1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements folding of constants for LLVM.  This implements the
10// (internal) ConstantFold.h interface, which is used by the
11// ConstantExpr::get* methods to automatically fold constants when possible.
12//
13// The current constant folding implementation is implemented in two pieces: the
14// pieces that don't need DataLayout, and the pieces that do. This is to avoid
15// a dependence in IR on Target.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/IR/ConstantFold.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GetElementPtrTypeIterator.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/IR/PatternMatch.h"
32#include "llvm/Support/ErrorHandling.h"
33using namespace llvm;
34using namespace llvm::PatternMatch;
35
36//===----------------------------------------------------------------------===//
37//                ConstantFold*Instruction Implementations
38//===----------------------------------------------------------------------===//
39
40/// This function determines which opcode to use to fold two constant cast
41/// expressions together. It uses CastInst::isEliminableCastPair to determine
42/// the opcode. Consequently its just a wrapper around that function.
43/// Determine if it is valid to fold a cast of a cast
44static unsigned
45foldConstantCastPair(
46  unsigned opc,          ///< opcode of the second cast constant expression
47  ConstantExpr *Op,      ///< the first cast constant expression
48  Type *DstTy            ///< destination type of the first cast
49) {
50  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
51  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
52  assert(CastInst::isCast(opc) && "Invalid cast opcode");
53
54  // The types and opcodes for the two Cast constant expressions
55  Type *SrcTy = Op->getOperand(0)->getType();
56  Type *MidTy = Op->getType();
57  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
58  Instruction::CastOps secondOp = Instruction::CastOps(opc);
59
60  // Assume that pointers are never more than 64 bits wide, and only use this
61  // for the middle type. Otherwise we could end up folding away illegal
62  // bitcasts between address spaces with different sizes.
63  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
64
65  // Let CastInst::isEliminableCastPair do the heavy lifting.
66  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
67                                        nullptr, FakeIntPtrTy, nullptr);
68}
69
70static Constant *FoldBitCast(Constant *V, Type *DestTy) {
71  Type *SrcTy = V->getType();
72  if (SrcTy == DestTy)
73    return V; // no-op cast
74
75  // Handle casts from one vector constant to another.  We know that the src
76  // and dest type have the same size (otherwise its an illegal cast).
77  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
78    if (V->isAllOnesValue())
79      return Constant::getAllOnesValue(DestTy);
80
81    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
82    // This allows for other simplifications (although some of them
83    // can only be handled by Analysis/ConstantFolding.cpp).
84    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
85      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
86    return nullptr;
87  }
88
89  // Handle integral constant input.
90  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
91    // See note below regarding the PPC_FP128 restriction.
92    if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
93      return ConstantFP::get(DestTy->getContext(),
94                             APFloat(DestTy->getFltSemantics(),
95                                     CI->getValue()));
96
97    // Otherwise, can't fold this (vector?)
98    return nullptr;
99  }
100
101  // Handle ConstantFP input: FP -> Integral.
102  if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
103    // PPC_FP128 is really the sum of two consecutive doubles, where the first
104    // double is always stored first in memory, regardless of the target
105    // endianness. The memory layout of i128, however, depends on the target
106    // endianness, and so we can't fold this without target endianness
107    // information. This should instead be handled by
108    // Analysis/ConstantFolding.cpp
109    if (FP->getType()->isPPC_FP128Ty())
110      return nullptr;
111
112    // Make sure dest type is compatible with the folded integer constant.
113    if (!DestTy->isIntegerTy())
114      return nullptr;
115
116    return ConstantInt::get(FP->getContext(),
117                            FP->getValueAPF().bitcastToAPInt());
118  }
119
120  return nullptr;
121}
122
123
124/// V is an integer constant which only has a subset of its bytes used.
125/// The bytes used are indicated by ByteStart (which is the first byte used,
126/// counting from the least significant byte) and ByteSize, which is the number
127/// of bytes used.
128///
129/// This function analyzes the specified constant to see if the specified byte
130/// range can be returned as a simplified constant.  If so, the constant is
131/// returned, otherwise null is returned.
132static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
133                                      unsigned ByteSize) {
134  assert(C->getType()->isIntegerTy() &&
135         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
136         "Non-byte sized integer input");
137  [[maybe_unused]] unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
138  assert(ByteSize && "Must be accessing some piece");
139  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
140  assert(ByteSize != CSize && "Should not extract everything");
141
142  // Constant Integers are simple.
143  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
144    APInt V = CI->getValue();
145    if (ByteStart)
146      V.lshrInPlace(ByteStart*8);
147    V = V.trunc(ByteSize*8);
148    return ConstantInt::get(CI->getContext(), V);
149  }
150
151  // In the input is a constant expr, we might be able to recursively simplify.
152  // If not, we definitely can't do anything.
153  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
154  if (!CE) return nullptr;
155
156  switch (CE->getOpcode()) {
157  default: return nullptr;
158  case Instruction::Shl: {
159    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
160    if (!Amt)
161      return nullptr;
162    APInt ShAmt = Amt->getValue();
163    // Cannot analyze non-byte shifts.
164    if ((ShAmt & 7) != 0)
165      return nullptr;
166    ShAmt.lshrInPlace(3);
167
168    // If the extract is known to be all zeros, return zero.
169    if (ShAmt.uge(ByteStart + ByteSize))
170      return Constant::getNullValue(
171          IntegerType::get(CE->getContext(), ByteSize * 8));
172    // If the extract is known to be fully in the input, extract it.
173    if (ShAmt.ule(ByteStart))
174      return ExtractConstantBytes(CE->getOperand(0),
175                                  ByteStart - ShAmt.getZExtValue(), ByteSize);
176
177    // TODO: Handle the 'partially zero' case.
178    return nullptr;
179  }
180  }
181}
182
183static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V,
184                                          Type *DestTy) {
185  return ConstantExpr::isDesirableCastOp(opc)
186             ? ConstantExpr::getCast(opc, V, DestTy)
187             : ConstantFoldCastInstruction(opc, V, DestTy);
188}
189
190Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
191                                            Type *DestTy) {
192  if (isa<PoisonValue>(V))
193    return PoisonValue::get(DestTy);
194
195  if (isa<UndefValue>(V)) {
196    // zext(undef) = 0, because the top bits will be zero.
197    // sext(undef) = 0, because the top bits will all be the same.
198    // [us]itofp(undef) = 0, because the result value is bounded.
199    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
200        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
201      return Constant::getNullValue(DestTy);
202    return UndefValue::get(DestTy);
203  }
204
205  if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
206      opc != Instruction::AddrSpaceCast)
207    return Constant::getNullValue(DestTy);
208
209  // If the cast operand is a constant expression, there's a few things we can
210  // do to try to simplify it.
211  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
212    if (CE->isCast()) {
213      // Try hard to fold cast of cast because they are often eliminable.
214      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
215        return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy);
216    }
217  }
218
219  // If the cast operand is a constant vector, perform the cast by
220  // operating on each element. In the cast of bitcasts, the element
221  // count may be mismatched; don't attempt to handle that here.
