1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a class to represent arbitrary precision integer
10// constant values and provide a variety of arithmetic operations on them.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/FoldingSet.h"
17#include "llvm/ADT/Hashing.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/bit.h"
21#include "llvm/Config/llvm-config.h"
22#include "llvm/Support/Alignment.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <cmath>
28#include <optional>
29
30using namespace llvm;
31
32#define DEBUG_TYPE "apint"
33
34/// A utility function for allocating memory, checking for allocation failures,
35/// and ensuring the contents are zeroed.
36inline static uint64_t* getClearedMemory(unsigned numWords) {
37  uint64_t *result = new uint64_t[numWords];
38  memset(result, 0, numWords * sizeof(uint64_t));
39  return result;
40}
41
42/// A utility function for allocating memory and checking for allocation
43/// failure.  The content is not zeroed.
44inline static uint64_t* getMemory(unsigned numWords) {
45  return new uint64_t[numWords];
46}
47
48/// A utility function that converts a character to a digit.
49inline static unsigned getDigit(char cdigit, uint8_t radix) {
50  unsigned r;
51
52  if (radix == 16 || radix == 36) {
53    r = cdigit - '0';
54    if (r <= 9)
55      return r;
56
57    r = cdigit - 'A';
58    if (r <= radix - 11U)
59      return r + 10;
60
61    r = cdigit - 'a';
62    if (r <= radix - 11U)
63      return r + 10;
64
65    radix = 10;
66  }
67
68  r = cdigit - '0';
69  if (r < radix)
70    return r;
71
72  return UINT_MAX;
73}
74
75
76void APInt::initSlowCase(uint64_t val, bool isSigned) {
77  U.pVal = getClearedMemory(getNumWords());
78  U.pVal[0] = val;
79  if (isSigned && int64_t(val) < 0)
80    for (unsigned i = 1; i < getNumWords(); ++i)
81      U.pVal[i] = WORDTYPE_MAX;
82  clearUnusedBits();
83}
84
85void APInt::initSlowCase(const APInt& that) {
86  U.pVal = getMemory(getNumWords());
87  memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
88}
89
90void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91  assert(bigVal.data() && "Null pointer detected!");
92  if (isSingleWord())
93    U.VAL = bigVal[0];
94  else {
95    // Get memory, cleared to 0
96    U.pVal = getClearedMemory(getNumWords());
97    // Calculate the number of words to copy
98    unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99    // Copy the words from bigVal to pVal
100    memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
101  }
102  // Make sure unused high bits are cleared
103  clearUnusedBits();
104}
105
106APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
107  initFromArray(bigVal);
108}
109
110APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111    : BitWidth(numBits) {
112  initFromArray(ArrayRef(bigVal, numWords));
113}
114
115APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
116    : BitWidth(numbits) {
117  fromString(numbits, Str, radix);
118}
119
120void APInt::reallocate(unsigned NewBitWidth) {
121  // If the number of words is the same we can just change the width and stop.
122  if (getNumWords() == getNumWords(NewBitWidth)) {
123    BitWidth = NewBitWidth;
124    return;
125  }
126
127  // If we have an allocation, delete it.
128  if (!isSingleWord())
129    delete [] U.pVal;
130
131  // Update BitWidth.
132  BitWidth = NewBitWidth;
133
134  // If we are supposed to have an allocation, create it.
135  if (!isSingleWord())
136    U.pVal = getMemory(getNumWords());
137}
138
139void APInt::assignSlowCase(const APInt &RHS) {
140  // Don't do anything for X = X
141  if (this == &RHS)
142    return;
143
144  // Adjust the bit width and handle allocations as necessary.
145  reallocate(RHS.getBitWidth());
146
147  // Copy the data.
148  if (isSingleWord())
149    U.VAL = RHS.U.VAL;
150  else
151    memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
152}
153
154/// This method 'profiles' an APInt for use with FoldingSet.
155void APInt::Profile(FoldingSetNodeID& ID) const {
156  ID.AddInteger(BitWidth);
157
158  if (isSingleWord()) {
159    ID.AddInteger(U.VAL);
160    return;
161  }
162
163  unsigned NumWords = getNumWords();
164  for (unsigned i = 0; i < NumWords; ++i)
165    ID.AddInteger(U.pVal[i]);
166}
167
168bool APInt::isAligned(Align A) const {
169  if (isZero())
170    return true;
171  const unsigned TrailingZeroes = countr_zero();
172  const unsigned MinimumTrailingZeroes = Log2(A);
173  return TrailingZeroes >= MinimumTrailingZeroes;
174}
175
176/// Prefix increment operator. Increments the APInt by one.
177APInt& APInt::operator++() {
178  if (isSingleWord())
179    ++U.VAL;
180  else
181    tcIncrement(U.pVal, getNumWords());
182  return clearUnusedBits();
183}
184
185/// Prefix decrement operator. Decrements the APInt by one.
186APInt& APInt::operator--() {
187  if (isSingleWord())
188    --U.VAL;
189  else
190    tcDecrement(U.pVal, getNumWords());
191  return clearUnusedBits();
192}
193
194/// Adds the RHS APInt to this APInt.
195/// @returns this, after addition of RHS.
196/// Addition assignment operator.
197APInt& APInt::operator+=(const APInt& RHS) {
198  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
199  if (isSingleWord())
200    U.VAL += RHS.U.VAL;
201  else
202    tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
203  return clearUnusedBits();
204}
205
206APInt& APInt::operator+=(uint64_t RHS) {
207  if (isSingleWord())
208    U.VAL += RHS;
209  else
210    tcAddPart(U.pVal, RHS, getNumWords());
211  return clearUnusedBits();
212}
213
214/// Subtracts the RHS APInt from this APInt
215/// @returns this, after subtraction
216/// Subtraction assignment operator.
217APInt& APInt::operator-=(const APInt& RHS) {
218  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
219  if (isSingleWord())
220    U.VAL -= RHS.U.VAL;
221  else
222    tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
223  return clearUnusedBits();
224}
225
226APInt& APInt::operator-=(uint64_t RHS) {
227  if (isSingleWord())
228    U.VAL -= RHS;
229  else
230    tcSubtractPart(U.pVal, RHS, getNumWords());
231  return clearUnusedBits();
232}
233
234APInt APInt::operator*(const APInt& RHS) const {
235  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
236  if (isSingleWord())
237    return APInt(BitWidth, U.VAL * RHS.U.VAL);
238
239  APInt Result(getMemory(getNumWords()), getBitWidth());
240  tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
241  Result.clearUnusedBits();
242  return Result;
243}
244
245void APInt::andAssignSlowCase(const APInt &RHS) {
246  WordType *dst = U.pVal, *rhs = RHS.U.pVal;
247  for (size_t i = 0, e = getNumWords(); i != e; ++i)
248    dst[i] &= rhs[i];
249}
250
251void APInt::orAssignSlowCase(const APInt &RHS) {
252  WordType *dst = U.pVal, *rhs = RHS.U.pVal;
253  for (size_t i = 0, e = getNumWords(); i != e; ++i)
254    dst[i] |= rhs[i];
255}
256
257void APInt::xorAssignSlowCase(const APInt &RHS) {
258  WordType *dst = U.pVal, *rhs = RHS.U.pVal;
259  for (size_t i = 0, e = getNumWords(); i != e; ++i)
260    dst[i] ^= rhs[i];
261}
262
263APInt &APInt::operator*=(const APInt &RHS) {
264  *this = *this * RHS;
265  return *this;
266}
267
268APInt& APInt::operator*=(uint64_t RHS) {
269  if (isSingleWord()) {
270    U.VAL *= RHS;
271  } else {
272    unsigned NumWords = getNumWords();
273    tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
274  }
275  return clearUnusedBits();
276}
277
278bool APInt::equalSlowCase(const APInt &RHS) const {
279  return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
280}
281
282int APInt::compare(const APInt& RHS) const {
283  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
284  if (isSingleWord())
285    return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
286
287  return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
288}
289
290int APInt::compareSigned(const APInt& RHS) const {
291  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
292  if (isSingleWord()) {
293    int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
294    int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
295    return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
296  }
297
298  bool lhsNeg = isNegative();
299  bool rhsNeg = RHS.isNegative();
300
301  // If the sign bits don't match, then (LHS < RHS) if LHS is negative
302  if (lhsNeg != rhsNeg)
303    return lhsNeg ? -1 : 1;
304
305  // Otherwise we can just use an unsigned comparison, because even negative
306  // numbers compare correctly this way if both have the same signed-ness.
307  return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
308}
309
310void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
311  unsigned loWord = whichWord(loBit);
312  unsigned hiWord = whichWord(hiBit);
313
314  // Create an initial mask for the low word with zeros below loBit.
315  uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
316
317  // If hiBit is not aligned, we need a high mask.
318  unsigned hiShiftAmt = whichBit(hiBit);
319  if (hiShiftAmt != 0) {
320    // Create a high mask with zeros above hiBit.
321    uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
322    // If loWord and hiWord are equal, then we combine the masks. Otherwise,
323    // set the bits in hiWord.
324    if (hiWord == loWord)
325      loMask &= hiMask;
326    else
327      U.pVal[hiWord] |= hiMask;
328  }
329  // Apply the mask to the low word.
330  U.pVal[loWord] |= loMask;
331
332  // Fill any words between loWord and hiWord with all ones.
333  for (unsigned word = loWord + 1; word < hiWord; ++word)
334    U.pVal[word] = WORDTYPE_MAX;
335}
336
337// Complement a bignum in-place.
338static void tcComplement(APInt::WordType *dst, unsigned parts) {
339  for (unsigned i = 0; i < parts; i++)
340    dst[i] = ~dst[i];
341}
342
343/// Toggle every bit to its opposite value.
344void APInt::flipAllBitsSlowCase() {
345  tcComplement(U.pVal, getNumWords());
346  clearUnusedBits();
347}
348
349/// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
350/// equivalent to:
351///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
352/// In the slow case, we know the result is large.
353APInt APInt::concatSlowCase(const APInt &NewLSB) const {
354  unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
355  APInt Result = NewLSB.zext(NewWidth);
356  Result.insertBits(*this, NewLSB.getBitWidth());
357  return Result;
358}
359
360/// Toggle a given bit to its opposite value whose position is given
361/// as "bitPosition".
362/// Toggles a given bit to its opposite value.
363void APInt::flipBit(unsigned bitPosition) {
364  assert(bitPosition < BitWidth && "Out of the bit-width range!");
365  setBitVal(bitPosition, !(*this)[bitPosition]);
366}
367
368void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
369  unsigned subBitWidth = subBits.getBitWidth();
370  assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
371
372  // inserting no bits is a noop.
373  if (subBitWidth == 0)
374    return;
375
376  // Insertion is a direct copy.
377  if (subBitWidth == BitWidth) {
378    *this = subBits;
379    return;
380  }
381
382  // Single word result can be done as a direct bitmask.
383  if (isSingleWord()) {
384    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
385    U.VAL &= ~(mask << bitPosition);
386    U.VAL |= (subBits.U.VAL << bitPosition);
387    return;
388  }
389
390  unsigned loBit = whichBit(bitPosition);
391  unsigned loWord = whichWord(bitPosition);
392  unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
393
394  // Insertion within a single word can be done as a direct bitmask.
395  if (loWord == hi1Word) {
396    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
397    U.pVal[loWord] &= ~(mask << loBit);
398    U.pVal[loWord] |= (subBits.U.VAL << loBit);
399    return;
400  }
401
402  // Insert on word boundaries.
403  if (loBit == 0) {
404    // Direct copy whole words.
405    unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
406    memcpy(U.pVal + loWord, subBits.getRawData(),
407           numWholeSubWords * APINT_WORD_SIZE);
408
409    // Mask+insert remaining bits.
410    unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
411    if (remainingBits != 0) {
412      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
413      U.pVal[hi1Word] &= ~mask;
414      U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
415    }
416    return;
417  }
418
419  // General case - set/clear individual bits in dst based on src.
420  // TODO - there is scope for optimization here, but at the moment this code
421  // path is barely used so prefer readability over performance.
