533  SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
2534  unsigned Immr = ShiftImm;
2535  unsigned Imms = NarrowVT.getSizeInBits() - 1;
2536  SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
2537                   CurDAG->getTargetConstant(Imms, dl, VT)};
2538  CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
2539  return true;
2540}
2541
2542static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
2543                                SDValue &Opd0, unsigned &Immr, unsigned &Imms,
2544                                unsigned NumberOfIgnoredLowBits = 0,
2545                                bool BiggerPattern = false) {
2546  if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
2547    return false;
2548
2549  switch (N->getOpcode()) {
2550  default:
2551    if (!N->isMachineOpcode())
2552      return false;
2553    break;
2554  case ISD::AND:
2555    return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
2556                                      NumberOfIgnoredLowBits, BiggerPattern);
2557  case ISD::SRL:
2558  case ISD::SRA:
2559    return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
2560
2561  case ISD::SIGN_EXTEND_INREG:
2562    return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
2563  }
2564
2565  unsigned NOpc = N->getMachineOpcode();
2566  switch (NOpc) {
2567  default:
2568    return false;
2569  case AArch64::SBFMWri:
2570  case AArch64::UBFMWri:
2571  case AArch64::SBFMXri:
2572  case AArch64::UBFMXri:
2573    Opc = NOpc;
2574    Opd0 = N->getOperand(0);
2575    Immr = N->getConstantOperandVal(1);
2576    Imms = N->getConstantOperandVal(2);
2577    return true;
2578  }
2579  // Unreachable
2580  return false;
2581}
2582
2583bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
2584  unsigned Opc, Immr, Imms;
2585  SDValue Opd0;
2586  if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
2587    return false;
2588
2589  EVT VT = N->getValueType(0);
2590  SDLoc dl(N);
2591
2592  // If the bit extract operation is 64bit but the original type is 32bit, we
2593  // need to add one EXTRACT_SUBREG.
2594  if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
2595    SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
2596                       CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
2597
2598    SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
2599    SDValue Inner = CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl,
2600                                                   MVT::i32, SDValue(BFM, 0));
2601    ReplaceNode(N, Inner.getNode());
2602    return true;
2603  }
2604
2605  SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
2606                   CurDAG->getTargetConstant(Imms, dl, VT)};
2607  CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2608  return true;
2609}
2610
2611/// Does DstMask form a complementary pair with the mask provided by
2612/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
2613/// this asks whether DstMask zeroes precisely those bits that will be set by
2614/// the other half.
2615static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
2616                              unsigned NumberOfIgnoredHighBits, EVT VT) {
2617  assert((VT == MVT::i32 || VT == MVT::i64) &&
2618         "i32 or i64 mask type expected!");
2619  unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
2620
2621  APInt SignificantDstMask = APInt(BitWidth, DstMask);
2622  APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
2623
2624  return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
2625         (SignificantDstMask | SignificantBitsToBeInserted).isAllOnes();
2626}
2627
2628// Look for bits that will be useful for later uses.
2629// A bit is consider useless as soon as it is dropped and never used
2630// before it as been dropped.
2631// E.g., looking for useful bit of x
2632// 1. y = x & 0x7
2633// 2. z = y >> 2
2634// After #1, x useful bits are 0x7, then the useful bits of x, live through
2635// y.
2636// After #2, the useful bits of x are 0x4.
2637// However, if x is used on an unpredicatable instruction, then all its bits
2638// are useful.
2639// E.g.
2640// 1. y = x & 0x7
2641// 2. z = y >> 2
2642// 3. str x, [@x]
2643static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
2644
2645static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
2646                                              unsigned Depth) {
2647  uint64_t Imm =
2648      cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2649  Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
2650  UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
2651  getUsefulBits(Op, UsefulBits, Depth + 1);
2652}
2653
2654static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
2655                                             uint64_t Imm, uint64_t MSB,
2656                                             unsigned Depth) {
2657  // inherit the bitwidth value
2658  APInt OpUsefulBits(UsefulBits);
2659  OpUsefulBits = 1;
2660
2661  if (MSB >= Imm) {
2662    OpUsefulBits <<= MSB - Imm + 1;
2663    --OpUsefulBits;
2664    // The interesting part will be in the lower part of the result
2665    getUsefulBits(Op, OpUsefulBits, Depth + 1);
2666    // The interesting part was starting at Imm in the argument
2667    OpUsefulBits <<= Imm;
2668  } else {
2669    OpUsefulBits <<= MSB + 1;
2670    --OpUsefulBits;
2671    // The interesting part will be shifted in the result
2672    OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
2673    getUsefulBits(Op, OpUsefulBits, Depth + 1);
2674    // The interesting part was at zero in the argument
2675    OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
2676  }
2677
2678  UsefulBits &= OpUsefulBits;
2679}
2680
2681static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
2682                                  unsigned Depth) {
2683  uint64_t Imm =
2684      cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2685  uint64_t MSB =
2686      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2687
2688  getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
2689}
2690
2691static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
2692                                              unsigned Depth) {
2693  uint64_t ShiftTypeAndValue =
2694      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2695  APInt Mask(UsefulBits);
2696  Mask.clearAllBits();
2697  Mask.flipAllBits();
2698
2699  if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
2700    // Shift Left
2701    uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2702    Mask <<= ShiftAmt;
2703    getUsefulBits(Op, Mask, Depth + 1);
2704    Mask.lshrInPlace(ShiftAmt);
2705  } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
2706    // Shift Right
2707    // We do not handle AArch64_AM::ASR, because the sign will change the
2708    // number of useful bits
2709    uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2710    Mask.lshrInPlace(ShiftAmt);
2711    getUsefulBits(Op, Mask, Depth + 1);
2712    Mask <<= ShiftAmt;
2713  } else
2714    return;
2715
2716  UsefulBits &= Mask;
2717}
2718
2719static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
2720                                 unsigned Depth) {
2721  uint64_t Imm =
2722      cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2723  uint64_t MSB =
2724      cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
2725
2726  APInt OpUsefulBits(UsefulBits);
2727  OpUsefulBits = 1;
2728
2729  APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
2730  ResultUsefulBits.flipAllBits();
2731  APInt Mask(UsefulBits.getBitWidth(), 0);
2732
2733  getUsefulBits(Op, ResultUsefulBits, Depth + 1);
2734
2735  if (MSB >= Imm) {
2736    // The instruction is a BFXIL.
2737    uint64_t Width = MSB - Imm + 1;
2738    uint64_t LSB = Imm;
2739
2740    OpUsefulBits <<= Width;
2741    --OpUsefulBits;
2742
2743    if (Op.getOperand(1) == Orig) {
2744      // Copy the low bits from the result to bits starting from LSB.
2745      Mask = ResultUsefulBits & OpUsefulBits;
2746      Mask <<= LSB;
2747    }
2748
2749    if (Op.getOperand(0) == Orig)
2750      // Bits starting from LSB in the input contribute to the result.
2751      Mask |= (ResultUsefulBits & ~OpUsefulBits);
2752  } else {
2753    // The instruction is a BFI.
2754    uint64_t Width = MSB + 1;
2755    uint64_t LSB = UsefulBits.getBitWidth() - Imm;
2756
2757    OpUsefulBits <<= Width;
2758    --OpUsefulBits;
2759    OpUsefulBits <<= LSB;
2760
2761    if (Op.getOperand(1) == Orig) {
2762      // Copy the bits from the result to the zero bits.
2763      Mask = ResultUsefulBits & OpUsefulBits;
2764      Mask.lshrInPlace(LSB);
2765    }
2766
2767    if (Op.getOperand(0) == Orig)
2768      Mask |= (ResultUsefulBits & ~OpUsefulBits);
2769  }
2770
2771  UsefulBits &= Mask;
2772}
2773
2774static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
2775                                SDValue Orig, unsigned Depth) {
2776
2777  // Users of this node should have already been instruction selected
2778  // FIXME: Can we turn that into an assert?
2779  if (!UserNode->isMachineOpcode())
2780    return;
2781
2782  switch (UserNode->getMachineOpcode()) {
2783  default:
2784    return;
2785  case AArch64::ANDSWri:
2786  case AArch64::ANDSXri:
2787  case AArch64::ANDWri:
2788  case AArch64::ANDXri:
2789    // We increment Depth only when we call the getUsefulBits
2790    return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
2791                                             Depth);
2792  case AArch64::UBFMWri:
2793  case AArch64::UBFMXri:
2794    return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
2795
2796  case AArch64::ORRWrs:
2797  case AArch64::ORRXrs:
2798    if (UserNode->getOperand(0) != Orig && UserNode->getOperand(1) == Orig)
2799      getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
2800                                        Depth);
2801    return;
2802  case AArch64::BFMWri:
2803  case AArch64::BFMXri:
2804    return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
2805
2806  case AArch64::STRBBui:
2807  case AArch64::STURBBi:
2808    if (UserNode->getOperand(0) != Orig)
2809      return;
2810    UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
2811    return;
2812
2813  case AArch64::STRHHui:
2814  case AArch64::STURHHi:
2815    if (UserNode->getOperand(0) != Orig)
2816      return;
2817    UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
2818    return;
2819  }
2820}
2821
2822static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
2823  if (Depth >= SelectionDAG::MaxRecursionDepth)
2824    return;
2825  // Initialize UsefulBits
2826  if (!Depth) {
2827    unsigned Bitwidth = Op.getScalarValueSizeInBits();
2828    // At the beginning, assume every produced bits is useful
2829    UsefulBits = APInt(Bitwidth, 0);
2830    UsefulBits.flipAllBits();
2831  }
2832  APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
2833
2834  for (SDNode *Node : Op.getNode()->uses()) {
2835    // A use cannot produce useful bits
2836    APInt UsefulBitsForUse = APInt(UsefulBits);
2837    getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
2838    UsersUsefulBits |= UsefulBitsForUse;
2839  }
2840  // UsefulBits contains the produced bits that are meaningful for the
2841  // current definition, thus a user cannot make a bit meaningful at
2842  // this point
2843  UsefulBits &= UsersUsefulBits;
2844}
2845
2846/// Create a machine node performing a notional SHL of Op by ShlAmount. If
2847/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2848/// 0, return Op unchanged.
2849static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
2850  if (ShlAmount == 0)
2851    return Op;
2852
2853  EVT VT = Op.getValueType();
2854  SDLoc dl(Op);
2855  unsigned BitWidth = VT.getSizeInBits();
2856  unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2857
2858  SDNode *ShiftNode;
2859  if (ShlAmount > 0) {
2860    // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2861    ShiftNode = CurDAG->getMachineNode(
2862        UBFMOpc, dl, VT, Op,
2863        CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
2864        CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
2865  } else {
2866    // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2867    assert(ShlAmount < 0 && "expected right shift");
2868    int ShrAmount = -ShlAmount;
2869    ShiftNode = CurDAG->getMachineNode(
2870        UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
2871        CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
2872  }
2873
2874  return SDValue(ShiftNode, 0);
2875}
2876
2877// For bit-field-positioning pattern "(and (shl VAL, N), ShiftedMask)".
2878static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op,
2879                                           bool BiggerPattern,
2880                                           const uint64_t NonZeroBits,
2881                                           SDValue &Src, int &DstLSB,
2882                                           int &Width);
2883
2884// For bit-field-positioning pattern "shl VAL, N)".
2885static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op,
2886                                           bool BiggerPattern,
2887                                           const uint64_t NonZeroBits,
2888                                           SDValue &Src, int &DstLSB,
2889                                           int &Width);
2890
2891/// Does this tree qualify as an attempt to move a bitfield into position,
2892/// essentially "(and (shl VAL, N), Mask)" or (shl VAL, N).
2893static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
2894                                    bool BiggerPattern, SDValue &Src,
2895                                    int &DstLSB, int &Width) {
2896  EVT VT = Op.getValueType();
2897  unsigned BitWidth = VT.getSizeInBits();
2898  (void)BitWidth;
2899  assert(BitWidth == 32 || BitWidth == 64);
2900
2901  KnownBits Known = CurDAG->computeKnownBits(Op);
2902
2903  // Non-zero in the sense that they're not provably zero, which is the key
2904  // point if we want to use this value
2905  const uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
2906  if (!isShiftedMask_64(NonZeroBits))
2907    return false;
2908
2909  switch (Op.getOpcode()) {
2910  default:
2911    break;
2912  case ISD::AND:
2913    return isBitfieldPositioningOpFromAnd(CurDAG, Op, BiggerPattern,
2914                                          NonZeroBits, Src, DstLSB, Width);
2915  case ISD::SHL:
2916    return isBitfieldPositioningOpFromShl(CurDAG, Op, BiggerPattern,
2917                                          NonZeroBits, Src, DstLSB, Width);
2918  }
2919
2920  return false;
2921}
2922
2923static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op,
2924                                           bool BiggerPattern,
2925                                           const uint64_t NonZeroBits,
2926                                           SDValue &Src, int &DstLSB,
2927                                           int &Width) {
2928  assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed");
2929
2930  EVT VT = Op.getValueType();
2931  assert((VT == MVT::i32 || VT == MVT::i64) &&
2932         "Caller guarantees VT is one of i32 or i64");
2933  (void)VT;
2934
2935  uint64_t AndImm;
2936  if (!isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm))
2937    return false;
2938
2939  // If (~AndImm & NonZeroBits) is not zero at POS, we know that
2940  //   1) (AndImm & (1 << POS) == 0)
2941  //   2) the result of AND is not zero at POS bit (according to NonZeroBits)
2942  //
2943  // 1) and 2) don't agree so something must be wrong (e.g., in
2944  // 'SelectionDAG::computeKnownBits')
2945  assert((~AndImm & NonZeroBits) == 0 &&
2946         "Something must be wrong (e.g., in SelectionDAG::computeKnownBits)");
2947
2948  SDValue AndOp0 = Op.getOperand(0);
2949
2950  uint64_t ShlImm;
2951  SDValue ShlOp0;
2952  if (isOpcWithIntImmediate(AndOp0.getNode(), ISD::SHL, ShlImm)) {
2953    // For pattern "and(shl(val, N), shifted-mask)", 'ShlOp0' is set to 'val'.
2954    ShlOp0 = AndOp0.getOperand(0);
2955  } else if (VT == MVT::i64 && AndOp0.getOpcode() == ISD::ANY_EXTEND &&
2956             isOpcWithIntImmediate(AndOp0.getOperand(0).getNode(), ISD::SHL,
2957                                   ShlImm)) {
2958    // For pattern "and(any_extend(shl(val, N)), shifted-mask)"
2959
2960    // ShlVal == shl(val, N), which is a left shift on a smaller type.
2961    SDValue ShlVal = AndOp0.getOperand(0);
2962
2963    // Since this is after type legalization and ShlVal is extended to MVT::i64,
2964    // expect VT to be MVT::i32.
2965    assert((ShlVal.getValueType() == MVT::i32) && "Expect VT to be MVT::i32.");
2966
2967    // Widens 'val' to MVT::i64 as the source of bit field positioning.
2968    ShlOp0 = Widen(CurDAG, ShlVal.getOperand(0));
2969  } else
2970    return false;
2971
2972  // For !BiggerPattern, bail out if the AndOp0 has more than one use, since
2973  // then we'll end up generating AndOp0+UBFIZ instead of just keeping
2974  // AndOp0+AND.
2975  if (!BiggerPattern && !AndOp0.hasOneUse())
2976    return false;
2977
2978  DstLSB = llvm::countr_zero(NonZeroBits);
2979  Width = llvm::countr_one(NonZeroBits >> DstLSB);
2980
2981  // Bail out on large Width. This happens when no proper combining / constant
2982  // folding was performed.
2983  if (Width >= (int)VT.getSizeInBits()) {
2984    // If VT is i64, Width > 64 is insensible since NonZeroBits is uint64_t, and
2985    // Width == 64 indicates a missed dag-combine from "(and val, AllOnes)" to
2986    // "val".
2987    // If VT is i32, what Width >= 32 means:
2988    // - For "(and (any_extend(shl val, N)), shifted-mask)", the`and` Op
2989    //   demands at least 'Width' bits (after dag-combiner). This together with
2990    //   `any_extend` Op (undefined higher bits) indicates missed combination
2991    //   when lowering the 'and' IR instruction to an machine IR instruction.
2992    LLVM_DEBUG(
2993        dbgs()
2994        << "Found large Width in bit-field-positioning -- this indicates no "
2995           "proper combining / constant folding was performed\n");
2996    return false;
2997  }
2998
2999  // BFI encompasses sufficiently many nodes that it's worth inserting an extra
3000  // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
3001  // amount.  BiggerPattern is true when this pattern is being matched for BFI,
3002  // BiggerPattern is false when this pattern is being matched for UBFIZ, in
3003  // which case it is not profitable to insert an extra shift.
3004  if (ShlImm != uint64_t(DstLSB) && !BiggerPattern)
3005    return false;
3006
3007  Src = getLeftShift(CurDAG, ShlOp0, ShlImm - DstLSB);
3008  return true;
3009}
3010
3011// For node (shl (and val, mask), N)), returns true if the node is equivalent to
3012// UBFIZ.
3013static bool isSeveralBitsPositioningOpFromShl(const uint64_t ShlImm, SDValue Op,
3014                                              SDValue &Src, int &DstLSB,
3015                                              int &Width) {
3016  // Caller should have verified that N is a left shift with constant shift
3017  // amount; asserts that.
3018  assert(Op.getOpcode() == ISD::SHL &&
3019         "Op.getNode() should be a SHL node to call this function");
3020  assert(isIntImmediateEq(Op.getOperand(1), ShlImm) &&
3021         "Op.getNode() should shift ShlImm to call this function");
3022
3023  uint64_t AndImm = 0;
3024  SDValue Op0 = Op.getOperand(0);
3025  if (!isOpcWithIntImmediate(Op0.getNode(), ISD::AND, AndImm))
3026    return false;
3027
3028  const uint64_t ShiftedAndImm = ((AndImm << ShlImm) >> ShlImm);
3029  if (isMask_64(ShiftedAndImm)) {
3030    // AndImm is a superset of (AllOnes >> ShlImm); in other words, AndImm
3031    // should end with Mask, and could be prefixed with random bits if those
3032    // bits are shifted out.
3033    //
3034    // For example, xyz11111 (with {x,y,z} being 0 or 1) is fine if ShlImm >= 3;
3035    // the AND result corresponding to those bits are shifted out, so it's fine
3036    // to not extract them.
3037    Width = llvm::countr_one(ShiftedAndImm);
3038    DstLSB = ShlImm;
3039    Src = Op0.getOperand(0);
3040    return true;
3041  }
3042  return false;
3043}
3044
3045static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op,
3046                                           bool BiggerPattern,
3047                                           const uint64_t NonZeroBits,
3048                                           SDValue &Src, int &DstLSB,
3049                                           int &Width) {
3050  assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed");
3051
3052  EVT VT = Op.getValueType();
3053  assert((VT == MVT::i32 || VT == MVT::i64) &&
3054         "Caller guarantees that type is i32 or i64");
3055  (void)VT;
3056
3057  uint64_t ShlImm;
3058  if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
3059    return false;
3060
3061  if (!BiggerPattern && !Op.hasOneUse())
3062    return false;
3063
3064  if (isSeveralBitsPositioningOpFromShl(ShlImm, Op, Src, DstLSB, Width))
3065    return true;
3066
3067  DstLSB = llvm::countr_zero(NonZeroBits);
3068  Width = llvm::countr_one(NonZeroBits >> DstLSB);
3069
3070  if (ShlImm != uint64_t(DstLSB) && !BiggerPattern)
3071    return false;
3072
3073  Src = getLeftShift(CurDAG, Op.getOperand(0), ShlImm - DstLSB);
3074  return true;
3075}
3076
3077static bool isShiftedMask(uint64_t Mask, EVT VT) {
3078  assert(VT == MVT::i32 || VT == MVT::i64);
3079  if (VT == MVT::i32)
3080    return isShiftedMask_32(Mask);
3081  return isShiftedMask_64(Mask);
3082}
3083
3084// Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
3085// inserted only sets known zero bits.