222  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
223      DestTy->isVectorTy() &&
224      cast<FixedVectorType>(DestTy)->getNumElements() ==
225          cast<FixedVectorType>(V->getType())->getNumElements()) {
226    VectorType *DestVecTy = cast<VectorType>(DestTy);
227    Type *DstEltTy = DestVecTy->getElementType();
228    // Fast path for splatted constants.
229    if (Constant *Splat = V->getSplatValue()) {
230      Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy);
231      if (!Res)
232        return nullptr;
233      return ConstantVector::getSplat(
234          cast<VectorType>(DestTy)->getElementCount(), Res);
235    }
236    SmallVector<Constant *, 16> res;
237    Type *Ty = IntegerType::get(V->getContext(), 32);
238    for (unsigned i = 0,
239                  e = cast<FixedVectorType>(V->getType())->getNumElements();
240         i != e; ++i) {
241      Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
242      Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy);
243      if (!Casted)
244        return nullptr;
245      res.push_back(Casted);
246    }
247    return ConstantVector::get(res);
248  }
249
250  // We actually have to do a cast now. Perform the cast according to the
251  // opcode specified.
252  switch (opc) {
253  default:
254    llvm_unreachable("Failed to cast constant expression");
255  case Instruction::FPTrunc:
256  case Instruction::FPExt:
257    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
258      bool ignored;
259      APFloat Val = FPC->getValueAPF();
260      Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven,
261                  &ignored);
262      return ConstantFP::get(V->getContext(), Val);
263    }
264    return nullptr; // Can't fold.
265  case Instruction::FPToUI:
266  case Instruction::FPToSI:
267    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
268      const APFloat &V = FPC->getValueAPF();
269      bool ignored;
270      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
271      APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
272      if (APFloat::opInvalidOp ==
273          V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
274        // Undefined behavior invoked - the destination type can't represent
275        // the input constant.
276        return PoisonValue::get(DestTy);
277      }
278      return ConstantInt::get(FPC->getContext(), IntVal);
279    }
280    return nullptr; // Can't fold.
281  case Instruction::UIToFP:
282  case Instruction::SIToFP:
283    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
284      const APInt &api = CI->getValue();
285      APFloat apf(DestTy->getFltSemantics(),
286                  APInt::getZero(DestTy->getPrimitiveSizeInBits()));
287      apf.convertFromAPInt(api, opc==Instruction::SIToFP,
288                           APFloat::rmNearestTiesToEven);
289      return ConstantFP::get(V->getContext(), apf);
290    }
291    return nullptr;
292  case Instruction::ZExt:
293    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
294      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
295      return ConstantInt::get(V->getContext(),
296                              CI->getValue().zext(BitWidth));
297    }
298    return nullptr;
299  case Instruction::SExt:
300    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
301      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
302      return ConstantInt::get(V->getContext(),
303                              CI->getValue().sext(BitWidth));
304    }
305    return nullptr;
306  case Instruction::Trunc: {
307    if (V->getType()->isVectorTy())
308      return nullptr;
309
310    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
311    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
312      return ConstantInt::get(V->getContext(),
313                              CI->getValue().trunc(DestBitWidth));
314    }
315
316    // The input must be a constantexpr.  See if we can simplify this based on
317    // the bytes we are demanding.  Only do this if the source and dest are an
318    // even multiple of a byte.
319    if ((DestBitWidth & 7) == 0 &&
320        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
321      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
322        return Res;
323
324    return nullptr;
325  }
326  case Instruction::BitCast:
327    return FoldBitCast(V, DestTy);
328  case Instruction::AddrSpaceCast:
329  case Instruction::IntToPtr:
330  case Instruction::PtrToInt:
331    return nullptr;
332  }
333}
334
335Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
336                                              Constant *V1, Constant *V2) {
337  // Check for i1 and vector true/false conditions.
338  if (Cond->isNullValue()) return V2;
339  if (Cond->isAllOnesValue()) return V1;
340
341  // If the condition is a vector constant, fold the result elementwise.
342  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
343    auto *V1VTy = CondV->getType();
344    SmallVector<Constant*, 16> Result;
345    Type *Ty = IntegerType::get(CondV->getContext(), 32);
346    for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
347      Constant *V;
348      Constant *V1Element = ConstantExpr::getExtractElement(V1,
349                                                    ConstantInt::get(Ty, i));
350      Constant *V2Element = ConstantExpr::getExtractElement(V2,
351                                                    ConstantInt::get(Ty, i));
352      auto *Cond = cast<Constant>(CondV->getOperand(i));
353      if (isa<PoisonValue>(Cond)) {
354        V = PoisonValue::get(V1Element->getType());
355      } else if (V1Element == V2Element) {
356        V = V1Element;
357      } else if (isa<UndefValue>(Cond)) {
358        V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
359      } else {
360        if (!isa<ConstantInt>(Cond)) break;
361        V = Cond->isNullValue() ? V2Element : V1Element;
362      }
363      Result.push_back(V);
364    }
365
366    // If we were able to build the vector, return it.
367    if (Result.size() == V1VTy->getNumElements())
368      return ConstantVector::get(Result);
369  }
370
371  if (isa<PoisonValue>(Cond))
372    return PoisonValue::get(V1->getType());
373
374  if (isa<UndefValue>(Cond)) {
375    if (isa<UndefValue>(V1)) return V1;
376    return V2;
377  }
378
379  if (V1 == V2) return V1;
380
381  if (isa<PoisonValue>(V1))
382    return V2;
383  if (isa<PoisonValue>(V2))
384    return V1;
385
386  // If the true or false value is undef, we can fold to the other value as
387  // long as the other value isn't poison.
388  auto NotPoison = [](Constant *C) {
389    if (isa<PoisonValue>(C))
390      return false;
391
392    // TODO: We can analyze ConstExpr by opcode to determine if there is any
393    //       possibility of poison.
394    if (isa<ConstantExpr>(C))
395      return false;
396
397    if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
398        isa<ConstantPointerNull>(C) || isa<Function>(C))
399      return true;
400
401    if (C->getType()->isVectorTy())
402      return !C->containsPoisonElement() && !C->containsConstantExpression();
403
404    // TODO: Recursively analyze aggregates or other constants.
405    return false;
406  };
407  if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
408  if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
409
410  return nullptr;
411}
412
413Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
414                                                      Constant *Idx) {
415  auto *ValVTy = cast<VectorType>(Val->getType());
416
417  // extractelt poison, C -> poison
418  // extractelt C, undef -> poison
419  if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
420    return PoisonValue::get(ValVTy->getElementType());
421
422  // extractelt undef, C -> undef
423  if (isa<UndefValue>(Val))
424    return UndefValue::get(ValVTy->getElementType());
425
426  auto *CIdx = dyn_cast<ConstantInt>(Idx);
427  if (!CIdx)
428    return nullptr;
429
430  if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
431    // ee({w,x,y,z}, wrong_value) -> poison
432    if (CIdx->uge(ValFVTy->getNumElements()))
433      return PoisonValue::get(ValFVTy->getElementType());
434  }
435
436  // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
437  if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
438    if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
439      SmallVector<Constant *, 8> Ops;
440      Ops.reserve(CE->getNumOperands());
441      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
442        Constant *Op = CE->getOperand(i);
443        if (Op->getType()->isVectorTy()) {
444          Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
445          if (!ScalarOp)
446            return nullptr;
447          Ops.push_back(ScalarOp);
448        } else
449          Ops.push_back(Op);
450      }
451      return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
452                                 GEP->getSourceElementType());
453    } else if (CE->getOpcode() == Instruction::InsertElement) {
454      if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
455        if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
456                                APSInt(CIdx->getValue()))) {
457          return CE->getOperand(1);
458        } else {
459          return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
460        }
461      }
462    }
463  }
464
465  if (Constant *C = Val->getAggregateElement(CIdx))
466    return C;
467
468  // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
469  if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
470    if (Constant *SplatVal = Val->getSplatValue())
471      return SplatVal;
472  }
473
474  return nullptr;
475}
476
477Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
478                                                     Constant *Elt,
479                                                     Constant *Idx) {
480  if (isa<UndefValue>(Idx))
481    return PoisonValue::get(Val->getType());
482
483  // Inserting null into all zeros is still all zeros.