422  for (unsigned i = 0; i != subBitWidth; ++i)
423    setBitVal(bitPosition + i, subBits[i]);
424}
425
426void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
427  uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
428  subBits &= maskBits;
429  if (isSingleWord()) {
430    U.VAL &= ~(maskBits << bitPosition);
431    U.VAL |= subBits << bitPosition;
432    return;
433  }
434
435  unsigned loBit = whichBit(bitPosition);
436  unsigned loWord = whichWord(bitPosition);
437  unsigned hiWord = whichWord(bitPosition + numBits - 1);
438  if (loWord == hiWord) {
439    U.pVal[loWord] &= ~(maskBits << loBit);
440    U.pVal[loWord] |= subBits << loBit;
441    return;
442  }
443
444  static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
445  unsigned wordBits = 8 * sizeof(WordType);
446  U.pVal[loWord] &= ~(maskBits << loBit);
447  U.pVal[loWord] |= subBits << loBit;
448
449  U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
450  U.pVal[hiWord] |= subBits >> (wordBits - loBit);
451}
452
453APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
454  assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
455         "Illegal bit extraction");
456
457  if (isSingleWord())
458    return APInt(numBits, U.VAL >> bitPosition);
459
460  unsigned loBit = whichBit(bitPosition);
461  unsigned loWord = whichWord(bitPosition);
462  unsigned hiWord = whichWord(bitPosition + numBits - 1);
463
464  // Single word result extracting bits from a single word source.
465  if (loWord == hiWord)
466    return APInt(numBits, U.pVal[loWord] >> loBit);
467
468  // Extracting bits that start on a source word boundary can be done
469  // as a fast memory copy.
470  if (loBit == 0)
471    return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
472
473  // General case - shift + copy source words directly into place.
474  APInt Result(numBits, 0);
475  unsigned NumSrcWords = getNumWords();
476  unsigned NumDstWords = Result.getNumWords();
477
478  uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
479  for (unsigned word = 0; word < NumDstWords; ++word) {
480    uint64_t w0 = U.pVal[loWord + word];
481    uint64_t w1 =
482        (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
483    DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
484  }
485
486  return Result.clearUnusedBits();
487}
488
489uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
490                                       unsigned bitPosition) const {
491  assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
492         "Illegal bit extraction");
493  assert(numBits <= 64 && "Illegal bit extraction");
494
495  uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
496  if (isSingleWord())
497    return (U.VAL >> bitPosition) & maskBits;
498
499  unsigned loBit = whichBit(bitPosition);
500  unsigned loWord = whichWord(bitPosition);
501  unsigned hiWord = whichWord(bitPosition + numBits - 1);
502  if (loWord == hiWord)
503    return (U.pVal[loWord] >> loBit) & maskBits;
504
505  static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
506  unsigned wordBits = 8 * sizeof(WordType);
507  uint64_t retBits = U.pVal[loWord] >> loBit;
508  retBits |= U.pVal[hiWord] << (wordBits - loBit);
509  retBits &= maskBits;
510  return retBits;
511}
512
513unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
514  assert(!Str.empty() && "Invalid string length");
515  size_t StrLen = Str.size();
516
517  // Each computation below needs to know if it's negative.
518  unsigned IsNegative = false;
519  if (Str[0] == '-' || Str[0] == '+') {
520    IsNegative = Str[0] == '-';
521    StrLen--;
522    assert(StrLen && "String is only a sign, needs a value.");
523  }
524
525  // For radixes of power-of-two values, the bits required is accurately and
526  // easily computed.
527  if (Radix == 2)
528    return StrLen + IsNegative;
529  if (Radix == 8)
530    return StrLen * 3 + IsNegative;
531  if (Radix == 16)
532    return StrLen * 4 + IsNegative;
533
534  // Compute a sufficient number of bits that is always large enough but might
535  // be too large. This avoids the assertion in the constructor. This
536  // calculation doesn't work appropriately for the numbers 0-9, so just use 4
537  // bits in that case.
538  if (Radix == 10)
539    return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
540
541  assert(Radix == 36);
542  return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
543}
544
545unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
546  // Compute a sufficient number of bits that is always large enough but might
547  // be too large.
548  unsigned sufficient = getSufficientBitsNeeded(str, radix);
549
550  // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
551  // return the value directly. For bases 10 and 36, we need to do extra work.
552  if (radix == 2 || radix == 8 || radix == 16)
553    return sufficient;
554
555  // This is grossly inefficient but accurate. We could probably do something
556  // with a computation of roughly slen*64/20 and then adjust by the value of
557  // the first few digits. But, I'm not sure how accurate that could be.
558  size_t slen = str.size();
559
560  // Each computation below needs to know if it's negative.
561  StringRef::iterator p = str.begin();
562  unsigned isNegative = *p == '-';
563  if (*p == '-' || *p == '+') {
564    p++;
565    slen--;
566    assert(slen && "String is only a sign, needs a value.");
567  }
568
569
570  // Convert to the actual binary value.
571  APInt tmp(sufficient, StringRef(p, slen), radix);
572
573  // Compute how many bits are required. If the log is infinite, assume we need
574  // just bit. If the log is exact and value is negative, then the value is
575  // MinSignedValue with (log + 1) bits.
576  unsigned log = tmp.logBase2();
577  if (log == (unsigned)-1) {
578    return isNegative + 1;
579  } else if (isNegative && tmp.isPowerOf2()) {
580    return isNegative + log;
581  } else {
582    return isNegative + log + 1;
583  }
584}
585
586hash_code llvm::hash_value(const APInt &Arg) {
587  if (Arg.isSingleWord())
588    return hash_combine(Arg.BitWidth, Arg.U.VAL);
589
590  return hash_combine(
591      Arg.BitWidth,
592      hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
593}
594
595unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
596  return static_cast<unsigned>(hash_value(Key));
597}
598
599bool APInt::isSplat(unsigned SplatSizeInBits) const {
600  assert(getBitWidth() % SplatSizeInBits == 0 &&
601         "SplatSizeInBits must divide width!");
602  // We can check that all parts of an integer are equal by making use of a
603  // little trick: rotate and check if it's still the same value.
604  return *this == rotl(SplatSizeInBits);
605}
606
607/// This function returns the high "numBits" bits of this APInt.
608APInt APInt::getHiBits(unsigned numBits) const {
609  return this->lshr(BitWidth - numBits);
610}
611
612/// This function returns the low "numBits" bits of this APInt.
613APInt APInt::getLoBits(unsigned numBits) const {
614  APInt Result(getLowBitsSet(BitWidth, numBits));
615  Result &= *this;
616  return Result;
617}
618
619/// Return a value containing V broadcasted over NewLen bits.
620APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
621  assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
622
623  APInt Val = V.zext(NewLen);
624  for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
625    Val |= Val << I;
626
627  return Val;
628}
629
630unsigned APInt::countLeadingZerosSlowCase() const {
631  unsigned Count = 0;
632  for (int i = getNumWords()-1; i >= 0; --i) {
633    uint64_t V = U.pVal[i];
634    if (V == 0)
635      Count += APINT_BITS_PER_WORD;
636    else {
637      Count += llvm::countl_zero(V);
638      break;
639    }
640  }
641  // Adjust for unused bits in the most significant word (they are zero).
642  unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
643  Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
644  return Count;
645}
646
647unsigned APInt::countLeadingOnesSlowCase() const {
648  unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
649  unsigned shift;
650  if (!highWordBits) {
651    highWordBits = APINT_BITS_PER_WORD;
652    shift = 0;
653  } else {
654    shift = APINT_BITS_PER_WORD - highWordBits;
655  }
656  int i = getNumWords() - 1;
657  unsigned Count = llvm::countl_one(U.pVal[i] << shift);
658  if (Count == highWordBits) {
659    for (i--; i >= 0; --i) {
660      if (U.pVal[i] == WORDTYPE_MAX)
661        Count += APINT_BITS_PER_WORD;
662      else {
663        Count += llvm::countl_one(U.pVal[i]);
664        break;
665      }
666    }
667  }
668  return Count;
669}
670
671unsigned APInt::countTrailingZerosSlowCase() const {
672  unsigned Count = 0;
673  unsigned i = 0;
674  for (; i < getNumWords() && U.pVal[i] == 0; ++i)
675    Count += APINT_BITS_PER_WORD;
676  if (i < getNumWords())
677    Count += llvm::countr_zero(U.pVal[i]);
678  return std::min(Count, BitWidth);
679}
680
681unsigned APInt::countTrailingOnesSlowCase() const {
682  unsigned Count = 0;
683  unsigned i = 0;
684  for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
685    Count += APINT_BITS_PER_WORD;
686  if (i < getNumWords())
687    Count += llvm::countr_one(U.pVal[i]);
688  assert(Count <= BitWidth);
689  return Count;
690}
691
692unsigned APInt::countPopulationSlowCase() const {
693  unsigned Count = 0;
694  for (unsigned i = 0; i < getNumWords(); ++i)
695    Count += llvm::popcount(U.pVal[i]);
696  return Count;
697}
698
699bool APInt::intersectsSlowCase(const APInt &RHS) const {
700  for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701    if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
702      return true;
703
704  return false;
705}
706
707bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
708  for (unsigned i = 0, e = getNumWords(); i != e; ++i)
709    if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
710      return false;
711
712  return true;
713}
714
715APInt APInt::byteSwap() const {
716  assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
717  if (BitWidth == 16)
718    return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL));
719  if (BitWidth == 32)
720    return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL));
721  if (BitWidth <= 64) {
722    uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL);
723    Tmp1 >>= (64 - BitWidth);
724    return APInt(BitWidth, Tmp1);
725  }
726
727  APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
728  for (unsigned I = 0, N = getNumWords(); I != N; ++I)
729    Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]);
730  if (Result.BitWidth != BitWidth) {
731    Result.lshrInPlace(Result.BitWidth - BitWidth);
732    Result.BitWidth = BitWidth;
733  }
734  return Result;
735}
736
737APInt APInt::reverseBits() const {
738  switch (BitWidth) {
739  case 64:
740    return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
741  case 32:
742    return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
743  case 16:
744    return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
745  case 8:
746    return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
747  case 0:
748    return *this;
749  default:
750    break;
751  }
752
753  APInt Val(*this);
754  APInt Reversed(BitWidth, 0);
755  unsigned S = BitWidth;
756
757  for (; Val != 0; Val.lshrInPlace(1)) {
758    Reversed <<= 1;
759    Reversed |= Val[0];
760    --S;
761  }
762
763  Reversed <<= S;
764  return Reversed;
765}
766
767APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
768  // Fast-path a common case.
769  if (A == B) return A;
770
771  // Corner cases: if either operand is zero, the other is the gcd.
772  if (!A) return B;
773  if (!B) return A;
774
775  // Count common powers of 2 and remove all other powers of 2.
776  unsigned Pow2;
777  {
778    unsigned Pow2_A = A.countr_zero();
779    unsigned Pow2_B = B.countr_zero();
780    if (Pow2_A > Pow2_B) {
781      A.lshrInPlace(Pow2_A - Pow2_B);
782      Pow2 = Pow2_B;
783    } else if (Pow2_B > Pow2_A) {
784      B.lshrInPlace(Pow2_B - Pow2_A);
785      Pow2 = Pow2_A;
786    } else {
787      Pow2 = Pow2_A;
788    }
789  }
790
791  // Both operands are odd multiples of 2^Pow_2:
792  //
793  //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
794  //
795  // This is a modified version of Stein's algorithm, taking advantage of
796  // efficient countTrailingZeros().
797  while (A != B) {
798    if (A.ugt(B)) {
799      A -= B;
800      A.lshrInPlace(A.countr_zero() - Pow2);
801    } else {
802      B -= A;
803      B.lshrInPlace(B.countr_zero() - Pow2);
804    }
805  }
806
807  return A;
808}
809
810APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
811  uint64_t I = bit_cast<uint64_t>(Double);
812
813  // Get the sign bit from the highest order bit
814  bool isNeg = I >> 63;
815
816  // Get the 11-bit exponent and adjust for the 1023 bit bias
817  int64_t exp = ((I >> 52) & 0x7ff) - 1023;
818
819  // If the exponent is negative, the value is < 0 so just return 0.
820  if (exp < 0)
821    return APInt(width, 0u);
822
823  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
824  uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
825
826  // If the exponent doesn't shift all bits out of the mantissa
827  if (exp < 52)
828    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
829                    APInt(width, mantissa >> (52 - exp));
830
831  // If the client didn't provide enough bits for us to shift the mantissa into
832  // then the result is undefined, just return 0
833  if (width <= exp - 52)
834    return APInt(width, 0);
835
836  // Otherwise, we have to shift the mantissa bits up to the right location
837  APInt Tmp(width, mantissa);
838  Tmp <<= (unsigned)exp - 52;
839  return isNeg ? -Tmp : Tmp;
840}
841
842/// This function converts this APInt to a double.