3086static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
3087  assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
3088
3089  EVT VT = N->getValueType(0);
3090  if (VT != MVT::i32 && VT != MVT::i64)
3091    return false;
3092
3093  unsigned BitWidth = VT.getSizeInBits();
3094
3095  uint64_t OrImm;
3096  if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
3097    return false;
3098
3099  // Skip this transformation if the ORR immediate can be encoded in the ORR.
3100  // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
3101  // performance neutral.
3102  if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
3103    return false;
3104
3105  uint64_t MaskImm;
3106  SDValue And = N->getOperand(0);
3107  // Must be a single use AND with an immediate operand.
3108  if (!And.hasOneUse() ||
3109      !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
3110    return false;
3111
3112  // Compute the Known Zero for the AND as this allows us to catch more general
3113  // cases than just looking for AND with imm.
3114  KnownBits Known = CurDAG->computeKnownBits(And);
3115
3116  // Non-zero in the sense that they're not provably zero, which is the key
3117  // point if we want to use this value.
3118  uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
3119
3120  // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
3121  if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
3122    return false;
3123
3124  // The bits being inserted must only set those bits that are known to be zero.
3125  if ((OrImm & NotKnownZero) != 0) {
3126    // FIXME:  It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
3127    // currently handle this case.
3128    return false;
3129  }
3130
3131  // BFI/BFXIL dst, src, #lsb, #width.
3132  int LSB = llvm::countr_one(NotKnownZero);
3133  int Width = BitWidth - APInt(BitWidth, NotKnownZero).popcount();
3134
3135  // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
3136  unsigned ImmR = (BitWidth - LSB) % BitWidth;
3137  unsigned ImmS = Width - 1;
3138
3139  // If we're creating a BFI instruction avoid cases where we need more
3140  // instructions to materialize the BFI constant as compared to the original
3141  // ORR.  A BFXIL will use the same constant as the original ORR, so the code
3142  // should be no worse in this case.
3143  bool IsBFI = LSB != 0;
3144  uint64_t BFIImm = OrImm >> LSB;
3145  if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
3146    // We have a BFI instruction and we know the constant can't be materialized
3147    // with a ORR-immediate with the zero register.
3148    unsigned OrChunks = 0, BFIChunks = 0;
3149    for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
3150      if (((OrImm >> Shift) & 0xFFFF) != 0)
3151        ++OrChunks;
3152      if (((BFIImm >> Shift) & 0xFFFF) != 0)
3153        ++BFIChunks;
3154    }
3155    if (BFIChunks > OrChunks)
3156      return false;
3157  }
3158
3159  // Materialize the constant to be inserted.
3160  SDLoc DL(N);
3161  unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
3162  SDNode *MOVI = CurDAG->getMachineNode(
3163      MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
3164
3165  // Create the BFI/BFXIL instruction.
3166  SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
3167                   CurDAG->getTargetConstant(ImmR, DL, VT),
3168                   CurDAG->getTargetConstant(ImmS, DL, VT)};
3169  unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3170  CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3171  return true;
3172}
3173
3174static bool isWorthFoldingIntoOrrWithShift(SDValue Dst, SelectionDAG *CurDAG,
3175                                           SDValue &ShiftedOperand,
3176                                           uint64_t &EncodedShiftImm) {
3177  // Avoid folding Dst into ORR-with-shift if Dst has other uses than ORR.
3178  if (!Dst.hasOneUse())
3179    return false;
3180
3181  EVT VT = Dst.getValueType();
3182  assert((VT == MVT::i32 || VT == MVT::i64) &&
3183         "Caller should guarantee that VT is one of i32 or i64");
3184  const unsigned SizeInBits = VT.getSizeInBits();
3185
3186  SDLoc DL(Dst.getNode());
3187  uint64_t AndImm, ShlImm;
3188  if (isOpcWithIntImmediate(Dst.getNode(), ISD::AND, AndImm) &&
3189      isShiftedMask_64(AndImm)) {
3190    // Avoid transforming 'DstOp0' if it has other uses than the AND node.
3191    SDValue DstOp0 = Dst.getOperand(0);
3192    if (!DstOp0.hasOneUse())
3193      return false;
3194
3195    // An example to illustrate the transformation
3196    // From:
3197    //    lsr     x8, x1, #1
3198    //    and     x8, x8, #0x3f80
3199    //    bfxil   x8, x1, #0, #7
3200    // To:
3201    //    and    x8, x23, #0x7f
3202    //    ubfx   x9, x23, #8, #7
3203    //    orr    x23, x8, x9, lsl #7
3204    //
3205    // The number of instructions remains the same, but ORR is faster than BFXIL
3206    // on many AArch64 processors (or as good as BFXIL if not faster). Besides,
3207    // the dependency chain is improved after the transformation.
3208    uint64_t SrlImm;
3209    if (isOpcWithIntImmediate(DstOp0.getNode(), ISD::SRL, SrlImm)) {
3210      uint64_t NumTrailingZeroInShiftedMask = llvm::countr_zero(AndImm);
3211      if ((SrlImm + NumTrailingZeroInShiftedMask) < SizeInBits) {
3212        unsigned MaskWidth =
3213            llvm::countr_one(AndImm >> NumTrailingZeroInShiftedMask);
3214        unsigned UBFMOpc =
3215            (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3216        SDNode *UBFMNode = CurDAG->getMachineNode(
3217            UBFMOpc, DL, VT, DstOp0.getOperand(0),
3218            CurDAG->getTargetConstant(SrlImm + NumTrailingZeroInShiftedMask, DL,
3219                                      VT),
3220            CurDAG->getTargetConstant(
3221                SrlImm + NumTrailingZeroInShiftedMask + MaskWidth - 1, DL, VT));
3222        ShiftedOperand = SDValue(UBFMNode, 0);
3223        EncodedShiftImm = AArch64_AM::getShifterImm(
3224            AArch64_AM::LSL, NumTrailingZeroInShiftedMask);
3225        return true;
3226      }
3227    }
3228    return false;
3229  }
3230
3231  if (isOpcWithIntImmediate(Dst.getNode(), ISD::SHL, ShlImm)) {
3232    ShiftedOperand = Dst.getOperand(0);
3233    EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm);
3234    return true;
3235  }
3236
3237  uint64_t SrlImm;
3238  if (isOpcWithIntImmediate(Dst.getNode(), ISD::SRL, SrlImm)) {
3239    ShiftedOperand = Dst.getOperand(0);
3240    EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm);
3241    return true;
3242  }
3243  return false;
3244}
3245
3246// Given an 'ISD::OR' node that is going to be selected as BFM, analyze
3247// the operands and select it to AArch64::ORR with shifted registers if
3248// that's more efficient. Returns true iff selection to AArch64::ORR happens.
3249static bool tryOrrWithShift(SDNode *N, SDValue OrOpd0, SDValue OrOpd1,
3250                            SDValue Src, SDValue Dst, SelectionDAG *CurDAG,
3251                            const bool BiggerPattern) {
3252  EVT VT = N->getValueType(0);
3253  assert(N->getOpcode() == ISD::OR && "Expect N to be an OR node");
3254  assert(((N->getOperand(0) == OrOpd0 && N->getOperand(1) == OrOpd1) ||
3255          (N->getOperand(1) == OrOpd0 && N->getOperand(0) == OrOpd1)) &&
3256         "Expect OrOpd0 and OrOpd1 to be operands of ISD::OR");
3257  assert((VT == MVT::i32 || VT == MVT::i64) &&
3258         "Expect result type to be i32 or i64 since N is combinable to BFM");
3259  SDLoc DL(N);
3260
3261  // Bail out if BFM simplifies away one node in BFM Dst.
3262  if (OrOpd1 != Dst)
3263    return false;
3264
3265  const unsigned OrrOpc = (VT == MVT::i32) ? AArch64::ORRWrs : AArch64::ORRXrs;
3266  // For "BFM Rd, Rn, #immr, #imms", it's known that BFM simplifies away fewer
3267  // nodes from Rn (or inserts additional shift node) if BiggerPattern is true.
3268  if (BiggerPattern) {
3269    uint64_t SrcAndImm;
3270    if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::AND, SrcAndImm) &&
3271        isMask_64(SrcAndImm) && OrOpd0.getOperand(0) == Src) {
3272      // OrOpd0 = AND Src, #Mask
3273      // So BFM simplifies away one AND node from Src and doesn't simplify away
3274      // nodes from Dst. If ORR with left-shifted operand also simplifies away
3275      // one node (from Rd), ORR is better since it has higher throughput and
3276      // smaller latency than BFM on many AArch64 processors (and for the rest
3277      // ORR is at least as good as BFM).
3278      SDValue ShiftedOperand;
3279      uint64_t EncodedShiftImm;
3280      if (isWorthFoldingIntoOrrWithShift(Dst, CurDAG, ShiftedOperand,
3281                                         EncodedShiftImm)) {
3282        SDValue Ops[] = {OrOpd0, ShiftedOperand,
3283                         CurDAG->getTargetConstant(EncodedShiftImm, DL, VT)};
3284        CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3285        return true;
3286      }
3287    }
3288    return false;
3289  }
3290
3291  assert((!BiggerPattern) && "BiggerPattern should be handled above");
3292
3293  uint64_t ShlImm;
3294  if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SHL, ShlImm)) {
3295    if (OrOpd0.getOperand(0) == Src && OrOpd0.hasOneUse()) {
3296      SDValue Ops[] = {
3297          Dst, Src,
3298          CurDAG->getTargetConstant(
3299              AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)};
3300      CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3301      return true;
3302    }
3303
3304    // Select the following pattern to left-shifted operand rather than BFI.
3305    // %val1 = op ..
3306    // %val2 = shl %val1, #imm
3307    // %res = or %val1, %val2
3308    //
3309    // If N is selected to be BFI, we know that
3310    // 1) OrOpd0 would be the operand from which extract bits (i.e., folded into
3311    // BFI) 2) OrOpd1 would be the destination operand (i.e., preserved)
3312    //
3313    // Instead of selecting N to BFI, fold OrOpd0 as a left shift directly.
3314    if (OrOpd0.getOperand(0) == OrOpd1) {
3315      SDValue Ops[] = {
3316          OrOpd1, OrOpd1,
3317          CurDAG->getTargetConstant(
3318              AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)};
3319      CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3320      return true;
3321    }
3322  }
3323
3324  uint64_t SrlImm;
3325  if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SRL, SrlImm)) {
3326    // Select the following pattern to right-shifted operand rather than BFXIL.
3327    // %val1 = op ..
3328    // %val2 = lshr %val1, #imm
3329    // %res = or %val1, %val2
3330    //
3331    // If N is selected to be BFXIL, we know that
3332    // 1) OrOpd0 would be the operand from which extract bits (i.e., folded into
3333    // BFXIL) 2) OrOpd1 would be the destination operand (i.e., preserved)
3334    //
3335    // Instead of selecting N to BFXIL, fold OrOpd0 as a right shift directly.
3336    if (OrOpd0.getOperand(0) == OrOpd1) {
3337      SDValue Ops[] = {
3338          OrOpd1, OrOpd1,
3339          CurDAG->getTargetConstant(
3340              AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm), DL, VT)};
3341      CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3342      return true;
3343    }
3344  }
3345
3346  return false;
3347}
3348
3349static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
3350                                      SelectionDAG *CurDAG) {
3351  assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
3352
3353  EVT VT = N->getValueType(0);
3354  if (VT != MVT::i32 && VT != MVT::i64)
3355    return false;
3356
3357  unsigned BitWidth = VT.getSizeInBits();
3358
3359  // Because of simplify-demanded-bits in DAGCombine, involved masks may not
3360  // have the expected shape. Try to undo that.
3361
3362  unsigned NumberOfIgnoredLowBits = UsefulBits.countr_zero();
3363  unsigned NumberOfIgnoredHighBits = UsefulBits.countl_zero();
3364
3365  // Given a OR operation, check if we have the following pattern
3366  // ubfm c, b, imm, imm2 (or something that does the same jobs, see
3367  //                       isBitfieldExtractOp)
3368  // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
3369  //                 countTrailingZeros(mask2) == imm2 - imm + 1
3370  // f = d | c
3371  // if yes, replace the OR instruction with:
3372  // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
3373
3374  // OR is commutative, check all combinations of operand order and values of
3375  // BiggerPattern, i.e.
3376  //     Opd0, Opd1, BiggerPattern=false
3377  //     Opd1, Opd0, BiggerPattern=false
3378  //     Opd0, Opd1, BiggerPattern=true
3379  //     Opd1, Opd0, BiggerPattern=true
3380  // Several of these combinations may match, so check with BiggerPattern=false
3381  // first since that will produce better results by matching more instructions
3382  // and/or inserting fewer extra instructions.
3383  for (int I = 0; I < 4; ++I) {
3384
3385    SDValue Dst, Src;
3386    unsigned ImmR, ImmS;
3387    bool BiggerPattern = I / 2;
3388    SDValue OrOpd0Val = N->getOperand(I % 2);
3389    SDNode *OrOpd0 = OrOpd0Val.getNode();
3390    SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
3391    SDNode *OrOpd1 = OrOpd1Val.getNode();
3392
3393    unsigned BFXOpc;
3394    int DstLSB, Width;
3395    if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
3396                            NumberOfIgnoredLowBits, BiggerPattern)) {
3397      // Check that the returned opcode is compatible with the pattern,
3398      // i.e., same type and zero extended (U and not S)
3399      if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
3400          (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
3401        continue;
3402
3403      // Compute the width of the bitfield insertion
3404      DstLSB = 0;
3405      Width = ImmS - ImmR + 1;
3406      // FIXME: This constraint is to catch bitfield insertion we may
3407      // want to widen the pattern if we want to grab general bitfied
3408      // move case
3409      if (Width <= 0)
3410        continue;
3411
3412      // If the mask on the insertee is correct, we have a BFXIL operation. We
3413      // can share the ImmR and ImmS values from the already-computed UBFM.
3414    } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
3415                                       BiggerPattern,
3416                                       Src, DstLSB, Width)) {
3417      ImmR = (BitWidth - DstLSB) % BitWidth;
3418      ImmS = Width - 1;
3419    } else
3420      continue;
3421
3422    // Check the second part of the pattern
3423    EVT VT = OrOpd1Val.getValueType();
3424    assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
3425
3426    // Compute the Known Zero for the candidate of the first operand.
3427    // This allows to catch more general case than just looking for
3428    // AND with imm. Indeed, simplify-demanded-bits may have removed
3429    // the AND instruction because it proves it was useless.
3430    KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val);
3431
3432    // Check if there is enough room for the second operand to appear
3433    // in the first one
3434    APInt BitsToBeInserted =
3435        APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
3436
3437    if ((BitsToBeInserted & ~Known.Zero) != 0)
3438      continue;
3439
3440    // Set the first operand
3441    uint64_t Imm;
3442    if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
3443        isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
3444      // In that case, we can eliminate the AND
3445      Dst = OrOpd1->getOperand(0);
3446    else
3447      // Maybe the AND has been removed by simplify-demanded-bits
3448      // or is useful because it discards more bits
3449      Dst = OrOpd1Val;
3450
3451    // Before selecting ISD::OR node to AArch64::BFM, see if an AArch64::ORR
3452    // with shifted operand is more efficient.
3453    if (tryOrrWithShift(N, OrOpd0Val, OrOpd1Val, Src, Dst, CurDAG,
3454                        BiggerPattern))
3455      return true;
3456
3457    // both parts match
3458    SDLoc DL(N);
3459    SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
3460                     CurDAG->getTargetConstant(ImmS, DL, VT)};
3461    unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3462    CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3463    return true;
3464  }
3465
3466  // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
3467  // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
3468  // mask (e.g., 0x000ffff0).
3469  uint64_t Mask0Imm, Mask1Imm;
3470  SDValue And0 = N->getOperand(0);
3471  SDValue And1 = N->getOperand(1);
3472  if (And0.hasOneUse() && And1.hasOneUse() &&
3473      isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
3474      isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
3475      APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
3476      (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
3477
3478    // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
3479    // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
3480    // bits to be inserted.
3481    if (isShiftedMask(Mask0Imm, VT)) {
3482      std::swap(And0, And1);
3483      std::swap(Mask0Imm, Mask1Imm);
3484    }
3485
3486    SDValue Src = And1->getOperand(0);
3487    SDValue Dst = And0->getOperand(0);
3488    unsigned LSB = llvm::countr_zero(Mask1Imm);
3489    int Width = BitWidth - APInt(BitWidth, Mask0Imm).popcount();
3490
3491    // The BFXIL inserts the low-order bits from a source register, so right
3492    // shift the needed bits into place.
3493    SDLoc DL(N);
3494    unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3495    uint64_t LsrImm = LSB;
3496    if (Src->hasOneUse() &&
3497        isOpcWithIntImmediate(Src.getNode(), ISD::SRL, LsrImm) &&
3498        (LsrImm + LSB) < BitWidth) {
3499      Src = Src->getOperand(0);
3500      LsrImm += LSB;
3501    }
3502
3503    SDNode *LSR = CurDAG->getMachineNode(
3504        ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LsrImm, DL, VT),
3505        CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
3506
3507    // BFXIL is an alias of BFM, so translate to BFM operands.
3508    unsigned ImmR = (BitWidth - LSB) % BitWidth;
3509    unsigned ImmS = Width - 1;
3510
3511    // Create the BFXIL instruction.
3512    SDValue Ops[] = {Dst, SDValue(LSR, 0),
3513                     CurDAG->getTargetConstant(ImmR, DL, VT),
3514                     CurDAG->getTargetConstant(ImmS, DL, VT)};
3515    unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3516    CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3517    return true;
3518  }
3519
3520  return false;
3521}
3522
3523bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
3524  if (N->getOpcode() != ISD::OR)
3525    return false;
3526
3527  APInt NUsefulBits;
3528  getUsefulBits(SDValue(N, 0), NUsefulBits);
3529
3530  // If all bits are not useful, just return UNDEF.
3531  if (!NUsefulBits) {
3532    CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
3533    return true;
3534  }
3535
3536  if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
3537    return true;
3538
3539  return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
3540}
3541
3542/// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
3543/// equivalent of a left shift by a constant amount followed by an and masking
3544/// out a contiguous set of bits.
3545bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
3546  if (N->getOpcode() != ISD::AND)
3547    return false;
3548
3549  EVT VT = N->getValueType(0);
3550  if (VT != MVT::i32 && VT != MVT::i64)
3551    return false;
3552
3553  SDValue Op0;
3554  int DstLSB, Width;
3555  if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
3556                               Op0, DstLSB, Width))
3557    return false;
3558
3559  // ImmR is the rotate right amount.
3560  unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
3561  // ImmS is the most significant bit of the source to be moved.
3562  unsigned ImmS = Width - 1;
3563
3564  SDLoc DL(N);
3565  SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
3566                   CurDAG->getTargetConstant(ImmS, DL, VT)};
3567  unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3568  CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3569  return true;
3570}
3571
3572/// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
3573/// variable shift/rotate instructions.
3574bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3575  EVT VT = N->getValueType(0);
3576
3577  unsigned Opc;
3578  switch (N->getOpcode()) {
3579  case ISD::ROTR:
3580    Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
3581    break;
3582  case ISD::SHL:
3583    Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
3584    break;
3585  case ISD::SRL:
3586    Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
3587    break;
3588  case ISD::SRA:
3589    Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
3590    break;
3591  default:
3592    return false;
3593  }
3594
3595  uint64_t Size;
3596  uint64_t Bits;
3597  if (VT == MVT::i32) {
3598    Bits = 5;
3599    Size = 32;
3600  } else if (VT == MVT::i64) {
3601    Bits = 6;
3602    Size = 64;
3603  } else
3604    return false;
3605
3606  SDValue ShiftAmt = N->getOperand(1);
3607  SDLoc DL(N);
3608  SDValue NewShiftAmt;
3609
3610  // Skip over an extend of the shift amount.
3611  if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
3612      ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
3613    ShiftAmt = ShiftAmt->getOperand(0);
3614
3615  if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3616    SDValue Add0 = ShiftAmt->getOperand(0);
3617    SDValue Add1 = ShiftAmt->getOperand(1);
3618    uint64_t Add0Imm;
3619    uint64_t Add1Imm;
3620    if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0)) {
3621      // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3622      // to avoid the ADD/SUB.