484  // TODO: This is true for undef and poison splats too.
485  if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue())
486    return Val;
487
488  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
489  if (!CIdx) return nullptr;
490
491  // Do not iterate on scalable vector. The num of elements is unknown at
492  // compile-time.
493  if (isa<ScalableVectorType>(Val->getType()))
494    return nullptr;
495
496  auto *ValTy = cast<FixedVectorType>(Val->getType());
497
498  unsigned NumElts = ValTy->getNumElements();
499  if (CIdx->uge(NumElts))
500    return PoisonValue::get(Val->getType());
501
502  SmallVector<Constant*, 16> Result;
503  Result.reserve(NumElts);
504  auto *Ty = Type::getInt32Ty(Val->getContext());
505  uint64_t IdxVal = CIdx->getZExtValue();
506  for (unsigned i = 0; i != NumElts; ++i) {
507    if (i == IdxVal) {
508      Result.push_back(Elt);
509      continue;
510    }
511
512    Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
513    Result.push_back(C);
514  }
515
516  return ConstantVector::get(Result);
517}
518
519Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
520                                                     ArrayRef<int> Mask) {
521  auto *V1VTy = cast<VectorType>(V1->getType());
522  unsigned MaskNumElts = Mask.size();
523  auto MaskEltCount =
524      ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
525  Type *EltTy = V1VTy->getElementType();
526
527  // Poison shuffle mask -> poison value.
528  if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
529    return PoisonValue::get(VectorType::get(EltTy, MaskEltCount));
530  }
531
532  // If the mask is all zeros this is a splat, no need to go through all
533  // elements.
534  if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
535    Type *Ty = IntegerType::get(V1->getContext(), 32);
536    Constant *Elt =
537        ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
538
539    if (Elt->isNullValue()) {
540      auto *VTy = VectorType::get(EltTy, MaskEltCount);
541      return ConstantAggregateZero::get(VTy);
542    } else if (!MaskEltCount.isScalable())
543      return ConstantVector::getSplat(MaskEltCount, Elt);
544  }
545  // Do not iterate on scalable vector. The num of elements is unknown at
546  // compile-time.
547  if (isa<ScalableVectorType>(V1VTy))
548    return nullptr;
549
550  unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
551
552  // Loop over the shuffle mask, evaluating each element.
553  SmallVector<Constant*, 32> Result;
554  for (unsigned i = 0; i != MaskNumElts; ++i) {
555    int Elt = Mask[i];
556    if (Elt == -1) {
557      Result.push_back(UndefValue::get(EltTy));
558      continue;
559    }
560    Constant *InElt;
561    if (unsigned(Elt) >= SrcNumElts*2)
562      InElt = UndefValue::get(EltTy);
563    else if (unsigned(Elt) >= SrcNumElts) {
564      Type *Ty = IntegerType::get(V2->getContext(), 32);
565      InElt =
566        ConstantExpr::getExtractElement(V2,
567                                        ConstantInt::get(Ty, Elt - SrcNumElts));
568    } else {
569      Type *Ty = IntegerType::get(V1->getContext(), 32);
570      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
571    }
572    Result.push_back(InElt);
573  }
574
575  return ConstantVector::get(Result);
576}
577
578Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
579                                                    ArrayRef<unsigned> Idxs) {
580  // Base case: no indices, so return the entire value.
581  if (Idxs.empty())
582    return Agg;
583
584  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
585    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
586
587  return nullptr;
588}
589
590Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
591                                                   Constant *Val,
592                                                   ArrayRef<unsigned> Idxs) {
593  // Base case: no indices, so replace the entire value.
594  if (Idxs.empty())
595    return Val;
596
597  unsigned NumElts;
598  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
599    NumElts = ST->getNumElements();
600  else
601    NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
602
603  SmallVector<Constant*, 32> Result;
604  for (unsigned i = 0; i != NumElts; ++i) {
605    Constant *C = Agg->getAggregateElement(i);
606    if (!C) return nullptr;
607
608    if (Idxs[0] == i)
609      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
610
611    Result.push_back(C);
612  }
613
614  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
615    return ConstantStruct::get(ST, Result);
616  return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
617}
618
619Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
620  assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
621
622  // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
623  // vectors are always evaluated per element.
624  bool IsScalableVector = isa<ScalableVectorType>(C->getType());
625  bool HasScalarUndefOrScalableVectorUndef =
626      (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
627
628  if (HasScalarUndefOrScalableVectorUndef) {
629    switch (static_cast<Instruction::UnaryOps>(Opcode)) {
630    case Instruction::FNeg:
631      return C; // -undef -> undef
632    case Instruction::UnaryOpsEnd:
633      llvm_unreachable("Invalid UnaryOp");
634    }
635  }
636
637  // Constant should not be UndefValue, unless these are vector constants.
638  assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
639  // We only have FP UnaryOps right now.
640  assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
641
642  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
643    const APFloat &CV = CFP->getValueAPF();
644    switch (Opcode) {
645    default:
646      break;
647    case Instruction::FNeg:
648      return ConstantFP::get(C->getContext(), neg(CV));
649    }
650  } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
651
652    Type *Ty = IntegerType::get(VTy->getContext(), 32);
653    // Fast path for splatted constants.
654    if (Constant *Splat = C->getSplatValue())
655      if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
656        return ConstantVector::getSplat(VTy->getElementCount(), Elt);
657
658    // Fold each element and create a vector constant from those constants.
659    SmallVector<Constant *, 16> Result;
660    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
661      Constant *ExtractIdx = ConstantInt::get(Ty, i);
662      Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
663      Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
664      if (!Res)
665        return nullptr;
666      Result.push_back(Res);
667    }
668
669    return ConstantVector::get(Result);
670  }
671
672  // We don't know how to fold this.
673  return nullptr;
674}
675
676Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
677                                              Constant *C2) {
678  assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
679
680  // Simplify BinOps with their identity values first. They are no-ops and we
681  // can always return the other value, including undef or poison values.
682  if (Constant *Identity = ConstantExpr::getBinOpIdentity(
683          Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) {
684    if (C1 == Identity)
685      return C2;
686    if (C2 == Identity)
687      return C1;
688  } else if (Constant *Identity = ConstantExpr::getBinOpIdentity(
689                 Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) {
690    if (C2 == Identity)
691      return C1;
692  }
693
694  // Binary operations propagate poison.
