1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The ScalarEvolution class is an LLVM pass which can be used to analyze and
10// categorize scalar expressions in loops.  It specializes in recognizing
11// general induction variables, representing them with the abstract and opaque
12// SCEV class.  Given this analysis, trip counts of loops and other important
13// properties can be obtained.
14//
15// This analysis is primarily useful for induction variable substitution and
16// strength reduction.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
22
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DenseMapInfo.h"
27#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/IR/ConstantRange.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/PassManager.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/IR/ValueMap.h"
38#include "llvm/Pass.h"
39#include <cassert>
40#include <cstdint>
41#include <memory>
42#include <optional>
43#include <utility>
44
45namespace llvm {
46
47class OverflowingBinaryOperator;
48class AssumptionCache;
49class BasicBlock;
50class Constant;
51class ConstantInt;
52class DataLayout;
53class DominatorTree;
54class Function;
55class GEPOperator;
56class Instruction;
57class LLVMContext;
58class Loop;
59class LoopInfo;
60class raw_ostream;
61class ScalarEvolution;
62class SCEVAddRecExpr;
63class SCEVUnknown;
64class StructType;
65class TargetLibraryInfo;
66class Type;
67class Value;
68enum SCEVTypes : unsigned short;
69
70extern bool VerifySCEV;
71
72/// This class represents an analyzed expression in the program.  These are
73/// opaque objects that the client is not allowed to do much with directly.
74///
75class SCEV : public FoldingSetNode {
76  friend struct FoldingSetTrait<SCEV>;
77
78  /// A reference to an Interned FoldingSetNodeID for this node.  The
79  /// ScalarEvolution's BumpPtrAllocator holds the data.
80  FoldingSetNodeIDRef FastID;
81
82  // The SCEV baseclass this node corresponds to
83  const SCEVTypes SCEVType;
84
85protected:
86  // Estimated complexity of this node's expression tree size.
87  const unsigned short ExpressionSize;
88
89  /// This field is initialized to zero and may be used in subclasses to store
90  /// miscellaneous information.
91  unsigned short SubclassData = 0;
92
93public:
94  /// NoWrapFlags are bitfield indices into SubclassData.
95  ///
96  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
97  /// no-signed-wrap <NSW> properties, which are derived from the IR
98  /// operator. NSW is a misnomer that we use to mean no signed overflow or
99  /// underflow.
100  ///
101  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
102  /// the integer domain, abs(step) * max-iteration(loop) <=
103  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
104  /// its start value if the step is non-zero.  Computing the same value on
105  /// each iteration is not considered wrapping, and recurrences with step = 0
106  /// are trivially <NW>.  <NW> is independent of the sign of step and the
107  /// value the add recurrence starts with.
108  ///
109  /// Note that NUW and NSW are also valid properties of a recurrence, and
110  /// either implies NW. For convenience, NW will be set for a recurrence
111  /// whenever either NUW or NSW are set.
112  ///
113  /// We require that the flag on a SCEV apply to the entire scope in which
114  /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
115  /// a defining location, which is in turn described by the following rules:
116  /// * A SCEVUnknown is at the point of definition of the Value.
117  /// * A SCEVConstant is defined at all points.
118  /// * A SCEVAddRec is defined starting with the header of the associated
119  ///   loop.
120  /// * All other SCEVs are defined at the earlest point all operands are
121  ///   defined.
122  ///
123  /// The above rules describe a maximally hoisted form (without regards to
124  /// potential control dependence).  A SCEV is defined anywhere a
125  /// corresponding instruction could be defined in said maximally hoisted
126  /// form.  Note that SCEVUDivExpr (currently the only expression type which
127  /// can trap) can be defined per these rules in regions where it would trap
128  /// at runtime.  A SCEV being defined does not require the existence of any
129  /// instruction within the defined scope.
130  enum NoWrapFlags {
131    FlagAnyWrap = 0,    // No guarantee.
132    FlagNW = (1 << 0),  // No self-wrap.
133    FlagNUW = (1 << 1), // No unsigned wrap.
134    FlagNSW = (1 << 2), // No signed wrap.
135    NoWrapMask = (1 << 3) - 1
136  };
137
138  explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
139                unsigned short ExpressionSize)
140      : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
141  SCEV(const SCEV &) = delete;
142  SCEV &operator=(const SCEV &) = delete;
143
144  SCEVTypes getSCEVType() const { return SCEVType; }
145
146  /// Return the LLVM type of this SCEV expression.
