1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// @file
10/// This file contains the declarations for the subclasses of Constant,
11/// which represent the different flavors of constant values that live in LLVM.
12/// Note that Constants are immutable (once created they never change) and are
13/// fully shared by structural equivalence.  This means that two structurally
14/// equivalent constants will always have the same address.  Constants are
15/// created on demand as needed and never deleted: thus clients don't have to
16/// worry about the lifetime of the objects.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_CONSTANTS_H
21#define LLVM_IR_CONSTANTS_H
22
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/OperandTraits.h"
32#include "llvm/IR/User.h"
33#include "llvm/IR/Value.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ErrorHandling.h"
37#include <cassert>
38#include <cstddef>
39#include <cstdint>
40#include <optional>
41
42namespace llvm {
43
44template <class ConstantClass> struct ConstantAggrKeyType;
45
46/// Base class for constants with no operands.
47///
48/// These constants have no operands; they represent their data directly.
49/// Since they can be in use by unrelated modules (and are never based on
50/// GlobalValues), it never makes sense to RAUW them.
51class ConstantData : public Constant {
52  friend class Constant;
53
54  Value *handleOperandChangeImpl(Value *From, Value *To) {
55    llvm_unreachable("Constant data does not have operands!");
56  }
57
58protected:
59  explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
60
61  void *operator new(size_t S) { return User::operator new(S, 0); }
62
63public:
64  void operator delete(void *Ptr) { User::operator delete(Ptr); }
65
66  ConstantData(const ConstantData &) = delete;
67
68  /// Methods to support type inquiry through isa, cast, and dyn_cast.
69  static bool classof(const Value *V) {
70    return V->getValueID() >= ConstantDataFirstVal &&
71           V->getValueID() <= ConstantDataLastVal;
72  }
73};
74
75//===----------------------------------------------------------------------===//
76/// This is the shared class of boolean and integer constants. This class
77/// represents both boolean and integral constants.
78/// Class for constant integers.
79class ConstantInt final : public ConstantData {
80  friend class Constant;
81
82  APInt Val;
83
84  ConstantInt(IntegerType *Ty, const APInt &V);
85
86  void destroyConstantImpl();
87
88public:
89  ConstantInt(const ConstantInt &) = delete;
90
91  static ConstantInt *getTrue(LLVMContext &Context);
92  static ConstantInt *getFalse(LLVMContext &Context);
93  static ConstantInt *getBool(LLVMContext &Context, bool V);
94  static Constant *getTrue(Type *Ty);
95  static Constant *getFalse(Type *Ty);
96  static Constant *getBool(Type *Ty, bool V);
97
98  /// If Ty is a vector type, return a Constant with a splat of the given
99  /// value. Otherwise return a ConstantInt for the given value.
100  static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
101
102  /// Return a ConstantInt with the specified integer value for the specified
103  /// type. If the type is wider than 64 bits, the value will be zero-extended
104  /// to fit the type, unless IsSigned is true, in which case the value will
105  /// be interpreted as a 64-bit signed integer and sign-extended to fit
106  /// the type.
107  /// Get a ConstantInt for a specific value.
108  static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
109
110  /// Return a ConstantInt with the specified value for the specified type. The
111  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
112  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
113  /// signed value for the type Ty.
114  /// Get a ConstantInt for a specific signed value.
115  static ConstantInt *getSigned(IntegerType *Ty, int64_t V) {
116    return get(Ty, V, true);
117  }
118  static Constant *getSigned(Type *Ty, int64_t V) {
119    return get(Ty, V, true);
120  }
121
122  /// Return a ConstantInt with the specified value and an implied Type. The
123  /// type is the integer type that corresponds to the bit width of the value.
124  static ConstantInt *get(LLVMContext &Context, const APInt &V);
125
126  /// Return a ConstantInt constructed from the string strStart with the given
127  /// radix.
128  static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
129
130  /// If Ty is a vector type, return a Constant with a splat of the given
131  /// value. Otherwise return a ConstantInt for the given value.
132  static Constant *get(Type *Ty, const APInt &V);
133
134  /// Return the constant as an APInt value reference. This allows clients to
135  /// obtain a full-precision copy of the value.
136  /// Return the constant's value.
137  inline const APInt &getValue() const { return Val; }
138
139  /// getBitWidth - Return the bitwidth of this constant.
140  unsigned getBitWidth() const { return Val.getBitWidth(); }
141
142  /// Return the constant as a 64-bit unsigned integer value after it
143  /// has been zero extended as appropriate for the type of this constant. Note
144  /// that this method can assert if the value does not fit in 64 bits.
145  /// Return the zero extended value.
146  inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
147
148  /// Return the constant as a 64-bit integer value after it has been sign
149  /// extended as appropriate for the type of this constant. Note that
150  /// this method can assert if the value does not fit in 64 bits.
151  /// Return the sign extended value.
152  inline int64_t getSExtValue() const { return Val.getSExtValue(); }
153
154  /// Return the constant as an llvm::MaybeAlign.
155  /// Note that this method can assert if the value does not fit in 64 bits or
156  /// is not a power of two.
157  inline MaybeAlign getMaybeAlignValue() const {
158    return MaybeAlign(getZExtValue());
159  }
160
161  /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
162  /// Note that this method can assert if the value does not fit in 64 bits or
163  /// is not a power of two.
164  inline Align getAlignValue() const {
165    return getMaybeAlignValue().valueOrOne();
166  }
167
168  /// A helper method that can be used to determine if the constant contained
169  /// within is equal to a constant.  This only works for very small values,
170  /// because this is all that can be represented with all types.
171  /// Determine if this constant's value is same as an unsigned char.
172  bool equalsInt(uint64_t V) const { return Val == V; }
173
174  /// Variant of the getType() method to always return an IntegerType, which
175  /// reduces the amount of casting needed in parts of the compiler.
176  inline IntegerType *getIntegerType() const {
177    return cast<IntegerType>(Value::getType());
178  }
179
180  /// This static method returns true if the type Ty is big enough to
181  /// represent the value V. This can be used to avoid having the get method
182  /// assert when V is larger than Ty can represent. Note that there are two
183  /// versions of this method, one for unsigned and one for signed integers.