3623      NewShiftAmt = Add0;
3624    } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3625               isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
3626               (Add0Imm % Size == 0)) {
3627      // If we are shifting by N-X where N == 0 mod Size, then just shift by -X
3628      // to generate a NEG instead of a SUB from a constant.
3629      unsigned NegOpc;
3630      unsigned ZeroReg;
3631      EVT SubVT = ShiftAmt->getValueType(0);
3632      if (SubVT == MVT::i32) {
3633        NegOpc = AArch64::SUBWrr;
3634        ZeroReg = AArch64::WZR;
3635      } else {
3636        assert(SubVT == MVT::i64);
3637        NegOpc = AArch64::SUBXrr;
3638        ZeroReg = AArch64::XZR;
3639      }
3640      SDValue Zero =
3641          CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
3642      MachineSDNode *Neg =
3643          CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
3644      NewShiftAmt = SDValue(Neg, 0);
3645    } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3646               isIntImmediate(Add0, Add0Imm) && (Add0Imm % Size == Size - 1)) {
3647      // If we are shifting by N-X where N == -1 mod Size, then just shift by ~X
3648      // to generate a NOT instead of a SUB from a constant.
3649      unsigned NotOpc;
3650      unsigned ZeroReg;
3651      EVT SubVT = ShiftAmt->getValueType(0);
3652      if (SubVT == MVT::i32) {
3653        NotOpc = AArch64::ORNWrr;
3654        ZeroReg = AArch64::WZR;
3655      } else {
3656        assert(SubVT == MVT::i64);
3657        NotOpc = AArch64::ORNXrr;
3658        ZeroReg = AArch64::XZR;
3659      }
3660      SDValue Zero =
3661          CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
3662      MachineSDNode *Not =
3663          CurDAG->getMachineNode(NotOpc, DL, SubVT, Zero, Add1);
3664      NewShiftAmt = SDValue(Not, 0);
3665    } else
3666      return false;
3667  } else {
3668    // If the shift amount is masked with an AND, check that the mask covers the
3669    // bits that are implicitly ANDed off by the above opcodes and if so, skip
3670    // the AND.
3671    uint64_t MaskImm;
3672    if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm) &&
3673        !isOpcWithIntImmediate(ShiftAmt.getNode(), AArch64ISD::ANDS, MaskImm))
3674      return false;
3675
3676    if ((unsigned)llvm::countr_one(MaskImm) < Bits)
3677      return false;
3678
3679    NewShiftAmt = ShiftAmt->getOperand(0);
3680  }
3681
3682  // Narrow/widen the shift amount to match the size of the shift operation.
3683  if (VT == MVT::i32)
3684    NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
3685  else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
3686    SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
3687    MachineSDNode *Ext = CurDAG->getMachineNode(
3688        AArch64::SUBREG_TO_REG, DL, VT,
3689        CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
3690    NewShiftAmt = SDValue(Ext, 0);
3691  }
3692
3693  SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
3694  CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3695  return true;
3696}
3697
3698static bool checkCVTFixedPointOperandWithFBits(SelectionDAG *CurDAG, SDValue N,
3699                                               SDValue &FixedPos,
3700                                               unsigned RegWidth,
3701                                               bool isReciprocal) {
3702  APFloat FVal(0.0);
3703  if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
3704    FVal = CN->getValueAPF();
3705  else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
3706    // Some otherwise illegal constants are allowed in this case.
3707    if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
3708        !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
3709      return false;
3710
3711    ConstantPoolSDNode *CN =
3712        dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
3713    FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
3714  } else
3715    return false;
3716
3717  // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
3718  // is between 1 and 32 for a destination w-register, or 1 and 64 for an
3719  // x-register.
3720  //
3721  // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
3722  // want THIS_NODE to be 2^fbits. This is much easier to deal with using
3723  // integers.
3724  bool IsExact;
3725
3726  if (isReciprocal)
3727    if (!FVal.getExactInverse(&FVal))
3728      return false;
3729
3730  // fbits is between 1 and 64 in the worst-case, which means the fmul
3731  // could have 2^64 as an actual operand. Need 65 bits of precision.
3732  APSInt IntVal(65, true);
3733  FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
3734
3735  // N.b. isPowerOf2 also checks for > 0.
3736  if (!IsExact || !IntVal.isPowerOf2())
3737    return false;
3738  unsigned FBits = IntVal.logBase2();
3739
3740  // Checks above should have guaranteed that we haven't lost information in
3741  // finding FBits, but it must still be in range.
3742  if (FBits == 0 || FBits > RegWidth) return false;
3743
3744  FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
3745  return true;
3746}
3747
3748bool AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
3749                                                   unsigned RegWidth) {
3750  return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth,
3751                                            false);
3752}
3753
3754bool AArch64DAGToDAGISel::SelectCVTFixedPosRecipOperand(SDValue N,
3755                                                        SDValue &FixedPos,
3756                                                        unsigned RegWidth) {
3757  return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth,
3758                                            true);
3759}
3760
3761// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
3762// of the string and obtains the integer values from them and combines these
3763// into a single value to be used in the MRS/MSR instruction.
3764static int getIntOperandFromRegisterString(StringRef RegString) {
3765  SmallVector<StringRef, 5> Fields;
3766  RegString.split(Fields, ':');
3767
3768  if (Fields.size() == 1)
3769    return -1;
3770
3771  assert(Fields.size() == 5
3772            && "Invalid number of fields in read register string");
3773
3774  SmallVector<int, 5> Ops;
3775  bool AllIntFields = true;
3776
3777  for (StringRef Field : Fields) {
3778    unsigned IntField;
3779    AllIntFields &= !Field.getAsInteger(10, IntField);
3780    Ops.push_back(IntField);
3781  }
3782
3783  assert(AllIntFields &&
3784          "Unexpected non-integer value in special register string.");
3785  (void)AllIntFields;
3786
3787  // Need to combine the integer fields of the string into a single value
3788  // based on the bit encoding of MRS/MSR instruction.
3789  return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
3790         (Ops[3] << 3) | (Ops[4]);
3791}
3792
3793// Lower the read_register intrinsic to an MRS instruction node if the special
3794// register string argument is either of the form detailed in the ALCE (the
3795// form described in getIntOperandsFromRegsterString) or is a named register
3796// known by the MRS SysReg mapper.
3797bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
3798  const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
3799  const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
3800  SDLoc DL(N);
3801
3802  bool ReadIs128Bit = N->getOpcode() == AArch64ISD::MRRS;
3803
3804  unsigned Opcode64Bit = AArch64::MRS;
3805  int Imm = getIntOperandFromRegisterString(RegString->getString());
3806  if (Imm == -1) {
3807    // No match, Use the sysreg mapper to map the remaining possible strings to
3808    // the value for the register to be used for the instruction operand.
3809    const auto *TheReg =
3810        AArch64SysReg::lookupSysRegByName(RegString->getString());
3811    if (TheReg && TheReg->Readable &&
3812        TheReg->haveFeatures(Subtarget->getFeatureBits()))
3813      Imm = TheReg->Encoding;
3814    else
3815      Imm = AArch64SysReg::parseGenericRegister(RegString->getString());
3816
3817    if (Imm == -1) {
3818      // Still no match, see if this is "pc" or give up.
3819      if (!ReadIs128Bit && RegString->getString() == "pc") {
3820        Opcode64Bit = AArch64::ADR;
3821        Imm = 0;
3822      } else {
3823        return false;
3824      }
3825    }
3826  }
3827
3828  SDValue InChain = N->getOperand(0);
3829  SDValue SysRegImm = CurDAG->getTargetConstant(Imm, DL, MVT::i32);
3830  if (!ReadIs128Bit) {
3831    CurDAG->SelectNodeTo(N, Opcode64Bit, MVT::i64, MVT::Other /* Chain */,
3832                         {SysRegImm, InChain});
3833  } else {
3834    SDNode *MRRS = CurDAG->getMachineNode(
3835        AArch64::MRRS, DL,
3836        {MVT::Untyped /* XSeqPair */, MVT::Other /* Chain */},
3837        {SysRegImm, InChain});
3838
3839    // Sysregs are not endian. The even register always contains the low half
3840    // of the register.
3841    SDValue Lo = CurDAG->getTargetExtractSubreg(AArch64::sube64, DL, MVT::i64,
3842                                                SDValue(MRRS, 0));
3843    SDValue Hi = CurDAG->getTargetExtractSubreg(AArch64::subo64, DL, MVT::i64,
3844                                                SDValue(MRRS, 0));
3845    SDValue OutChain = SDValue(MRRS, 1);
3846
3847    ReplaceUses(SDValue(N, 0), Lo);
3848    ReplaceUses(SDValue(N, 1), Hi);
3849    ReplaceUses(SDValue(N, 2), OutChain);
3850  };
3851  return true;
3852}
3853
3854// Lower the write_register intrinsic to an MSR instruction node if the special
3855// register string argument is either of the form detailed in the ALCE (the
3856// form described in getIntOperandsFromRegsterString) or is a named register
3857// known by the MSR SysReg mapper.
3858bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
3859  const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
3860  const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
3861  SDLoc DL(N);
3862
3863  bool WriteIs128Bit = N->getOpcode() == AArch64ISD::MSRR;
3864
3865  if (!WriteIs128Bit) {
3866    // Check if the register was one of those allowed as the pstatefield value
3867    // in the MSR (immediate) instruction. To accept the values allowed in the
3868    // pstatefield for the MSR (immediate) instruction, we also require that an
3869    // immediate value has been provided as an argument, we know that this is
3870    // the case as it has been ensured by semantic checking.
3871    auto trySelectPState = [&](auto PMapper, unsigned State) {
3872      if (PMapper) {
3873        assert(isa<ConstantSDNode>(N->getOperand(2)) &&
3874               "Expected a constant integer expression.");
3875        unsigned Reg = PMapper->Encoding;
3876        uint64_t Immed = N->getConstantOperandVal(2);
3877        CurDAG->SelectNodeTo(
3878            N, State, MVT::Other, CurDAG->getTargetConstant(Reg, DL, MVT::i32),
3879            CurDAG->getTargetConstant(Immed, DL, MVT::i16), N->getOperand(0));
3880        return true;
3881      }
3882      return false;
3883    };
3884
3885    if (trySelectPState(
3886            AArch64PState::lookupPStateImm0_15ByName(RegString->getString()),
3887            AArch64::MSRpstateImm4))
3888      return true;
3889    if (trySelectPState(
3890            AArch64PState::lookupPStateImm0_1ByName(RegString->getString()),
3891            AArch64::MSRpstateImm1))
3892      return true;
3893  }
3894
3895  int Imm = getIntOperandFromRegisterString(RegString->getString());
3896  if (Imm == -1) {
3897    // Use the sysreg mapper to attempt to map the remaining possible strings
3898    // to the value for the register to be used for the MSR (register)
3899    // instruction operand.
3900    auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
3901    if (TheReg && TheReg->Writeable &&
3902        TheReg->haveFeatures(Subtarget->getFeatureBits()))
3903      Imm = TheReg->Encoding;
3904    else
3905      Imm = AArch64SysReg::parseGenericRegister(RegString->getString());
3906
3907    if (Imm == -1)
3908      return false;
3909  }
3910
3911  SDValue InChain = N->getOperand(0);
3912  if (!WriteIs128Bit) {
3913    CurDAG->SelectNodeTo(N, AArch64::MSR, MVT::Other,
3914                         CurDAG->getTargetConstant(Imm, DL, MVT::i32),
3915                         N->getOperand(2), InChain);
3916  } else {
3917    // No endian swap. The lower half always goes into the even subreg, and the
3918    // higher half always into the odd supreg.
3919    SDNode *Pair = CurDAG->getMachineNode(
3920        TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped /* XSeqPair */,
3921        {CurDAG->getTargetConstant(AArch64::XSeqPairsClassRegClass.getID(), DL,
3922                                   MVT::i32),
3923         N->getOperand(2),
3924         CurDAG->getTargetConstant(AArch64::sube64, DL, MVT::i32),
3925         N->getOperand(3),
3926         CurDAG->getTargetConstant(AArch64::subo64, DL, MVT::i32)});
3927
3928    CurDAG->SelectNodeTo(N, AArch64::MSRR, MVT::Other,
3929                         CurDAG->getTargetConstant(Imm, DL, MVT::i32),
3930                         SDValue(Pair, 0), InChain);
3931  }
3932
3933  return true;
3934}
3935
3936/// We've got special pseudo-instructions for these
3937bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
3938  unsigned Opcode;
3939  EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
3940
3941  // Leave IR for LSE if subtarget supports it.
3942  if (Subtarget->hasLSE()) return false;
3943
3944  if (MemTy == MVT::i8)
3945    Opcode = AArch64::CMP_SWAP_8;
3946  else if (MemTy == MVT::i16)
3947    Opcode = AArch64::CMP_SWAP_16;
3948  else if (MemTy == MVT::i32)
3949    Opcode = AArch64::CMP_SWAP_32;
3950  else if (MemTy == MVT::i64)
3951    Opcode = AArch64::CMP_SWAP_64;
3952  else
3953    llvm_unreachable("Unknown AtomicCmpSwap type");
3954
3955  MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
3956  SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
3957                   N->getOperand(0)};
3958  SDNode *CmpSwap = CurDAG->getMachineNode(
3959      Opcode, SDLoc(N),
3960      CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
3961
3962  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
3963  CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
3964
3965  ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
3966  ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
3967  CurDAG->RemoveDeadNode(N);
3968
3969  return true;
3970}
3971
3972bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm,
3973                                             SDValue &Shift) {
3974  if (!isa<ConstantSDNode>(N))
3975    return false;
3976
3977  SDLoc DL(N);
3978  uint64_t Val = cast<ConstantSDNode>(N)
3979                     ->getAPIntValue()
3980                     .trunc(VT.getFixedSizeInBits())
3981                     .getZExtValue();
3982
3983  switch (VT.SimpleTy) {
3984  case MVT::i8:
3985    // All immediates are supported.
3986    Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
3987    Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
3988    return true;
3989  case MVT::i16:
3990  case MVT::i32:
3991  case MVT::i64:
3992    // Support 8bit unsigned immediates.
3993    if (Val <= 255) {
3994      Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
3995      Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
3996      return true;
3997    }
3998    // Support 16bit unsigned immediates that are a multiple of 256.
3999    if (Val <= 65280 && Val % 256 == 0) {
4000      Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4001      Imm = CurDAG->getTargetConstant(Val >> 8, DL, MVT::i32);
4002      return true;
4003    }
4004    break;
4005  default:
4006    break;
4007  }
4008
4009  return false;
4010}
4011
4012bool AArch64DAGToDAGISel::SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm,
4013                                             SDValue &Shift) {
4014  if (!isa<ConstantSDNode>(N))
4015    return false;
4016
4017  SDLoc DL(N);
4018  int64_t Val = cast<ConstantSDNode>(N)
4019                    ->getAPIntValue()
4020                    .trunc(VT.getFixedSizeInBits())
4021                    .getSExtValue();
4022
4023  switch (VT.SimpleTy) {
4024  case MVT::i8:
4025    // All immediates are supported.
4026    Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4027    Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32);
4028    return true;
4029  case MVT::i16:
4030  case MVT::i32:
4031  case MVT::i64:
4032    // Support 8bit signed immediates.
4033    if (Val >= -128 && Val <= 127) {
4034      Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4035      Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32);
4036      return true;
4037    }
4038    // Support 16bit signed immediates that are a multiple of 256.
4039    if (Val >= -32768 && Val <= 32512 && Val % 256 == 0) {
4040      Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4041      Imm = CurDAG->getTargetConstant((Val >> 8) & 0xFF, DL, MVT::i32);
4042      return true;
4043    }
4044    break;
4045  default:
4046    break;
4047  }
4048
4049  return false;
4050}
4051
4052bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) {
4053  if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4054    int64_t ImmVal = CNode->getSExtValue();
4055    SDLoc DL(N);
4056    if (ImmVal >= -128 && ImmVal < 128) {
4057      Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
4058      return true;
4059    }
4060  }
4061  return false;
4062}
4063
4064bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm) {
4065  if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4066    uint64_t ImmVal = CNode->getZExtValue();
4067
4068    switch (VT.SimpleTy) {
4069    case MVT::i8:
4070      ImmVal &= 0xFF;
4071      break;
4072    case MVT::i16:
4073      ImmVal &= 0xFFFF;
4074      break;
4075    case MVT::i32:
4076      ImmVal &= 0xFFFFFFFF;
4077      break;
4078    case MVT::i64:
4079      break;
4080    default:
4081      llvm_unreachable("Unexpected type");
4082    }
4083
4084    if (ImmVal < 256) {
4085      Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
4086      return true;
4087    }
4088  }
4089  return false;
4090}
4091
4092bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm,
4093                                              bool Invert) {
4094  if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4095    uint64_t ImmVal = CNode->getZExtValue();
4096    SDLoc DL(N);
4097
4098    if (Invert)
4099      ImmVal = ~ImmVal;
4100
4101    // Shift mask depending on type size.
4102    switch (VT.SimpleTy) {
4103    case MVT::i8:
4104      ImmVal &= 0xFF;
4105      ImmVal |= ImmVal << 8;
4106      ImmVal |= ImmVal << 16;
4107      ImmVal |= ImmVal << 32;
4108      break;
4109    case MVT::i16:
4110      ImmVal &= 0xFFFF;
4111      ImmVal |= ImmVal << 16;
4112      ImmVal |= ImmVal << 32;
4113      break;
4114    case MVT::i32:
4115      ImmVal &= 0xFFFFFFFF;
4116      ImmVal |= ImmVal << 32;
4117      break;
4118    case MVT::i64:
4119      break;
4120    default:
4121      llvm_unreachable("Unexpected type");
4122    }
4123
4124    uint64_t encoding;
4125    if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) {
4126      Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64);
4127      return true;
4128    }
4129  }
4130  return false;
4131}
4132
4133// SVE shift intrinsics allow shift amounts larger than the element's bitwidth.
4134// Rather than attempt to normalise everything we can sometimes saturate the
4135// shift amount during selection. This function also allows for consistent
4136// isel patterns by ensuring the resulting "Imm" node is of the i32 type
4137// required by the instructions.
4138bool AArch64DAGToDAGISel::SelectSVEShiftImm(SDValue N, uint64_t Low,
4139                                            uint64_t High, bool AllowSaturation,
4140                                            SDValue &Imm) {
4141  if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
4142    uint64_t ImmVal = CN->getZExtValue();
4143
4144    // Reject shift amounts that are too small.
4145    if (ImmVal < Low)
4146      return false;
4147
4148    // Reject or saturate shift amounts that are too big.
4149    if (ImmVal > High) {
4150      if (!AllowSaturation)
4151        return false;
4152      ImmVal = High;
4153    }
4154
4155    Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
4156    return true;
4157  }
4158
4159  return false;
4160}
4161
4162bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
4163  // tagp(FrameIndex, IRGstack, tag_offset):
4164  // since the offset between FrameIndex and IRGstack is a compile-time
4165  // constant, this can be lowered to a single ADDG instruction.
4166  if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) {
4167    return false;
4168  }
4169
4170  SDValue IRG_SP = N->getOperand(2);
4171  if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4172      IRG_SP->getConstantOperandVal(1) != Intrinsic::aarch64_irg_sp) {
4173    return false;
4174  }
4175
4176  const TargetLowering *TLI = getTargetLowering();
4177  SDLoc DL(N);
4178  int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex();
4179  SDValue FiOp = CurDAG->getTargetFrameIndex(
4180      FI, TLI->getPointerTy(CurDAG->getDataLayout()));
4181  int TagOffset = N->getConstantOperandVal(3);
4182
4183  SDNode *Out = CurDAG->getMachineNode(
4184      AArch64::TAGPstack, DL, MVT::i64,
4185      {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2),
4186       CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
4187  ReplaceNode(N, Out);
4188  return true;
4189}
4190
4191void AArch64DAGToDAGISel::SelectTagP(SDNode *N) {
4192  assert(isa<ConstantSDNode>(N->getOperand(3)) &&
4193         "llvm.aarch64.tagp third argument must be an immediate");
4194  if (trySelectStackSlotTagP(N))
4195    return;
4196  // FIXME: above applies in any case when offset between Op1 and Op2 is a
4197  // compile-time constant, not just for stack allocations.