843/// The layout for double is as following (IEEE Standard 754):
844///  --------------------------------------
845/// |  Sign    Exponent    Fraction    Bias |
846/// |-------------------------------------- |
847/// |  1[63]   11[62-52]   52[51-00]   1023 |
848///  --------------------------------------
849double APInt::roundToDouble(bool isSigned) const {
850
851  // Handle the simple case where the value is contained in one uint64_t.
852  // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
853  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
854    if (isSigned) {
855      int64_t sext = SignExtend64(getWord(0), BitWidth);
856      return double(sext);
857    } else
858      return double(getWord(0));
859  }
860
861  // Determine if the value is negative.
862  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
863
864  // Construct the absolute value if we're negative.
865  APInt Tmp(isNeg ? -(*this) : (*this));
866
867  // Figure out how many bits we're using.
868  unsigned n = Tmp.getActiveBits();
869
870  // The exponent (without bias normalization) is just the number of bits
871  // we are using. Note that the sign bit is gone since we constructed the
872  // absolute value.
873  uint64_t exp = n;
874
875  // Return infinity for exponent overflow
876  if (exp > 1023) {
877    if (!isSigned || !isNeg)
878      return std::numeric_limits<double>::infinity();
879    else
880      return -std::numeric_limits<double>::infinity();
881  }
882  exp += 1023; // Increment for 1023 bias
883
884  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
885  // extract the high 52 bits from the correct words in pVal.
886  uint64_t mantissa;
887  unsigned hiWord = whichWord(n-1);
888  if (hiWord == 0) {
889    mantissa = Tmp.U.pVal[0];
890    if (n > 52)
891      mantissa >>= n - 52; // shift down, we want the top 52 bits.
892  } else {
893    assert(hiWord > 0 && "huh?");
894    uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
895    uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
896    mantissa = hibits | lobits;
897  }
898
899  // The leading bit of mantissa is implicit, so get rid of it.
900  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
901  uint64_t I = sign | (exp << 52) | mantissa;
902  return bit_cast<double>(I);
903}
904
905// Truncate to new width.
906APInt APInt::trunc(unsigned width) const {
907  assert(width <= BitWidth && "Invalid APInt Truncate request");
908
909  if (width <= APINT_BITS_PER_WORD)
910    return APInt(width, getRawData()[0]);
911
912  if (width == BitWidth)
913    return *this;
914
915  APInt Result(getMemory(getNumWords(width)), width);
916
917  // Copy full words.
918  unsigned i;
919  for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
920    Result.U.pVal[i] = U.pVal[i];
921
922  // Truncate and copy any partial word.
923  unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
924  if (bits != 0)
925    Result.U.pVal[i] = U.pVal[i] << bits >> bits;
926
927  return Result;
928}
929
930// Truncate to new width with unsigned saturation.
931APInt APInt::truncUSat(unsigned width) const {
932  assert(width <= BitWidth && "Invalid APInt Truncate request");
933
934  // Can we just losslessly truncate it?
935  if (isIntN(width))
936    return trunc(width);
937  // If not, then just return the new limit.
938  return APInt::getMaxValue(width);
939}
940
941// Truncate to new width with signed saturation.
942APInt APInt::truncSSat(unsigned width) const {
943  assert(width <= BitWidth && "Invalid APInt Truncate request");
944
945  // Can we just losslessly truncate it?
946  if (isSignedIntN(width))
947    return trunc(width);
948  // If not, then just return the new limits.
949  return isNegative() ? APInt::getSignedMinValue(width)
950                      : APInt::getSignedMaxValue(width);
951}
952
953// Sign extend to a new width.
954APInt APInt::sext(unsigned Width) const {
955  assert(Width >= BitWidth && "Invalid APInt SignExtend request");
956
957  if (Width <= APINT_BITS_PER_WORD)
958    return APInt(Width, SignExtend64(U.VAL, BitWidth));
959
960  if (Width == BitWidth)
961    return *this;
962
963  APInt Result(getMemory(getNumWords(Width)), Width);
964
965  // Copy words.
966  std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
967
968  // Sign extend the last word since there may be unused bits in the input.
969  Result.U.pVal[getNumWords() - 1] =
970      SignExtend64(Result.U.pVal[getNumWords() - 1],
971                   ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
972
973  // Fill with sign bits.
974  std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
975              (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
976  Result.clearUnusedBits();
977  return Result;
978}
979
980//  Zero extend to a new width.
981APInt APInt::zext(unsigned width) const {
982  assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
983
984  if (width <= APINT_BITS_PER_WORD)
985    return APInt(width, U.VAL);
986
987  if (width == BitWidth)
988    return *this;
989
990  APInt Result(getMemory(getNumWords(width)), width);
991
992  // Copy words.
993  std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
994
995  // Zero remaining words.
996  std::memset(Result.U.pVal + getNumWords(), 0,
997              (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
998
999  return Result;
1000}
1001
1002APInt APInt::zextOrTrunc(unsigned width) const {
1003  if (BitWidth < width)
1004    return zext(width);
1005  if (BitWidth > width)
1006    return trunc(width);
1007  return *this;
1008}
1009
1010APInt APInt::sextOrTrunc(unsigned width) const {
1011  if (BitWidth < width)
1012    return sext(width);
1013  if (BitWidth > width)
1014    return trunc(width);
1015  return *this;
1016}
1017
1018/// Arithmetic right-shift this APInt by shiftAmt.
1019/// Arithmetic right-shift function.
1020void APInt::ashrInPlace(const APInt &shiftAmt) {
1021  ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1022}
1023
1024/// Arithmetic right-shift this APInt by shiftAmt.
1025/// Arithmetic right-shift function.
1026void APInt::ashrSlowCase(unsigned ShiftAmt) {
1027  // Don't bother performing a no-op shift.
1028  if (!ShiftAmt)
1029    return;
1030
1031  // Save the original sign bit for later.
1032  bool Negative = isNegative();
1033
1034  // WordShift is the inter-part shift; BitShift is intra-part shift.
1035  unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1036  unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1037
1038  unsigned WordsToMove = getNumWords() - WordShift;
1039  if (WordsToMove != 0) {
1040    // Sign extend the last word to fill in the unused bits.
1041    U.pVal[getNumWords() - 1] = SignExtend64(
1042        U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1043
1044    // Fastpath for moving by whole words.
1045    if (BitShift == 0) {
1046      std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1047    } else {
1048      // Move the words containing significant bits.
1049      for (unsigned i = 0; i != WordsToMove - 1; ++i)
1050        U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1051                    (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1052
1053      // Handle the last word which has no high bits to copy.
1054      U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1055      // Sign extend one more time.
1056      U.pVal[WordsToMove - 1] =
1057          SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1058    }
1059  }
1060
1061  // Fill in the remainder based on the original sign.
1062  std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1063              WordShift * APINT_WORD_SIZE);
1064  clearUnusedBits();
1065}
1066
1067/// Logical right-shift this APInt by shiftAmt.
1068/// Logical right-shift function.
1069void APInt::lshrInPlace(const APInt &shiftAmt) {
1070  lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1071}
1072
1073/// Logical right-shift this APInt by shiftAmt.
1074/// Logical right-shift function.
1075void APInt::lshrSlowCase(unsigned ShiftAmt) {
1076  tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1077}
1078
1079/// Left-shift this APInt by shiftAmt.
1080/// Left-shift function.
1081APInt &APInt::operator<<=(const APInt &shiftAmt) {
1082  // It's undefined behavior in C to shift by BitWidth or greater.
1083  *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1084  return *this;
1085}
1086
1087void APInt::shlSlowCase(unsigned ShiftAmt) {
1088  tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1089  clearUnusedBits();
1090}
1091
1092// Calculate the rotate amount modulo the bit width.
1093static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1094  if (LLVM_UNLIKELY(BitWidth == 0))
1095    return 0;
1096  unsigned rotBitWidth = rotateAmt.getBitWidth();
1097  APInt rot = rotateAmt;
1098  if (rotBitWidth < BitWidth) {
1099    // Extend the rotate APInt, so that the urem doesn't divide by 0.
1100    // e.g. APInt(1, 32) would give APInt(1, 0).
1101    rot = rotateAmt.zext(BitWidth);
1102  }
1103  rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1104  return rot.getLimitedValue(BitWidth);
1105}
1106
1107APInt APInt::rotl(const APInt &rotateAmt) const {
1108  return rotl(rotateModulo(BitWidth, rotateAmt));
1109}
1110
1111APInt APInt::rotl(unsigned rotateAmt) const {
1112  if (LLVM_UNLIKELY(BitWidth == 0))
1113    return *this;
1114  rotateAmt %= BitWidth;
1115  if (rotateAmt == 0)
1116    return *this;
1117  return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1118}
1119
1120APInt APInt::rotr(const APInt &rotateAmt) const {
1121  return rotr(rotateModulo(BitWidth, rotateAmt));
1122}
1123
1124APInt APInt::rotr(unsigned rotateAmt) const {
1125  if (BitWidth == 0)
1126    return *this;
1127  rotateAmt %= BitWidth;
1128  if (rotateAmt == 0)
1129    return *this;
1130  return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1131}
1132
1133/// \returns the nearest log base 2 of this APInt. Ties round up.
1134///
1135/// NOTE: When we have a BitWidth of 1, we define:
1136///
1137///   log2(0) = UINT32_MAX
1138///   log2(1) = 0
1139///
1140/// to get around any mathematical concerns resulting from
1141/// referencing 2 in a space where 2 does no exist.
1142unsigned APInt::nearestLogBase2() const {
1143  // Special case when we have a bitwidth of 1. If VAL is 1, then we
1144  // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1145  // UINT32_MAX.
1146  if (BitWidth == 1)
1147    return U.VAL - 1;
1148
1149  // Handle the zero case.
1150  if (isZero())
1151    return UINT32_MAX;
1152
1153  // The non-zero case is handled by computing:
1154  //
1155  //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1156  //
1157  // where x[i] is referring to the value of the ith bit of x.
1158  unsigned lg = logBase2();
1159  return lg + unsigned((*this)[lg - 1]);
1160}
1161
1162// Square Root - this method computes and returns the square root of "this".
1163// Three mechanisms are used for computation. For small values (<= 5 bits),
1164// a table lookup is done. This gets some performance for common cases. For
1165// values using less than 52 bits, the value is converted to double and then
1166// the libc sqrt function is called. The result is rounded and then converted
1167// back to a uint64_t which is then used to construct the result. Finally,
1168// the Babylonian method for computing square roots is used.
1169APInt APInt::sqrt() const {
1170
1171  // Determine the magnitude of the value.
1172  unsigned magnitude = getActiveBits();
1173
1174  // Use a fast table for some small values. This also gets rid of some
1175  // rounding errors in libc sqrt for small values.
1176  if (magnitude <= 5) {
1177    static const uint8_t results[32] = {
1178      /*     0 */ 0,
1179      /*  1- 2 */ 1, 1,
1180      /*  3- 6 */ 2, 2, 2, 2,
1181      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1182      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1183      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184      /*    31 */ 6
1185    };
1186    return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1187  }
1188
1189  // If the magnitude of the value fits in less than 52 bits (the precision of
1190  // an IEEE double precision floating point value), then we can use the
1191  // libc sqrt function which will probably use a hardware sqrt computation.
1192  // This should be faster than the algorithm below.
1193  if (magnitude < 52) {
1194    return APInt(BitWidth,
1195                 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1196                                                               : U.pVal[0])))));
1197  }
1198
1199  // Okay, all the short cuts are exhausted. We must compute it. The following
1200  // is a classical Babylonian method for computing the square root. This code
1201  // was adapted to APInt from a wikipedia article on such computations.
1202  // See http://www.wikipedia.org/ and go to the page named
1203  // Calculate_an_integer_square_root.
1204  unsigned nbits = BitWidth, i = 4;
1205  APInt testy(BitWidth, 16);
1206  APInt x_old(BitWidth, 1);
1207  APInt x_new(BitWidth, 0);
1208  APInt two(BitWidth, 2);
1209
1210  // Select a good starting value using binary logarithms.