184  /// Although ConstantInt canonicalizes everything to an unsigned integer,
185  /// the signed version avoids callers having to convert a signed quantity
186  /// to the appropriate unsigned type before calling the method.
187  /// @returns true if V is a valid value for type Ty
188  /// Determine if the value is in range for the given type.
189  static bool isValueValidForType(Type *Ty, uint64_t V);
190  static bool isValueValidForType(Type *Ty, int64_t V);
191
192  bool isNegative() const { return Val.isNegative(); }
193
194  /// This is just a convenience method to make client code smaller for a
195  /// common code. It also correctly performs the comparison without the
196  /// potential for an assertion from getZExtValue().
197  bool isZero() const { return Val.isZero(); }
198
199  /// This is just a convenience method to make client code smaller for a
200  /// common case. It also correctly performs the comparison without the
201  /// potential for an assertion from getZExtValue().
202  /// Determine if the value is one.
203  bool isOne() const { return Val.isOne(); }
204
205  /// This function will return true iff every bit in this constant is set
206  /// to true.
207  /// @returns true iff this constant's bits are all set to true.
208  /// Determine if the value is all ones.
209  bool isMinusOne() const { return Val.isAllOnes(); }
210
211  /// This function will return true iff this constant represents the largest
212  /// value that may be represented by the constant's type.
213  /// @returns true iff this is the largest value that may be represented
214  /// by this type.
215  /// Determine if the value is maximal.
216  bool isMaxValue(bool IsSigned) const {
217    if (IsSigned)
218      return Val.isMaxSignedValue();
219    else
220      return Val.isMaxValue();
221  }
222
223  /// This function will return true iff this constant represents the smallest
224  /// value that may be represented by this constant's type.
225  /// @returns true if this is the smallest value that may be represented by
226  /// this type.
227  /// Determine if the value is minimal.
228  bool isMinValue(bool IsSigned) const {
229    if (IsSigned)
230      return Val.isMinSignedValue();
231    else
232      return Val.isMinValue();
233  }
234
235  /// This function will return true iff this constant represents a value with
236  /// active bits bigger than 64 bits or a value greater than the given uint64_t
237  /// value.
238  /// @returns true iff this constant is greater or equal to the given number.
239  /// Determine if the value is greater or equal to the given number.
240  bool uge(uint64_t Num) const { return Val.uge(Num); }
241
242  /// getLimitedValue - If the value is smaller than the specified limit,
243  /// return it, otherwise return the limit value.  This causes the value
244  /// to saturate to the limit.
245  /// @returns the min of the value of the constant and the specified value
246  /// Get the constant's value with a saturation limit
247  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
248    return Val.getLimitedValue(Limit);
249  }
250
251  /// Methods to support type inquiry through isa, cast, and dyn_cast.
252  static bool classof(const Value *V) {
253    return V->getValueID() == ConstantIntVal;
254  }
255};
256
257//===----------------------------------------------------------------------===//
258/// ConstantFP - Floating Point Values [float, double]
259///
260class ConstantFP final : public ConstantData {
261  friend class Constant;
262
263  APFloat Val;
264
265  ConstantFP(Type *Ty, const APFloat &V);
266
267  void destroyConstantImpl();
268
269public:
270  ConstantFP(const ConstantFP &) = delete;
271
272  /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
273  /// for the specified value in the specified type. This should only be used
274  /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
275  /// host double and as the target format.
276  static Constant *get(Type *Ty, double V);
277
278  /// If Ty is a vector type, return a Constant with a splat of the given
279  /// value. Otherwise return a ConstantFP for the given value.
280  static Constant *get(Type *Ty, const APFloat &V);
281
282  static Constant *get(Type *Ty, StringRef Str);
283  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
284  static Constant *getNaN(Type *Ty, bool Negative = false,
285                          uint64_t Payload = 0);
286  static Constant *getQNaN(Type *Ty, bool Negative = false,
287                           APInt *Payload = nullptr);
288  static Constant *getSNaN(Type *Ty, bool Negative = false,
289                           APInt *Payload = nullptr);
290  static Constant *getZero(Type *Ty, bool Negative = false);
291  static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
292  static Constant *getInfinity(Type *Ty, bool Negative = false);
293
294  /// Return true if Ty is big enough to represent V.
295  static bool isValueValidForType(Type *Ty, const APFloat &V);
296  inline const APFloat &getValueAPF() const { return Val; }
297  inline const APFloat &getValue() const { return Val; }
298
299  /// Return true if the value is positive or negative zero.
300  bool isZero() const { return Val.isZero(); }
301
302  /// Return true if the sign bit is set.
303  bool isNegative() const { return Val.isNegative(); }
304
305  /// Return true if the value is infinity
306  bool isInfinity() const { return Val.isInfinity(); }
307
308  /// Return true if the value is a NaN.
309  bool isNaN() const { return Val.isNaN(); }
310
311  /// We don't rely on operator== working on double values, as it returns true
312  /// for things that are clearly not equal, like -0.0 and 0.0.
313  /// As such, this method can be used to do an exact bit-for-bit comparison of
314  /// two floating point values.  The version with a double operand is retained
315  /// because it's so convenient to write isExactlyValue(2.0), but please use
316  /// it only for simple constants.
317  bool isExactlyValue(const APFloat &V) const;
318
319  bool isExactlyValue(double V) const {
320    bool ignored;
321    APFloat FV(V);
322    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
323    return isExactlyValue(FV);
324  }
325
326  /// Methods for support type inquiry through isa, cast, and dyn_cast:
327  static bool classof(const Value *V) {
328    return V->getValueID() == ConstantFPVal;
329  }
330};
331
332//===----------------------------------------------------------------------===//
333/// All zero aggregate value
334///
335class ConstantAggregateZero final : public ConstantData {
336  friend class Constant;
337
338  explicit ConstantAggregateZero(Type *Ty)
339      : ConstantData(Ty, ConstantAggregateZeroVal) {}
340
341  void destroyConstantImpl();
342
343public:
344  ConstantAggregateZero(const ConstantAggregateZero &) = delete;
345
346  static ConstantAggregateZero *get(Type *Ty);
347
348  /// If this CAZ has array or vector type, return a zero with the right element
349  /// type.
350  Constant *getSequentialElement() const;
351
352  /// If this CAZ has struct type, return a zero with the right element type for
353  /// the specified element.