695  if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
696    return PoisonValue::get(C1->getType());
697
698  // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
699  // vectors are always evaluated per element.
700  bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
701  bool HasScalarUndefOrScalableVectorUndef =
702      (!C1->getType()->isVectorTy() || IsScalableVector) &&
703      (isa<UndefValue>(C1) || isa<UndefValue>(C2));
704  if (HasScalarUndefOrScalableVectorUndef) {
705    switch (static_cast<Instruction::BinaryOps>(Opcode)) {
706    case Instruction::Xor:
707      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
708        // Handle undef ^ undef -> 0 special case. This is a common
709        // idiom (misuse).
710        return Constant::getNullValue(C1->getType());
711      [[fallthrough]];
712    case Instruction::Add:
713    case Instruction::Sub:
714      return UndefValue::get(C1->getType());
715    case Instruction::And:
716      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
717        return C1;
718      return Constant::getNullValue(C1->getType());   // undef & X -> 0
719    case Instruction::Mul: {
720      // undef * undef -> undef
721      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
722        return C1;
723      const APInt *CV;
724      // X * undef -> undef   if X is odd
725      if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
726        if ((*CV)[0])
727          return UndefValue::get(C1->getType());
728
729      // X * undef -> 0       otherwise
730      return Constant::getNullValue(C1->getType());
731    }
732    case Instruction::SDiv:
733    case Instruction::UDiv:
734      // X / undef -> poison
735      // X / 0 -> poison
736      if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
737        return PoisonValue::get(C2->getType());
738      // undef / X -> 0       otherwise
739      return Constant::getNullValue(C1->getType());
740    case Instruction::URem:
741    case Instruction::SRem:
742      // X % undef -> poison
743      // X % 0 -> poison
744      if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
745        return PoisonValue::get(C2->getType());
746      // undef % X -> 0       otherwise
747      return Constant::getNullValue(C1->getType());
748    case Instruction::Or:                          // X | undef -> -1
749      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
750        return C1;
751      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
752    case Instruction::LShr:
753      // X >>l undef -> poison
754      if (isa<UndefValue>(C2))
755        return PoisonValue::get(C2->getType());
756      // undef >>l X -> 0
757      return Constant::getNullValue(C1->getType());
758    case Instruction::AShr:
759      // X >>a undef -> poison
760      if (isa<UndefValue>(C2))
761        return PoisonValue::get(C2->getType());
762      // TODO: undef >>a X -> poison if the shift is exact
763      // undef >>a X -> 0
764      return Constant::getNullValue(C1->getType());
765    case Instruction::Shl:
766      // X << undef -> undef
767      if (isa<UndefValue>(C2))
768        return PoisonValue::get(C2->getType());
769      // undef << X -> 0
770      return Constant::getNullValue(C1->getType());
771    case Instruction::FSub:
772      // -0.0 - undef --> undef (consistent with "fneg undef")
773      if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
774        return C2;
775      [[fallthrough]];
776    case Instruction::FAdd:
777    case Instruction::FMul:
778    case Instruction::FDiv:
779    case Instruction::FRem:
780      // [any flop] undef, undef -> undef
781      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
782        return C1;
783      // [any flop] C, undef -> NaN
784      // [any flop] undef, C -> NaN
785      // We could potentially specialize NaN/Inf constants vs. 'normal'
786      // constants (possibly differently depending on opcode and operand). This
787      // would allow returning undef sometimes. But it is always safe to fold to
788      // NaN because we can choose the undef operand as NaN, and any FP opcode
789      // with a NaN operand will propagate NaN.
790      return ConstantFP::getNaN(C1->getType());
791    case Instruction::BinaryOpsEnd:
792      llvm_unreachable("Invalid BinaryOp");
793    }
794  }
795
796  // Neither constant should be UndefValue, unless these are vector constants.
797  assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
798
799  // Handle simplifications when the RHS is a constant int.
800  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
801    switch (Opcode) {
802    case Instruction::Mul:
803      if (CI2->isZero())
804        return C2; // X * 0 == 0
805      break;
806    case Instruction::UDiv:
807    case Instruction::SDiv:
808      if (CI2->isZero())
809        return PoisonValue::get(CI2->getType());              // X / 0 == poison
810      break;
811    case Instruction::URem:
812    case Instruction::SRem:
813      if (CI2->isOne())
814        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
815      if (CI2->isZero())
816        return PoisonValue::get(CI2->getType());              // X % 0 == poison
817      break;
818    case Instruction::And:
819      if (CI2->isZero())
820        return C2; // X & 0 == 0
821
822      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
823        // If and'ing the address of a global with a constant, fold it.
824        if (CE1->getOpcode() == Instruction::PtrToInt &&
825            isa<GlobalValue>(CE1->getOperand(0))) {
826          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
827
828          Align GVAlign; // defaults to 1
829
830          if (Module *TheModule = GV->getParent()) {
831            const DataLayout &DL = TheModule->getDataLayout();
832            GVAlign = GV->getPointerAlignment(DL);
833
834            // If the function alignment is not specified then assume that it
835            // is 4.
836            // This is dangerous; on x86, the alignment of the pointer
837            // corresponds to the alignment of the function, but might be less
838            // than 4 if it isn't explicitly specified.
839            // However, a fix for this behaviour was reverted because it
840            // increased code size (see https://reviews.llvm.org/D55115)
841            // FIXME: This code should be deleted once existing targets have
842            // appropriate defaults
843            if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
844              GVAlign = Align(4);
845          } else if (isa<GlobalVariable>(GV)) {
846            GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne();
847          }
848
849          if (GVAlign > 1) {
850            unsigned DstWidth = CI2->getBitWidth();
851            unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
852            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
853
854            // If checking bits we know are clear, return zero.
855            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
856              return Constant::getNullValue(CI2->getType());
857          }
858        }
859      }
860      break;
861    case Instruction::Or:
862      if (CI2->isMinusOne())
863        return C2; // X | -1 == -1
864      break;
865    case Instruction::Xor:
866      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
867        switch (CE1->getOpcode()) {
868        default:
869          break;
870        case Instruction::ICmp:
871        case Instruction::FCmp:
872          // cmp pred ^ true -> cmp !pred
873          assert(CI2->isOne());
874          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
875          pred = CmpInst::getInversePredicate(pred);
876          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
877                                          CE1->getOperand(1));
878        }
879      }
880      break;
881    }
882  } else if (isa<ConstantInt>(C1)) {
883    // If C1 is a ConstantInt and C2 is not, swap the operands.