1211  for (;; i += 2, testy = testy.shl(2))
1212    if (i >= nbits || this->ule(testy)) {
1213      x_old = x_old.shl(i / 2);
1214      break;
1215    }
1216
1217  // Use the Babylonian method to arrive at the integer square root:
1218  for (;;) {
1219    x_new = (this->udiv(x_old) + x_old).udiv(two);
1220    if (x_old.ule(x_new))
1221      break;
1222    x_old = x_new;
1223  }
1224
1225  // Make sure we return the closest approximation
1226  // NOTE: The rounding calculation below is correct. It will produce an
1227  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1228  // determined to be a rounding issue with pari/gp as it begins to use a
1229  // floating point representation after 192 bits. There are no discrepancies
1230  // between this algorithm and pari/gp for bit widths < 192 bits.
1231  APInt square(x_old * x_old);
1232  APInt nextSquare((x_old + 1) * (x_old +1));
1233  if (this->ult(square))
1234    return x_old;
1235  assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1236  APInt midpoint((nextSquare - square).udiv(two));
1237  APInt offset(*this - square);
1238  if (offset.ult(midpoint))
1239    return x_old;
1240  return x_old + 1;
1241}
1242
1243/// Computes the multiplicative inverse of this APInt for a given modulo. The
1244/// iterative extended Euclidean algorithm is used to solve for this value,
1245/// however we simplify it to speed up calculating only the inverse, and take
1246/// advantage of div+rem calculations. We also use some tricks to avoid copying
1247/// (potentially large) APInts around.
1248/// WARNING: a value of '0' may be returned,
1249///          signifying that no multiplicative inverse exists!
1250APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1251  assert(ult(modulo) && "This APInt must be smaller than the modulo");
1252
1253  // Using the properties listed at the following web page (accessed 06/21/08):
1254  //   http://www.numbertheory.org/php/euclid.html
1255  // (especially the properties numbered 3, 4 and 9) it can be proved that
1256  // BitWidth bits suffice for all the computations in the algorithm implemented
1257  // below. More precisely, this number of bits suffice if the multiplicative
1258  // inverse exists, but may not suffice for the general extended Euclidean
1259  // algorithm.
1260
1261  APInt r[2] = { modulo, *this };
1262  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1263  APInt q(BitWidth, 0);
1264
1265  unsigned i;
1266  for (i = 0; r[i^1] != 0; i ^= 1) {
1267    // An overview of the math without the confusing bit-flipping:
1268    // q = r[i-2] / r[i-1]
1269    // r[i] = r[i-2] % r[i-1]
1270    // t[i] = t[i-2] - t[i-1] * q
1271    udivrem(r[i], r[i^1], q, r[i]);
1272    t[i] -= t[i^1] * q;
1273  }
1274
1275  // If this APInt and the modulo are not coprime, there is no multiplicative
1276  // inverse, so return 0. We check this by looking at the next-to-last
1277  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1278  // algorithm.
1279  if (r[i] != 1)
1280    return APInt(BitWidth, 0);
1281
1282  // The next-to-last t is the multiplicative inverse.  However, we are
1283  // interested in a positive inverse. Calculate a positive one from a negative
1284  // one if necessary. A simple addition of the modulo suffices because
1285  // abs(t[i]) is known to be less than *this/2 (see the link above).
1286  if (t[i].isNegative())
1287    t[i] += modulo;
1288
1289  return std::move(t[i]);
1290}
1291
1292/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1293/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1294/// variables here have the same names as in the algorithm. Comments explain
1295/// the algorithm and any deviation from it.
1296static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1297                     unsigned m, unsigned n) {
1298  assert(u && "Must provide dividend");
1299  assert(v && "Must provide divisor");
1300  assert(q && "Must provide quotient");
1301  assert(u != v && u != q && v != q && "Must use different memory");
1302  assert(n>1 && "n must be > 1");
1303
1304  // b denotes the base of the number system. In our case b is 2^32.
1305  const uint64_t b = uint64_t(1) << 32;
1306
1307// The DEBUG macros here tend to be spam in the debug output if you're not
1308// debugging this code. Disable them unless KNUTH_DEBUG is defined.
1309#ifdef KNUTH_DEBUG
1310#define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1311#else
1312#define DEBUG_KNUTH(X) do {} while(false)
1313#endif
1314
1315  DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1316  DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1317  DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1318  DEBUG_KNUTH(dbgs() << " by");
1319  DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1320  DEBUG_KNUTH(dbgs() << '\n');
1321  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1322  // u and v by d. Note that we have taken Knuth's advice here to use a power
1323  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1324  // 2 allows us to shift instead of multiply and it is easy to determine the
1325  // shift amount from the leading zeros.  We are basically normalizing the u
1326  // and v so that its high bits are shifted to the top of v's range without
1327  // overflow. Note that this can require an extra word in u so that u must
1328  // be of length m+n+1.
1329  unsigned shift = llvm::countl_zero(v[n - 1]);
1330  uint32_t v_carry = 0;
1331  uint32_t u_carry = 0;
1332  if (shift) {
1333    for (unsigned i = 0; i < m+n; ++i) {
1334      uint32_t u_tmp = u[i] >> (32 - shift);
1335      u[i] = (u[i] << shift) | u_carry;
1336      u_carry = u_tmp;
1337    }
1338    for (unsigned i = 0; i < n; ++i) {
1339      uint32_t v_tmp = v[i] >> (32 - shift);
1340      v[i] = (v[i] << shift) | v_carry;
1341      v_carry = v_tmp;
1342    }
1343  }
1344  u[m+n] = u_carry;
1345
1346  DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1347  DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1348  DEBUG_KNUTH(dbgs() << " by");
1349  DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1350  DEBUG_KNUTH(dbgs() << '\n');
1351
1352  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1353  int j = m;
1354  do {
1355    DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1356    // D3. [Calculate q'.].
1357    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1358    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1359    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1360    // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1361    // on v[n-2] determines at high speed most of the cases in which the trial
1362    // value qp is one too large, and it eliminates all cases where qp is two
1363    // too large.
1364    uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1365    DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1366    uint64_t qp = dividend / v[n-1];
1367    uint64_t rp = dividend % v[n-1];
1368    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1369      qp--;
1370      rp += v[n-1];
1371      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1372        qp--;
1373    }
1374    DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1375
1376    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1377    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1378    // consists of a simple multiplication by a one-place number, combined with
1379    // a subtraction.
1380    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1381    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1382    // true value plus b**(n+1), namely as the b's complement of
1383    // the true value, and a "borrow" to the left should be remembered.
1384    int64_t borrow = 0;
1385    for (unsigned i = 0; i < n; ++i) {
1386      uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1387      int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1388      u[j+i] = Lo_32(subres);
1389      borrow = Hi_32(p) - Hi_32(subres);
1390      DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1391                        << ", borrow = " << borrow << '\n');
1392    }
1393    bool isNeg = u[j+n] < borrow;
1394    u[j+n] -= Lo_32(borrow);
1395
1396    DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1397    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1398    DEBUG_KNUTH(dbgs() << '\n');
1399
1400    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1401    // negative, go to step D6; otherwise go on to step D7.
1402    q[j] = Lo_32(qp);
1403    if (isNeg) {
1404      // D6. [Add back]. The probability that this step is necessary is very
1405      // small, on the order of only 2/b. Make sure that test data accounts for
1406      // this possibility. Decrease q[j] by 1
1407      q[j]--;
1408      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1409      // A carry will occur to the left of u[j+n], and it should be ignored
1410      // since it cancels with the borrow that occurred in D4.
1411      bool carry = false;
1412      for (unsigned i = 0; i < n; i++) {
1413        uint32_t limit = std::min(u[j+i],v[i]);
1414        u[j+i] += v[i] + carry;
1415        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1416      }
1417      u[j+n] += carry;
1418    }
1419    DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1420    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1421    DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1422
1423    // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1424  } while (--j >= 0);
1425
1426  DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1427  DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1428  DEBUG_KNUTH(dbgs() << '\n');
1429
1430  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1431  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1432  // compute the remainder (urem uses this).
1433  if (r) {
1434    // The value d is expressed by the "shift" value above since we avoided
1435    // multiplication by d by using a shift left. So, all we have to do is
1436    // shift right here.
1437    if (shift) {
1438      uint32_t carry = 0;
1439      DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1440      for (int i = n-1; i >= 0; i--) {
1441        r[i] = (u[i] >> shift) | carry;
1442        carry = u[i] << (32 - shift);
1443        DEBUG_KNUTH(dbgs() << " " << r[i]);
1444      }
1445    } else {
1446      for (int i = n-1; i >= 0; i--) {
1447        r[i] = u[i];
1448        DEBUG_KNUTH(dbgs() << " " << r[i]);
1449      }
1450    }
1451    DEBUG_KNUTH(dbgs() << '\n');
1452  }
1453  DEBUG_KNUTH(dbgs() << '\n');
1454}
1455
1456void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1457                   unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1458  assert(lhsWords >= rhsWords && "Fractional result");
1459
1460  // First, compose the values into an array of 32-bit words instead of
1461  // 64-bit words. This is a necessity of both the "short division" algorithm
1462  // and the Knuth "classical algorithm" which requires there to be native
1463  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1464  // can't use 64-bit operands here because we don't have native results of
1465  // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1466  // work on large-endian machines.
1467  unsigned n = rhsWords * 2;
1468  unsigned m = (lhsWords * 2) - n;
1469
1470  // Allocate space for the temporary values we need either on the stack, if
1471  // it will fit, or on the heap if it won't.
1472  uint32_t SPACE[128];
1473  uint32_t *U = nullptr;
1474  uint32_t *V = nullptr;
1475  uint32_t *Q = nullptr;
1476  uint32_t *R = nullptr;
1477  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1478    U = &SPACE[0];
1479    V = &SPACE[m+n+1];
1480    Q = &SPACE[(m+n+1) + n];
1481    if (Remainder)
1482      R = &SPACE[(m+n+1) + n + (m+n)];
1483  } else {
1484    U = new uint32_t[m + n + 1];
1485    V = new uint32_t[n];
1486    Q = new uint32_t[m+n];
1487    if (Remainder)
1488      R = new uint32_t[n];
1489  }
1490
1491  // Initialize the dividend
1492  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1493  for (unsigned i = 0; i < lhsWords; ++i) {
1494    uint64_t tmp = LHS[i];
1495    U[i * 2] = Lo_32(tmp);
1496    U[i * 2 + 1] = Hi_32(tmp);
1497  }
1498  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1499
1500  // Initialize the divisor
1501  memset(V, 0, (n)*sizeof(uint32_t));
1502  for (unsigned i = 0; i < rhsWords; ++i) {
1503    uint64_t tmp = RHS[i];
1504    V[i * 2] = Lo_32(tmp);
1505    V[i * 2 + 1] = Hi_32(tmp);
1506  }
1507
1508  // initialize the quotient and remainder
1509  memset(Q, 0, (m+n) * sizeof(uint32_t));
1510  if (Remainder)
1511    memset(R, 0, n * sizeof(uint32_t));
1512
1513  // Now, adjust m and n for the Knuth division. n is the number of words in
1514  // the divisor. m is the number of words by which the dividend exceeds the
1515  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1516  // contain any zero words or the Knuth algorithm fails.
1517  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1518    n--;
1519    m++;
1520  }
1521  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1522    m--;
1523
1524  // If we're left with only a single word for the divisor, Knuth doesn't work
1525  // so we implement the short division algorithm here. This is much simpler
1526  // and faster because we are certain that we can divide a 64-bit quantity
1527  // by a 32-bit quantity at hardware speed and short division is simply a
1528  // series of such operations. This is just like doing short division but we
1529  // are using base 2^32 instead of base 10.
1530  assert(n != 0 && "Divide by zero?");
1531  if (n == 1) {
1532    uint32_t divisor = V[0];
1533    uint32_t remainder = 0;
1534    for (int i = m; i >= 0; i--) {
1535      uint64_t partial_dividend = Make_64(remainder, U[i]);
1536      if (partial_dividend == 0) {
1537        Q[i] = 0;
1538        remainder = 0;
1539      } else if (partial_dividend < divisor) {
1540        Q[i] = 0;
1541        remainder = Lo_32(partial_dividend);
1542      } else if (partial_dividend == divisor) {
1543        Q[i] = 1;
1544        remainder = 0;
1545      } else {
1546        Q[i] = Lo_32(partial_dividend / divisor);
1547        remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1548      }
1549    }
1550    if (R)
1551      R[0] = remainder;
1552  } else {
1553    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1554    // case n > 1.