354  Constant *getStructElement(unsigned Elt) const;
355
356  /// Return a zero of the right value for the specified GEP index if we can,
357  /// otherwise return null (e.g. if C is a ConstantExpr).
358  Constant *getElementValue(Constant *C) const;
359
360  /// Return a zero of the right value for the specified GEP index.
361  Constant *getElementValue(unsigned Idx) const;
362
363  /// Return the number of elements in the array, vector, or struct.
364  ElementCount getElementCount() const;
365
366  /// Methods for support type inquiry through isa, cast, and dyn_cast:
367  ///
368  static bool classof(const Value *V) {
369    return V->getValueID() == ConstantAggregateZeroVal;
370  }
371};
372
373/// Base class for aggregate constants (with operands).
374///
375/// These constants are aggregates of other constants, which are stored as
376/// operands.
377///
378/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
379/// ConstantVector.
380///
381/// \note Some subclasses of \a ConstantData are semantically aggregates --
382/// such as \a ConstantDataArray -- but are not subclasses of this because they
383/// use operands.
384class ConstantAggregate : public Constant {
385protected:
386  ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
387
388public:
389  /// Transparently provide more efficient getOperand methods.
390  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
391
392  /// Methods for support type inquiry through isa, cast, and dyn_cast:
393  static bool classof(const Value *V) {
394    return V->getValueID() >= ConstantAggregateFirstVal &&
395           V->getValueID() <= ConstantAggregateLastVal;
396  }
397};
398
399template <>
400struct OperandTraits<ConstantAggregate>
401    : public VariadicOperandTraits<ConstantAggregate> {};
402
403DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
404
405//===----------------------------------------------------------------------===//
406/// ConstantArray - Constant Array Declarations
407///
408class ConstantArray final : public ConstantAggregate {
409  friend struct ConstantAggrKeyType<ConstantArray>;
410  friend class Constant;
411
412  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
413
414  void destroyConstantImpl();
415  Value *handleOperandChangeImpl(Value *From, Value *To);
416
417public:
418  // ConstantArray accessors
419  static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
420
421private:
422  static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
423
424public:
425  /// Specialize the getType() method to always return an ArrayType,
426  /// which reduces the amount of casting needed in parts of the compiler.
427  inline ArrayType *getType() const {
428    return cast<ArrayType>(Value::getType());
429  }
430
431  /// Methods for support type inquiry through isa, cast, and dyn_cast:
432  static bool classof(const Value *V) {
433    return V->getValueID() == ConstantArrayVal;
434  }
435};
436
437//===----------------------------------------------------------------------===//
438// Constant Struct Declarations
439//
440class ConstantStruct final : public ConstantAggregate {
441  friend struct ConstantAggrKeyType<ConstantStruct>;
442  friend class Constant;
443
444  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
445
446  void destroyConstantImpl();
447  Value *handleOperandChangeImpl(Value *From, Value *To);
448
449public:
450  // ConstantStruct accessors
451  static Constant *get(StructType *T, ArrayRef<Constant *> V);
452
453  template <typename... Csts>
454  static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
455  get(StructType *T, Csts *...Vs) {
456    return get(T, ArrayRef<Constant *>({Vs...}));
457  }
458
459  /// Return an anonymous struct that has the specified elements.
460  /// If the struct is possibly empty, then you must specify a context.
461  static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
462    return get(getTypeForElements(V, Packed), V);
463  }
464  static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
465                           bool Packed = false) {
466    return get(getTypeForElements(Ctx, V, Packed), V);
467  }
468
469  /// Return an anonymous struct type to use for a constant with the specified
470  /// set of elements. The list must not be empty.
471  static StructType *getTypeForElements(ArrayRef<Constant *> V,
472                                        bool Packed = false);
473  /// This version of the method allows an empty list.
474  static StructType *getTypeForElements(LLVMContext &Ctx,
475                                        ArrayRef<Constant *> V,
476                                        bool Packed = false);
477
478  /// Specialization - reduce amount of casting.
479  inline StructType *getType() const {
480    return cast<StructType>(Value::getType());
481  }
482
483  /// Methods for support type inquiry through isa, cast, and dyn_cast:
484  static bool classof(const Value *V) {
485    return V->getValueID() == ConstantStructVal;
486  }
487};
488
489//===----------------------------------------------------------------------===//
490/// Constant Vector Declarations
491///
492class ConstantVector final : public ConstantAggregate {
493  friend struct ConstantAggrKeyType<ConstantVector>;
494  friend class Constant;
495
496  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
497
498  void destroyConstantImpl();
499  Value *handleOperandChangeImpl(Value *From, Value *To);
500
501public:
502  // ConstantVector accessors
503  static Constant *get(ArrayRef<Constant *> V);
504
505private:
506  static Constant *getImpl(ArrayRef<Constant *> V);
507
508public:
509  /// Return a ConstantVector with the specified constant in each element.
510  /// Note that this might not return an instance of ConstantVector
511  static Constant *getSplat(ElementCount EC, Constant *Elt);
512
513  /// Specialize the getType() method to always return a FixedVectorType,
514  /// which reduces the amount of casting needed in parts of the compiler.
515  inline FixedVectorType *getType() const {
516    return cast<FixedVectorType>(Value::getType());
517  }
518
519  /// If all elements of the vector constant have the same value, return that
520  /// value. Otherwise, return nullptr. Ignore undefined elements by setting
521  /// AllowUndefs to true.
522  Constant *getSplatValue(bool AllowUndefs = false) const;
523
524  /// Methods for support type inquiry through isa, cast, and dyn_cast:
525  static bool classof(const Value *V) {
526    return V->getValueID() == ConstantVectorVal;
527  }
528};
529
530//===----------------------------------------------------------------------===//
531/// A constant pointer value that points to null
532///
533class ConstantPointerNull final : public ConstantData {
534  friend class Constant;
535
536  explicit ConstantPointerNull(PointerType *T)
537      : ConstantData(T, Value::ConstantPointerNullVal) {}
538
539  void destroyConstantImpl();
540
541public:
542  ConstantPointerNull(const ConstantPointerNull &) = delete;
543
544  /// Static factory methods - Return objects of the specified value
545  static ConstantPointerNull *get(PointerType *T);
546
547  /// Specialize the getType() method to always return an PointerType,
548  /// which reduces the amount of casting needed in parts of the compiler.