4198
4199  // General case for unrelated pointers in Op1 and Op2.
4200  SDLoc DL(N);
4201  int TagOffset = N->getConstantOperandVal(3);
4202  SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64,
4203                                      {N->getOperand(1), N->getOperand(2)});
4204  SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64,
4205                                      {SDValue(N1, 0), N->getOperand(2)});
4206  SDNode *N3 = CurDAG->getMachineNode(
4207      AArch64::ADDG, DL, MVT::i64,
4208      {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64),
4209       CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
4210  ReplaceNode(N, N3);
4211}
4212
4213bool AArch64DAGToDAGISel::trySelectCastFixedLengthToScalableVector(SDNode *N) {
4214  assert(N->getOpcode() == ISD::INSERT_SUBVECTOR && "Invalid Node!");
4215
4216  // Bail when not a "cast" like insert_subvector.
4217  if (N->getConstantOperandVal(2) != 0)
4218    return false;
4219  if (!N->getOperand(0).isUndef())
4220    return false;
4221
4222  // Bail when normal isel should do the job.
4223  EVT VT = N->getValueType(0);
4224  EVT InVT = N->getOperand(1).getValueType();
4225  if (VT.isFixedLengthVector() || InVT.isScalableVector())
4226    return false;
4227  if (InVT.getSizeInBits() <= 128)
4228    return false;
4229
4230  // NOTE: We can only get here when doing fixed length SVE code generation.
4231  // We do manual selection because the types involved are not linked to real
4232  // registers (despite being legal) and must be coerced into SVE registers.
4233
4234  assert(VT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock &&
4235         "Expected to insert into a packed scalable vector!");
4236
4237  SDLoc DL(N);
4238  auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
4239  ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT,
4240                                        N->getOperand(1), RC));
4241  return true;
4242}
4243
4244bool AArch64DAGToDAGISel::trySelectCastScalableToFixedLengthVector(SDNode *N) {
4245  assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && "Invalid Node!");
4246
4247  // Bail when not a "cast" like extract_subvector.
4248  if (N->getConstantOperandVal(1) != 0)
4249    return false;
4250
4251  // Bail when normal isel can do the job.
4252  EVT VT = N->getValueType(0);
4253  EVT InVT = N->getOperand(0).getValueType();
4254  if (VT.isScalableVector() || InVT.isFixedLengthVector())
4255    return false;
4256  if (VT.getSizeInBits() <= 128)
4257    return false;
4258
4259  // NOTE: We can only get here when doing fixed length SVE code generation.
4260  // We do manual selection because the types involved are not linked to real
4261  // registers (despite being legal) and must be coerced into SVE registers.
4262
4263  assert(InVT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock &&
4264         "Expected to extract from a packed scalable vector!");
4265
4266  SDLoc DL(N);
4267  auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
4268  ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT,
4269                                        N->getOperand(0), RC));
4270  return true;
4271}
4272
4273bool AArch64DAGToDAGISel::trySelectXAR(SDNode *N) {
4274  assert(N->getOpcode() == ISD::OR && "Expected OR instruction");
4275
4276  SDValue N0 = N->getOperand(0);
4277  SDValue N1 = N->getOperand(1);
4278  EVT VT = N->getValueType(0);
4279
4280  // Essentially: rotr (xor(x, y), imm) -> xar (x, y, imm)
4281  // Rotate by a constant is a funnel shift in IR which is exanded to
4282  // an OR with shifted operands.
4283  // We do the following transform:
4284  //   OR N0, N1 -> xar (x, y, imm)
4285  // Where:
4286  //   N1 = SRL_PRED true, V, splat(imm)  --> rotr amount
4287  //   N0 = SHL_PRED true, V, splat(bits-imm)
4288  //   V = (xor x, y)
4289  if (VT.isScalableVector() && Subtarget->hasSVE2orSME()) {
4290    if (N0.getOpcode() != AArch64ISD::SHL_PRED ||
4291        N1.getOpcode() != AArch64ISD::SRL_PRED)
4292      std::swap(N0, N1);
4293    if (N0.getOpcode() != AArch64ISD::SHL_PRED ||
4294        N1.getOpcode() != AArch64ISD::SRL_PRED)
4295      return false;
4296
4297    auto *TLI = static_cast<const AArch64TargetLowering *>(getTargetLowering());
4298    if (!TLI->isAllActivePredicate(*CurDAG, N0.getOperand(0)) ||
4299        !TLI->isAllActivePredicate(*CurDAG, N1.getOperand(0)))
4300      return false;
4301
4302    SDValue XOR = N0.getOperand(1);
4303    if (XOR.getOpcode() != ISD::XOR || XOR != N1.getOperand(1))
4304      return false;
4305
4306    APInt ShlAmt, ShrAmt;
4307    if (!ISD::isConstantSplatVector(N0.getOperand(2).getNode(), ShlAmt) ||
4308        !ISD::isConstantSplatVector(N1.getOperand(2).getNode(), ShrAmt))
4309      return false;
4310
4311    if (ShlAmt + ShrAmt != VT.getScalarSizeInBits())
4312      return false;
4313
4314    SDLoc DL(N);
4315    SDValue Imm =
4316        CurDAG->getTargetConstant(ShrAmt.getZExtValue(), DL, MVT::i32);
4317
4318    SDValue Ops[] = {XOR.getOperand(0), XOR.getOperand(1), Imm};
4319    if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::Int>(
4320            VT, {AArch64::XAR_ZZZI_B, AArch64::XAR_ZZZI_H, AArch64::XAR_ZZZI_S,
4321                 AArch64::XAR_ZZZI_D})) {
4322      CurDAG->SelectNodeTo(N, Opc, VT, Ops);
4323      return true;
4324    }
4325    return false;
4326  }
4327
4328  if (!Subtarget->hasSHA3())
4329    return false;
4330
4331  if (N0->getOpcode() != AArch64ISD::VSHL ||
4332      N1->getOpcode() != AArch64ISD::VLSHR)
4333    return false;
4334
4335  if (N0->getOperand(0) != N1->getOperand(0) ||
4336      N1->getOperand(0)->getOpcode() != ISD::XOR)
4337    return false;
4338
4339  SDValue XOR = N0.getOperand(0);
4340  SDValue R1 = XOR.getOperand(0);
4341  SDValue R2 = XOR.getOperand(1);
4342
4343  unsigned HsAmt = N0.getConstantOperandVal(1);
4344  unsigned ShAmt = N1.getConstantOperandVal(1);
4345
4346  SDLoc DL = SDLoc(N0.getOperand(1));
4347  SDValue Imm = CurDAG->getTargetConstant(
4348      ShAmt, DL, N0.getOperand(1).getValueType(), false);
4349
4350  if (ShAmt + HsAmt != 64)
4351    return false;
4352
4353  SDValue Ops[] = {R1, R2, Imm};
4354  CurDAG->SelectNodeTo(N, AArch64::XAR, N0.getValueType(), Ops);
4355
4356  return true;
4357}
4358
4359void AArch64DAGToDAGISel::Select(SDNode *Node) {
4360  // If we have a custom node, we already have selected!
4361  if (Node->isMachineOpcode()) {
4362    LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
4363    Node->setNodeId(-1);
4364    return;
4365  }
4366
4367  // Few custom selection stuff.
4368  EVT VT = Node->getValueType(0);
4369
4370  switch (Node->getOpcode()) {
4371  default:
4372    break;
4373
4374  case ISD::ATOMIC_CMP_SWAP:
4375    if (SelectCMP_SWAP(Node))
4376      return;
4377    break;
4378
4379  case ISD::READ_REGISTER:
4380  case AArch64ISD::MRRS:
4381    if (tryReadRegister(Node))
4382      return;
4383    break;
4384
4385  case ISD::WRITE_REGISTER:
4386  case AArch64ISD::MSRR:
4387    if (tryWriteRegister(Node))
4388      return;
4389    break;
4390
4391  case ISD::LOAD: {
4392    // Try to select as an indexed load. Fall through to normal processing
4393    // if we can't.
4394    if (tryIndexedLoad(Node))
4395      return;
4396    break;
4397  }
4398
4399  case ISD::SRL:
4400  case ISD::AND:
4401  case ISD::SRA:
4402  case ISD::SIGN_EXTEND_INREG:
4403    if (tryBitfieldExtractOp(Node))
4404      return;
4405    if (tryBitfieldInsertInZeroOp(Node))
4406      return;
4407    [[fallthrough]];
4408  case ISD::ROTR:
4409  case ISD::SHL:
4410    if (tryShiftAmountMod(Node))
4411      return;
4412    break;
4413
4414  case ISD::SIGN_EXTEND:
4415    if (tryBitfieldExtractOpFromSExt(Node))
4416      return;
4417    break;
4418
4419  case ISD::OR:
4420    if (tryBitfieldInsertOp(Node))
4421      return;
4422    if (trySelectXAR(Node))
4423      return;
4424    break;
4425
4426  case ISD::EXTRACT_SUBVECTOR: {
4427    if (trySelectCastScalableToFixedLengthVector(Node))
4428      return;
4429    break;
4430  }
4431
4432  case ISD::INSERT_SUBVECTOR: {
4433    if (trySelectCastFixedLengthToScalableVector(Node))
4434      return;
4435    break;
4436  }
4437
4438  case ISD::Constant: {
4439    // Materialize zero constants as copies from WZR/XZR.  This allows
4440    // the coalescer to propagate these into other instructions.
4441    ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
4442    if (ConstNode->isZero()) {
4443      if (VT == MVT::i32) {
4444        SDValue New = CurDAG->getCopyFromReg(
4445            CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
4446        ReplaceNode(Node, New.getNode());
4447        return;
4448      } else if (VT == MVT::i64) {
4449        SDValue New = CurDAG->getCopyFromReg(
4450            CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
4451        ReplaceNode(Node, New.getNode());
4452        return;
4453      }
4454    }
4455    break;
4456  }
4457
4458  case ISD::FrameIndex: {
4459    // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
4460    int FI = cast<FrameIndexSDNode>(Node)->getIndex();
4461    unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
4462    const TargetLowering *TLI = getTargetLowering();
4463    SDValue TFI = CurDAG->getTargetFrameIndex(
4464        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
4465    SDLoc DL(Node);
4466    SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
4467                      CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
4468    CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
4469    return;
4470  }
4471  case ISD::INTRINSIC_W_CHAIN: {
4472    unsigned IntNo = Node->getConstantOperandVal(1);
4473    switch (IntNo) {
4474    default:
4475      break;
4476    case Intrinsic::aarch64_ldaxp:
4477    case Intrinsic::aarch64_ldxp: {
4478      unsigned Op =
4479          IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
4480      SDValue MemAddr = Node->getOperand(2);
4481      SDLoc DL(Node);
4482      SDValue Chain = Node->getOperand(0);
4483
4484      SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
4485                                          MVT::Other, MemAddr, Chain);
4486
4487      // Transfer memoperands.
4488      MachineMemOperand *MemOp =
4489          cast<MemIntrinsicSDNode>(Node)->getMemOperand();
4490      CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
4491      ReplaceNode(Node, Ld);
4492      return;
4493    }
4494    case Intrinsic::aarch64_stlxp:
4495    case Intrinsic::aarch64_stxp: {
4496      unsigned Op =
4497          IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
4498      SDLoc DL(Node);
4499      SDValue Chain = Node->getOperand(0);
4500      SDValue ValLo = Node->getOperand(2);
4501      SDValue ValHi = Node->getOperand(3);
4502      SDValue MemAddr = Node->getOperand(4);
4503
4504      // Place arguments in the right order.
4505      SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
4506
4507      SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
4508      // Transfer memoperands.
4509      MachineMemOperand *MemOp =
4510          cast<MemIntrinsicSDNode>(Node)->getMemOperand();
4511      CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
4512
4513      ReplaceNode(Node, St);
4514      return;
4515    }
4516    case Intrinsic::aarch64_neon_ld1x2:
4517      if (VT == MVT::v8i8) {
4518        SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
4519        return;
4520      } else if (VT == MVT::v16i8) {
4521        SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
4522        return;
4523      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4524        SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
4525        return;
4526      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4527        SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
4528        return;
4529      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4530        SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
4531        return;
4532      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4533        SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
4534        return;
4535      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4536        SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
4537        return;
4538      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4539        SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
4540        return;
4541      }
4542      break;
4543    case Intrinsic::aarch64_neon_ld1x3:
4544      if (VT == MVT::v8i8) {
4545        SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
4546        return;
4547      } else if (VT == MVT::v16i8) {
4548        SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
4549        return;
4550      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4551        SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
4552        return;
4553      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4554        SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
4555        return;
4556      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4557        SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
4558        return;
4559      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4560        SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
4561        return;
4562      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4563        SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
4564        return;
4565      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4566        SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
4567        return;
4568      }
4569      break;
4570    case Intrinsic::aarch64_neon_ld1x4:
4571      if (VT == MVT::v8i8) {
4572        SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
4573        return;
4574      } else if (VT == MVT::v16i8) {
4575        SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
4576        return;
4577      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4578        SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
4579        return;
4580      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4581        SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
4582        return;
4583      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4584        SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
4585        return;
4586      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4587        SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
4588        return;
4589      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4590        SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
4591        return;
4592      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4593        SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
4594        return;
4595      }
4596      break;
4597    case Intrinsic::aarch64_neon_ld2:
4598      if (VT == MVT::v8i8) {
4599        SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
4600        return;
4601      } else if (VT == MVT::v16i8) {
4602        SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
4603        return;
4604      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4605        SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
4606        return;
4607      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4608        SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
4609        return;
4610      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4611        SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
4612        return;
4613      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4614        SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
4615        return;
4616      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4617        SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
4618        return;
4619      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4620        SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
4621        return;
4622      }
4623      break;
4624    case Intrinsic::aarch64_neon_ld3:
4625      if (VT == MVT::v8i8) {
4626        SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
4627        return;
4628      } else if (VT == MVT::v16i8) {
4629        SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
4630        return;
4631      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4632        SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
4633        return;
4634      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4635        SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
4636        return;
4637      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4638        SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
4639        return;
4640      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4641        SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
4642        return;
4643      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4644        SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
4645        return;
4646      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4647        SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
4648        return;
4649      }
4650      break;
4651    case Intrinsic::aarch64_neon_ld4:
4652      if (VT == MVT::v8i8) {
4653        SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
4654        return;
4655      } else if (VT == MVT::v16i8) {
4656        SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
4657        return;
4658      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4659        SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
4660        return;
4661      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4662        SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
4663        return;
4664      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4665        SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
4666        return;
4667      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4668        SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
4669        return;
4670      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4671        SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
4672        return;
4673      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4674        SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
4675        return;
4676      }
4677      break;
4678    case Intrinsic::aarch64_neon_ld2r:
4679      if (VT == MVT::v8i8) {
4680        SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
4681        return;
4682      } else if (VT == MVT::v16i8) {
4683        SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
4684        return;
4685      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4686        SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
4687        return;
4688      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4689        SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
4690        return;
4691      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4692        SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
4693        return;
4694      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4695        SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
4696        return;
4697      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4698        SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
4699        return;
4700      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4701        SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
4702        return;
4703      }
4704      break;
4705    case Intrinsic::aarch64_neon_ld3r:
4706      if (VT == MVT::v8i8) {
4707        SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
4708        return;
4709      } else if (VT == MVT::v16i8) {
4710        SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
4711        return;
4712      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4713        SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
4714        return;
4715      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4716        SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
4717        return;
4718      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4719        SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
4720        return;
4721      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4722        SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
4723        return;
4724      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4725        SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
4726        return;
4727      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4728        SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
4729        return;
4730      }
4731      break;
4732    case Intrinsic::aarch64_neon_ld4r:
4733      if (VT == MVT::v8i8) {
4734        SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
4735        return;
4736      } else if (VT == MVT::v16i8) {
4737        SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
4738        return;
4739      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4740        SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
4741        return;
4742      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4743        SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
4744        return;
4745      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4746        SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
4747        return;
4748      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4749        SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
4750        return;
4751      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4752        SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
4753        return;
4754      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4755        SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
4756        return;
4757      }
4758      break;
4759    case Intrinsic::aarch64_neon_ld2lane:
4760      if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4761        SelectLoadLane(Node, 2, AArch64::LD2i8);
4762        return;
4763      } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4764                 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4765        SelectLoadLane(Node, 2, AArch64::LD2i16);
4766        return;
4767      } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4768                 VT == MVT::v2f32) {
4769        SelectLoadLane(Node, 2, AArch64::LD2i32);
4770        return;
4771      } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4772                 VT == MVT::v1f64) {
4773        SelectLoadLane(Node, 2, AArch64::LD2i64);
4774        return;
4775      }
4776      break;
4777    case Intrinsic::aarch64_neon_ld3lane:
4778      if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4779        SelectLoadLane(Node, 3, AArch64::LD3i8);
4780        return;
4781      } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4782                 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4783        SelectLoadLane(Node, 3, AArch64::LD3i16);
4784        return;
4785      } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4786                 VT == MVT::v2f32) {
4787        SelectLoadLane(Node, 3, AArch64::LD3i32);
4788        return;
4789      } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4790                 VT == MVT::v1f64) {
4791        SelectLoadLane(Node, 3, AArch64::LD3i64);
4792        return;
4793      }
4794      break;
4795    case Intrinsic::aarch64_neon_ld4lane:
4796      if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4797        SelectLoadLane(Node, 4, AArch64::LD4i8);
4798        return;
4799      } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4800                 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4801        SelectLoadLane(Node, 4, AArch64::LD4i16);
4802        return;
4803      } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4804                 VT == MVT::v2f32) {
4805        SelectLoadLane(Node, 4, AArch64::LD4i32);
4806        return;
4807      } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4808                 VT == MVT::v1f64) {
4809        SelectLoadLane(Node, 4, AArch64::LD4i64);
4810        return;
4811      }
4812      break;
4813    case Intrinsic::aarch64_ld64b:
4814      SelectLoad(Node, 8, AArch64::LD64B, AArch64::x8sub_0);
4815      return;