1555    KnuthDiv(U, V, Q, R, m, n);
1556  }
1557
1558  // If the caller wants the quotient
1559  if (Quotient) {
1560    for (unsigned i = 0; i < lhsWords; ++i)
1561      Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1562  }
1563
1564  // If the caller wants the remainder
1565  if (Remainder) {
1566    for (unsigned i = 0; i < rhsWords; ++i)
1567      Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1568  }
1569
1570  // Clean up the memory we allocated.
1571  if (U != &SPACE[0]) {
1572    delete [] U;
1573    delete [] V;
1574    delete [] Q;
1575    delete [] R;
1576  }
1577}
1578
1579APInt APInt::udiv(const APInt &RHS) const {
1580  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1581
1582  // First, deal with the easy case
1583  if (isSingleWord()) {
1584    assert(RHS.U.VAL != 0 && "Divide by zero?");
1585    return APInt(BitWidth, U.VAL / RHS.U.VAL);
1586  }
1587
1588  // Get some facts about the LHS and RHS number of bits and words
1589  unsigned lhsWords = getNumWords(getActiveBits());
1590  unsigned rhsBits  = RHS.getActiveBits();
1591  unsigned rhsWords = getNumWords(rhsBits);
1592  assert(rhsWords && "Divided by zero???");
1593
1594  // Deal with some degenerate cases
1595  if (!lhsWords)
1596    // 0 / X ===> 0
1597    return APInt(BitWidth, 0);
1598  if (rhsBits == 1)
1599    // X / 1 ===> X
1600    return *this;
1601  if (lhsWords < rhsWords || this->ult(RHS))
1602    // X / Y ===> 0, iff X < Y
1603    return APInt(BitWidth, 0);
1604  if (*this == RHS)
1605    // X / X ===> 1
1606    return APInt(BitWidth, 1);
1607  if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1608    // All high words are zero, just use native divide
1609    return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1610
1611  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1612  APInt Quotient(BitWidth, 0); // to hold result.
1613  divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1614  return Quotient;
1615}
1616
1617APInt APInt::udiv(uint64_t RHS) const {
1618  assert(RHS != 0 && "Divide by zero?");
1619
1620  // First, deal with the easy case
1621  if (isSingleWord())
1622    return APInt(BitWidth, U.VAL / RHS);
1623
1624  // Get some facts about the LHS words.
1625  unsigned lhsWords = getNumWords(getActiveBits());
1626
1627  // Deal with some degenerate cases
1628  if (!lhsWords)
1629    // 0 / X ===> 0
1630    return APInt(BitWidth, 0);
1631  if (RHS == 1)
1632    // X / 1 ===> X
1633    return *this;
1634  if (this->ult(RHS))
1635    // X / Y ===> 0, iff X < Y
1636    return APInt(BitWidth, 0);
1637  if (*this == RHS)
1638    // X / X ===> 1
1639    return APInt(BitWidth, 1);
1640  if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1641    // All high words are zero, just use native divide
1642    return APInt(BitWidth, this->U.pVal[0] / RHS);
1643
1644  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1645  APInt Quotient(BitWidth, 0); // to hold result.
1646  divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1647  return Quotient;
1648}
1649
1650APInt APInt::sdiv(const APInt &RHS) const {
1651  if (isNegative()) {
1652    if (RHS.isNegative())
1653      return (-(*this)).udiv(-RHS);
1654    return -((-(*this)).udiv(RHS));
1655  }
1656  if (RHS.isNegative())
1657    return -(this->udiv(-RHS));
1658  return this->udiv(RHS);
1659}
1660
1661APInt APInt::sdiv(int64_t RHS) const {
1662  if (isNegative()) {
1663    if (RHS < 0)
1664      return (-(*this)).udiv(-RHS);
1665    return -((-(*this)).udiv(RHS));
1666  }
1667  if (RHS < 0)
1668    return -(this->udiv(-RHS));
1669  return this->udiv(RHS);
1670}
1671
1672APInt APInt::urem(const APInt &RHS) const {
1673  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1674  if (isSingleWord()) {
1675    assert(RHS.U.VAL != 0 && "Remainder by zero?");
1676    return APInt(BitWidth, U.VAL % RHS.U.VAL);
1677  }
1678
1679  // Get some facts about the LHS
1680  unsigned lhsWords = getNumWords(getActiveBits());
1681
1682  // Get some facts about the RHS
1683  unsigned rhsBits = RHS.getActiveBits();
1684  unsigned rhsWords = getNumWords(rhsBits);
1685  assert(rhsWords && "Performing remainder operation by zero ???");
1686
1687  // Check the degenerate cases
1688  if (lhsWords == 0)
1689    // 0 % Y ===> 0
1690    return APInt(BitWidth, 0);
1691  if (rhsBits == 1)
1692    // X % 1 ===> 0
1693    return APInt(BitWidth, 0);
1694  if (lhsWords < rhsWords || this->ult(RHS))
1695    // X % Y ===> X, iff X < Y
1696    return *this;
1697  if (*this == RHS)
1698    // X % X == 0;
1699    return APInt(BitWidth, 0);
1700  if (lhsWords == 1)
1701    // All high words are zero, just use native remainder
1702    return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1703
1704  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1705  APInt Remainder(BitWidth, 0);
1706  divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1707  return Remainder;
1708}
1709
1710uint64_t APInt::urem(uint64_t RHS) const {
1711  assert(RHS != 0 && "Remainder by zero?");
1712
1713  if (isSingleWord())
1714    return U.VAL % RHS;
1715
1716  // Get some facts about the LHS
1717  unsigned lhsWords = getNumWords(getActiveBits());
1718
1719  // Check the degenerate cases
1720  if (lhsWords == 0)
1721    // 0 % Y ===> 0
1722    return 0;
1723  if (RHS == 1)
1724    // X % 1 ===> 0
1725    return 0;
1726  if (this->ult(RHS))
1727    // X % Y ===> X, iff X < Y
1728    return getZExtValue();
1729  if (*this == RHS)
1730    // X % X == 0;
1731    return 0;
1732  if (lhsWords == 1)
1733    // All high words are zero, just use native remainder
1734    return U.pVal[0] % RHS;
1735
1736  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1737  uint64_t Remainder;
1738  divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1739  return Remainder;
1740}
1741
1742APInt APInt::srem(const APInt &RHS) const {
1743  if (isNegative()) {
1744    if (RHS.isNegative())
1745      return -((-(*this)).urem(-RHS));
1746    return -((-(*this)).urem(RHS));
1747  }
1748  if (RHS.isNegative())
1749    return this->urem(-RHS);
1750  return this->urem(RHS);
1751}
1752
1753int64_t APInt::srem(int64_t RHS) const {
1754  if (isNegative()) {
1755    if (RHS < 0)
1756      return -((-(*this)).urem(-RHS));
1757    return -((-(*this)).urem(RHS));
1758  }
1759  if (RHS < 0)
1760    return this->urem(-RHS);
1761  return this->urem(RHS);
1762}
1763
1764void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1765                    APInt &Quotient, APInt &Remainder) {
1766  assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1767  unsigned BitWidth = LHS.BitWidth;
1768
1769  // First, deal with the easy case
1770  if (LHS.isSingleWord()) {
1771    assert(RHS.U.VAL != 0 && "Divide by zero?");
1772    uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1773    uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1774    Quotient = APInt(BitWidth, QuotVal);
1775    Remainder = APInt(BitWidth, RemVal);
1776    return;
1777  }
1778
1779  // Get some size facts about the dividend and divisor
1780  unsigned lhsWords = getNumWords(LHS.getActiveBits());
1781  unsigned rhsBits  = RHS.getActiveBits();
1782  unsigned rhsWords = getNumWords(rhsBits);
1783  assert(rhsWords && "Performing divrem operation by zero ???");
1784
1785  // Check the degenerate cases
1786  if (lhsWords == 0) {
1787    Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1788    Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1789    return;
1790  }
1791
1792  if (rhsBits == 1) {
1793    Quotient = LHS;                   // X / 1 ===> X
1794    Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1795  }
1796
1797  if (lhsWords < rhsWords || LHS.ult(RHS)) {
1798    Remainder = LHS;                  // X % Y ===> X, iff X < Y
1799    Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1800    return;
1801  }
1802
1803  if (LHS == RHS) {
1804    Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1805    Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1806    return;
1807  }
1808
1809  // Make sure there is enough space to hold the results.
1810  // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1811  // change the size. This is necessary if Quotient or Remainder is aliased
1812  // with LHS or RHS.
1813  Quotient.reallocate(BitWidth);
1814  Remainder.reallocate(BitWidth);
1815
1816  if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1817    // There is only one word to consider so use the native versions.
1818    uint64_t lhsValue = LHS.U.pVal[0];
1819    uint64_t rhsValue = RHS.U.pVal[0];
1820    Quotient = lhsValue / rhsValue;
1821    Remainder = lhsValue % rhsValue;
1822    return;
1823  }
1824
1825  // Okay, lets do it the long way
1826  divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1827         Remainder.U.pVal);
1828  // Clear the rest of the Quotient and Remainder.
1829  std::memset(Quotient.U.pVal + lhsWords, 0,
1830              (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1831  std::memset(Remainder.U.pVal + rhsWords, 0,
1832              (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1833}
1834
1835void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1836                    uint64_t &Remainder) {
1837  assert(RHS != 0 && "Divide by zero?");
1838  unsigned BitWidth = LHS.BitWidth;
1839
1840  // First, deal with the easy case
1841  if (LHS.isSingleWord()) {
1842    uint64_t QuotVal = LHS.U.VAL / RHS;
1843    Remainder = LHS.U.VAL % RHS;
1844    Quotient = APInt(BitWidth, QuotVal);
1845    return;
1846  }
1847
1848  // Get some size facts about the dividend and divisor
1849  unsigned lhsWords = getNumWords(LHS.getActiveBits());
1850
1851  // Check the degenerate cases
1852  if (lhsWords == 0) {
1853    Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1854    Remainder = 0;                    // 0 % Y ===> 0
1855    return;
1856  }
1857
1858  if (RHS == 1) {
1859    Quotient = LHS;                   // X / 1 ===> X
1860    Remainder = 0;                    // X % 1 ===> 0
1861    return;
1862  }
1863
1864  if (LHS.ult(RHS)) {
1865    Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1866    Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1867    return;
1868  }
1869
1870  if (LHS == RHS) {
1871    Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1872    Remainder = 0;                    // X % X ===> 0;
1873    return;
1874  }
1875
1876  // Make sure there is enough space to hold the results.
1877  // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1878  // change the size. This is necessary if Quotient is aliased with LHS.
1879  Quotient.reallocate(BitWidth);
1880
1881  if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1882    // There is only one word to consider so use the native versions.
1883    uint64_t lhsValue = LHS.U.pVal[0];
1884    Quotient = lhsValue / RHS;
1885    Remainder = lhsValue % RHS;
1886    return;
1887  }
1888
1889  // Okay, lets do it the long way
1890  divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1891  // Clear the rest of the Quotient.
1892  std::memset(Quotient.U.pVal + lhsWords, 0,
1893              (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1894}
1895
1896void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1897                    APInt &Quotient, APInt &Remainder) {
1898  if (LHS.isNegative()) {
1899    if (RHS.isNegative())
1900      APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1901    else {
1902      APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1903      Quotient.negate();
1904    }
1905    Remainder.negate();
1906  } else if (RHS.isNegative()) {
1907    APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1908    Quotient.negate();
1909  } else {
1910    APInt::udivrem(LHS, RHS, Quotient, Remainder);
1911  }
1912}
1913
1914void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1915                    APInt &Quotient, int64_t &Remainder) {
1916  uint64_t R = Remainder;
1917  if (LHS.isNegative()) {
1918    if (RHS < 0)
1919      APInt::udivrem(-LHS, -RHS, Quotient, R);
1920    else {
1921      APInt::udivrem(-LHS, RHS, Quotient, R);
1922      Quotient.negate();
1923    }
1924    R = -R;
1925  } else if (RHS < 0) {
1926    APInt::udivrem(LHS, -RHS, Quotient, R);
1927    Quotient.negate();
1928  } else {
1929    APInt::udivrem(LHS, RHS, Quotient, R);
1930  }
1931  Remainder = R;
1932}
1933
1934APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1935  APInt Res = *this+RHS;
1936  Overflow = isNonNegative() == RHS.isNonNegative() &&
1937             Res.isNonNegative() != isNonNegative();
1938  return Res;
1939}
1940
1941APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1942  APInt Res = *this+RHS;
1943  Overflow = Res.ult(RHS);
1944  return Res;
1945}
1946
1947APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1948  APInt Res = *this - RHS;
1949  Overflow = isNonNegative() != RHS.isNonNegative() &&
1950             Res.isNonNegative() != isNonNegative();
1951  return Res;
1952}
1953
1954APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1955  APInt Res = *this-RHS;
1956  Overflow = Res.ugt(*this);
1957  return Res;
1958}
1959
1960APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1961  // MININT/-1  -->  overflow.