884    if (Instruction::isCommutative(Opcode))
885      return ConstantExpr::isDesirableBinOp(Opcode)
886                 ? ConstantExpr::get(Opcode, C2, C1)
887                 : ConstantFoldBinaryInstruction(Opcode, C2, C1);
888  }
889
890  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
891    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
892      const APInt &C1V = CI1->getValue();
893      const APInt &C2V = CI2->getValue();
894      switch (Opcode) {
895      default:
896        break;
897      case Instruction::Add:
898        return ConstantInt::get(CI1->getContext(), C1V + C2V);
899      case Instruction::Sub:
900        return ConstantInt::get(CI1->getContext(), C1V - C2V);
901      case Instruction::Mul:
902        return ConstantInt::get(CI1->getContext(), C1V * C2V);
903      case Instruction::UDiv:
904        assert(!CI2->isZero() && "Div by zero handled above");
905        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
906      case Instruction::SDiv:
907        assert(!CI2->isZero() && "Div by zero handled above");
908        if (C2V.isAllOnes() && C1V.isMinSignedValue())
909          return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison
910        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
911      case Instruction::URem:
912        assert(!CI2->isZero() && "Div by zero handled above");
913        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
914      case Instruction::SRem:
915        assert(!CI2->isZero() && "Div by zero handled above");
916        if (C2V.isAllOnes() && C1V.isMinSignedValue())
917          return PoisonValue::get(CI1->getType());   // MIN_INT % -1 -> poison
918        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
919      case Instruction::And:
920        return ConstantInt::get(CI1->getContext(), C1V & C2V);
921      case Instruction::Or:
922        return ConstantInt::get(CI1->getContext(), C1V | C2V);
923      case Instruction::Xor:
924        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
925      case Instruction::Shl:
926        if (C2V.ult(C1V.getBitWidth()))
927          return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
928        return PoisonValue::get(C1->getType()); // too big shift is poison
929      case Instruction::LShr:
930        if (C2V.ult(C1V.getBitWidth()))
931          return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
932        return PoisonValue::get(C1->getType()); // too big shift is poison
933      case Instruction::AShr:
934        if (C2V.ult(C1V.getBitWidth()))
935          return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
936        return PoisonValue::get(C1->getType()); // too big shift is poison
937      }
938    }
939
940    switch (Opcode) {
941    case Instruction::SDiv:
942    case Instruction::UDiv:
943    case Instruction::URem:
944    case Instruction::SRem:
945    case Instruction::LShr:
946    case Instruction::AShr:
947    case Instruction::Shl:
948      if (CI1->isZero()) return C1;
949      break;
950    default:
951      break;
952    }
953  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
954    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
955      const APFloat &C1V = CFP1->getValueAPF();
956      const APFloat &C2V = CFP2->getValueAPF();
957      APFloat C3V = C1V;  // copy for modification
958      switch (Opcode) {
959      default:
960        break;
961      case Instruction::FAdd:
962        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
963        return ConstantFP::get(C1->getContext(), C3V);
964      case Instruction::FSub:
965        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
966        return ConstantFP::get(C1->getContext(), C3V);
967      case Instruction::FMul:
968        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
969        return ConstantFP::get(C1->getContext(), C3V);
970      case Instruction::FDiv:
971        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
972        return ConstantFP::get(C1->getContext(), C3V);
973      case Instruction::FRem:
974        (void)C3V.mod(C2V);
975        return ConstantFP::get(C1->getContext(), C3V);
976      }
977    }
978  } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
979    // Fast path for splatted constants.
980    if (Constant *C2Splat = C2->getSplatValue()) {
981      if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
982        return PoisonValue::get(VTy);
983      if (Constant *C1Splat = C1->getSplatValue()) {
984        Constant *Res =
985            ConstantExpr::isDesirableBinOp(Opcode)
986                ? ConstantExpr::get(Opcode, C1Splat, C2Splat)
987                : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat);
988        if (!Res)
989          return nullptr;
990        return ConstantVector::getSplat(VTy->getElementCount(), Res);
991      }
992    }
993
994    if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
995      // Fold each element and create a vector constant from those constants.
996      SmallVector<Constant*, 16> Result;
997      Type *Ty = IntegerType::get(FVTy->getContext(), 32);
998      for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
999        Constant *ExtractIdx = ConstantInt::get(Ty, i);
1000        Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1001        Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1002
1003        // If any element of a divisor vector is zero, the whole op is poison.
1004        if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1005          return PoisonValue::get(VTy);
1006
1007        Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
1008                            ? ConstantExpr::get(Opcode, LHS, RHS)
1009                            : ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1010        if (!Res)
1011          return nullptr;
1012        Result.push_back(Res);
1013      }
1014
1015      return ConstantVector::get(Result);
1016    }
1017  }
1018
1019  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1020    // There are many possible foldings we could do here.  We should probably
1021    // at least fold add of a pointer with an integer into the appropriate
1022    // getelementptr.  This will improve alias analysis a bit.
1023
1024    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1025    // (a + (b + c)).
1026    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1027      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1028      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1029        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1030    }
1031  } else if (isa<ConstantExpr>(C2)) {
1032    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1033    // other way if possible.
1034    if (Instruction::isCommutative(Opcode))
1035      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1036  }
1037
1038  // i1 can be simplified in many cases.
1039  if (C1->getType()->isIntegerTy(1)) {
1040    switch (Opcode) {
1041    case Instruction::Add:
1042    case Instruction::Sub:
1043      return ConstantExpr::getXor(C1, C2);
1044    case Instruction::Shl:
1045    case Instruction::LShr:
1046    case Instruction::AShr:
1047      // We can assume that C2 == 0.  If it were one the result would be
1048      // undefined because the shift value is as large as the bitwidth.
1049      return C1;
1050    case Instruction::SDiv:
1051    case Instruction::UDiv:
1052      // We can assume that C2 == 1.  If it were zero the result would be
1053      // undefined through division by zero.
1054      return C1;
1055    case Instruction::URem:
1056    case Instruction::SRem:
1057      // We can assume that C2 == 1.  If it were zero the result would be
1058      // undefined through division by zero.
1059      return ConstantInt::getFalse(C1->getContext());
1060    default:
1061      break;
1062    }
1063  }
1064
1065  // We don't know how to fold this.
1066  return nullptr;
1067}
1068
1069static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1070                                                      const GlobalValue *GV2) {
1071  auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1072    if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
1073      return true;
1074    if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1075      Type *Ty = GVar->getValueType();
1076      // A global with opaque type might end up being zero sized.
1077      if (!Ty->isSized())
1078        return true;
1079      // A global with an empty type might lie at the address of any other
1080      // global.
1081      if (Ty->isEmptyTy())
1082        return true;
1083    }
1084    return false;
1085  };
1086  // Don't try to decide equality of aliases.
1087  if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1088    if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1089      return ICmpInst::ICMP_NE;
1090  return ICmpInst::BAD_ICMP_PREDICATE;
1091}
1092
1093/// This function determines if there is anything we can decide about the two
1094/// constants provided. This doesn't need to handle simple things like integer
1095/// comparisons, but should instead handle ConstantExprs and GlobalValues.
1096/// If we can determine that the two constants have a particular relation to
1097/// each other, we should return the corresponding ICmp predicate, otherwise
1098/// return ICmpInst::BAD_ICMP_PREDICATE.
1099static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) {
1100  assert(V1->getType() == V2->getType() &&
1101         "Cannot compare different types of values!");
1102  if (V1 == V2) return ICmpInst::ICMP_EQ;
1103
1104  // The following folds only apply to pointers.
1105  if (!V1->getType()->isPointerTy())
1106    return ICmpInst::BAD_ICMP_PREDICATE;
1107
1108  // To simplify this code we canonicalize the relation so that the first
1109  // operand is always the most "complex" of the two.  We consider simple
1110  // constants (like ConstantPointerNull) to be the simplest, followed by
1111  // BlockAddress, GlobalValues, and ConstantExpr's (the most complex).