4816    case Intrinsic::aarch64_sve_ld2q_sret: {
4817      SelectPredicatedLoad(Node, 2, 4, AArch64::LD2Q_IMM, AArch64::LD2Q, true);
4818      return;
4819    }
4820    case Intrinsic::aarch64_sve_ld3q_sret: {
4821      SelectPredicatedLoad(Node, 3, 4, AArch64::LD3Q_IMM, AArch64::LD3Q, true);
4822      return;
4823    }
4824    case Intrinsic::aarch64_sve_ld4q_sret: {
4825      SelectPredicatedLoad(Node, 4, 4, AArch64::LD4Q_IMM, AArch64::LD4Q, true);
4826      return;
4827    }
4828    case Intrinsic::aarch64_sve_ld2_sret: {
4829      if (VT == MVT::nxv16i8) {
4830        SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B,
4831                             true);
4832        return;
4833      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4834                 VT == MVT::nxv8bf16) {
4835        SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H,
4836                             true);
4837        return;
4838      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4839        SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W,
4840                             true);
4841        return;
4842      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4843        SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D,
4844                             true);
4845        return;
4846      }
4847      break;
4848    }
4849    case Intrinsic::aarch64_sve_ld1_pn_x2: {
4850      if (VT == MVT::nxv16i8) {
4851        if (Subtarget->hasSME2())
4852          SelectContiguousMultiVectorLoad(
4853              Node, 2, 0, AArch64::LD1B_2Z_IMM_PSEUDO, AArch64::LD1B_2Z_PSEUDO);
4854        else if (Subtarget->hasSVE2p1())
4855          SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LD1B_2Z_IMM,
4856                                          AArch64::LD1B_2Z);
4857        else
4858          break;
4859        return;
4860      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4861                 VT == MVT::nxv8bf16) {
4862        if (Subtarget->hasSME2())
4863          SelectContiguousMultiVectorLoad(
4864              Node, 2, 1, AArch64::LD1H_2Z_IMM_PSEUDO, AArch64::LD1H_2Z_PSEUDO);
4865        else if (Subtarget->hasSVE2p1())
4866          SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LD1H_2Z_IMM,
4867                                          AArch64::LD1H_2Z);
4868        else
4869          break;
4870        return;
4871      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4872        if (Subtarget->hasSME2())
4873          SelectContiguousMultiVectorLoad(
4874              Node, 2, 2, AArch64::LD1W_2Z_IMM_PSEUDO, AArch64::LD1W_2Z_PSEUDO);
4875        else if (Subtarget->hasSVE2p1())
4876          SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LD1W_2Z_IMM,
4877                                          AArch64::LD1W_2Z);
4878        else
4879          break;
4880        return;
4881      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4882        if (Subtarget->hasSME2())
4883          SelectContiguousMultiVectorLoad(
4884              Node, 2, 3, AArch64::LD1D_2Z_IMM_PSEUDO, AArch64::LD1D_2Z_PSEUDO);
4885        else if (Subtarget->hasSVE2p1())
4886          SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LD1D_2Z_IMM,
4887                                          AArch64::LD1D_2Z);
4888        else
4889          break;
4890        return;
4891      }
4892      break;
4893    }
4894    case Intrinsic::aarch64_sve_ld1_pn_x4: {
4895      if (VT == MVT::nxv16i8) {
4896        if (Subtarget->hasSME2())
4897          SelectContiguousMultiVectorLoad(
4898              Node, 4, 0, AArch64::LD1B_4Z_IMM_PSEUDO, AArch64::LD1B_4Z_PSEUDO);
4899        else if (Subtarget->hasSVE2p1())
4900          SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LD1B_4Z_IMM,
4901                                          AArch64::LD1B_4Z);
4902        else
4903          break;
4904        return;
4905      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4906                 VT == MVT::nxv8bf16) {
4907        if (Subtarget->hasSME2())
4908          SelectContiguousMultiVectorLoad(
4909              Node, 4, 1, AArch64::LD1H_4Z_IMM_PSEUDO, AArch64::LD1H_4Z_PSEUDO);
4910        else if (Subtarget->hasSVE2p1())
4911          SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LD1H_4Z_IMM,
4912                                          AArch64::LD1H_4Z);
4913        else
4914          break;
4915        return;
4916      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4917        if (Subtarget->hasSME2())
4918          SelectContiguousMultiVectorLoad(
4919              Node, 4, 2, AArch64::LD1W_4Z_IMM_PSEUDO, AArch64::LD1W_4Z_PSEUDO);
4920        else if (Subtarget->hasSVE2p1())
4921          SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LD1W_4Z_IMM,
4922                                          AArch64::LD1W_4Z);
4923        else
4924          break;
4925        return;
4926      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4927        if (Subtarget->hasSME2())
4928          SelectContiguousMultiVectorLoad(
4929              Node, 4, 3, AArch64::LD1D_4Z_IMM_PSEUDO, AArch64::LD1D_4Z_PSEUDO);
4930        else if (Subtarget->hasSVE2p1())
4931          SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LD1D_4Z_IMM,
4932                                          AArch64::LD1D_4Z);
4933        else
4934          break;
4935        return;
4936      }
4937      break;
4938    }
4939    case Intrinsic::aarch64_sve_ldnt1_pn_x2: {
4940      if (VT == MVT::nxv16i8) {
4941        if (Subtarget->hasSME2())
4942          SelectContiguousMultiVectorLoad(Node, 2, 0,
4943                                          AArch64::LDNT1B_2Z_IMM_PSEUDO,
4944                                          AArch64::LDNT1B_2Z_PSEUDO);
4945        else if (Subtarget->hasSVE2p1())
4946          SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LDNT1B_2Z_IMM,
4947                                          AArch64::LDNT1B_2Z);
4948        else
4949          break;
4950        return;
4951      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4952                 VT == MVT::nxv8bf16) {
4953        if (Subtarget->hasSME2())
4954          SelectContiguousMultiVectorLoad(Node, 2, 1,
4955                                          AArch64::LDNT1H_2Z_IMM_PSEUDO,
4956                                          AArch64::LDNT1H_2Z_PSEUDO);
4957        else if (Subtarget->hasSVE2p1())
4958          SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LDNT1H_2Z_IMM,
4959                                          AArch64::LDNT1H_2Z);
4960        else
4961          break;
4962        return;
4963      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4964        if (Subtarget->hasSME2())
4965          SelectContiguousMultiVectorLoad(Node, 2, 2,
4966                                          AArch64::LDNT1W_2Z_IMM_PSEUDO,
4967                                          AArch64::LDNT1W_2Z_PSEUDO);
4968        else if (Subtarget->hasSVE2p1())
4969          SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LDNT1W_2Z_IMM,
4970                                          AArch64::LDNT1W_2Z);
4971        else
4972          break;
4973        return;
4974      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4975        if (Subtarget->hasSME2())
4976          SelectContiguousMultiVectorLoad(Node, 2, 3,
4977                                          AArch64::LDNT1D_2Z_IMM_PSEUDO,
4978                                          AArch64::LDNT1D_2Z_PSEUDO);
4979        else if (Subtarget->hasSVE2p1())
4980          SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LDNT1D_2Z_IMM,
4981                                          AArch64::LDNT1D_2Z);
4982        else
4983          break;
4984        return;
4985      }
4986      break;
4987    }
4988    case Intrinsic::aarch64_sve_ldnt1_pn_x4: {
4989      if (VT == MVT::nxv16i8) {
4990        if (Subtarget->hasSME2())
4991          SelectContiguousMultiVectorLoad(Node, 4, 0,
4992                                          AArch64::LDNT1B_4Z_IMM_PSEUDO,
4993                                          AArch64::LDNT1B_4Z_PSEUDO);
4994        else if (Subtarget->hasSVE2p1())
4995          SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LDNT1B_4Z_IMM,
4996                                          AArch64::LDNT1B_4Z);
4997        else
4998          break;
4999        return;
5000      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5001                 VT == MVT::nxv8bf16) {
5002        if (Subtarget->hasSME2())
5003          SelectContiguousMultiVectorLoad(Node, 4, 1,
5004                                          AArch64::LDNT1H_4Z_IMM_PSEUDO,
5005                                          AArch64::LDNT1H_4Z_PSEUDO);
5006        else if (Subtarget->hasSVE2p1())
5007          SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LDNT1H_4Z_IMM,
5008                                          AArch64::LDNT1H_4Z);
5009        else
5010          break;
5011        return;
5012      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5013        if (Subtarget->hasSME2())
5014          SelectContiguousMultiVectorLoad(Node, 4, 2,
5015                                          AArch64::LDNT1W_4Z_IMM_PSEUDO,
5016                                          AArch64::LDNT1W_4Z_PSEUDO);
5017        else if (Subtarget->hasSVE2p1())
5018          SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LDNT1W_4Z_IMM,
5019                                          AArch64::LDNT1W_4Z);
5020        else
5021          break;
5022        return;
5023      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5024        if (Subtarget->hasSME2())
5025          SelectContiguousMultiVectorLoad(Node, 4, 3,
5026                                          AArch64::LDNT1D_4Z_IMM_PSEUDO,
5027                                          AArch64::LDNT1D_4Z_PSEUDO);
5028        else if (Subtarget->hasSVE2p1())
5029          SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LDNT1D_4Z_IMM,
5030                                          AArch64::LDNT1D_4Z);
5031        else
5032          break;
5033        return;
5034      }
5035      break;
5036    }
5037    case Intrinsic::aarch64_sve_ld3_sret: {
5038      if (VT == MVT::nxv16i8) {
5039        SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B,
5040                             true);
5041        return;
5042      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5043                 VT == MVT::nxv8bf16) {
5044        SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H,
5045                             true);
5046        return;
5047      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5048        SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W,
5049                             true);
5050        return;
5051      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5052        SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D,
5053                             true);
5054        return;
5055      }
5056      break;
5057    }
5058    case Intrinsic::aarch64_sve_ld4_sret: {
5059      if (VT == MVT::nxv16i8) {
5060        SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B,
5061                             true);
5062        return;
5063      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5064                 VT == MVT::nxv8bf16) {
5065        SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H,
5066                             true);
5067        return;
5068      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5069        SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W,
5070                             true);
5071        return;
5072      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5073        SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D,
5074                             true);
5075        return;
5076      }
5077      break;
5078    }
5079    case Intrinsic::aarch64_sme_read_hor_vg2: {
5080      if (VT == MVT::nxv16i8) {
5081        SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0,
5082                                     AArch64::MOVA_2ZMXI_H_B);
5083        return;
5084      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5085                 VT == MVT::nxv8bf16) {
5086        SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0,
5087                                    AArch64::MOVA_2ZMXI_H_H);
5088        return;
5089      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5090        SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0,
5091                                    AArch64::MOVA_2ZMXI_H_S);
5092        return;
5093      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5094        SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0,
5095                                    AArch64::MOVA_2ZMXI_H_D);
5096        return;
5097      }
5098      break;
5099    }
5100    case Intrinsic::aarch64_sme_read_ver_vg2: {
5101      if (VT == MVT::nxv16i8) {
5102        SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0,
5103                                     AArch64::MOVA_2ZMXI_V_B);
5104        return;
5105      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5106                 VT == MVT::nxv8bf16) {
5107        SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0,
5108                                    AArch64::MOVA_2ZMXI_V_H);
5109        return;
5110      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5111        SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0,
5112                                    AArch64::MOVA_2ZMXI_V_S);
5113        return;
5114      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5115        SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0,
5116                                    AArch64::MOVA_2ZMXI_V_D);
5117        return;
5118      }
5119      break;
5120    }
5121    case Intrinsic::aarch64_sme_read_hor_vg4: {
5122      if (VT == MVT::nxv16i8) {
5123        SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0,
5124                                     AArch64::MOVA_4ZMXI_H_B);
5125        return;
5126      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5127                 VT == MVT::nxv8bf16) {
5128        SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0,
5129                                    AArch64::MOVA_4ZMXI_H_H);
5130        return;
5131      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5132        SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAS0,
5133                                    AArch64::MOVA_4ZMXI_H_S);
5134        return;
5135      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5136        SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAD0,
5137                                    AArch64::MOVA_4ZMXI_H_D);
5138        return;
5139      }
5140      break;
5141    }
5142    case Intrinsic::aarch64_sme_read_ver_vg4: {
5143      if (VT == MVT::nxv16i8) {
5144        SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0,
5145                                     AArch64::MOVA_4ZMXI_V_B);
5146        return;
5147      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5148                 VT == MVT::nxv8bf16) {
5149        SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0,
5150                                    AArch64::MOVA_4ZMXI_V_H);
5151        return;
5152      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5153        SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAS0,
5154                                    AArch64::MOVA_4ZMXI_V_S);
5155        return;
5156      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5157        SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAD0,
5158                                    AArch64::MOVA_4ZMXI_V_D);
5159        return;
5160      }
5161      break;
5162    }
5163    case Intrinsic::aarch64_sme_read_vg1x2: {
5164      SelectMultiVectorMove<7, 1>(Node, 2, AArch64::ZA,
5165                                  AArch64::MOVA_VG2_2ZMXI);
5166      return;
5167    }
5168    case Intrinsic::aarch64_sme_read_vg1x4: {
5169      SelectMultiVectorMove<7, 1>(Node, 4, AArch64::ZA,
5170                                  AArch64::MOVA_VG4_4ZMXI);
5171      return;
5172    }
5173    case Intrinsic::swift_async_context_addr: {
5174      SDLoc DL(Node);
5175      SDValue Chain = Node->getOperand(0);
5176      SDValue CopyFP = CurDAG->getCopyFromReg(Chain, DL, AArch64::FP, MVT::i64);
5177      SDValue Res = SDValue(
5178          CurDAG->getMachineNode(AArch64::SUBXri, DL, MVT::i64, CopyFP,
5179                                 CurDAG->getTargetConstant(8, DL, MVT::i32),
5180                                 CurDAG->getTargetConstant(0, DL, MVT::i32)),
5181          0);
5182      ReplaceUses(SDValue(Node, 0), Res);
5183      ReplaceUses(SDValue(Node, 1), CopyFP.getValue(1));
5184      CurDAG->RemoveDeadNode(Node);
5185
5186      auto &MF = CurDAG->getMachineFunction();
5187      MF.getFrameInfo().setFrameAddressIsTaken(true);
5188      MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
5189      return;
5190    }
5191    case Intrinsic::aarch64_sme_luti2_lane_zt_x4: {
5192      if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5193              Node->getValueType(0),
5194              {AArch64::LUTI2_4ZTZI_B, AArch64::LUTI2_4ZTZI_H,
5195               AArch64::LUTI2_4ZTZI_S}))
5196        // Second Immediate must be <= 3:
5197        SelectMultiVectorLuti(Node, 4, Opc, 3);
5198      return;
5199    }
5200    case Intrinsic::aarch64_sme_luti4_lane_zt_x4: {
5201      if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5202              Node->getValueType(0),
5203              {0, AArch64::LUTI4_4ZTZI_H, AArch64::LUTI4_4ZTZI_S}))
5204        // Second Immediate must be <= 1:
5205        SelectMultiVectorLuti(Node, 4, Opc, 1);
5206      return;
5207    }
5208    case Intrinsic::aarch64_sme_luti2_lane_zt_x2: {
5209      if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5210              Node->getValueType(0),
5211              {AArch64::LUTI2_2ZTZI_B, AArch64::LUTI2_2ZTZI_H,
5212               AArch64::LUTI2_2ZTZI_S}))
5213        // Second Immediate must be <= 7:
5214        SelectMultiVectorLuti(Node, 2, Opc, 7);
5215      return;
5216    }
5217    case Intrinsic::aarch64_sme_luti4_lane_zt_x2: {
5218      if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5219              Node->getValueType(0),
5220              {AArch64::LUTI4_2ZTZI_B, AArch64::LUTI4_2ZTZI_H,
5221               AArch64::LUTI4_2ZTZI_S}))
5222        // Second Immediate must be <= 3:
5223        SelectMultiVectorLuti(Node, 2, Opc, 3);
5224      return;
5225    }
5226    }
5227  } break;
5228  case ISD::INTRINSIC_WO_CHAIN: {
5229    unsigned IntNo = Node->getConstantOperandVal(0);
5230    switch (IntNo) {
5231    default:
5232      break;
5233    case Intrinsic::aarch64_tagp:
5234      SelectTagP(Node);
5235      return;
5236    case Intrinsic::aarch64_neon_tbl2:
5237      SelectTable(Node, 2,
5238                  VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
5239                  false);
5240      return;
5241    case Intrinsic::aarch64_neon_tbl3:
5242      SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
5243                                           : AArch64::TBLv16i8Three,
5244                  false);
5245      return;
5246    case Intrinsic::aarch64_neon_tbl4:
5247      SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
5248                                           : AArch64::TBLv16i8Four,
5249                  false);
5250      return;
5251    case Intrinsic::aarch64_neon_tbx2:
5252      SelectTable(Node, 2,
5253                  VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
5254                  true);
5255      return;
5256    case Intrinsic::aarch64_neon_tbx3:
5257      SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
5258                                           : AArch64::TBXv16i8Three,
5259                  true);
5260      return;
5261    case Intrinsic::aarch64_neon_tbx4:
5262      SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
5263                                           : AArch64::TBXv16i8Four,
5264                  true);
5265      return;
5266    case Intrinsic::aarch64_sve_srshl_single_x2:
5267      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5268              Node->getValueType(0),
5269              {AArch64::SRSHL_VG2_2ZZ_B, AArch64::SRSHL_VG2_2ZZ_H,
5270               AArch64::SRSHL_VG2_2ZZ_S, AArch64::SRSHL_VG2_2ZZ_D}))
5271        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5272      return;
5273    case Intrinsic::aarch64_sve_srshl_single_x4:
5274      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5275              Node->getValueType(0),
5276              {AArch64::SRSHL_VG4_4ZZ_B, AArch64::SRSHL_VG4_4ZZ_H,
5277               AArch64::SRSHL_VG4_4ZZ_S, AArch64::SRSHL_VG4_4ZZ_D}))
5278        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5279      return;
5280    case Intrinsic::aarch64_sve_urshl_single_x2:
5281      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5282              Node->getValueType(0),
5283              {AArch64::URSHL_VG2_2ZZ_B, AArch64::URSHL_VG2_2ZZ_H,
5284               AArch64::URSHL_VG2_2ZZ_S, AArch64::URSHL_VG2_2ZZ_D}))
5285        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5286      return;
5287    case Intrinsic::aarch64_sve_urshl_single_x4:
5288      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5289              Node->getValueType(0),
5290              {AArch64::URSHL_VG4_4ZZ_B, AArch64::URSHL_VG4_4ZZ_H,
5291               AArch64::URSHL_VG4_4ZZ_S, AArch64::URSHL_VG4_4ZZ_D}))
5292        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5293      return;
5294    case Intrinsic::aarch64_sve_srshl_x2:
5295      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5296              Node->getValueType(0),
5297              {AArch64::SRSHL_VG2_2Z2Z_B, AArch64::SRSHL_VG2_2Z2Z_H,
5298               AArch64::SRSHL_VG2_2Z2Z_S, AArch64::SRSHL_VG2_2Z2Z_D}))
5299        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5300      return;
5301    case Intrinsic::aarch64_sve_srshl_x4:
5302      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5303              Node->getValueType(0),
5304              {AArch64::SRSHL_VG4_4Z4Z_B, AArch64::SRSHL_VG4_4Z4Z_H,
5305               AArch64::SRSHL_VG4_4Z4Z_S, AArch64::SRSHL_VG4_4Z4Z_D}))
5306        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5307      return;
5308    case Intrinsic::aarch64_sve_urshl_x2:
5309      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5310              Node->getValueType(0),
5311              {AArch64::URSHL_VG2_2Z2Z_B, AArch64::URSHL_VG2_2Z2Z_H,
5312               AArch64::URSHL_VG2_2Z2Z_S, AArch64::URSHL_VG2_2Z2Z_D}))
5313        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5314      return;
5315    case Intrinsic::aarch64_sve_urshl_x4:
5316      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5317              Node->getValueType(0),
5318              {AArch64::URSHL_VG4_4Z4Z_B, AArch64::URSHL_VG4_4Z4Z_H,
5319               AArch64::URSHL_VG4_4Z4Z_S, AArch64::URSHL_VG4_4Z4Z_D}))
5320        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5321      return;
5322    case Intrinsic::aarch64_sve_sqdmulh_single_vgx2:
5323      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5324              Node->getValueType(0),
5325              {AArch64::SQDMULH_VG2_2ZZ_B, AArch64::SQDMULH_VG2_2ZZ_H,
5326               AArch64::SQDMULH_VG2_2ZZ_S, AArch64::SQDMULH_VG2_2ZZ_D}))
5327        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5328      return;
5329    case Intrinsic::aarch64_sve_sqdmulh_single_vgx4:
5330      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5331              Node->getValueType(0),
5332              {AArch64::SQDMULH_VG4_4ZZ_B, AArch64::SQDMULH_VG4_4ZZ_H,
5333               AArch64::SQDMULH_VG4_4ZZ_S, AArch64::SQDMULH_VG4_4ZZ_D}))
5334        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5335      return;
5336    case Intrinsic::aarch64_sve_sqdmulh_vgx2:
5337      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5338              Node->getValueType(0),
5339              {AArch64::SQDMULH_VG2_2Z2Z_B, AArch64::SQDMULH_VG2_2Z2Z_H,
5340               AArch64::SQDMULH_VG2_2Z2Z_S, AArch64::SQDMULH_VG2_2Z2Z_D}))
5341        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5342      return;
5343    case Intrinsic::aarch64_sve_sqdmulh_vgx4:
5344      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5345              Node->getValueType(0),
5346              {AArch64::SQDMULH_VG4_4Z4Z_B, AArch64::SQDMULH_VG4_4Z4Z_H,
5347               AArch64::SQDMULH_VG4_4Z4Z_S, AArch64::SQDMULH_VG4_4Z4Z_D}))