549  inline PointerType *getType() const {
550    return cast<PointerType>(Value::getType());
551  }
552
553  /// Methods for support type inquiry through isa, cast, and dyn_cast:
554  static bool classof(const Value *V) {
555    return V->getValueID() == ConstantPointerNullVal;
556  }
557};
558
559//===----------------------------------------------------------------------===//
560/// ConstantDataSequential - A vector or array constant whose element type is a
561/// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
562/// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
563/// node has no operands because it stores all of the elements of the constant
564/// as densely packed data, instead of as Value*'s.
565///
566/// This is the common base class of ConstantDataArray and ConstantDataVector.
567///
568class ConstantDataSequential : public ConstantData {
569  friend class LLVMContextImpl;
570  friend class Constant;
571
572  /// A pointer to the bytes underlying this constant (which is owned by the
573  /// uniquing StringMap).
574  const char *DataElements;
575
576  /// This forms a link list of ConstantDataSequential nodes that have
577  /// the same value but different type.  For example, 0,0,0,1 could be a 4
578  /// element array of i8, or a 1-element array of i32.  They'll both end up in
579  /// the same StringMap bucket, linked up.
580  std::unique_ptr<ConstantDataSequential> Next;
581
582  void destroyConstantImpl();
583
584protected:
585  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
586      : ConstantData(ty, VT), DataElements(Data) {}
587
588  static Constant *getImpl(StringRef Bytes, Type *Ty);
589
590public:
591  ConstantDataSequential(const ConstantDataSequential &) = delete;
592
593  /// Return true if a ConstantDataSequential can be formed with a vector or
594  /// array of the specified element type.
595  /// ConstantDataArray only works with normal float and int types that are
596  /// stored densely in memory, not with things like i42 or x86_f80.
597  static bool isElementTypeCompatible(Type *Ty);
598
599  /// If this is a sequential container of integers (of any size), return the
600  /// specified element in the low bits of a uint64_t.
601  uint64_t getElementAsInteger(unsigned i) const;
602
603  /// If this is a sequential container of integers (of any size), return the
604  /// specified element as an APInt.
605  APInt getElementAsAPInt(unsigned i) const;
606
607  /// If this is a sequential container of floating point type, return the
608  /// specified element as an APFloat.
609  APFloat getElementAsAPFloat(unsigned i) const;
610
611  /// If this is an sequential container of floats, return the specified element
612  /// as a float.
613  float getElementAsFloat(unsigned i) const;
614
615  /// If this is an sequential container of doubles, return the specified
616  /// element as a double.
617  double getElementAsDouble(unsigned i) const;
618
619  /// Return a Constant for a specified index's element.
620  /// Note that this has to compute a new constant to return, so it isn't as
621  /// efficient as getElementAsInteger/Float/Double.
622  Constant *getElementAsConstant(unsigned i) const;
623
624  /// Return the element type of the array/vector.
625  Type *getElementType() const;
626
627  /// Return the number of elements in the array or vector.
628  unsigned getNumElements() const;
629
630  /// Return the size (in bytes) of each element in the array/vector.
631  /// The size of the elements is known to be a multiple of one byte.
632  uint64_t getElementByteSize() const;
633
634  /// This method returns true if this is an array of \p CharSize integers.
635  bool isString(unsigned CharSize = 8) const;
636
637  /// This method returns true if the array "isString", ends with a null byte,
638  /// and does not contains any other null bytes.
639  bool isCString() const;
640
641  /// If this array is isString(), then this method returns the array as a
642  /// StringRef. Otherwise, it asserts out.
643  StringRef getAsString() const {
644    assert(isString() && "Not a string");
645    return getRawDataValues();
646  }
647
648  /// If this array is isCString(), then this method returns the array (without
649  /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
650  StringRef getAsCString() const {
651    assert(isCString() && "Isn't a C string");
652    StringRef Str = getAsString();
653    return Str.substr(0, Str.size() - 1);
654  }
655
656  /// Return the raw, underlying, bytes of this data. Note that this is an
657  /// extremely tricky thing to work with, as it exposes the host endianness of
658  /// the data elements.
659  StringRef getRawDataValues() const;
660
661  /// Methods for support type inquiry through isa, cast, and dyn_cast:
662  static bool classof(const Value *V) {
663    return V->getValueID() == ConstantDataArrayVal ||
664           V->getValueID() == ConstantDataVectorVal;
665  }
666
667private:
668  const char *getElementPointer(unsigned Elt) const;
669};
670
671//===----------------------------------------------------------------------===//
672/// An array constant whose element type is a simple 1/2/4/8-byte integer or
673/// float/double, and whose elements are just simple data values
674/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
675/// stores all of the elements of the constant as densely packed data, instead
676/// of as Value*'s.
677class ConstantDataArray final : public ConstantDataSequential {
678  friend class ConstantDataSequential;
679
680  explicit ConstantDataArray(Type *ty, const char *Data)
681      : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
682
683public:
684  ConstantDataArray(const ConstantDataArray &) = delete;
685
686  /// get() constructor - Return a constant with array type with an element
687  /// count and element type matching the ArrayRef passed in.  Note that this
688  /// can return a ConstantAggregateZero object.
689  template <typename ElementTy>
690  static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
691    const char *Data = reinterpret_cast<const char *>(Elts.data());
692    return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
693                  Type::getScalarTy<ElementTy>(Context));
694  }
695
696  /// get() constructor - ArrayTy needs to be compatible with
697  /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
698  template <typename ArrayTy>
699  static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
700    return ConstantDataArray::get(Context, ArrayRef(Elts));
701  }
702
703  /// getRaw() constructor - Return a constant with array type with an element
704  /// count and element type matching the NumElements and ElementTy parameters
705  /// passed in. Note that this can return a ConstantAggregateZero object.
706  /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
707  /// the buffer containing the elements. Be careful to make sure Data uses the
708  /// right endianness, the buffer will be used as-is.