1112  auto GetComplexity = [](Constant *V) {
1113    if (isa<ConstantExpr>(V))
1114      return 3;
1115    if (isa<GlobalValue>(V))
1116      return 2;
1117    if (isa<BlockAddress>(V))
1118      return 1;
1119    return 0;
1120  };
1121  if (GetComplexity(V1) < GetComplexity(V2)) {
1122    ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1);
1123    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1124      return ICmpInst::getSwappedPredicate(SwappedRelation);
1125    return ICmpInst::BAD_ICMP_PREDICATE;
1126  }
1127
1128  if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1129    // Now we know that the RHS is a BlockAddress or simple constant.
1130    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1131      // Block address in another function can't equal this one, but block
1132      // addresses in the current function might be the same if blocks are
1133      // empty.
1134      if (BA2->getFunction() != BA->getFunction())
1135        return ICmpInst::ICMP_NE;
1136    } else if (isa<ConstantPointerNull>(V2)) {
1137      return ICmpInst::ICMP_NE;
1138    }
1139  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1140    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1141    // constant.
1142    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1143      return areGlobalsPotentiallyEqual(GV, GV2);
1144    } else if (isa<BlockAddress>(V2)) {
1145      return ICmpInst::ICMP_NE; // Globals never equal labels.
1146    } else if (isa<ConstantPointerNull>(V2)) {
1147      // GlobalVals can never be null unless they have external weak linkage.
1148      // We don't try to evaluate aliases here.
1149      // NOTE: We should not be doing this constant folding if null pointer
1150      // is considered valid for the function. But currently there is no way to
1151      // query it from the Constant type.
1152      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1153          !NullPointerIsDefined(nullptr /* F */,
1154                                GV->getType()->getAddressSpace()))
1155        return ICmpInst::ICMP_UGT;
1156    }
1157  } else {
1158    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1159    // constantexpr, a global, block address, or a simple constant.
1160    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1161    Constant *CE1Op0 = CE1->getOperand(0);
1162
1163    switch (CE1->getOpcode()) {
1164    case Instruction::GetElementPtr: {
1165      GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1166      // Ok, since this is a getelementptr, we know that the constant has a
1167      // pointer type.  Check the various cases.
1168      if (isa<ConstantPointerNull>(V2)) {
1169        // If we are comparing a GEP to a null pointer, check to see if the base
1170        // of the GEP equals the null pointer.
1171        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1172          // If its not weak linkage, the GVal must have a non-zero address
1173          // so the result is greater-than
1174          if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1175            return ICmpInst::ICMP_UGT;
1176        }
1177      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1178        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1179          if (GV != GV2) {
1180            if (CE1GEP->hasAllZeroIndices())
1181              return areGlobalsPotentiallyEqual(GV, GV2);
1182            return ICmpInst::BAD_ICMP_PREDICATE;
1183          }
1184        }
1185      } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
1186        // By far the most common case to handle is when the base pointers are
1187        // obviously to the same global.
1188        const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
1189        if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1190          // Don't know relative ordering, but check for inequality.
1191          if (CE1Op0 != CE2Op0) {
1192            if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1193              return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1194                                                cast<GlobalValue>(CE2Op0));
1195            return ICmpInst::BAD_ICMP_PREDICATE;
1196          }
1197        }
1198      }
1199      break;
1200    }
1201    default:
1202      break;
1203    }
1204  }
1205
1206  return ICmpInst::BAD_ICMP_PREDICATE;
1207}
1208
1209Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
1210                                               Constant *C1, Constant *C2) {
1211  Type *ResultTy;
1212  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1213    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1214                               VT->getElementCount());
1215  else
1216    ResultTy = Type::getInt1Ty(C1->getContext());
1217
1218  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1219  if (Predicate == FCmpInst::FCMP_FALSE)
1220    return Constant::getNullValue(ResultTy);
1221
1222  if (Predicate == FCmpInst::FCMP_TRUE)
1223    return Constant::getAllOnesValue(ResultTy);
1224
1225  // Handle some degenerate cases first
1226  if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1227    return PoisonValue::get(ResultTy);
1228
1229  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1230    bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1231    // For EQ and NE, we can always pick a value for the undef to make the
1232    // predicate pass or fail, so we can return undef.
1233    // Also, if both operands are undef, we can return undef for int comparison.
1234    if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1235      return UndefValue::get(ResultTy);
1236
1237    // Otherwise, for integer compare, pick the same value as the non-undef
1238    // operand, and fold it to true or false.
1239    if (isIntegerPredicate)
1240      return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1241
1242    // Choosing NaN for the undef will always make unordered comparison succeed
1243    // and ordered comparison fails.
1244    return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1245  }
1246
1247  if (C2->isNullValue()) {
1248    // The caller is expected to commute the operands if the constant expression
1249    // is C2.
1250    // C1 >= 0 --> true
1251    if (Predicate == ICmpInst::ICMP_UGE)
1252      return Constant::getAllOnesValue(ResultTy);
1253    // C1 < 0 --> false
1254    if (Predicate == ICmpInst::ICMP_ULT)
1255      return Constant::getNullValue(ResultTy);
1256  }
1257
1258  // If the comparison is a comparison between two i1's, simplify it.
1259  if (C1->getType()->isIntegerTy(1)) {
1260    switch (Predicate) {
1261    case ICmpInst::ICMP_EQ:
1262      if (isa<ConstantInt>(C2))
1263        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1264      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1265    case ICmpInst::ICMP_NE:
1266      return ConstantExpr::getXor(C1, C2);
1267    default:
1268      break;
1269    }
1270  }
1271
1272  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1273    const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1274    const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1275    return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1276  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1277    const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1278    const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1279    return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1280  } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1281
1282    // Fast path for splatted constants.
1283    if (Constant *C1Splat = C1->getSplatValue())
1284      if (Constant *C2Splat = C2->getSplatValue())
1285        return ConstantVector::getSplat(
1286            C1VTy->getElementCount(),
1287            ConstantExpr::getCompare(Predicate, C1Splat, C2Splat));
1288
1289    // Do not iterate on scalable vector. The number of elements is unknown at
1290    // compile-time.
1291    if (isa<ScalableVectorType>(C1VTy))
1292      return nullptr;
1293
1294    // If we can constant fold the comparison of each element, constant fold
1295    // the whole vector comparison.
1296    SmallVector<Constant*, 4> ResElts;
1297    Type *Ty = IntegerType::get(C1->getContext(), 32);
1298    // Compare the elements, producing an i1 result or constant expr.
1299    for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1300         I != E; ++I) {
1301      Constant *C1E =
1302          ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1303      Constant *C2E =
1304          ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1305
1306      ResElts.push_back(ConstantExpr::getCompare(Predicate, C1E, C2E));
1307    }
1308
1309    return ConstantVector::get(ResElts);
1310  }
1311
1312  if (C1->getType()->isFPOrFPVectorTy()) {
1313    if (C1 == C2) {
1314      // We know that C1 == C2 || isUnordered(C1, C2).
1315      if (Predicate == FCmpInst::FCMP_ONE)
1316        return ConstantInt::getFalse(ResultTy);
1317      else if (Predicate == FCmpInst::FCMP_UEQ)
1318        return ConstantInt::getTrue(ResultTy);
1319    }
1320  } else {
1321    // Evaluate the relation between the two constants, per the predicate.