1962  Overflow = isMinSignedValue() && RHS.isAllOnes();
1963  return sdiv(RHS);
1964}
1965
1966APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1967  APInt Res = *this * RHS;
1968
1969  if (RHS != 0)
1970    Overflow = Res.sdiv(RHS) != *this ||
1971               (isMinSignedValue() && RHS.isAllOnes());
1972  else
1973    Overflow = false;
1974  return Res;
1975}
1976
1977APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1978  if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) {
1979    Overflow = true;
1980    return *this * RHS;
1981  }
1982
1983  APInt Res = lshr(1) * RHS;
1984  Overflow = Res.isNegative();
1985  Res <<= 1;
1986  if ((*this)[0]) {
1987    Res += RHS;
1988    if (Res.ult(RHS))
1989      Overflow = true;
1990  }
1991  return Res;
1992}
1993
1994APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1995  return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
1996}
1997
1998APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
1999  Overflow = ShAmt >= getBitWidth();
2000  if (Overflow)
2001    return APInt(BitWidth, 0);
2002
2003  if (isNonNegative()) // Don't allow sign change.
2004    Overflow = ShAmt >= countl_zero();
2005  else
2006    Overflow = ShAmt >= countl_one();
2007
2008  return *this << ShAmt;
2009}
2010
2011APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2012  return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow);
2013}
2014
2015APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const {
2016  Overflow = ShAmt >= getBitWidth();
2017  if (Overflow)
2018    return APInt(BitWidth, 0);
2019
2020  Overflow = ShAmt > countl_zero();
2021
2022  return *this << ShAmt;
2023}
2024
2025APInt APInt::sadd_sat(const APInt &RHS) const {
2026  bool Overflow;
2027  APInt Res = sadd_ov(RHS, Overflow);
2028  if (!Overflow)
2029    return Res;
2030
2031  return isNegative() ? APInt::getSignedMinValue(BitWidth)
2032                      : APInt::getSignedMaxValue(BitWidth);
2033}
2034
2035APInt APInt::uadd_sat(const APInt &RHS) const {
2036  bool Overflow;
2037  APInt Res = uadd_ov(RHS, Overflow);
2038  if (!Overflow)
2039    return Res;
2040
2041  return APInt::getMaxValue(BitWidth);
2042}
2043
2044APInt APInt::ssub_sat(const APInt &RHS) const {
2045  bool Overflow;
2046  APInt Res = ssub_ov(RHS, Overflow);
2047  if (!Overflow)
2048    return Res;
2049
2050  return isNegative() ? APInt::getSignedMinValue(BitWidth)
2051                      : APInt::getSignedMaxValue(BitWidth);
2052}
2053
2054APInt APInt::usub_sat(const APInt &RHS) const {
2055  bool Overflow;
2056  APInt Res = usub_ov(RHS, Overflow);
2057  if (!Overflow)
2058    return Res;
2059
2060  return APInt(BitWidth, 0);
2061}
2062
2063APInt APInt::smul_sat(const APInt &RHS) const {
2064  bool Overflow;
2065  APInt Res = smul_ov(RHS, Overflow);
2066  if (!Overflow)
2067    return Res;
2068
2069  // The result is negative if one and only one of inputs is negative.
2070  bool ResIsNegative = isNegative() ^ RHS.isNegative();
2071
2072  return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2073                       : APInt::getSignedMaxValue(BitWidth);
2074}
2075
2076APInt APInt::umul_sat(const APInt &RHS) const {
2077  bool Overflow;
2078  APInt Res = umul_ov(RHS, Overflow);
2079  if (!Overflow)
2080    return Res;
2081
2082  return APInt::getMaxValue(BitWidth);
2083}
2084
2085APInt APInt::sshl_sat(const APInt &RHS) const {
2086  return sshl_sat(RHS.getLimitedValue(getBitWidth()));
2087}
2088
2089APInt APInt::sshl_sat(unsigned RHS) const {
2090  bool Overflow;
2091  APInt Res = sshl_ov(RHS, Overflow);
2092  if (!Overflow)
2093    return Res;
2094
2095  return isNegative() ? APInt::getSignedMinValue(BitWidth)
2096                      : APInt::getSignedMaxValue(BitWidth);
2097}
2098
2099APInt APInt::ushl_sat(const APInt &RHS) const {
2100  return ushl_sat(RHS.getLimitedValue(getBitWidth()));
2101}
2102
2103APInt APInt::ushl_sat(unsigned RHS) const {
2104  bool Overflow;
2105  APInt Res = ushl_ov(RHS, Overflow);
2106  if (!Overflow)
2107    return Res;
2108
2109  return APInt::getMaxValue(BitWidth);
2110}
2111
2112void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2113  // Check our assumptions here
2114  assert(!str.empty() && "Invalid string length");
2115  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2116          radix == 36) &&
2117         "Radix should be 2, 8, 10, 16, or 36!");
2118
2119  StringRef::iterator p = str.begin();
2120  size_t slen = str.size();
2121  bool isNeg = *p == '-';
2122  if (*p == '-' || *p == '+') {
2123    p++;
2124    slen--;
2125    assert(slen && "String is only a sign, needs a value.");
2126  }
2127  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2128  assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2129  assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2130  assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2131         "Insufficient bit width");
2132
2133  // Allocate memory if needed
2134  if (isSingleWord())
2135    U.VAL = 0;
2136  else
2137    U.pVal = getClearedMemory(getNumWords());
2138
2139  // Figure out if we can shift instead of multiply
2140  unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2141
2142  // Enter digit traversal loop
2143  for (StringRef::iterator e = str.end(); p != e; ++p) {
2144    unsigned digit = getDigit(*p, radix);
2145    assert(digit < radix && "Invalid character in digit string");
2146
2147    // Shift or multiply the value by the radix
2148    if (slen > 1) {
2149      if (shift)
2150        *this <<= shift;
2151      else
2152        *this *= radix;
2153    }
2154
2155    // Add in the digit we just interpreted
2156    *this += digit;
2157  }
2158  // If its negative, put it in two's complement form
2159  if (isNeg)
2160    this->negate();
2161}
2162
2163void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
2164                     bool formatAsCLiteral, bool UpperCase) const {
2165  assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2166          Radix == 36) &&
2167         "Radix should be 2, 8, 10, 16, or 36!");
2168
2169  const char *Prefix = "";
2170  if (formatAsCLiteral) {
2171    switch (Radix) {
2172      case 2:
2173        // Binary literals are a non-standard extension added in gcc 4.3:
2174        // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2175        Prefix = "0b";
2176        break;
2177      case 8:
2178        Prefix = "0";
2179        break;
2180      case 10:
2181        break; // No prefix
2182      case 16:
2183        Prefix = "0x";
2184        break;
2185      default:
2186        llvm_unreachable("Invalid radix!");
2187    }
2188  }
2189
2190  // First, check for a zero value and just short circuit the logic below.
2191  if (isZero()) {
2192    while (*Prefix) {
2193      Str.push_back(*Prefix);
2194      ++Prefix;
2195    };
2196    Str.push_back('0');
2197    return;
2198  }
2199
2200  static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz"
2201                                   "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2202  const char *Digits = BothDigits + (UpperCase ? 36 : 0);
2203
2204  if (isSingleWord()) {
2205    char Buffer[65];
2206    char *BufPtr = std::end(Buffer);
2207
2208    uint64_t N;
2209    if (!Signed) {
2210      N = getZExtValue();
2211    } else {
2212      int64_t I = getSExtValue();
2213      if (I >= 0) {
2214        N = I;
2215      } else {
2216        Str.push_back('-');
2217        N = -(uint64_t)I;
2218      }
2219    }
2220
2221    while (*Prefix) {
2222      Str.push_back(*Prefix);
2223      ++Prefix;
2224    };
2225
2226    while (N) {
2227      *--BufPtr = Digits[N % Radix];
2228      N /= Radix;
2229    }
2230    Str.append(BufPtr, std::end(Buffer));
2231    return;
2232  }
2233
2234  APInt Tmp(*this);
2235
2236  if (Signed && isNegative()) {
2237    // They want to print the signed version and it is a negative value
2238    // Flip the bits and add one to turn it into the equivalent positive
2239    // value and put a '-' in the result.
2240    Tmp.negate();
2241    Str.push_back('-');
2242  }
2243
2244  while (*Prefix) {
2245    Str.push_back(*Prefix);
2246    ++Prefix;
2247  };
2248
2249  // We insert the digits backward, then reverse them to get the right order.
2250  unsigned StartDig = Str.size();
2251
2252  // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2253  // because the number of bits per digit (1, 3 and 4 respectively) divides
2254  // equally.  We just shift until the value is zero.
2255  if (Radix == 2 || Radix == 8 || Radix == 16) {
2256    // Just shift tmp right for each digit width until it becomes zero
2257    unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2258    unsigned MaskAmt = Radix - 1;
2259
2260    while (Tmp.getBoolValue()) {
2261      unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2262      Str.push_back(Digits[Digit]);
2263      Tmp.lshrInPlace(ShiftAmt);
2264    }
2265  } else {
2266    while (Tmp.getBoolValue()) {
2267      uint64_t Digit;
2268      udivrem(Tmp, Radix, Tmp, Digit);
2269      assert(Digit < Radix && "divide failed");
2270      Str.push_back(Digits[Digit]);
2271    }
2272  }
2273
2274  // Reverse the digits before returning.
2275  std::reverse(Str.begin()+StartDig, Str.end());
2276}
2277
2278#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2279LLVM_DUMP_METHOD void APInt::dump() const {
2280  SmallString<40> S, U;
2281  this->toStringUnsigned(U);
2282  this->toStringSigned(S);
2283  dbgs() << "APInt(" << BitWidth << "b, "
2284         << U << "u " << S << "s)\n";
2285}
2286#endif
2287
2288void APInt::print(raw_ostream &OS, bool isSigned) const {
2289  SmallString<40> S;
2290  this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2291  OS << S;
2292}
2293
2294// This implements a variety of operations on a representation of
2295// arbitrary precision, two's-complement, bignum integer values.
2296
2297// Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2298// and unrestricting assumption.
2299static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2300              "Part width must be divisible by 2!");
2301
2302// Returns the integer part with the least significant BITS set.
2303// BITS cannot be zero.
2304static inline APInt::WordType lowBitMask(unsigned bits) {
2305  assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2306  return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2307}
2308
2309/// Returns the value of the lower half of PART.
2310static inline APInt::WordType lowHalf(APInt::WordType part) {
2311  return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2312}
2313
2314/// Returns the value of the upper half of PART.
2315static inline APInt::WordType highHalf(APInt::WordType part) {
2316  return part >> (APInt::APINT_BITS_PER_WORD / 2);
2317}
2318
2319/// Sets the least significant part of a bignum to the input value, and zeroes
2320/// out higher parts.
2321void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2322  assert(parts > 0);
2323  dst[0] = part;
2324  for (unsigned i = 1; i < parts; i++)
2325    dst[i] = 0;
2326}
2327
2328/// Assign one bignum to another.
2329void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2330  for (unsigned i = 0; i < parts; i++)
2331    dst[i] = src[i];
2332}
2333
2334/// Returns true if a bignum is zero, false otherwise.
2335bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2336  for (unsigned i = 0; i < parts; i++)
2337    if (src[i])
2338      return false;
2339
2340  return true;
2341}
2342
2343/// Extract the given bit of a bignum; returns 0 or 1.