709  static Constant *getRaw(StringRef Data, uint64_t NumElements,
710                          Type *ElementTy) {
711    Type *Ty = ArrayType::get(ElementTy, NumElements);
712    return getImpl(Data, Ty);
713  }
714
715  /// getFP() constructors - Return a constant of array type with a float
716  /// element type taken from argument `ElementType', and count taken from
717  /// argument `Elts'.  The amount of bits of the contained type must match the
718  /// number of bits of the type contained in the passed in ArrayRef.
719  /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
720  /// that this can return a ConstantAggregateZero object.
721  static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
722  static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
723  static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
724
725  /// This method constructs a CDS and initializes it with a text string.
726  /// The default behavior (AddNull==true) causes a null terminator to
727  /// be placed at the end of the array (increasing the length of the string by
728  /// one more than the StringRef would normally indicate.  Pass AddNull=false
729  /// to disable this behavior.
730  static Constant *getString(LLVMContext &Context, StringRef Initializer,
731                             bool AddNull = true);
732
733  /// Specialize the getType() method to always return an ArrayType,
734  /// which reduces the amount of casting needed in parts of the compiler.
735  inline ArrayType *getType() const {
736    return cast<ArrayType>(Value::getType());
737  }
738
739  /// Methods for support type inquiry through isa, cast, and dyn_cast:
740  static bool classof(const Value *V) {
741    return V->getValueID() == ConstantDataArrayVal;
742  }
743};
744
745//===----------------------------------------------------------------------===//
746/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
747/// float/double, and whose elements are just simple data values
748/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
749/// stores all of the elements of the constant as densely packed data, instead
750/// of as Value*'s.
751class ConstantDataVector final : public ConstantDataSequential {
752  friend class ConstantDataSequential;
753
754  explicit ConstantDataVector(Type *ty, const char *Data)
755      : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
756        IsSplatSet(false) {}
757  // Cache whether or not the constant is a splat.
758  mutable bool IsSplatSet : 1;
759  mutable bool IsSplat : 1;
760  bool isSplatData() const;
761
762public:
763  ConstantDataVector(const ConstantDataVector &) = delete;
764
765  /// get() constructors - Return a constant with vector type with an element
766  /// count and element type matching the ArrayRef passed in.  Note that this
767  /// can return a ConstantAggregateZero object.
768  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
769  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
770  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
771  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
772  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
773  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
774
775  /// getRaw() constructor - Return a constant with vector type with an element
776  /// count and element type matching the NumElements and ElementTy parameters
777  /// passed in. Note that this can return a ConstantAggregateZero object.
778  /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
779  /// the buffer containing the elements. Be careful to make sure Data uses the
780  /// right endianness, the buffer will be used as-is.
781  static Constant *getRaw(StringRef Data, uint64_t NumElements,
782                          Type *ElementTy) {
783    Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
784    return getImpl(Data, Ty);
785  }
786
787  /// getFP() constructors - Return a constant of vector type with a float
788  /// element type taken from argument `ElementType', and count taken from
789  /// argument `Elts'.  The amount of bits of the contained type must match the
790  /// number of bits of the type contained in the passed in ArrayRef.
791  /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
792  /// that this can return a ConstantAggregateZero object.
793  static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
794  static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
795  static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
796
797  /// Return a ConstantVector with the specified constant in each element.
798  /// The specified constant has to be a of a compatible type (i8/i16/
799  /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
800  static Constant *getSplat(unsigned NumElts, Constant *Elt);
801
802  /// Returns true if this is a splat constant, meaning that all elements have
803  /// the same value.
804  bool isSplat() const;
805
806  /// If this is a splat constant, meaning that all of the elements have the
807  /// same value, return that value. Otherwise return NULL.
808  Constant *getSplatValue() const;
809
810  /// Specialize the getType() method to always return a FixedVectorType,
811  /// which reduces the amount of casting needed in parts of the compiler.
812  inline FixedVectorType *getType() const {
813    return cast<FixedVectorType>(Value::getType());
814  }
815
816  /// Methods for support type inquiry through isa, cast, and dyn_cast:
817  static bool classof(const Value *V) {
818    return V->getValueID() == ConstantDataVectorVal;
819  }
820};
821
822//===----------------------------------------------------------------------===//
823/// A constant token which is empty
824///
825class ConstantTokenNone final : public ConstantData {
826  friend class Constant;
827
828  explicit ConstantTokenNone(LLVMContext &Context)
829      : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
830
831  void destroyConstantImpl();
832
833public:
834  ConstantTokenNone(const ConstantTokenNone &) = delete;
835
836  /// Return the ConstantTokenNone.
837  static ConstantTokenNone *get(LLVMContext &Context);
838
839  /// Methods to support type inquiry through isa, cast, and dyn_cast.
840  static bool classof(const Value *V) {
841    return V->getValueID() == ConstantTokenNoneVal;
842  }
843};
844
845/// A constant target extension type default initializer
846class ConstantTargetNone final : public ConstantData {
847  friend class Constant;
848
849  explicit ConstantTargetNone(TargetExtType *T)
850      : ConstantData(T, Value::ConstantTargetNoneVal) {}
851
852  void destroyConstantImpl();
853
854public:
855  ConstantTargetNone(const ConstantTargetNone &) = delete;
856
857  /// Static factory methods - Return objects of the specified value.
858  static ConstantTargetNone *get(TargetExtType *T);
859
860  /// Specialize the getType() method to always return an TargetExtType,
861  /// which reduces the amount of casting needed in parts of the compiler.
862  inline TargetExtType *getType() const {
863    return cast<TargetExtType>(Value::getType());
864  }
865
866  /// Methods for support type inquiry through isa, cast, and dyn_cast.
867  static bool classof(const Value *V) {
868    return V->getValueID() == ConstantTargetNoneVal;
869  }
870};
871
872/// The address of a basic block.
873///
874class BlockAddress final : public Constant {
875  friend class Constant;
876
877  BlockAddress(Function *F, BasicBlock *BB);
878
879  void *operator new(size_t S) { return User::operator new(S, 2); }
880
881  void destroyConstantImpl();
882  Value *handleOperandChangeImpl(Value *From, Value *To);
883
884public:
885  void operator delete(void *Ptr) { User::operator delete(Ptr); }
886
887  /// Return a BlockAddress for the specified function and basic block.
888  static BlockAddress *get(Function *F, BasicBlock *BB);
889
890  /// Return a BlockAddress for the specified basic block.  The basic
891  /// block must be embedded into a function.