1322    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1323    switch (evaluateICmpRelation(C1, C2)) {
1324    default: llvm_unreachable("Unknown relational!");
1325    case ICmpInst::BAD_ICMP_PREDICATE:
1326      break;  // Couldn't determine anything about these constants.
1327    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1328      // If we know the constants are equal, we can decide the result of this
1329      // computation precisely.
1330      Result = ICmpInst::isTrueWhenEqual(Predicate);
1331      break;
1332    case ICmpInst::ICMP_ULT:
1333      switch (Predicate) {
1334      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1335        Result = 1; break;
1336      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1337        Result = 0; break;
1338      default:
1339        break;
1340      }
1341      break;
1342    case ICmpInst::ICMP_SLT:
1343      switch (Predicate) {
1344      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1345        Result = 1; break;
1346      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1347        Result = 0; break;
1348      default:
1349        break;
1350      }
1351      break;
1352    case ICmpInst::ICMP_UGT:
1353      switch (Predicate) {
1354      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1355        Result = 1; break;
1356      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1357        Result = 0; break;
1358      default:
1359        break;
1360      }
1361      break;
1362    case ICmpInst::ICMP_SGT:
1363      switch (Predicate) {
1364      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1365        Result = 1; break;
1366      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1367        Result = 0; break;
1368      default:
1369        break;
1370      }
1371      break;
1372    case ICmpInst::ICMP_ULE:
1373      if (Predicate == ICmpInst::ICMP_UGT)
1374        Result = 0;
1375      if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1376        Result = 1;
1377      break;
1378    case ICmpInst::ICMP_SLE:
1379      if (Predicate == ICmpInst::ICMP_SGT)
1380        Result = 0;
1381      if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1382        Result = 1;
1383      break;
1384    case ICmpInst::ICMP_UGE:
1385      if (Predicate == ICmpInst::ICMP_ULT)
1386        Result = 0;
1387      if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1388        Result = 1;
1389      break;
1390    case ICmpInst::ICMP_SGE:
1391      if (Predicate == ICmpInst::ICMP_SLT)
1392        Result = 0;
1393      if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1394        Result = 1;
1395      break;
1396    case ICmpInst::ICMP_NE:
1397      if (Predicate == ICmpInst::ICMP_EQ)
1398        Result = 0;
1399      if (Predicate == ICmpInst::ICMP_NE)
1400        Result = 1;
1401      break;
1402    }
1403
1404    // If we evaluated the result, return it now.
1405    if (Result != -1)
1406      return ConstantInt::get(ResultTy, Result);
1407
1408    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1409        (C1->isNullValue() && !C2->isNullValue())) {
1410      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1411      // other way if possible.
1412      // Also, if C1 is null and C2 isn't, flip them around.
1413      Predicate = ICmpInst::getSwappedPredicate(Predicate);
1414      return ConstantExpr::getICmp(Predicate, C2, C1);
1415    }
1416  }
1417  return nullptr;
1418}
1419
1420/// Test whether the given sequence of *normalized* indices is "inbounds".
1421template<typename IndexTy>
1422static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1423  // No indices means nothing that could be out of bounds.
1424  if (Idxs.empty()) return true;
1425
1426  // If the first index is zero, it's in bounds.
1427  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1428
1429  // If the first index is one and all the rest are zero, it's in bounds,
1430  // by the one-past-the-end rule.
1431  if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
1432    if (!CI->isOne())
1433      return false;
1434  } else {
1435    auto *CV = cast<ConstantDataVector>(Idxs[0]);
1436    CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
1437    if (!CI || !CI->isOne())
1438      return false;
1439  }
1440
1441  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1442    if (!cast<Constant>(Idxs[i])->isNullValue())
1443      return false;
1444  return true;
1445}
1446
1447/// Test whether a given ConstantInt is in-range for a SequentialType.
1448static bool isIndexInRangeOfArrayType(uint64_t NumElements,
1449                                      const ConstantInt *CI) {
1450  // We cannot bounds check the index if it doesn't fit in an int64_t.
1451  if (CI->getValue().getSignificantBits() > 64)
1452    return false;
1453
1454  // A negative index or an index past the end of our sequential type is
1455  // considered out-of-range.
1456  int64_t IndexVal = CI->getSExtValue();
1457  if (IndexVal < 0 || (IndexVal != 0 && (uint64_t)IndexVal >= NumElements))
1458    return false;
1459
1460  // Otherwise, it is in-range.
1461  return true;
1462}
1463
1464// Combine Indices - If the source pointer to this getelementptr instruction
1465// is a getelementptr instruction, combine the indices of the two
1466// getelementptr instructions into a single instruction.
1467static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds,
1468                              ArrayRef<Value *> Idxs) {
1469  if (PointeeTy != GEP->getResultElementType())
1470    return nullptr;
1471
1472  Constant *Idx0 = cast<Constant>(Idxs[0]);
1473  if (Idx0->isNullValue()) {
1474    // Handle the simple case of a zero index.
1475    SmallVector<Value*, 16> NewIndices;
1476    NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
1477    NewIndices.append(GEP->idx_begin(), GEP->idx_end());
1478    NewIndices.append(Idxs.begin() + 1, Idxs.end());
1479    return ConstantExpr::getGetElementPtr(
1480        GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
1481        NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex());
1482  }
1483
1484  gep_type_iterator LastI = gep_type_end(GEP);
1485  for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
1486       I != E; ++I)
1487    LastI = I;
1488
1489  // We can't combine GEPs if the last index is a struct type.
1490  if (!LastI.isSequential())
1491    return nullptr;
1492  // We could perform the transform with non-constant index, but prefer leaving
1493  // it as GEP of GEP rather than GEP of add for now.
1494  ConstantInt *CI = dyn_cast<ConstantInt>(Idx0);
1495  if (!CI)
1496    return nullptr;
1497
1498  // TODO: This code may be extended to handle vectors as well.
1499  auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1));
1500  Type *LastIdxTy = LastIdx->getType();
1501  if (LastIdxTy->isVectorTy())
1502    return nullptr;
1503
1504  SmallVector<Value*, 16> NewIndices;
1505  NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
1506  NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1);
1507
1508  // Add the last index of the source with the first index of the new GEP.
1509  // Make sure to handle the case when they are actually different types.
1510  if (LastIdxTy != Idx0->getType()) {
1511    unsigned CommonExtendedWidth =
1512        std::max(LastIdxTy->getIntegerBitWidth(),
1513                 Idx0->getType()->getIntegerBitWidth());
1514    CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
1515
1516    Type *CommonTy =
1517        Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth);
1518    if (Idx0->getType() != CommonTy)
1519      Idx0 = ConstantFoldCastInstruction(Instruction::SExt, Idx0, CommonTy);
1520    if (LastIdx->getType() != CommonTy)
1521      LastIdx =
1522          ConstantFoldCastInstruction(Instruction::SExt, LastIdx, CommonTy);
1523    if (!Idx0 || !LastIdx)
1524      return nullptr;
1525  }
1526
1527  NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx));
1528  NewIndices.append(Idxs.begin() + 1, Idxs.end());
1529
1530  // The combined GEP normally inherits its index inrange attribute from
1531  // the inner GEP, but if the inner GEP's last index was adjusted by the
1532  // outer GEP, any inbounds attribute on that index is invalidated.