5348        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5349      return;
5350    case Intrinsic::aarch64_sve_whilege_x2:
5351      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5352              Node->getValueType(0),
5353              {AArch64::WHILEGE_2PXX_B, AArch64::WHILEGE_2PXX_H,
5354               AArch64::WHILEGE_2PXX_S, AArch64::WHILEGE_2PXX_D}))
5355        SelectWhilePair(Node, Op);
5356      return;
5357    case Intrinsic::aarch64_sve_whilegt_x2:
5358      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5359              Node->getValueType(0),
5360              {AArch64::WHILEGT_2PXX_B, AArch64::WHILEGT_2PXX_H,
5361               AArch64::WHILEGT_2PXX_S, AArch64::WHILEGT_2PXX_D}))
5362        SelectWhilePair(Node, Op);
5363      return;
5364    case Intrinsic::aarch64_sve_whilehi_x2:
5365      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5366              Node->getValueType(0),
5367              {AArch64::WHILEHI_2PXX_B, AArch64::WHILEHI_2PXX_H,
5368               AArch64::WHILEHI_2PXX_S, AArch64::WHILEHI_2PXX_D}))
5369        SelectWhilePair(Node, Op);
5370      return;
5371    case Intrinsic::aarch64_sve_whilehs_x2:
5372      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5373              Node->getValueType(0),
5374              {AArch64::WHILEHS_2PXX_B, AArch64::WHILEHS_2PXX_H,
5375               AArch64::WHILEHS_2PXX_S, AArch64::WHILEHS_2PXX_D}))
5376        SelectWhilePair(Node, Op);
5377      return;
5378    case Intrinsic::aarch64_sve_whilele_x2:
5379      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5380              Node->getValueType(0),
5381              {AArch64::WHILELE_2PXX_B, AArch64::WHILELE_2PXX_H,
5382               AArch64::WHILELE_2PXX_S, AArch64::WHILELE_2PXX_D}))
5383      SelectWhilePair(Node, Op);
5384      return;
5385    case Intrinsic::aarch64_sve_whilelo_x2:
5386      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5387              Node->getValueType(0),
5388              {AArch64::WHILELO_2PXX_B, AArch64::WHILELO_2PXX_H,
5389               AArch64::WHILELO_2PXX_S, AArch64::WHILELO_2PXX_D}))
5390      SelectWhilePair(Node, Op);
5391      return;
5392    case Intrinsic::aarch64_sve_whilels_x2:
5393      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5394              Node->getValueType(0),
5395              {AArch64::WHILELS_2PXX_B, AArch64::WHILELS_2PXX_H,
5396               AArch64::WHILELS_2PXX_S, AArch64::WHILELS_2PXX_D}))
5397        SelectWhilePair(Node, Op);
5398      return;
5399    case Intrinsic::aarch64_sve_whilelt_x2:
5400      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5401              Node->getValueType(0),
5402              {AArch64::WHILELT_2PXX_B, AArch64::WHILELT_2PXX_H,
5403               AArch64::WHILELT_2PXX_S, AArch64::WHILELT_2PXX_D}))
5404        SelectWhilePair(Node, Op);
5405      return;
5406    case Intrinsic::aarch64_sve_smax_single_x2:
5407      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5408              Node->getValueType(0),
5409              {AArch64::SMAX_VG2_2ZZ_B, AArch64::SMAX_VG2_2ZZ_H,
5410               AArch64::SMAX_VG2_2ZZ_S, AArch64::SMAX_VG2_2ZZ_D}))
5411        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5412      return;
5413    case Intrinsic::aarch64_sve_umax_single_x2:
5414      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5415              Node->getValueType(0),
5416              {AArch64::UMAX_VG2_2ZZ_B, AArch64::UMAX_VG2_2ZZ_H,
5417               AArch64::UMAX_VG2_2ZZ_S, AArch64::UMAX_VG2_2ZZ_D}))
5418        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5419      return;
5420    case Intrinsic::aarch64_sve_fmax_single_x2:
5421      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5422              Node->getValueType(0),
5423              {0, AArch64::FMAX_VG2_2ZZ_H, AArch64::FMAX_VG2_2ZZ_S,
5424               AArch64::FMAX_VG2_2ZZ_D}))
5425        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5426      return;
5427    case Intrinsic::aarch64_sve_smax_single_x4:
5428      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5429              Node->getValueType(0),
5430              {AArch64::SMAX_VG4_4ZZ_B, AArch64::SMAX_VG4_4ZZ_H,
5431               AArch64::SMAX_VG4_4ZZ_S, AArch64::SMAX_VG4_4ZZ_D}))
5432        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5433      return;
5434    case Intrinsic::aarch64_sve_umax_single_x4:
5435      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5436              Node->getValueType(0),
5437              {AArch64::UMAX_VG4_4ZZ_B, AArch64::UMAX_VG4_4ZZ_H,
5438               AArch64::UMAX_VG4_4ZZ_S, AArch64::UMAX_VG4_4ZZ_D}))
5439        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5440      return;
5441    case Intrinsic::aarch64_sve_fmax_single_x4:
5442      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5443              Node->getValueType(0),
5444              {0, AArch64::FMAX_VG4_4ZZ_H, AArch64::FMAX_VG4_4ZZ_S,
5445               AArch64::FMAX_VG4_4ZZ_D}))
5446        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5447      return;
5448    case Intrinsic::aarch64_sve_smin_single_x2:
5449      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5450              Node->getValueType(0),
5451              {AArch64::SMIN_VG2_2ZZ_B, AArch64::SMIN_VG2_2ZZ_H,
5452               AArch64::SMIN_VG2_2ZZ_S, AArch64::SMIN_VG2_2ZZ_D}))
5453        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5454      return;
5455    case Intrinsic::aarch64_sve_umin_single_x2:
5456      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5457              Node->getValueType(0),
5458              {AArch64::UMIN_VG2_2ZZ_B, AArch64::UMIN_VG2_2ZZ_H,
5459               AArch64::UMIN_VG2_2ZZ_S, AArch64::UMIN_VG2_2ZZ_D}))
5460        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5461      return;
5462    case Intrinsic::aarch64_sve_fmin_single_x2:
5463      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5464              Node->getValueType(0),
5465              {0, AArch64::FMIN_VG2_2ZZ_H, AArch64::FMIN_VG2_2ZZ_S,
5466               AArch64::FMIN_VG2_2ZZ_D}))
5467        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5468      return;
5469    case Intrinsic::aarch64_sve_smin_single_x4:
5470      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5471              Node->getValueType(0),
5472              {AArch64::SMIN_VG4_4ZZ_B, AArch64::SMIN_VG4_4ZZ_H,
5473               AArch64::SMIN_VG4_4ZZ_S, AArch64::SMIN_VG4_4ZZ_D}))
5474        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5475      return;
5476    case Intrinsic::aarch64_sve_umin_single_x4:
5477      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5478              Node->getValueType(0),
5479              {AArch64::UMIN_VG4_4ZZ_B, AArch64::UMIN_VG4_4ZZ_H,
5480               AArch64::UMIN_VG4_4ZZ_S, AArch64::UMIN_VG4_4ZZ_D}))
5481        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5482      return;
5483    case Intrinsic::aarch64_sve_fmin_single_x4:
5484      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5485              Node->getValueType(0),
5486              {0, AArch64::FMIN_VG4_4ZZ_H, AArch64::FMIN_VG4_4ZZ_S,
5487               AArch64::FMIN_VG4_4ZZ_D}))
5488        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5489      return;
5490    case Intrinsic::aarch64_sve_smax_x2:
5491      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5492              Node->getValueType(0),
5493              {AArch64::SMAX_VG2_2Z2Z_B, AArch64::SMAX_VG2_2Z2Z_H,
5494               AArch64::SMAX_VG2_2Z2Z_S, AArch64::SMAX_VG2_2Z2Z_D}))
5495        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5496      return;
5497    case Intrinsic::aarch64_sve_umax_x2:
5498      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5499              Node->getValueType(0),
5500              {AArch64::UMAX_VG2_2Z2Z_B, AArch64::UMAX_VG2_2Z2Z_H,
5501               AArch64::UMAX_VG2_2Z2Z_S, AArch64::UMAX_VG2_2Z2Z_D}))
5502        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5503      return;
5504    case Intrinsic::aarch64_sve_fmax_x2:
5505      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5506              Node->getValueType(0),
5507              {0, AArch64::FMAX_VG2_2Z2Z_H, AArch64::FMAX_VG2_2Z2Z_S,
5508               AArch64::FMAX_VG2_2Z2Z_D}))
5509        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5510      return;
5511    case Intrinsic::aarch64_sve_smax_x4:
5512      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5513              Node->getValueType(0),
5514              {AArch64::SMAX_VG4_4Z4Z_B, AArch64::SMAX_VG4_4Z4Z_H,
5515               AArch64::SMAX_VG4_4Z4Z_S, AArch64::SMAX_VG4_4Z4Z_D}))
5516        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5517      return;
5518    case Intrinsic::aarch64_sve_umax_x4:
5519      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5520              Node->getValueType(0),
5521              {AArch64::UMAX_VG4_4Z4Z_B, AArch64::UMAX_VG4_4Z4Z_H,
5522               AArch64::UMAX_VG4_4Z4Z_S, AArch64::UMAX_VG4_4Z4Z_D}))
5523        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5524      return;
5525    case Intrinsic::aarch64_sve_fmax_x4:
5526      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5527              Node->getValueType(0),
5528              {0, AArch64::FMAX_VG4_4Z4Z_H, AArch64::FMAX_VG4_4Z4Z_S,
5529               AArch64::FMAX_VG4_4Z4Z_D}))
5530        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5531      return;
5532    case Intrinsic::aarch64_sve_smin_x2:
5533      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5534              Node->getValueType(0),
5535              {AArch64::SMIN_VG2_2Z2Z_B, AArch64::SMIN_VG2_2Z2Z_H,
5536               AArch64::SMIN_VG2_2Z2Z_S, AArch64::SMIN_VG2_2Z2Z_D}))
5537        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5538      return;
5539    case Intrinsic::aarch64_sve_umin_x2:
5540      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5541              Node->getValueType(0),
5542              {AArch64::UMIN_VG2_2Z2Z_B, AArch64::UMIN_VG2_2Z2Z_H,
5543               AArch64::UMIN_VG2_2Z2Z_S, AArch64::UMIN_VG2_2Z2Z_D}))
5544        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5545      return;
5546    case Intrinsic::aarch64_sve_fmin_x2:
5547      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5548              Node->getValueType(0),
5549              {0, AArch64::FMIN_VG2_2Z2Z_H, AArch64::FMIN_VG2_2Z2Z_S,
5550               AArch64::FMIN_VG2_2Z2Z_D}))
5551        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5552      return;
5553    case Intrinsic::aarch64_sve_smin_x4:
5554      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5555              Node->getValueType(0),
5556              {AArch64::SMIN_VG4_4Z4Z_B, AArch64::SMIN_VG4_4Z4Z_H,
5557               AArch64::SMIN_VG4_4Z4Z_S, AArch64::SMIN_VG4_4Z4Z_D}))
5558        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5559      return;
5560    case Intrinsic::aarch64_sve_umin_x4:
5561      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5562              Node->getValueType(0),
5563              {AArch64::UMIN_VG4_4Z4Z_B, AArch64::UMIN_VG4_4Z4Z_H,
5564               AArch64::UMIN_VG4_4Z4Z_S, AArch64::UMIN_VG4_4Z4Z_D}))
5565        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5566      return;
5567    case Intrinsic::aarch64_sve_fmin_x4:
5568      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5569              Node->getValueType(0),
5570              {0, AArch64::FMIN_VG4_4Z4Z_H, AArch64::FMIN_VG4_4Z4Z_S,
5571               AArch64::FMIN_VG4_4Z4Z_D}))
5572        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5573      return;
5574    case Intrinsic::aarch64_sve_fmaxnm_single_x2 :
5575      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5576              Node->getValueType(0),
5577              {0, AArch64::FMAXNM_VG2_2ZZ_H, AArch64::FMAXNM_VG2_2ZZ_S,
5578               AArch64::FMAXNM_VG2_2ZZ_D}))
5579        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5580      return;
5581    case Intrinsic::aarch64_sve_fmaxnm_single_x4 :
5582      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5583              Node->getValueType(0),
5584              {0, AArch64::FMAXNM_VG4_4ZZ_H, AArch64::FMAXNM_VG4_4ZZ_S,
5585               AArch64::FMAXNM_VG4_4ZZ_D}))
5586        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5587      return;
5588    case Intrinsic::aarch64_sve_fminnm_single_x2:
5589      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5590              Node->getValueType(0),
5591              {0, AArch64::FMINNM_VG2_2ZZ_H, AArch64::FMINNM_VG2_2ZZ_S,
5592               AArch64::FMINNM_VG2_2ZZ_D}))
5593        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5594      return;
5595    case Intrinsic::aarch64_sve_fminnm_single_x4:
5596      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5597              Node->getValueType(0),
5598              {0, AArch64::FMINNM_VG4_4ZZ_H, AArch64::FMINNM_VG4_4ZZ_S,
5599               AArch64::FMINNM_VG4_4ZZ_D}))
5600        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5601      return;
5602    case Intrinsic::aarch64_sve_fmaxnm_x2:
5603      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5604              Node->getValueType(0),
5605              {0, AArch64::FMAXNM_VG2_2Z2Z_H, AArch64::FMAXNM_VG2_2Z2Z_S,
5606               AArch64::FMAXNM_VG2_2Z2Z_D}))
5607        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5608      return;
5609    case Intrinsic::aarch64_sve_fmaxnm_x4:
5610      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5611              Node->getValueType(0),
5612              {0, AArch64::FMAXNM_VG4_4Z4Z_H, AArch64::FMAXNM_VG4_4Z4Z_S,
5613               AArch64::FMAXNM_VG4_4Z4Z_D}))
5614        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5615      return;
5616    case Intrinsic::aarch64_sve_fminnm_x2:
5617      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5618              Node->getValueType(0),
5619              {0, AArch64::FMINNM_VG2_2Z2Z_H, AArch64::FMINNM_VG2_2Z2Z_S,
5620               AArch64::FMINNM_VG2_2Z2Z_D}))
5621        SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5622      return;
5623    case Intrinsic::aarch64_sve_fminnm_x4:
5624      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5625              Node->getValueType(0),
5626              {0, AArch64::FMINNM_VG4_4Z4Z_H, AArch64::FMINNM_VG4_4Z4Z_S,
5627               AArch64::FMINNM_VG4_4Z4Z_D}))
5628        SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5629      return;
5630    case Intrinsic::aarch64_sve_fcvtzs_x2:
5631      SelectCVTIntrinsic(Node, 2, AArch64::FCVTZS_2Z2Z_StoS);
5632      return;
5633    case Intrinsic::aarch64_sve_scvtf_x2:
5634      SelectCVTIntrinsic(Node, 2, AArch64::SCVTF_2Z2Z_StoS);
5635      return;
5636    case Intrinsic::aarch64_sve_fcvtzu_x2:
5637      SelectCVTIntrinsic(Node, 2, AArch64::FCVTZU_2Z2Z_StoS);
5638      return;
5639    case Intrinsic::aarch64_sve_ucvtf_x2:
5640      SelectCVTIntrinsic(Node, 2, AArch64::UCVTF_2Z2Z_StoS);
5641      return;
5642    case Intrinsic::aarch64_sve_fcvtzs_x4:
5643      SelectCVTIntrinsic(Node, 4, AArch64::FCVTZS_4Z4Z_StoS);
5644      return;
5645    case Intrinsic::aarch64_sve_scvtf_x4:
5646      SelectCVTIntrinsic(Node, 4, AArch64::SCVTF_4Z4Z_StoS);
5647      return;
5648    case Intrinsic::aarch64_sve_fcvtzu_x4:
5649      SelectCVTIntrinsic(Node, 4, AArch64::FCVTZU_4Z4Z_StoS);
5650      return;
5651    case Intrinsic::aarch64_sve_ucvtf_x4:
5652      SelectCVTIntrinsic(Node, 4, AArch64::UCVTF_4Z4Z_StoS);
5653      return;
5654    case Intrinsic::aarch64_sve_sclamp_single_x2:
5655      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5656              Node->getValueType(0),
5657              {AArch64::SCLAMP_VG2_2Z2Z_B, AArch64::SCLAMP_VG2_2Z2Z_H,
5658               AArch64::SCLAMP_VG2_2Z2Z_S, AArch64::SCLAMP_VG2_2Z2Z_D}))
5659        SelectClamp(Node, 2, Op);
5660      return;
5661    case Intrinsic::aarch64_sve_uclamp_single_x2:
5662      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5663              Node->getValueType(0),
5664              {AArch64::UCLAMP_VG2_2Z2Z_B, AArch64::UCLAMP_VG2_2Z2Z_H,
5665               AArch64::UCLAMP_VG2_2Z2Z_S, AArch64::UCLAMP_VG2_2Z2Z_D}))
5666        SelectClamp(Node, 2, Op);
5667      return;
5668    case Intrinsic::aarch64_sve_fclamp_single_x2:
5669      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5670              Node->getValueType(0),
5671              {0, AArch64::FCLAMP_VG2_2Z2Z_H, AArch64::FCLAMP_VG2_2Z2Z_S,
5672               AArch64::FCLAMP_VG2_2Z2Z_D}))
5673        SelectClamp(Node, 2, Op);
5674      return;
5675    case Intrinsic::aarch64_sve_sclamp_single_x4:
5676      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5677              Node->getValueType(0),
5678              {AArch64::SCLAMP_VG4_4Z4Z_B, AArch64::SCLAMP_VG4_4Z4Z_H,
5679               AArch64::SCLAMP_VG4_4Z4Z_S, AArch64::SCLAMP_VG4_4Z4Z_D}))
5680        SelectClamp(Node, 4, Op);
5681      return;
5682    case Intrinsic::aarch64_sve_uclamp_single_x4:
5683      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5684              Node->getValueType(0),
5685              {AArch64::UCLAMP_VG4_4Z4Z_B, AArch64::UCLAMP_VG4_4Z4Z_H,
5686               AArch64::UCLAMP_VG4_4Z4Z_S, AArch64::UCLAMP_VG4_4Z4Z_D}))
5687        SelectClamp(Node, 4, Op);
5688      return;
5689    case Intrinsic::aarch64_sve_fclamp_single_x4:
5690      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5691              Node->getValueType(0),
5692              {0, AArch64::FCLAMP_VG4_4Z4Z_H, AArch64::FCLAMP_VG4_4Z4Z_S,
5693               AArch64::FCLAMP_VG4_4Z4Z_D}))
5694        SelectClamp(Node, 4, Op);
5695      return;
5696    case Intrinsic::aarch64_sve_add_single_x2:
5697      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5698              Node->getValueType(0),
5699              {AArch64::ADD_VG2_2ZZ_B, AArch64::ADD_VG2_2ZZ_H,
5700               AArch64::ADD_VG2_2ZZ_S, AArch64::ADD_VG2_2ZZ_D}))
5701        SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5702      return;
5703    case Intrinsic::aarch64_sve_add_single_x4:
5704      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5705              Node->getValueType(0),
5706              {AArch64::ADD_VG4_4ZZ_B, AArch64::ADD_VG4_4ZZ_H,
5707               AArch64::ADD_VG4_4ZZ_S, AArch64::ADD_VG4_4ZZ_D}))
5708        SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5709      return;
5710    case Intrinsic::aarch64_sve_zip_x2:
5711      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5712              Node->getValueType(0),
5713              {AArch64::ZIP_VG2_2ZZZ_B, AArch64::ZIP_VG2_2ZZZ_H,
5714               AArch64::ZIP_VG2_2ZZZ_S, AArch64::ZIP_VG2_2ZZZ_D}))
5715        SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5716      return;
5717    case Intrinsic::aarch64_sve_zipq_x2:
5718      SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false,
5719                                AArch64::ZIP_VG2_2ZZZ_Q);
5720      return;
5721    case Intrinsic::aarch64_sve_zip_x4:
5722      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5723              Node->getValueType(0),
5724              {AArch64::ZIP_VG4_4Z4Z_B, AArch64::ZIP_VG4_4Z4Z_H,
5725               AArch64::ZIP_VG4_4Z4Z_S, AArch64::ZIP_VG4_4Z4Z_D}))
5726        SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5727      return;
5728    case Intrinsic::aarch64_sve_zipq_x4:
5729      SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true,
5730                                AArch64::ZIP_VG4_4Z4Z_Q);
5731      return;
5732    case Intrinsic::aarch64_sve_uzp_x2:
5733      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5734              Node->getValueType(0),
5735              {AArch64::UZP_VG2_2ZZZ_B, AArch64::UZP_VG2_2ZZZ_H,
5736               AArch64::UZP_VG2_2ZZZ_S, AArch64::UZP_VG2_2ZZZ_D}))
5737        SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5738      return;
5739    case Intrinsic::aarch64_sve_uzpq_x2:
5740      SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false,
5741                                AArch64::UZP_VG2_2ZZZ_Q);
5742      return;
5743    case Intrinsic::aarch64_sve_uzp_x4:
5744      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5745              Node->getValueType(0),
5746              {AArch64::UZP_VG4_4Z4Z_B, AArch64::UZP_VG4_4Z4Z_H,
5747               AArch64::UZP_VG4_4Z4Z_S, AArch64::UZP_VG4_4Z4Z_D}))
5748        SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5749      return;
5750    case Intrinsic::aarch64_sve_uzpq_x4:
5751      SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true,
5752                                AArch64::UZP_VG4_4Z4Z_Q);
5753      return;
5754    case Intrinsic::aarch64_sve_sel_x2:
5755      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5756              Node->getValueType(0),
5757              {AArch64::SEL_VG2_2ZC2Z2Z_B, AArch64::SEL_VG2_2ZC2Z2Z_H,
5758               AArch64::SEL_VG2_2ZC2Z2Z_S, AArch64::SEL_VG2_2ZC2Z2Z_D}))
5759        SelectDestructiveMultiIntrinsic(Node, 2, true, Op, /*HasPred=*/true);
5760      return;
5761    case Intrinsic::aarch64_sve_sel_x4:
5762      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5763              Node->getValueType(0),
5764              {AArch64::SEL_VG4_4ZC4Z4Z_B, AArch64::SEL_VG4_4ZC4Z4Z_H,
5765               AArch64::SEL_VG4_4ZC4Z4Z_S, AArch64::SEL_VG4_4ZC4Z4Z_D}))
5766        SelectDestructiveMultiIntrinsic(Node, 4, true, Op, /*HasPred=*/true);
5767      return;
5768    case Intrinsic::aarch64_sve_frinta_x2:
5769      SelectFrintFromVT(Node, 2, AArch64::FRINTA_2Z2Z_S);
5770      return;
5771    case Intrinsic::aarch64_sve_frinta_x4:
5772      SelectFrintFromVT(Node, 4, AArch64::FRINTA_4Z4Z_S);
5773      return;
5774    case Intrinsic::aarch64_sve_frintm_x2:
5775      SelectFrintFromVT(Node, 2, AArch64::FRINTM_2Z2Z_S);
5776      return;
5777    case Intrinsic::aarch64_sve_frintm_x4:
5778      SelectFrintFromVT(Node, 4, AArch64::FRINTM_4Z4Z_S);
5779      return;
5780    case Intrinsic::aarch64_sve_frintn_x2:
5781      SelectFrintFromVT(Node, 2, AArch64::FRINTN_2Z2Z_S);
5782      return;
5783    case Intrinsic::aarch64_sve_frintn_x4:
5784      SelectFrintFromVT(Node, 4, AArch64::FRINTN_4Z4Z_S);
5785      return;
5786    case Intrinsic::aarch64_sve_frintp_x2:
5787      SelectFrintFromVT(Node, 2, AArch64::FRINTP_2Z2Z_S);
5788      return;
5789    case Intrinsic::aarch64_sve_frintp_x4:
5790      SelectFrintFromVT(Node, 4, AArch64::FRINTP_4Z4Z_S);
5791      return;
5792    case Intrinsic::aarch64_sve_sunpk_x2:
5793      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5794              Node->getValueType(0),
5795              {0, AArch64::SUNPK_VG2_2ZZ_H, AArch64::SUNPK_VG2_2ZZ_S,
5796               AArch64::SUNPK_VG2_2ZZ_D}))
5797        SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5798      return;
5799    case Intrinsic::aarch64_sve_uunpk_x2:
5800      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5801              Node->getValueType(0),
5802              {0, AArch64::UUNPK_VG2_2ZZ_H, AArch64::UUNPK_VG2_2ZZ_S,
5803               AArch64::UUNPK_VG2_2ZZ_D}))
5804        SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5805      return;
5806    case Intrinsic::aarch64_sve_sunpk_x4:
5807      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5808              Node->getValueType(0),
5809              {0, AArch64::SUNPK_VG4_4Z2Z_H, AArch64::SUNPK_VG4_4Z2Z_S,
5810               AArch64::SUNPK_VG4_4Z2Z_D}))
5811        SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5812      return;
5813    case Intrinsic::aarch64_sve_uunpk_x4:
5814      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5815              Node->getValueType(0),
5816              {0, AArch64::UUNPK_VG4_4Z2Z_H, AArch64::UUNPK_VG4_4Z2Z_S,
5817               AArch64::UUNPK_VG4_4Z2Z_D}))
5818        SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5819      return;
5820    case Intrinsic::aarch64_sve_pext_x2: {
5821      if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5822              Node->getValueType(0),
5823              {AArch64::PEXT_2PCI_B, AArch64::PEXT_2PCI_H, AArch64::PEXT_2PCI_S,
5824               AArch64::PEXT_2PCI_D}))
5825        SelectPExtPair(Node, Op);
5826      return;
5827    }
5828    }
5829    break;
5830  }
5831  case ISD::INTRINSIC_VOID: {
5832    unsigned IntNo = Node->getConstantOperandVal(1);
5833    if (Node->getNumOperands() >= 3)
5834      VT = Node->getOperand(2)->getValueType(0);
5835    switch (IntNo) {
5836    default:
5837      break;