892  static BlockAddress *get(BasicBlock *BB);
893
894  /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
895  ///
896  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
897  static BlockAddress *lookup(const BasicBlock *BB);
898
899  /// Transparently provide more efficient getOperand methods.
900  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
901
902  Function *getFunction() const { return (Function *)Op<0>().get(); }
903  BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
904
905  /// Methods for support type inquiry through isa, cast, and dyn_cast:
906  static bool classof(const Value *V) {
907    return V->getValueID() == BlockAddressVal;
908  }
909};
910
911template <>
912struct OperandTraits<BlockAddress>
913    : public FixedNumOperandTraits<BlockAddress, 2> {};
914
915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
916
917/// Wrapper for a function that represents a value that
918/// functionally represents the original function. This can be a function,
919/// global alias to a function, or an ifunc.
920class DSOLocalEquivalent final : public Constant {
921  friend class Constant;
922
923  DSOLocalEquivalent(GlobalValue *GV);
924
925  void *operator new(size_t S) { return User::operator new(S, 1); }
926
927  void destroyConstantImpl();
928  Value *handleOperandChangeImpl(Value *From, Value *To);
929
930public:
931  void operator delete(void *Ptr) { User::operator delete(Ptr); }
932
933  /// Return a DSOLocalEquivalent for the specified global value.
934  static DSOLocalEquivalent *get(GlobalValue *GV);
935
936  /// Transparently provide more efficient getOperand methods.
937  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
938
939  GlobalValue *getGlobalValue() const {
940    return cast<GlobalValue>(Op<0>().get());
941  }
942
943  /// Methods for support type inquiry through isa, cast, and dyn_cast:
944  static bool classof(const Value *V) {
945    return V->getValueID() == DSOLocalEquivalentVal;
946  }
947};
948
949template <>
950struct OperandTraits<DSOLocalEquivalent>
951    : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
952
953DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
954
955/// Wrapper for a value that won't be replaced with a CFI jump table
956/// pointer in LowerTypeTestsModule.
957class NoCFIValue final : public Constant {
958  friend class Constant;
959
960  NoCFIValue(GlobalValue *GV);
961
962  void *operator new(size_t S) { return User::operator new(S, 1); }
963
964  void destroyConstantImpl();
965  Value *handleOperandChangeImpl(Value *From, Value *To);
966
967public:
968  /// Return a NoCFIValue for the specified function.
969  static NoCFIValue *get(GlobalValue *GV);
970
971  /// Transparently provide more efficient getOperand methods.
972  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
973
974  GlobalValue *getGlobalValue() const {
975    return cast<GlobalValue>(Op<0>().get());
976  }
977
978  /// NoCFIValue is always a pointer.
979  PointerType *getType() const {
980    return cast<PointerType>(Value::getType());
981  }
982
983  /// Methods for support type inquiry through isa, cast, and dyn_cast:
984  static bool classof(const Value *V) {
985    return V->getValueID() == NoCFIValueVal;
986  }
987};
988
989template <>
990struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
991};
992
993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
994
995//===----------------------------------------------------------------------===//
996/// A constant value that is initialized with an expression using
997/// other constant values.
998///
999/// This class uses the standard Instruction opcodes to define the various
1000/// constant expressions.  The Opcode field for the ConstantExpr class is
1001/// maintained in the Value::SubclassData field.
1002class ConstantExpr : public Constant {
1003  friend struct ConstantExprKeyType;
1004  friend class Constant;
1005
1006  void destroyConstantImpl();
1007  Value *handleOperandChangeImpl(Value *From, Value *To);
1008
1009protected:
1010  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
1011      : Constant(ty, ConstantExprVal, Ops, NumOps) {
1012    // Operation type (an Instruction opcode) is stored as the SubclassData.
1013    setValueSubclassData(Opcode);
1014  }
1015
1016  ~ConstantExpr() = default;
1017
1018public:
1019  // Static methods to construct a ConstantExpr of different kinds.  Note that
1020  // these methods may return a object that is not an instance of the
1021  // ConstantExpr class, because they will attempt to fold the constant
1022  // expression into something simpler if possible.
1023
1024  /// getAlignOf constant expr - computes the alignment of a type in a target
1025  /// independent way (Note: the return type is an i64).
1026  static Constant *getAlignOf(Type *Ty);
1027
1028  /// getSizeOf constant expr - computes the (alloc) size of a type (in
1029  /// address-units, not bits) in a target independent way (Note: the return
1030  /// type is an i64).
1031  ///
1032  static Constant *getSizeOf(Type *Ty);
1033
1034  static Constant *getNeg(Constant *C, bool HasNUW = false,
1035                          bool HasNSW = false);
1036  static Constant *getNot(Constant *C);
1037  static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1038                          bool HasNSW = false);
1039  static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1040                          bool HasNSW = false);
1041  static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1042                          bool HasNSW = false);
1043  static Constant *getXor(Constant *C1, Constant *C2);
1044  static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1045                          bool HasNSW = false);
1046  static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1047  static Constant *getPtrToInt(Constant *C, Type *Ty,
1048                               bool OnlyIfReduced = false);
1049  static Constant *getIntToPtr(Constant *C, Type *Ty,
1050                               bool OnlyIfReduced = false);
1051  static Constant *getBitCast(Constant *C, Type *Ty,
1052                              bool OnlyIfReduced = false);
1053  static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1054                                    bool OnlyIfReduced = false);
1055
1056  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1057  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1058
1059  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1060    return getAdd(C1, C2, false, true);
1061  }
1062
1063  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1064    return getAdd(C1, C2, true, false);
1065  }
1066
1067  static Constant *getNSWSub(Constant *C1, Constant *C2) {
1068    return getSub(C1, C2, false, true);
1069  }
1070
1071  static Constant *getNUWSub(Constant *C1, Constant *C2) {
1072    return getSub(C1, C2, true, false);
1073  }
1074
1075  static Constant *getNSWMul(Constant *C1, Constant *C2) {
1076    return getMul(C1, C2, false, true);
1077  }
1078
1079  static Constant *getNUWMul(Constant *C1, Constant *C2) {
1080    return getMul(C1, C2, true, false);
1081  }
1082
1083  static Constant *getNSWShl(Constant *C1, Constant *C2) {
1084    return getShl(C1, C2, false, true);
1085  }
1086
1087  static Constant *getNUWShl(Constant *C1, Constant *C2) {
1088    return getShl(C1, C2, true, false);
1089  }
1090
1091  /// If C is a scalar/fixed width vector of known powers of 2, then this
1092  /// function returns a new scalar/fixed width vector obtained from logBase2
1093  /// of C. Undef vector elements are set to zero.