1533  std::optional<unsigned> IRIndex = GEP->getInRangeIndex();
1534  if (IRIndex && *IRIndex == GEP->getNumIndices() - 1)
1535    IRIndex = std::nullopt;
1536
1537  return ConstantExpr::getGetElementPtr(
1538      GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
1539      NewIndices, InBounds && GEP->isInBounds(), IRIndex);
1540}
1541
1542Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
1543                                          bool InBounds,
1544                                          std::optional<unsigned> InRangeIndex,
1545                                          ArrayRef<Value *> Idxs) {
1546  if (Idxs.empty()) return C;
1547
1548  Type *GEPTy = GetElementPtrInst::getGEPReturnType(
1549      C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
1550
1551  if (isa<PoisonValue>(C))
1552    return PoisonValue::get(GEPTy);
1553
1554  if (isa<UndefValue>(C))
1555    // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
1556    return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
1557
1558  auto IsNoOp = [&]() {
1559    // Avoid losing inrange information.
1560    if (InRangeIndex)
1561      return false;
1562
1563    return all_of(Idxs, [](Value *Idx) {
1564      Constant *IdxC = cast<Constant>(Idx);
1565      return IdxC->isNullValue() || isa<UndefValue>(IdxC);
1566    });
1567  };
1568  if (IsNoOp())
1569    return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
1570               ? ConstantVector::getSplat(
1571                     cast<VectorType>(GEPTy)->getElementCount(), C)
1572               : C;
1573
1574  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1575    if (auto *GEP = dyn_cast<GEPOperator>(CE))
1576      if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs))
1577        return C;
1578
1579  // Check to see if any array indices are not within the corresponding
1580  // notional array or vector bounds. If so, try to determine if they can be
1581  // factored out into preceding dimensions.
1582  SmallVector<Constant *, 8> NewIdxs;
1583  Type *Ty = PointeeTy;
1584  Type *Prev = C->getType();
1585  auto GEPIter = gep_type_begin(PointeeTy, Idxs);
1586  bool Unknown =
1587      !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
1588  for (unsigned i = 1, e = Idxs.size(); i != e;
1589       Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
1590    if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
1591      // We don't know if it's in range or not.
1592      Unknown = true;
1593      continue;
1594    }
1595    if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
1596      // Skip if the type of the previous index is not supported.
1597      continue;
1598    if (InRangeIndex && i == *InRangeIndex + 1) {
1599      // If an index is marked inrange, we cannot apply this canonicalization to
1600      // the following index, as that will cause the inrange index to point to
1601      // the wrong element.
1602      continue;
1603    }
1604    if (isa<StructType>(Ty)) {
1605      // The verify makes sure that GEPs into a struct are in range.
1606      continue;
1607    }
1608    if (isa<VectorType>(Ty)) {
1609      // There can be awkward padding in after a non-power of two vector.
1610      Unknown = true;
1611      continue;
1612    }
1613    auto *STy = cast<ArrayType>(Ty);
1614    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
1615      if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
1616        // It's in range, skip to the next index.
1617        continue;
1618      if (CI->isNegative()) {
1619        // It's out of range and negative, don't try to factor it.
1620        Unknown = true;
1621        continue;
1622      }
1623    } else {
1624      auto *CV = cast<ConstantDataVector>(Idxs[i]);
1625      bool InRange = true;
1626      for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
1627        auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
1628        InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
1629        if (CI->isNegative()) {
1630          Unknown = true;
1631          break;
1632        }
1633      }
1634      if (InRange || Unknown)
1635        // It's in range, skip to the next index.
1636        // It's out of range and negative, don't try to factor it.
1637        continue;
1638    }
1639    if (isa<StructType>(Prev)) {
1640      // It's out of range, but the prior dimension is a struct
1641      // so we can't do anything about it.
1642      Unknown = true;
1643      continue;
1644    }
1645
1646    // Determine the number of elements in our sequential type.
1647    uint64_t NumElements = STy->getArrayNumElements();
1648    if (!NumElements) {
1649      Unknown = true;
1650      continue;
1651    }
1652
1653    // It's out of range, but we can factor it into the prior
1654    // dimension.
1655    NewIdxs.resize(Idxs.size());
1656
1657    // Expand the current index or the previous index to a vector from a scalar
1658    // if necessary.
1659    Constant *CurrIdx = cast<Constant>(Idxs[i]);
1660    auto *PrevIdx =
1661        NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
1662    bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
1663    bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
1664    bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
1665
1666    if (!IsCurrIdxVector && IsPrevIdxVector)
1667      CurrIdx = ConstantDataVector::getSplat(
1668          cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
1669
1670    if (!IsPrevIdxVector && IsCurrIdxVector)
1671      PrevIdx = ConstantDataVector::getSplat(
1672          cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
1673
1674    Constant *Factor =
1675        ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
1676    if (UseVector)
1677      Factor = ConstantDataVector::getSplat(
1678          IsPrevIdxVector
1679              ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
1680              : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
1681          Factor);
1682
1683    NewIdxs[i] =
1684        ConstantFoldBinaryInstruction(Instruction::SRem, CurrIdx, Factor);
1685
1686    Constant *Div =
1687        ConstantFoldBinaryInstruction(Instruction::SDiv, CurrIdx, Factor);
1688
1689    // We're working on either ConstantInt or vectors of ConstantInt,
1690    // so these should always fold.
1691    assert(NewIdxs[i] != nullptr && Div != nullptr && "Should have folded");
1692
1693    unsigned CommonExtendedWidth =
1694        std::max(PrevIdx->getType()->getScalarSizeInBits(),
1695                 Div->getType()->getScalarSizeInBits());
1696    CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
1697
1698    // Before adding, extend both operands to i64 to avoid
1699    // overflow trouble.
1700    Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
1701    if (UseVector)
1702      ExtendedTy = FixedVectorType::get(
1703          ExtendedTy,
1704          IsPrevIdxVector
1705              ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
1706              : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
1707
1708    if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
1709      PrevIdx =
1710          ConstantFoldCastInstruction(Instruction::SExt, PrevIdx, ExtendedTy);
1711
1712    if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
1713      Div = ConstantFoldCastInstruction(Instruction::SExt, Div, ExtendedTy);
1714
1715    assert(PrevIdx && Div && "Should have folded");
1716    NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
1717  }
1718
1719  // If we did any factoring, start over with the adjusted indices.
1720  if (!NewIdxs.empty()) {
1721    for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1722      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
1723    return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
1724                                          InRangeIndex);
1725  }
1726
1727  // If all indices are known integers and normalized, we can do a simple
1728  // check for the "inbounds" property.
1729  if (!Unknown && !InBounds)
1730    if (auto *GV = dyn_cast<GlobalVariable>(C))
1731      if (!GV->hasExternalWeakLinkage() && GV->getValueType() == PointeeTy &&
1732          isInBoundsIndices(Idxs))
1733        return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
1734                                              /*InBounds=*/true, InRangeIndex);
1735
1736  return nullptr;
1737}
1738