2344int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2345  return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2346}
2347
2348/// Set the given bit of a bignum.
2349void APInt::tcSetBit(WordType *parts, unsigned bit) {
2350  parts[whichWord(bit)] |= maskBit(bit);
2351}
2352
2353/// Clears the given bit of a bignum.
2354void APInt::tcClearBit(WordType *parts, unsigned bit) {
2355  parts[whichWord(bit)] &= ~maskBit(bit);
2356}
2357
2358/// Returns the bit number of the least significant set bit of a number.  If the
2359/// input number has no bits set UINT_MAX is returned.
2360unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2361  for (unsigned i = 0; i < n; i++) {
2362    if (parts[i] != 0) {
2363      unsigned lsb = llvm::countr_zero(parts[i]);
2364      return lsb + i * APINT_BITS_PER_WORD;
2365    }
2366  }
2367
2368  return UINT_MAX;
2369}
2370
2371/// Returns the bit number of the most significant set bit of a number.
2372/// If the input number has no bits set UINT_MAX is returned.
2373unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2374  do {
2375    --n;
2376
2377    if (parts[n] != 0) {
2378      static_assert(sizeof(parts[n]) <= sizeof(uint64_t));
2379      unsigned msb = llvm::Log2_64(parts[n]);
2380
2381      return msb + n * APINT_BITS_PER_WORD;
2382    }
2383  } while (n);
2384
2385  return UINT_MAX;
2386}
2387
2388/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2389/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2390/// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2391/// */
2392void
2393APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2394                 unsigned srcBits, unsigned srcLSB) {
2395  unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2396  assert(dstParts <= dstCount);
2397
2398  unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2399  tcAssign(dst, src + firstSrcPart, dstParts);
2400
2401  unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2402  tcShiftRight(dst, dstParts, shift);
2403
2404  // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2405  // in DST.  If this is less that srcBits, append the rest, else
2406  // clear the high bits.
2407  unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2408  if (n < srcBits) {
2409    WordType mask = lowBitMask (srcBits - n);
2410    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2411                          << n % APINT_BITS_PER_WORD);
2412  } else if (n > srcBits) {
2413    if (srcBits % APINT_BITS_PER_WORD)
2414      dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2415  }
2416
2417  // Clear high parts.
2418  while (dstParts < dstCount)
2419    dst[dstParts++] = 0;
2420}
2421
2422//// DST += RHS + C where C is zero or one.  Returns the carry flag.
2423APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2424                             WordType c, unsigned parts) {
2425  assert(c <= 1);
2426
2427  for (unsigned i = 0; i < parts; i++) {
2428    WordType l = dst[i];
2429    if (c) {
2430      dst[i] += rhs[i] + 1;
2431      c = (dst[i] <= l);
2432    } else {
2433      dst[i] += rhs[i];
2434      c = (dst[i] < l);
2435    }
2436  }
2437
2438  return c;
2439}
2440
2441/// This function adds a single "word" integer, src, to the multiple
2442/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2443/// 1 is returned if there is a carry out, otherwise 0 is returned.
2444/// @returns the carry of the addition.
2445APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2446                                 unsigned parts) {
2447  for (unsigned i = 0; i < parts; ++i) {
2448    dst[i] += src;
2449    if (dst[i] >= src)
2450      return 0; // No need to carry so exit early.
2451    src = 1; // Carry one to next digit.
2452  }
2453
2454  return 1;
2455}
2456
2457/// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2458APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2459                                  WordType c, unsigned parts) {
2460  assert(c <= 1);
2461
2462  for (unsigned i = 0; i < parts; i++) {
2463    WordType l = dst[i];
2464    if (c) {
2465      dst[i] -= rhs[i] + 1;
2466      c = (dst[i] >= l);
2467    } else {
2468      dst[i] -= rhs[i];
2469      c = (dst[i] > l);
2470    }
2471  }
2472
2473  return c;
2474}
2475
2476/// This function subtracts a single "word" (64-bit word), src, from
2477/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2478/// no further borrowing is needed or it runs out of "words" in dst.  The result
2479/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2480/// exhausted. In other words, if src > dst then this function returns 1,
2481/// otherwise 0.
2482/// @returns the borrow out of the subtraction
2483APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2484                                      unsigned parts) {
2485  for (unsigned i = 0; i < parts; ++i) {
2486    WordType Dst = dst[i];
2487    dst[i] -= src;
2488    if (src <= Dst)
2489      return 0; // No need to borrow so exit early.
2490    src = 1; // We have to "borrow 1" from next "word"
2491  }
2492
2493  return 1;
2494}
2495
2496/// Negate a bignum in-place.
2497void APInt::tcNegate(WordType *dst, unsigned parts) {
2498  tcComplement(dst, parts);
2499  tcIncrement(dst, parts);
2500}
2501
2502/// DST += SRC * MULTIPLIER + CARRY   if add is true
2503/// DST  = SRC * MULTIPLIER + CARRY   if add is false
2504/// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2505/// they must start at the same point, i.e. DST == SRC.
2506/// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2507/// returned.  Otherwise DST is filled with the least significant
2508/// DSTPARTS parts of the result, and if all of the omitted higher
2509/// parts were zero return zero, otherwise overflow occurred and
2510/// return one.
2511int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2512                          WordType multiplier, WordType carry,
2513                          unsigned srcParts, unsigned dstParts,
2514                          bool add) {
2515  // Otherwise our writes of DST kill our later reads of SRC.
2516  assert(dst <= src || dst >= src + srcParts);
2517  assert(dstParts <= srcParts + 1);
2518
2519  // N loops; minimum of dstParts and srcParts.
2520  unsigned n = std::min(dstParts, srcParts);
2521
2522  for (unsigned i = 0; i < n; i++) {
2523    // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2524    // This cannot overflow, because:
2525    //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2526    // which is less than n^2.
2527    WordType srcPart = src[i];
2528    WordType low, mid, high;
2529    if (multiplier == 0 || srcPart == 0) {
2530      low = carry;
2531      high = 0;
2532    } else {
2533      low = lowHalf(srcPart) * lowHalf(multiplier);
2534      high = highHalf(srcPart) * highHalf(multiplier);
2535
2536      mid = lowHalf(srcPart) * highHalf(multiplier);
2537      high += highHalf(mid);
2538      mid <<= APINT_BITS_PER_WORD / 2;
2539      if (low + mid < low)
2540        high++;
2541      low += mid;
2542
2543      mid = highHalf(srcPart) * lowHalf(multiplier);
2544      high += highHalf(mid);
2545      mid <<= APINT_BITS_PER_WORD / 2;
2546      if (low + mid < low)
2547        high++;
2548      low += mid;
2549
2550      // Now add carry.
2551      if (low + carry < low)
2552        high++;
2553      low += carry;
2554    }
2555
2556    if (add) {
2557      // And now DST[i], and store the new low part there.
2558      if (low + dst[i] < low)
2559        high++;
2560      dst[i] += low;
2561    } else
2562      dst[i] = low;
2563
2564    carry = high;
2565  }
2566
2567  if (srcParts < dstParts) {
2568    // Full multiplication, there is no overflow.
2569    assert(srcParts + 1 == dstParts);
2570    dst[srcParts] = carry;
2571    return 0;
2572  }
2573
2574  // We overflowed if there is carry.
2575  if (carry)
2576    return 1;
2577
2578  // We would overflow if any significant unwritten parts would be
2579  // non-zero.  This is true if any remaining src parts are non-zero
2580  // and the multiplier is non-zero.
2581  if (multiplier)
2582    for (unsigned i = dstParts; i < srcParts; i++)
2583      if (src[i])
2584        return 1;
2585
2586  // We fitted in the narrow destination.
2587  return 0;
2588}
2589
2590/// DST = LHS * RHS, where DST has the same width as the operands and
2591/// is filled with the least significant parts of the result.  Returns
2592/// one if overflow occurred, otherwise zero.  DST must be disjoint
2593/// from both operands.
2594int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2595                      const WordType *rhs, unsigned parts) {
2596  assert(dst != lhs && dst != rhs);
2597
2598  int overflow = 0;
2599  tcSet(dst, 0, parts);
2600
2601  for (unsigned i = 0; i < parts; i++)
2602    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2603                               parts - i, true);
2604
2605  return overflow;
2606}
2607
2608/// DST = LHS * RHS, where DST has width the sum of the widths of the
2609/// operands. No overflow occurs. DST must be disjoint from both operands.
2610void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2611                           const WordType *rhs, unsigned lhsParts,
2612                           unsigned rhsParts) {
2613  // Put the narrower number on the LHS for less loops below.
2614  if (lhsParts > rhsParts)
2615    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2616
2617  assert(dst != lhs && dst != rhs);
2618
2619  tcSet(dst, 0, rhsParts);
2620
2621  for (unsigned i = 0; i < lhsParts; i++)
2622    tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2623}
2624
2625// If RHS is zero LHS and REMAINDER are left unchanged, return one.
2626// Otherwise set LHS to LHS / RHS with the fractional part discarded,
2627// set REMAINDER to the remainder, return zero.  i.e.
2628//
2629//   OLD_LHS = RHS * LHS + REMAINDER
2630//
2631// SCRATCH is a bignum of the same size as the operands and result for
2632// use by the routine; its contents need not be initialized and are
2633// destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2634int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2635                    WordType *remainder, WordType *srhs,
2636                    unsigned parts) {
2637  assert(lhs != remainder && lhs != srhs && remainder != srhs);
2638
2639  unsigned shiftCount = tcMSB(rhs, parts) + 1;
2640  if (shiftCount == 0)
2641    return true;
2642
2643  shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2644  unsigned n = shiftCount / APINT_BITS_PER_WORD;
2645  WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2646
2647  tcAssign(srhs, rhs, parts);
2648  tcShiftLeft(srhs, parts, shiftCount);
2649  tcAssign(remainder, lhs, parts);
2650  tcSet(lhs, 0, parts);
2651
2652  // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2653  // total.
2654  for (;;) {
2655    int compare = tcCompare(remainder, srhs, parts);
2656    if (compare >= 0) {
2657      tcSubtract(remainder, srhs, 0, parts);
2658      lhs[n] |= mask;
2659    }
2660
2661    if (shiftCount == 0)
2662      break;
2663    shiftCount--;
2664    tcShiftRight(srhs, parts, 1);
2665    if ((mask >>= 1) == 0) {
2666      mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2667      n--;
2668    }
2669  }
2670
2671  return false;
2672}
2673
2674/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2675/// no restrictions on Count.
2676void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2677  // Don't bother performing a no-op shift.
2678  if (!Count)
2679    return;
2680
2681  // WordShift is the inter-part shift; BitShift is the intra-part shift.
2682  unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2683  unsigned BitShift = Count % APINT_BITS_PER_WORD;
2684
2685  // Fastpath for moving by whole words.
2686  if (BitShift == 0) {
2687    std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2688  } else {
2689    while (Words-- > WordShift) {
2690      Dst[Words] = Dst[Words - WordShift] << BitShift;
2691      if (Words > WordShift)
2692        Dst[Words] |=
2693          Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2694    }
2695  }
2696
2697  // Fill in the remainder with 0s.
2698  std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2699}
2700
2701/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2702/// are no restrictions on Count.
2703void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2704  // Don't bother performing a no-op shift.
2705  if (!Count)
2706    return;
2707
2708  // WordShift is the inter-part shift; BitShift is the intra-part shift.
2709  unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2710  unsigned BitShift = Count % APINT_BITS_PER_WORD;
2711
2712  unsigned WordsToMove = Words - WordShift;
2713  // Fastpath for moving by whole words.
2714  if (BitShift == 0) {
2715    std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2716  } else {
2717    for (unsigned i = 0; i != WordsToMove; ++i) {
2718      Dst[i] = Dst[i + WordShift] >> BitShift;
2719      if (i + 1 != WordsToMove)
2720        Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2721    }
2722  }
2723
2724  // Fill in the remainder with 0s.
2725  std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2726}
2727
2728// Comparison (unsigned) of two bignums.
2729int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2730                     unsigned parts) {
2731  while (parts) {
2732    parts--;
2733    if (lhs[parts] != rhs[parts])
2734      return (lhs[parts] > rhs[parts]) ? 1 : -1;
2735  }
2736
2737  return 0;
2738}
2739
2740APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2741                                   APInt::Rounding RM) {
2742  // Currently udivrem always rounds down.