1094  /// Return a null pointer otherwise.
1095  static Constant *getExactLogBase2(Constant *C);
1096
1097  /// Return the identity constant for a binary opcode.
1098  /// If the binop is not commutative, callers can acquire the operand 1
1099  /// identity constant by setting AllowRHSConstant to true. For example, any
1100  /// shift has a zero identity constant for operand 1: X shift 0 = X. If this
1101  /// is a fadd/fsub operation and we don't care about signed zeros, then
1102  /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return
1103  /// nullptr if the operator does not have an identity constant.
1104  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1105                                    bool AllowRHSConstant = false,
1106                                    bool NSZ = false);
1107
1108  static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
1109
1110  /// Return the identity constant for a binary or intrinsic Instruction.
1111  /// The identity constant C is defined as X op C = X and C op X = X where C
1112  /// and X are the first two operands, and the operation is commutative.
1113  static Constant *getIdentity(Instruction *I, Type *Ty,
1114                               bool AllowRHSConstant = false, bool NSZ = false);
1115
1116  /// Return the absorbing element for the given binary
1117  /// operation, i.e. a constant C such that X op C = C and C op X = C for
1118  /// every X.  For example, this returns zero for integer multiplication.
1119  /// It returns null if the operator doesn't have an absorbing element.
1120  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1121
1122  /// Transparently provide more efficient getOperand methods.
1123  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1124
1125  /// Convenience function for getting a Cast operation.
1126  ///
1127  /// \param ops The opcode for the conversion
1128  /// \param C  The constant to be converted
1129  /// \param Ty The type to which the constant is converted
1130  /// \param OnlyIfReduced see \a getWithOperands() docs.
1131  static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1132                           bool OnlyIfReduced = false);
1133
1134  // Create a Trunc or BitCast cast constant expression
1135  static Constant *
1136  getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1137                    Type *Ty     ///< The type to trunc or bitcast C to
1138  );
1139
1140  /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1141  /// expression.
1142  static Constant *
1143  getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1144                 Type *Ty     ///< The type to which cast should be made
1145  );
1146
1147  /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1148  /// the address space.
1149  static Constant *getPointerBitCastOrAddrSpaceCast(
1150      Constant *C, ///< The constant to addrspacecast or bitcast
1151      Type *Ty     ///< The type to bitcast or addrspacecast C to
1152  );
1153
1154  /// Return true if this is a convert constant expression
1155  bool isCast() const;
1156
1157  /// Return true if this is a compare constant expression
1158  bool isCompare() const;
1159
1160  /// get - Return a binary or shift operator constant expression,
1161  /// folding if possible.
1162  ///
1163  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1164  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1165                       unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1166
1167  /// Return an ICmp or FCmp comparison operator constant expression.
1168  ///
1169  /// \param OnlyIfReduced see \a getWithOperands() docs.
1170  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1171                              bool OnlyIfReduced = false);
1172
1173  /// get* - Return some common constants without having to
1174  /// specify the full Instruction::OPCODE identifier.
1175  ///
1176  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1177                           bool OnlyIfReduced = false);
1178  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1179                           bool OnlyIfReduced = false);
1180
1181  /// Getelementptr form.  Value* is only accepted for convenience;
1182  /// all elements must be Constants.
1183  ///
1184  /// \param InRangeIndex the inrange index if present or std::nullopt.
1185  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1186  static Constant *
1187  getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1188                   bool InBounds = false,
1189                   std::optional<unsigned> InRangeIndex = std::nullopt,
1190                   Type *OnlyIfReducedTy = nullptr) {
1191    return getGetElementPtr(
1192        Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1193        InBounds, InRangeIndex, OnlyIfReducedTy);
1194  }
1195  static Constant *
1196  getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false,
1197                   std::optional<unsigned> InRangeIndex = std::nullopt,
1198                   Type *OnlyIfReducedTy = nullptr) {
1199    // This form of the function only exists to avoid ambiguous overload
1200    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1201    // ArrayRef<Value *>.
1202    return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1203                            OnlyIfReducedTy);
1204  }
1205  static Constant *
1206  getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1207                   bool InBounds = false,
1208                   std::optional<unsigned> InRangeIndex = std::nullopt,
1209                   Type *OnlyIfReducedTy = nullptr);
1210
1211  /// Create an "inbounds" getelementptr. See the documentation for the
1212  /// "inbounds" flag in LangRef.html for details.
1213  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1214                                            ArrayRef<Constant *> IdxList) {
1215    return getGetElementPtr(Ty, C, IdxList, true);
1216  }
1217  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1218                                            Constant *Idx) {
1219    // This form of the function only exists to avoid ambiguous overload
1220    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1221    // ArrayRef<Value *>.
1222    return getGetElementPtr(Ty, C, Idx, true);
1223  }
1224  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1225                                            ArrayRef<Value *> IdxList) {
1226    return getGetElementPtr(Ty, C, IdxList, true);
1227  }
1228
1229  static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1230                                     Type *OnlyIfReducedTy = nullptr);
1231  static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1232                                    Type *OnlyIfReducedTy = nullptr);
1233  static Constant *getShuffleVector(Constant *V1, Constant *V2,
1234                                    ArrayRef<int> Mask,
1235                                    Type *OnlyIfReducedTy = nullptr);
1236
1237  /// Return the opcode at the root of this constant expression
1238  unsigned getOpcode() const { return getSubclassDataFromValue(); }
1239
1240  /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1241  /// FCMP constant expression.
1242  unsigned getPredicate() const;
1243
1244  /// Assert that this is a shufflevector and return the mask. See class
1245  /// ShuffleVectorInst for a description of the mask representation.
1246  ArrayRef<int> getShuffleMask() const;
1247
1248  /// Assert that this is a shufflevector and return the mask.