5838    case Intrinsic::aarch64_neon_st1x2: {
5839      if (VT == MVT::v8i8) {
5840        SelectStore(Node, 2, AArch64::ST1Twov8b);
5841        return;
5842      } else if (VT == MVT::v16i8) {
5843        SelectStore(Node, 2, AArch64::ST1Twov16b);
5844        return;
5845      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5846                 VT == MVT::v4bf16) {
5847        SelectStore(Node, 2, AArch64::ST1Twov4h);
5848        return;
5849      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5850                 VT == MVT::v8bf16) {
5851        SelectStore(Node, 2, AArch64::ST1Twov8h);
5852        return;
5853      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5854        SelectStore(Node, 2, AArch64::ST1Twov2s);
5855        return;
5856      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5857        SelectStore(Node, 2, AArch64::ST1Twov4s);
5858        return;
5859      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5860        SelectStore(Node, 2, AArch64::ST1Twov2d);
5861        return;
5862      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5863        SelectStore(Node, 2, AArch64::ST1Twov1d);
5864        return;
5865      }
5866      break;
5867    }
5868    case Intrinsic::aarch64_neon_st1x3: {
5869      if (VT == MVT::v8i8) {
5870        SelectStore(Node, 3, AArch64::ST1Threev8b);
5871        return;
5872      } else if (VT == MVT::v16i8) {
5873        SelectStore(Node, 3, AArch64::ST1Threev16b);
5874        return;
5875      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5876                 VT == MVT::v4bf16) {
5877        SelectStore(Node, 3, AArch64::ST1Threev4h);
5878        return;
5879      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5880                 VT == MVT::v8bf16) {
5881        SelectStore(Node, 3, AArch64::ST1Threev8h);
5882        return;
5883      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5884        SelectStore(Node, 3, AArch64::ST1Threev2s);
5885        return;
5886      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5887        SelectStore(Node, 3, AArch64::ST1Threev4s);
5888        return;
5889      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5890        SelectStore(Node, 3, AArch64::ST1Threev2d);
5891        return;
5892      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5893        SelectStore(Node, 3, AArch64::ST1Threev1d);
5894        return;
5895      }
5896      break;
5897    }
5898    case Intrinsic::aarch64_neon_st1x4: {
5899      if (VT == MVT::v8i8) {
5900        SelectStore(Node, 4, AArch64::ST1Fourv8b);
5901        return;
5902      } else if (VT == MVT::v16i8) {
5903        SelectStore(Node, 4, AArch64::ST1Fourv16b);
5904        return;
5905      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5906                 VT == MVT::v4bf16) {
5907        SelectStore(Node, 4, AArch64::ST1Fourv4h);
5908        return;
5909      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5910                 VT == MVT::v8bf16) {
5911        SelectStore(Node, 4, AArch64::ST1Fourv8h);
5912        return;
5913      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5914        SelectStore(Node, 4, AArch64::ST1Fourv2s);
5915        return;
5916      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5917        SelectStore(Node, 4, AArch64::ST1Fourv4s);
5918        return;
5919      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5920        SelectStore(Node, 4, AArch64::ST1Fourv2d);
5921        return;
5922      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5923        SelectStore(Node, 4, AArch64::ST1Fourv1d);
5924        return;
5925      }
5926      break;
5927    }
5928    case Intrinsic::aarch64_neon_st2: {
5929      if (VT == MVT::v8i8) {
5930        SelectStore(Node, 2, AArch64::ST2Twov8b);
5931        return;
5932      } else if (VT == MVT::v16i8) {
5933        SelectStore(Node, 2, AArch64::ST2Twov16b);
5934        return;
5935      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5936                 VT == MVT::v4bf16) {
5937        SelectStore(Node, 2, AArch64::ST2Twov4h);
5938        return;
5939      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5940                 VT == MVT::v8bf16) {
5941        SelectStore(Node, 2, AArch64::ST2Twov8h);
5942        return;
5943      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5944        SelectStore(Node, 2, AArch64::ST2Twov2s);
5945        return;
5946      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5947        SelectStore(Node, 2, AArch64::ST2Twov4s);
5948        return;
5949      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5950        SelectStore(Node, 2, AArch64::ST2Twov2d);
5951        return;
5952      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5953        SelectStore(Node, 2, AArch64::ST1Twov1d);
5954        return;
5955      }
5956      break;
5957    }
5958    case Intrinsic::aarch64_neon_st3: {
5959      if (VT == MVT::v8i8) {
5960        SelectStore(Node, 3, AArch64::ST3Threev8b);
5961        return;
5962      } else if (VT == MVT::v16i8) {
5963        SelectStore(Node, 3, AArch64::ST3Threev16b);
5964        return;
5965      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5966                 VT == MVT::v4bf16) {
5967        SelectStore(Node, 3, AArch64::ST3Threev4h);
5968        return;
5969      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5970                 VT == MVT::v8bf16) {
5971        SelectStore(Node, 3, AArch64::ST3Threev8h);
5972        return;
5973      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5974        SelectStore(Node, 3, AArch64::ST3Threev2s);
5975        return;
5976      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5977        SelectStore(Node, 3, AArch64::ST3Threev4s);
5978        return;
5979      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5980        SelectStore(Node, 3, AArch64::ST3Threev2d);
5981        return;
5982      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5983        SelectStore(Node, 3, AArch64::ST1Threev1d);
5984        return;
5985      }
5986      break;
5987    }
5988    case Intrinsic::aarch64_neon_st4: {
5989      if (VT == MVT::v8i8) {
5990        SelectStore(Node, 4, AArch64::ST4Fourv8b);
5991        return;
5992      } else if (VT == MVT::v16i8) {
5993        SelectStore(Node, 4, AArch64::ST4Fourv16b);
5994        return;
5995      } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5996                 VT == MVT::v4bf16) {
5997        SelectStore(Node, 4, AArch64::ST4Fourv4h);
5998        return;
5999      } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6000                 VT == MVT::v8bf16) {
6001        SelectStore(Node, 4, AArch64::ST4Fourv8h);
6002        return;
6003      } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6004        SelectStore(Node, 4, AArch64::ST4Fourv2s);
6005        return;
6006      } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6007        SelectStore(Node, 4, AArch64::ST4Fourv4s);
6008        return;
6009      } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6010        SelectStore(Node, 4, AArch64::ST4Fourv2d);
6011        return;
6012      } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6013        SelectStore(Node, 4, AArch64::ST1Fourv1d);
6014        return;
6015      }
6016      break;
6017    }
6018    case Intrinsic::aarch64_neon_st2lane: {
6019      if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6020        SelectStoreLane(Node, 2, AArch64::ST2i8);
6021        return;
6022      } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6023                 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6024        SelectStoreLane(Node, 2, AArch64::ST2i16);
6025        return;
6026      } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6027                 VT == MVT::v2f32) {
6028        SelectStoreLane(Node, 2, AArch64::ST2i32);
6029        return;
6030      } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6031                 VT == MVT::v1f64) {
6032        SelectStoreLane(Node, 2, AArch64::ST2i64);
6033        return;
6034      }
6035      break;
6036    }
6037    case Intrinsic::aarch64_neon_st3lane: {
6038      if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6039        SelectStoreLane(Node, 3, AArch64::ST3i8);
6040        return;
6041      } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6042                 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6043        SelectStoreLane(Node, 3, AArch64::ST3i16);
6044        return;
6045      } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6046                 VT == MVT::v2f32) {
6047        SelectStoreLane(Node, 3, AArch64::ST3i32);
6048        return;
6049      } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6050                 VT == MVT::v1f64) {
6051        SelectStoreLane(Node, 3, AArch64::ST3i64);
6052        return;
6053      }
6054      break;
6055    }
6056    case Intrinsic::aarch64_neon_st4lane: {
6057      if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6058        SelectStoreLane(Node, 4, AArch64::ST4i8);
6059        return;
6060      } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6061                 VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6062        SelectStoreLane(Node, 4, AArch64::ST4i16);
6063        return;
6064      } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6065                 VT == MVT::v2f32) {
6066        SelectStoreLane(Node, 4, AArch64::ST4i32);
6067        return;
6068      } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6069                 VT == MVT::v1f64) {
6070        SelectStoreLane(Node, 4, AArch64::ST4i64);
6071        return;
6072      }
6073      break;
6074    }
6075    case Intrinsic::aarch64_sve_st2q: {
6076      SelectPredicatedStore(Node, 2, 4, AArch64::ST2Q, AArch64::ST2Q_IMM);
6077      return;
6078    }
6079    case Intrinsic::aarch64_sve_st3q: {
6080      SelectPredicatedStore(Node, 3, 4, AArch64::ST3Q, AArch64::ST3Q_IMM);
6081      return;
6082    }
6083    case Intrinsic::aarch64_sve_st4q: {
6084      SelectPredicatedStore(Node, 4, 4, AArch64::ST4Q, AArch64::ST4Q_IMM);
6085      return;
6086    }
6087    case Intrinsic::aarch64_sve_st2: {
6088      if (VT == MVT::nxv16i8) {
6089        SelectPredicatedStore(Node, 2, 0, AArch64::ST2B, AArch64::ST2B_IMM);
6090        return;
6091      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6092                 VT == MVT::nxv8bf16) {
6093        SelectPredicatedStore(Node, 2, 1, AArch64::ST2H, AArch64::ST2H_IMM);
6094        return;
6095      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6096        SelectPredicatedStore(Node, 2, 2, AArch64::ST2W, AArch64::ST2W_IMM);
6097        return;
6098      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6099        SelectPredicatedStore(Node, 2, 3, AArch64::ST2D, AArch64::ST2D_IMM);
6100        return;
6101      }
6102      break;
6103    }
6104    case Intrinsic::aarch64_sve_st3: {
6105      if (VT == MVT::nxv16i8) {
6106        SelectPredicatedStore(Node, 3, 0, AArch64::ST3B, AArch64::ST3B_IMM);
6107        return;
6108      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6109                 VT == MVT::nxv8bf16) {
6110        SelectPredicatedStore(Node, 3, 1, AArch64::ST3H, AArch64::ST3H_IMM);
6111        return;
6112      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6113        SelectPredicatedStore(Node, 3, 2, AArch64::ST3W, AArch64::ST3W_IMM);
6114        return;
6115      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6116        SelectPredicatedStore(Node, 3, 3, AArch64::ST3D, AArch64::ST3D_IMM);
6117        return;
6118      }
6119      break;
6120    }
6121    case Intrinsic::aarch64_sve_st4: {
6122      if (VT == MVT::nxv16i8) {
6123        SelectPredicatedStore(Node, 4, 0, AArch64::ST4B, AArch64::ST4B_IMM);
6124        return;
6125      } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6126                 VT == MVT::nxv8bf16) {
6127        SelectPredicatedStore(Node, 4, 1, AArch64::ST4H, AArch64::ST4H_IMM);
6128        return;
6129      } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6130        SelectPredicatedStore(Node, 4, 2, AArch64::ST4W, AArch64::ST4W_IMM);
6131        return;
6132      } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6133        SelectPredicatedStore(Node, 4, 3, AArch64::ST4D, AArch64::ST4D_IMM);
6134        return;
6135      }
6136      break;
6137    }
6138    }
6139    break;
6140  }
6141  case AArch64ISD::LD2post: {
6142    if (VT == MVT::v8i8) {
6143      SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
6144      return;
6145    } else if (VT == MVT::v16i8) {
6146      SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
6147      return;
6148    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6149      SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
6150      return;
6151    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6152      SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
6153      return;
6154    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6155      SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
6156      return;
6157    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6158      SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
6159      return;
6160    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6161      SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
6162      return;
6163    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6164      SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
6165      return;
6166    }
6167    break;
6168  }
6169  case AArch64ISD::LD3post: {
6170    if (VT == MVT::v8i8) {
6171      SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
6172      return;
6173    } else if (VT == MVT::v16i8) {
6174      SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
6175      return;
6176    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6177      SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
6178      return;
6179    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6180      SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
6181      return;
6182    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6183      SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
6184      return;
6185    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6186      SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
6187      return;
6188    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6189      SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
6190      return;
6191    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6192      SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
6193      return;
6194    }
6195    break;
6196  }
6197  case AArch64ISD::LD4post: {
6198    if (VT == MVT::v8i8) {
6199      SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
6200      return;
6201    } else if (VT == MVT::v16i8) {
6202      SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
6203      return;
6204    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6205      SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
6206      return;
6207    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6208      SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
6209      return;
6210    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6211      SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
6212      return;
6213    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6214      SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
6215      return;
6216    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6217      SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
6218      return;
6219    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6220      SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
6221      return;
6222    }
6223    break;
6224  }
6225  case AArch64ISD::LD1x2post: {
6226    if (VT == MVT::v8i8) {
6227      SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
6228      return;
6229    } else if (VT == MVT::v16i8) {
6230      SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
6231      return;
6232    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6233      SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
6234      return;
6235    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6236      SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
6237      return;
6238    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6239      SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
6240      return;
6241    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6242      SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
6243      return;
6244    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6245      SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
6246      return;
6247    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6248      SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
6249      return;
6250    }
6251    break;
6252  }
6253  case AArch64ISD::LD1x3post: {
6254    if (VT == MVT::v8i8) {
6255      SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
6256      return;
6257    } else if (VT == MVT::v16i8) {
6258      SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
6259      return;
6260    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6261      SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
6262      return;
6263    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6264      SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
6265      return;
6266    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6267      SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
6268      return;
6269    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6270      SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
6271      return;
6272    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6273      SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
6274      return;
6275    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6276      SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
6277      return;
6278    }
6279    break;
6280  }
6281  case AArch64ISD::LD1x4post: {
6282    if (VT == MVT::v8i8) {
6283      SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
6284      return;
6285    } else if (VT == MVT::v16i8) {
6286      SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
6287      return;
6288    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6289      SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
6290      return;
6291    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6292      SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
6293      return;
6294    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6295      SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
6296      return;
6297    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6298      SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
6299      return;
6300    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6301      SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
6302      return;
6303    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6304      SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
6305      return;
6306    }
6307    break;
6308  }
6309  case AArch64ISD::LD1DUPpost: {
6310    if (VT == MVT::v8i8) {
6311      SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
6312      return;
6313    } else if (VT == MVT::v16i8) {
6314      SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
6315      return;
6316    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6317      SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
6318      return;
6319    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6320      SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
6321      return;
6322    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6323      SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
6324      return;
6325    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6326      SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
6327      return;
6328    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6329      SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
6330      return;
6331    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6332      SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
6333      return;
6334    }
6335    break;
6336  }
6337  case AArch64ISD::LD2DUPpost: {
6338    if (VT == MVT::v8i8) {
6339      SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
6340      return;
6341    } else if (VT == MVT::v16i8) {
6342      SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
6343      return;
6344    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6345      SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
6346      return;
6347    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6348      SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
6349      return;
6350    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6351      SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
6352      return;
6353    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6354      SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
6355      return;
6356    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6357      SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
6358      return;
6359    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6360      SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
6361      return;
6362    }
6363    break;
6364  }
6365  case AArch64ISD::LD3DUPpost: {
6366    if (VT == MVT::v8i8) {
6367      SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
6368      return;
6369    } else if (VT == MVT::v16i8) {
6370      SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
6371      return;
6372    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6373      SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
6374      return;
6375    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6376      SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
6377      return;
6378    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6379      SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
6380      return;
6381    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6382      SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
6383      return;
6384    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6385      SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
6386      return;
6387    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6388      SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
6389      return;
6390    }
6391    break;
6392  }
6393  case AArch64ISD::LD4DUPpost: {
6394    if (VT == MVT::v8i8) {
6395      SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
6396      return;
6397    } else if (VT == MVT::v16i8) {
6398      SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
6399      return;
6400    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6401      SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
6402      return;
6403    } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6404      SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
6405      return;
6406    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6407      SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
6408      return;
6409    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6410      SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
6411      return;
6412    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6413      SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
6414      return;
6415    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6416      SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
6417      return;
6418    }
6419    break;
6420  }
6421  case AArch64ISD::LD1LANEpost: {
6422    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6423      SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
6424      return;
6425    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6426               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6427      SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
6428      return;
6429    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6430               VT == MVT::v2f32) {
6431      SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
6432      return;