2743  switch (RM) {
2744  case APInt::Rounding::DOWN:
2745  case APInt::Rounding::TOWARD_ZERO:
2746    return A.udiv(B);
2747  case APInt::Rounding::UP: {
2748    APInt Quo, Rem;
2749    APInt::udivrem(A, B, Quo, Rem);
2750    if (Rem.isZero())
2751      return Quo;
2752    return Quo + 1;
2753  }
2754  }
2755  llvm_unreachable("Unknown APInt::Rounding enum");
2756}
2757
2758APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2759                                   APInt::Rounding RM) {
2760  switch (RM) {
2761  case APInt::Rounding::DOWN:
2762  case APInt::Rounding::UP: {
2763    APInt Quo, Rem;
2764    APInt::sdivrem(A, B, Quo, Rem);
2765    if (Rem.isZero())
2766      return Quo;
2767    // This algorithm deals with arbitrary rounding mode used by sdivrem.
2768    // We want to check whether the non-integer part of the mathematical value
2769    // is negative or not. If the non-integer part is negative, we need to round
2770    // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2771    // already rounded down.
2772    if (RM == APInt::Rounding::DOWN) {
2773      if (Rem.isNegative() != B.isNegative())
2774        return Quo - 1;
2775      return Quo;
2776    }
2777    if (Rem.isNegative() != B.isNegative())
2778      return Quo;
2779    return Quo + 1;
2780  }
2781  // Currently sdiv rounds towards zero.
2782  case APInt::Rounding::TOWARD_ZERO:
2783    return A.sdiv(B);
2784  }
2785  llvm_unreachable("Unknown APInt::Rounding enum");
2786}
2787
2788std::optional<APInt>
2789llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2790                                           unsigned RangeWidth) {
2791  unsigned CoeffWidth = A.getBitWidth();
2792  assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2793  assert(RangeWidth <= CoeffWidth &&
2794         "Value range width should be less than coefficient width");
2795  assert(RangeWidth > 1 && "Value range bit width should be > 1");
2796
2797  LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2798                    << "x + " << C << ", rw:" << RangeWidth << '\n');
2799
2800  // Identify 0 as a (non)solution immediately.
2801  if (C.sextOrTrunc(RangeWidth).isZero()) {
2802    LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2803    return APInt(CoeffWidth, 0);
2804  }
2805
2806  // The result of APInt arithmetic has the same bit width as the operands,
2807  // so it can actually lose high bits. A product of two n-bit integers needs
2808  // 2n-1 bits to represent the full value.
2809  // The operation done below (on quadratic coefficients) that can produce
2810  // the largest value is the evaluation of the equation during bisection,
2811  // which needs 3 times the bitwidth of the coefficient, so the total number
2812  // of required bits is 3n.
2813  //
2814  // The purpose of this extension is to simulate the set Z of all integers,
2815  // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2816  // and negative numbers (not so much in a modulo arithmetic). The method
2817  // used to solve the equation is based on the standard formula for real
2818  // numbers, and uses the concepts of "positive" and "negative" with their
2819  // usual meanings.
2820  CoeffWidth *= 3;
2821  A = A.sext(CoeffWidth);
2822  B = B.sext(CoeffWidth);
2823  C = C.sext(CoeffWidth);
2824
2825  // Make A > 0 for simplicity. Negate cannot overflow at this point because
2826  // the bit width has increased.
2827  if (A.isNegative()) {
2828    A.negate();
2829    B.negate();
2830    C.negate();
2831  }
2832
2833  // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2834  // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2835  // and R = 2^BitWidth.
2836  // Since we're trying not only to find exact solutions, but also values
2837  // that "wrap around", such a set will always have a solution, i.e. an x
2838  // that satisfies at least one of the equations, or such that |q(x)|
2839  // exceeds kR, while |q(x-1)| for the same k does not.
2840  //
2841  // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2842  // positive solution n (in the above sense), and also such that the n
2843  // will be the least among all solutions corresponding to k = 0, 1, ...
2844  // (more precisely, the least element in the set
2845  //   { n(k) | k is such that a solution n(k) exists }).
2846  //
2847  // Consider the parabola (over real numbers) that corresponds to the
2848  // quadratic equation. Since A > 0, the arms of the parabola will point
2849  // up. Picking different values of k will shift it up and down by R.
2850  //
2851  // We want to shift the parabola in such a way as to reduce the problem
2852  // of solving q(x) = kR to solving shifted_q(x) = 0.
2853  // (The interesting solutions are the ceilings of the real number
2854  // solutions.)
2855  APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2856  APInt TwoA = 2 * A;
2857  APInt SqrB = B * B;
2858  bool PickLow;
2859
2860  auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2861    assert(A.isStrictlyPositive());
2862    APInt T = V.abs().urem(A);
2863    if (T.isZero())
2864      return V;
2865    return V.isNegative() ? V+T : V+(A-T);
2866  };
2867
2868  // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2869  // iff B is positive.
2870  if (B.isNonNegative()) {
2871    // If B >= 0, the vertex it at a negative location (or at 0), so in
2872    // order to have a non-negative solution we need to pick k that makes
2873    // C-kR negative. To satisfy all the requirements for the solution
2874    // that we are looking for, it needs to be closest to 0 of all k.
2875    C = C.srem(R);
2876    if (C.isStrictlyPositive())
2877      C -= R;
2878    // Pick the greater solution.
2879    PickLow = false;
2880  } else {
2881    // If B < 0, the vertex is at a positive location. For any solution
2882    // to exist, the discriminant must be non-negative. This means that
2883    // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2884    // lower bound on values of k: kR >= C - B^2/4A.
2885    APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2886    // Round LowkR up (towards +inf) to the nearest kR.
2887    LowkR = RoundUp(LowkR, R);
2888
2889    // If there exists k meeting the condition above, and such that
2890    // C-kR > 0, there will be two positive real number solutions of
2891    // q(x) = kR. Out of all such values of k, pick the one that makes
2892    // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2893    // In other words, find maximum k such that LowkR <= kR < C.
2894    if (C.sgt(LowkR)) {
2895      // If LowkR < C, then such a k is guaranteed to exist because
2896      // LowkR itself is a multiple of R.
2897      C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2898      // Pick the smaller solution.
2899      PickLow = true;
2900    } else {
2901      // If C-kR < 0 for all potential k's, it means that one solution
2902      // will be negative, while the other will be positive. The positive
2903      // solution will shift towards 0 if the parabola is moved up.
2904      // Pick the kR closest to the lower bound (i.e. make C-kR closest
2905      // to 0, or in other words, out of all parabolas that have solutions,
2906      // pick the one that is the farthest "up").
2907      // Since LowkR is itself a multiple of R, simply take C-LowkR.
2908      C -= LowkR;
2909      // Pick the greater solution.
2910      PickLow = false;
2911    }
2912  }
2913
2914  LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2915                    << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2916
2917  APInt D = SqrB - 4*A*C;
2918  assert(D.isNonNegative() && "Negative discriminant");
2919  APInt SQ = D.sqrt();
2920
2921  APInt Q = SQ * SQ;
2922  bool InexactSQ = Q != D;
2923  // The calculated SQ may actually be greater than the exact (non-integer)
2924  // value. If that's the case, decrement SQ to get a value that is lower.
2925  if (Q.sgt(D))
2926    SQ -= 1;
2927
2928  APInt X;
2929  APInt Rem;
2930
2931  // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2932  // When using the quadratic formula directly, the calculated low root
2933  // may be greater than the exact one, since we would be subtracting SQ.
2934  // To make sure that the calculated root is not greater than the exact
2935  // one, subtract SQ+1 when calculating the low root (for inexact value
2936  // of SQ).
2937  if (PickLow)
2938    APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2939  else
2940    APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2941
2942  // The updated coefficients should be such that the (exact) solution is
2943  // positive. Since APInt division rounds towards 0, the calculated one
2944  // can be 0, but cannot be negative.
2945  assert(X.isNonNegative() && "Solution should be non-negative");
2946
2947  if (!InexactSQ && Rem.isZero()) {
2948    LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2949    return X;
2950  }
2951
2952  assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2953  // The exact value of the square root of D should be between SQ and SQ+1.
2954  // This implies that the solution should be between that corresponding to
2955  // SQ (i.e. X) and that corresponding to SQ+1.
2956  //
2957  // The calculated X cannot be greater than the exact (real) solution.
2958  // Actually it must be strictly less than the exact solution, while
2959  // X+1 will be greater than or equal to it.
2960
2961  APInt VX = (A*X + B)*X + C;
2962  APInt VY = VX + TwoA*X + A + B;
2963  bool SignChange =
2964      VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2965  // If the sign did not change between X and X+1, X is not a valid solution.
2966  // This could happen when the actual (exact) roots don't have an integer
2967  // between them, so they would both be contained between X and X+1.
2968  if (!SignChange) {
2969    LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2970    return std::nullopt;
2971  }
2972
2973  X += 1;
2974  LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2975  return X;
2976}
2977
2978std::optional<unsigned>
2979llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2980  assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2981  if (A == B)
2982    return std::nullopt;
2983  return A.getBitWidth() - ((A ^ B).countl_zero() + 1);
2984}
2985
2986APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2987                                   bool MatchAllBits) {
2988  unsigned OldBitWidth = A.getBitWidth();
2989  assert((((OldBitWidth % NewBitWidth) == 0) ||
2990          ((NewBitWidth % OldBitWidth) == 0)) &&
2991         "One size should be a multiple of the other one. "
2992         "Can't do fractional scaling.");
2993
2994  // Check for matching bitwidths.
2995  if (OldBitWidth == NewBitWidth)
2996    return A;
2997
2998  APInt NewA = APInt::getZero(NewBitWidth);
2999
3000  // Check for null input.
3001  if (A.isZero())
3002    return NewA;
3003
3004  if (NewBitWidth > OldBitWidth) {
3005    // Repeat bits.
3006    unsigned Scale = NewBitWidth / OldBitWidth;
3007    for (unsigned i = 0; i != OldBitWidth; ++i)
3008      if (A[i])
3009        NewA.setBits(i * Scale, (i + 1) * Scale);
3010  } else {
3011    unsigned Scale = OldBitWidth / NewBitWidth;
3012    for (unsigned i = 0; i != NewBitWidth; ++i) {
3013      if (MatchAllBits) {
3014        if (A.extractBits(Scale, i * Scale).isAllOnes())
3015          NewA.setBit(i);
3016      } else {
3017        if (!A.extractBits(Scale, i * Scale).isZero())
3018          NewA.setBit(i);
3019      }
3020    }
3021  }
3022
3023  return NewA;
3024}
3025
3026/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3027/// with the integer held in IntVal.
3028void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3029                            unsigned StoreBytes) {
3030  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3031  const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3032
3033  if (sys::IsLittleEndianHost) {
3034    // Little-endian host - the source is ordered from LSB to MSB.  Order the
3035    // destination from LSB to MSB: Do a straight copy.
3036    memcpy(Dst, Src, StoreBytes);
3037  } else {
3038    // Big-endian host - the source is an array of 64 bit words ordered from
3039    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3040    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3041    while (StoreBytes > sizeof(uint64_t)) {
3042      StoreBytes -= sizeof(uint64_t);
3043      // May not be aligned so use memcpy.
3044      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3045      Src += sizeof(uint64_t);
3046    }
3047
3048    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3049  }
3050}
3051
3052/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3053/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3054void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3055                             unsigned LoadBytes) {
3056  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3057  uint8_t *Dst = reinterpret_cast<uint8_t *>(
3058                   const_cast<uint64_t *>(IntVal.getRawData()));
3059
3060  if (sys::IsLittleEndianHost)
3061    // Little-endian host - the destination must be ordered from LSB to MSB.
3062    // The source is ordered from LSB to MSB: Do a straight copy.
3063    memcpy(Dst, Src, LoadBytes);
3064  else {
3065    // Big-endian - the destination is an array of 64 bit words ordered from
3066    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3067    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3068    // a word.
3069    while (LoadBytes > sizeof(uint64_t)) {
3070      LoadBytes -= sizeof(uint64_t);
3071      // May not be aligned so use memcpy.
3072      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3073      Dst += sizeof(uint64_t);
3074    }
3075
3076    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3077  }
3078}
3079