1249  ///
1250  /// TODO: This is a temporary hack until we update the bitcode format for
1251  /// shufflevector.
1252  Constant *getShuffleMaskForBitcode() const;
1253
1254  /// Return a string representation for an opcode.
1255  const char *getOpcodeName() const;
1256
1257  /// This returns the current constant expression with the operands replaced
1258  /// with the specified values. The specified array must have the same number
1259  /// of operands as our current one.
1260  Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1261    return getWithOperands(Ops, getType());
1262  }
1263
1264  /// Get the current expression with the operands replaced.
1265  ///
1266  /// Return the current constant expression with the operands replaced with \c
1267  /// Ops and the type with \c Ty.  The new operands must have the same number
1268  /// as the current ones.
1269  ///
1270  /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1271  /// gets constant-folded, the type changes, or the expression is otherwise
1272  /// canonicalized.  This parameter should almost always be \c false.
1273  Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1274                            bool OnlyIfReduced = false,
1275                            Type *SrcTy = nullptr) const;
1276
1277  /// Returns an Instruction which implements the same operation as this
1278  /// ConstantExpr. If \p InsertBefore is not null, the new instruction is
1279  /// inserted before it, otherwise it is not inserted into any basic block.
1280  ///
1281  /// A better approach to this could be to have a constructor for Instruction
1282  /// which would take a ConstantExpr parameter, but that would have spread
1283  /// implementation details of ConstantExpr outside of Constants.cpp, which
1284  /// would make it harder to remove ConstantExprs altogether.
1285  Instruction *getAsInstruction(Instruction *InsertBefore = nullptr) const;
1286
1287  /// Whether creating a constant expression for this binary operator is
1288  /// desirable.
1289  static bool isDesirableBinOp(unsigned Opcode);
1290
1291  /// Whether creating a constant expression for this binary operator is
1292  /// supported.
1293  static bool isSupportedBinOp(unsigned Opcode);
1294
1295  /// Whether creating a constant expression for this cast is desirable.
1296  static bool isDesirableCastOp(unsigned Opcode);
1297
1298  /// Whether creating a constant expression for this cast is supported.
1299  static bool isSupportedCastOp(unsigned Opcode);
1300
1301  /// Whether creating a constant expression for this getelementptr type is
1302  /// supported.
1303  static bool isSupportedGetElementPtr(const Type *SrcElemTy) {
1304    return !SrcElemTy->isScalableTy();
1305  }
1306
1307  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1308  static bool classof(const Value *V) {
1309    return V->getValueID() == ConstantExprVal;
1310  }
1311
1312private:
1313  // Shadow Value::setValueSubclassData with a private forwarding method so that
1314  // subclasses cannot accidentally use it.
1315  void setValueSubclassData(unsigned short D) {
1316    Value::setValueSubclassData(D);
1317  }
1318};
1319
1320template <>
1321struct OperandTraits<ConstantExpr>
1322    : public VariadicOperandTraits<ConstantExpr, 1> {};
1323
1324DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1325
1326//===----------------------------------------------------------------------===//
1327/// 'undef' values are things that do not have specified contents.
1328/// These are used for a variety of purposes, including global variable
1329/// initializers and operands to instructions.  'undef' values can occur with
1330/// any first-class type.
1331///
1332/// Undef values aren't exactly constants; if they have multiple uses, they
1333/// can appear to have different bit patterns at each use. See
1334/// LangRef.html#undefvalues for details.
1335///
1336class UndefValue : public ConstantData {
1337  friend class Constant;
1338
1339  explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1340
1341  void destroyConstantImpl();
1342
1343protected:
1344  explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1345
1346public:
1347  UndefValue(const UndefValue &) = delete;
1348
1349  /// Static factory methods - Return an 'undef' object of the specified type.
1350  static UndefValue *get(Type *T);
1351
1352  /// If this Undef has array or vector type, return a undef with the right
1353  /// element type.
1354  UndefValue *getSequentialElement() const;
1355
1356  /// If this undef has struct type, return a undef with the right element type
1357  /// for the specified element.
1358  UndefValue *getStructElement(unsigned Elt) const;
1359
1360  /// Return an undef of the right value for the specified GEP index if we can,
1361  /// otherwise return null (e.g. if C is a ConstantExpr).
1362  UndefValue *getElementValue(Constant *C) const;
1363
1364  /// Return an undef of the right value for the specified GEP index.
1365  UndefValue *getElementValue(unsigned Idx) const;
1366
1367  /// Return the number of elements in the array, vector, or struct.
1368  unsigned getNumElements() const;
1369
1370  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1371  static bool classof(const Value *V) {
1372    return V->getValueID() == UndefValueVal ||
1373           V->getValueID() == PoisonValueVal;
1374  }
1375};
1376
1377//===----------------------------------------------------------------------===//
1378/// In order to facilitate speculative execution, many instructions do not
1379/// invoke immediate undefined behavior when provided with illegal operands,
1380/// and return a poison value instead.
1381///
1382/// see LangRef.html#poisonvalues for details.
1383///
1384class PoisonValue final : public UndefValue {
1385  friend class Constant;
1386
1387  explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1388
1389  void destroyConstantImpl();
1390
1391public:
1392  PoisonValue(const PoisonValue &) = delete;
1393
1394  /// Static factory methods - Return an 'poison' object of the specified type.
1395  static PoisonValue *get(Type *T);
1396
1397  /// If this poison has array or vector type, return a poison with the right
1398  /// element type.
1399  PoisonValue *getSequentialElement() const;
1400
1401  /// If this poison has struct type, return a poison with the right element
1402  /// type for the specified element.
1403  PoisonValue *getStructElement(unsigned Elt) const;
1404
1405  /// Return an poison of the right value for the specified GEP index if we can,
1406  /// otherwise return null (e.g. if C is a ConstantExpr).
1407  PoisonValue *getElementValue(Constant *C) const;
1408
1409  /// Return an poison of the right value for the specified GEP index.
1410  PoisonValue *getElementValue(unsigned Idx) const;
1411
1412  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1413  static bool classof(const Value *V) {
1414    return V->getValueID() == PoisonValueVal;
1415  }
1416};
1417
1418} // end namespace llvm
1419
1420#endif // LLVM_IR_CONSTANTS_H
1421