6433    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6434               VT == MVT::v1f64) {
6435      SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
6436      return;
6437    }
6438    break;
6439  }
6440  case AArch64ISD::LD2LANEpost: {
6441    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6442      SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
6443      return;
6444    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6445               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6446      SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
6447      return;
6448    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6449               VT == MVT::v2f32) {
6450      SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
6451      return;
6452    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6453               VT == MVT::v1f64) {
6454      SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
6455      return;
6456    }
6457    break;
6458  }
6459  case AArch64ISD::LD3LANEpost: {
6460    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6461      SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
6462      return;
6463    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6464               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6465      SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
6466      return;
6467    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6468               VT == MVT::v2f32) {
6469      SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
6470      return;
6471    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6472               VT == MVT::v1f64) {
6473      SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
6474      return;
6475    }
6476    break;
6477  }
6478  case AArch64ISD::LD4LANEpost: {
6479    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6480      SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
6481      return;
6482    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6483               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6484      SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
6485      return;
6486    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6487               VT == MVT::v2f32) {
6488      SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
6489      return;
6490    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6491               VT == MVT::v1f64) {
6492      SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
6493      return;
6494    }
6495    break;
6496  }
6497  case AArch64ISD::ST2post: {
6498    VT = Node->getOperand(1).getValueType();
6499    if (VT == MVT::v8i8) {
6500      SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
6501      return;
6502    } else if (VT == MVT::v16i8) {
6503      SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
6504      return;
6505    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6506      SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
6507      return;
6508    } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6509      SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
6510      return;
6511    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6512      SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
6513      return;
6514    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6515      SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
6516      return;
6517    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6518      SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
6519      return;
6520    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6521      SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
6522      return;
6523    }
6524    break;
6525  }
6526  case AArch64ISD::ST3post: {
6527    VT = Node->getOperand(1).getValueType();
6528    if (VT == MVT::v8i8) {
6529      SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
6530      return;
6531    } else if (VT == MVT::v16i8) {
6532      SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
6533      return;
6534    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6535      SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
6536      return;
6537    } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6538      SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
6539      return;
6540    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6541      SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
6542      return;
6543    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6544      SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
6545      return;
6546    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6547      SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
6548      return;
6549    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6550      SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
6551      return;
6552    }
6553    break;
6554  }
6555  case AArch64ISD::ST4post: {
6556    VT = Node->getOperand(1).getValueType();
6557    if (VT == MVT::v8i8) {
6558      SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
6559      return;
6560    } else if (VT == MVT::v16i8) {
6561      SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
6562      return;
6563    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6564      SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
6565      return;
6566    } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6567      SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
6568      return;
6569    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6570      SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
6571      return;
6572    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6573      SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
6574      return;
6575    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6576      SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
6577      return;
6578    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6579      SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
6580      return;
6581    }
6582    break;
6583  }
6584  case AArch64ISD::ST1x2post: {
6585    VT = Node->getOperand(1).getValueType();
6586    if (VT == MVT::v8i8) {
6587      SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
6588      return;
6589    } else if (VT == MVT::v16i8) {
6590      SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
6591      return;
6592    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6593      SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
6594      return;
6595    } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6596      SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
6597      return;
6598    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6599      SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
6600      return;
6601    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6602      SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
6603      return;
6604    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6605      SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
6606      return;
6607    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6608      SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
6609      return;
6610    }
6611    break;
6612  }
6613  case AArch64ISD::ST1x3post: {
6614    VT = Node->getOperand(1).getValueType();
6615    if (VT == MVT::v8i8) {
6616      SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
6617      return;
6618    } else if (VT == MVT::v16i8) {
6619      SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
6620      return;
6621    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6622      SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
6623      return;
6624    } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16 ) {
6625      SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
6626      return;
6627    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6628      SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
6629      return;
6630    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6631      SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
6632      return;
6633    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6634      SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
6635      return;
6636    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6637      SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
6638      return;
6639    }
6640    break;
6641  }
6642  case AArch64ISD::ST1x4post: {
6643    VT = Node->getOperand(1).getValueType();
6644    if (VT == MVT::v8i8) {
6645      SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
6646      return;
6647    } else if (VT == MVT::v16i8) {
6648      SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
6649      return;
6650    } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6651      SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
6652      return;
6653    } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6654      SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
6655      return;
6656    } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6657      SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
6658      return;
6659    } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6660      SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
6661      return;
6662    } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6663      SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
6664      return;
6665    } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6666      SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
6667      return;
6668    }
6669    break;
6670  }
6671  case AArch64ISD::ST2LANEpost: {
6672    VT = Node->getOperand(1).getValueType();
6673    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6674      SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
6675      return;
6676    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6677               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6678      SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
6679      return;
6680    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6681               VT == MVT::v2f32) {
6682      SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
6683      return;
6684    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6685               VT == MVT::v1f64) {
6686      SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
6687      return;
6688    }
6689    break;
6690  }
6691  case AArch64ISD::ST3LANEpost: {
6692    VT = Node->getOperand(1).getValueType();
6693    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6694      SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
6695      return;
6696    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6697               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6698      SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
6699      return;
6700    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6701               VT == MVT::v2f32) {
6702      SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
6703      return;
6704    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6705               VT == MVT::v1f64) {
6706      SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
6707      return;
6708    }
6709    break;
6710  }
6711  case AArch64ISD::ST4LANEpost: {
6712    VT = Node->getOperand(1).getValueType();
6713    if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6714      SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
6715      return;
6716    } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6717               VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6718      SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
6719      return;
6720    } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6721               VT == MVT::v2f32) {
6722      SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
6723      return;
6724    } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6725               VT == MVT::v1f64) {
6726      SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
6727      return;
6728    }
6729    break;
6730  }
6731  case AArch64ISD::SVE_LD2_MERGE_ZERO: {
6732    if (VT == MVT::nxv16i8) {
6733      SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B);
6734      return;
6735    } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6736               VT == MVT::nxv8bf16) {
6737      SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H);
6738      return;
6739    } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6740      SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W);
6741      return;
6742    } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6743      SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D);
6744      return;
6745    }
6746    break;
6747  }
6748  case AArch64ISD::SVE_LD3_MERGE_ZERO: {
6749    if (VT == MVT::nxv16i8) {
6750      SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B);
6751      return;
6752    } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6753               VT == MVT::nxv8bf16) {
6754      SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H);
6755      return;
6756    } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6757      SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W);
6758      return;
6759    } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6760      SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D);
6761      return;
6762    }
6763    break;
6764  }
6765  case AArch64ISD::SVE_LD4_MERGE_ZERO: {
6766    if (VT == MVT::nxv16i8) {
6767      SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B);
6768      return;
6769    } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6770               VT == MVT::nxv8bf16) {
6771      SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H);
6772      return;
6773    } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6774      SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W);
6775      return;
6776    } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6777      SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D);
6778      return;
6779    }
6780    break;
6781  }
6782  }
6783
6784  // Select the default instruction
6785  SelectCode(Node);
6786}
6787
6788/// createAArch64ISelDag - This pass converts a legalized DAG into a
6789/// AArch64-specific DAG, ready for instruction scheduling.
6790FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
6791                                         CodeGenOptLevel OptLevel) {
6792  return new AArch64DAGToDAGISel(TM, OptLevel);
6793}
6794
6795/// When \p PredVT is a scalable vector predicate in the form
6796/// MVT::nx<M>xi1, it builds the correspondent scalable vector of
6797/// integers MVT::nx<M>xi<bits> s.t. M x bits = 128. When targeting
6798/// structured vectors (NumVec >1), the output data type is
6799/// MVT::nx<M*NumVec>xi<bits> s.t. M x bits = 128. If the input
6800/// PredVT is not in the form MVT::nx<M>xi1, it returns an invalid
6801/// EVT.
6802static EVT getPackedVectorTypeFromPredicateType(LLVMContext &Ctx, EVT PredVT,
6803                                                unsigned NumVec) {
6804  assert(NumVec > 0 && NumVec < 5 && "Invalid number of vectors.");
6805  if (!PredVT.isScalableVector() || PredVT.getVectorElementType() != MVT::i1)
6806    return EVT();
6807
6808  if (PredVT != MVT::nxv16i1 && PredVT != MVT::nxv8i1 &&
6809      PredVT != MVT::nxv4i1 && PredVT != MVT::nxv2i1)
6810    return EVT();
6811
6812  ElementCount EC = PredVT.getVectorElementCount();
6813  EVT ScalarVT =
6814      EVT::getIntegerVT(Ctx, AArch64::SVEBitsPerBlock / EC.getKnownMinValue());
6815  EVT MemVT = EVT::getVectorVT(Ctx, ScalarVT, EC * NumVec);
6816
6817  return MemVT;
6818}
6819
6820/// Return the EVT of the data associated to a memory operation in \p
6821/// Root. If such EVT cannot be retrived, it returns an invalid EVT.
6822static EVT getMemVTFromNode(LLVMContext &Ctx, SDNode *Root) {
6823  if (isa<MemSDNode>(Root))
6824    return cast<MemSDNode>(Root)->getMemoryVT();
6825
6826  if (isa<MemIntrinsicSDNode>(Root))
6827    return cast<MemIntrinsicSDNode>(Root)->getMemoryVT();
6828
6829  const unsigned Opcode = Root->getOpcode();
6830  // For custom ISD nodes, we have to look at them individually to extract the
6831  // type of the data moved to/from memory.
6832  switch (Opcode) {
6833  case AArch64ISD::LD1_MERGE_ZERO:
6834  case AArch64ISD::LD1S_MERGE_ZERO:
6835  case AArch64ISD::LDNF1_MERGE_ZERO:
6836  case AArch64ISD::LDNF1S_MERGE_ZERO:
6837    return cast<VTSDNode>(Root->getOperand(3))->getVT();
6838  case AArch64ISD::ST1_PRED:
6839    return cast<VTSDNode>(Root->getOperand(4))->getVT();
6840  case AArch64ISD::SVE_LD2_MERGE_ZERO:
6841    return getPackedVectorTypeFromPredicateType(
6842        Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/2);
6843  case AArch64ISD::SVE_LD3_MERGE_ZERO:
6844    return getPackedVectorTypeFromPredicateType(
6845        Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/3);
6846  case AArch64ISD::SVE_LD4_MERGE_ZERO:
6847    return getPackedVectorTypeFromPredicateType(
6848        Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/4);
6849  default:
6850    break;
6851  }
6852
6853  if (Opcode != ISD::INTRINSIC_VOID && Opcode != ISD::INTRINSIC_W_CHAIN)
6854    return EVT();
6855
6856  switch (Root->getConstantOperandVal(1)) {
6857  default:
6858    return EVT();
6859  case Intrinsic::aarch64_sme_ldr:
6860  case Intrinsic::aarch64_sme_str:
6861    return MVT::nxv16i8;
6862  case Intrinsic::aarch64_sve_prf:
6863    // We are using an SVE prefetch intrinsic. Type must be inferred from the
6864    // width of the predicate.
6865    return getPackedVectorTypeFromPredicateType(
6866        Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/1);
6867  case Intrinsic::aarch64_sve_ld2_sret:
6868  case Intrinsic::aarch64_sve_ld2q_sret:
6869    return getPackedVectorTypeFromPredicateType(
6870        Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/2);
6871  case Intrinsic::aarch64_sve_st2q:
6872    return getPackedVectorTypeFromPredicateType(
6873        Ctx, Root->getOperand(4)->getValueType(0), /*NumVec=*/2);
6874  case Intrinsic::aarch64_sve_ld3_sret:
6875  case Intrinsic::aarch64_sve_ld3q_sret:
6876    return getPackedVectorTypeFromPredicateType(
6877        Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/3);
6878  case Intrinsic::aarch64_sve_st3q:
6879    return getPackedVectorTypeFromPredicateType(
6880        Ctx, Root->getOperand(5)->getValueType(0), /*NumVec=*/3);
6881  case Intrinsic::aarch64_sve_ld4_sret:
6882  case Intrinsic::aarch64_sve_ld4q_sret:
6883    return getPackedVectorTypeFromPredicateType(
6884        Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/4);
6885  case Intrinsic::aarch64_sve_st4q:
6886    return getPackedVectorTypeFromPredicateType(
6887        Ctx, Root->getOperand(6)->getValueType(0), /*NumVec=*/4);
6888  case Intrinsic::aarch64_sve_ld1udq:
6889  case Intrinsic::aarch64_sve_st1dq:
6890    return EVT(MVT::nxv1i64);
6891  case Intrinsic::aarch64_sve_ld1uwq:
6892  case Intrinsic::aarch64_sve_st1wq:
6893    return EVT(MVT::nxv1i32);
6894  }
6895}
6896
6897/// SelectAddrModeIndexedSVE - Attempt selection of the addressing mode:
6898/// Base + OffImm * sizeof(MemVT) for Min >= OffImm <= Max
6899/// where Root is the memory access using N for its address.
6900template <int64_t Min, int64_t Max>
6901bool AArch64DAGToDAGISel::SelectAddrModeIndexedSVE(SDNode *Root, SDValue N,
6902                                                   SDValue &Base,
6903                                                   SDValue &OffImm) {
6904  const EVT MemVT = getMemVTFromNode(*(CurDAG->getContext()), Root);
6905  const DataLayout &DL = CurDAG->getDataLayout();
6906  const MachineFrameInfo &MFI = MF->getFrameInfo();
6907
6908  if (N.getOpcode() == ISD::FrameIndex) {
6909    int FI = cast<FrameIndexSDNode>(N)->getIndex();
6910    // We can only encode VL scaled offsets, so only fold in frame indexes
6911    // referencing SVE objects.
6912    if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
6913      Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
6914      OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
6915      return true;
6916    }
6917
6918    return false;
6919  }
6920
6921  if (MemVT == EVT())
6922    return false;
6923
6924  if (N.getOpcode() != ISD::ADD)
6925    return false;
6926
6927  SDValue VScale = N.getOperand(1);
6928  if (VScale.getOpcode() != ISD::VSCALE)
6929    return false;
6930
6931  TypeSize TS = MemVT.getSizeInBits();
6932  int64_t MemWidthBytes = static_cast<int64_t>(TS.getKnownMinValue()) / 8;
6933  int64_t MulImm = cast<ConstantSDNode>(VScale.getOperand(0))->getSExtValue();
6934
6935  if ((MulImm % MemWidthBytes) != 0)
6936    return false;
6937
6938  int64_t Offset = MulImm / MemWidthBytes;
6939  if (Offset < Min || Offset > Max)
6940    return false;
6941
6942  Base = N.getOperand(0);
6943  if (Base.getOpcode() == ISD::FrameIndex) {
6944    int FI = cast<FrameIndexSDNode>(Base)->getIndex();
6945    // We can only encode VL scaled offsets, so only fold in frame indexes
6946    // referencing SVE objects.
6947    if (MFI.getStackID(FI) == TargetStackID::ScalableVector)
6948      Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
6949  }
6950
6951  OffImm = CurDAG->getTargetConstant(Offset, SDLoc(N), MVT::i64);
6952  return true;
6953}
6954
6955/// Select register plus register addressing mode for SVE, with scaled
6956/// offset.
6957bool AArch64DAGToDAGISel::SelectSVERegRegAddrMode(SDValue N, unsigned Scale,
6958                                                  SDValue &Base,
6959                                                  SDValue &Offset) {
6960  if (N.getOpcode() != ISD::ADD)
6961    return false;
6962
6963  // Process an ADD node.
6964  const SDValue LHS = N.getOperand(0);
6965  const SDValue RHS = N.getOperand(1);
6966
6967  // 8 bit data does not come with the SHL node, so it is treated
6968  // separately.
6969  if (Scale == 0) {
6970    Base = LHS;
6971    Offset = RHS;
6972    return true;
6973  }
6974
6975  if (auto C = dyn_cast<ConstantSDNode>(RHS)) {
6976    int64_t ImmOff = C->getSExtValue();
6977    unsigned Size = 1 << Scale;
6978
6979    // To use the reg+reg addressing mode, the immediate must be a multiple of
6980    // the vector element's byte size.
6981    if (ImmOff % Size)
6982      return false;
6983
6984    SDLoc DL(N);
6985    Base = LHS;
6986    Offset = CurDAG->getTargetConstant(ImmOff >> Scale, DL, MVT::i64);
6987    SDValue Ops[] = {Offset};
6988    SDNode *MI = CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
6989    Offset = SDValue(MI, 0);
6990    return true;
6991  }
6992
6993  // Check if the RHS is a shift node with a constant.
6994  if (RHS.getOpcode() != ISD::SHL)
6995    return false;
6996
6997  const SDValue ShiftRHS = RHS.getOperand(1);
6998  if (auto *C = dyn_cast<ConstantSDNode>(ShiftRHS))
6999    if (C->getZExtValue() == Scale) {
7000      Base = LHS;
7001      Offset = RHS.getOperand(0);
7002      return true;
7003    }
7004
7005  return false;
7006}
7007
7008bool AArch64DAGToDAGISel::SelectAllActivePredicate(SDValue N) {
7009  const AArch64TargetLowering *TLI =
7010      static_cast<const AArch64TargetLowering *>(getTargetLowering());
7011
7012  return TLI->isAllActivePredicate(*CurDAG, N);
7013}
7014
7015bool AArch64DAGToDAGISel::SelectAnyPredicate(SDValue N) {
7016  EVT VT = N.getValueType();
7017  return VT.isScalableVector() && VT.getVectorElementType() == MVT::i1;
7018}
7019
7020bool AArch64DAGToDAGISel::SelectSMETileSlice(SDValue N, unsigned MaxSize,
7021                                             SDValue &Base, SDValue &Offset,
7022                                             unsigned Scale) {
7023  // Try to untangle an ADD node into a 'reg + offset'
7024  if (N.getOpcode() == ISD::ADD)
7025    if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
7026      int64_t ImmOff = C->getSExtValue();
7027      if ((ImmOff > 0 && ImmOff <= MaxSize && (ImmOff % Scale == 0))) {
7028        Base = N.getOperand(0);
7029        Offset = CurDAG->getTargetConstant(ImmOff / Scale, SDLoc(N), MVT::i64);
7030        return true;
7031      }
7032    }
7033
7034  // By default, just match reg + 0.
7035  Base = N;
7036  Offset = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
7037  return true;
7038}
7039