147  Type *getType() const;
148
149  /// Return operands of this SCEV expression.
150  ArrayRef<const SCEV *> operands() const;
151
152  /// Return true if the expression is a constant zero.
153  bool isZero() const;
154
155  /// Return true if the expression is a constant one.
156  bool isOne() const;
157
158  /// Return true if the expression is a constant all-ones value.
159  bool isAllOnesValue() const;
160
161  /// Return true if the specified scev is negated, but not a constant.
162  bool isNonConstantNegative() const;
163
164  // Returns estimated size of the mathematical expression represented by this
165  // SCEV. The rules of its calculation are following:
166  // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
167  // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
168  //    (1 + Size(Op1) + ... + Size(OpN)).
169  // This value gives us an estimation of time we need to traverse through this
170  // SCEV and all its operands recursively. We may use it to avoid performing
171  // heavy transformations on SCEVs of excessive size for sake of saving the
172  // compilation time.
173  unsigned short getExpressionSize() const {
174    return ExpressionSize;
175  }
176
177  /// Print out the internal representation of this scalar to the specified
178  /// stream.  This should really only be used for debugging purposes.
179  void print(raw_ostream &OS) const;
180
181  /// This method is used for debugging.
182  void dump() const;
183};
184
185// Specialize FoldingSetTrait for SCEV to avoid needing to compute
186// temporary FoldingSetNodeID values.
187template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
188  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
189
190  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
191                     FoldingSetNodeID &TempID) {
192    return ID == X.FastID;
193  }
194
195  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
196    return X.FastID.ComputeHash();
197  }
198};
199
200inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
201  S.print(OS);
202  return OS;
203}
204
205/// An object of this class is returned by queries that could not be answered.
206/// For example, if you ask for the number of iterations of a linked-list
207/// traversal loop, you will get one of these.  None of the standard SCEV
208/// operations are valid on this class, it is just a marker.
209struct SCEVCouldNotCompute : public SCEV {
210  SCEVCouldNotCompute();
211
212  /// Methods for support type inquiry through isa, cast, and dyn_cast:
213  static bool classof(const SCEV *S);
214};
215
216/// This class represents an assumption made using SCEV expressions which can
217/// be checked at run-time.
218class SCEVPredicate : public FoldingSetNode {
219  friend struct FoldingSetTrait<SCEVPredicate>;
220
221  /// A reference to an Interned FoldingSetNodeID for this node.  The
222  /// ScalarEvolution's BumpPtrAllocator holds the data.
223  FoldingSetNodeIDRef FastID;
224
225public:
226  enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
227
228protected:
229  SCEVPredicateKind Kind;
230  ~SCEVPredicate() = default;
231  SCEVPredicate(const SCEVPredicate &) = default;
232  SCEVPredicate &operator=(const SCEVPredicate &) = default;
233
234public:
235  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
236
237  SCEVPredicateKind getKind() const { return Kind; }
238
239  /// Returns the estimated complexity of this predicate.  This is roughly
240  /// measured in the number of run-time checks required.
241  virtual unsigned getComplexity() const { return 1; }
242
243  /// Returns true if the predicate is always true. This means that no
244  /// assumptions were made and nothing needs to be checked at run-time.
245  virtual bool isAlwaysTrue() const = 0;
246
247  /// Returns true if this predicate implies \p N.
248  virtual bool implies(const SCEVPredicate *N) const = 0;
249
250  /// Prints a textual representation of this predicate with an indentation of
251  /// \p Depth.
252  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
253};
254
255inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
256  P.print(OS);
257  return OS;
258}
259
260// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
261// temporary FoldingSetNodeID values.
262template <>
263struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
264  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
265    ID = X.FastID;
266  }
267
268  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
269                     unsigned IDHash, FoldingSetNodeID &TempID) {
270    return ID == X.FastID;
271  }
272
273  static unsigned ComputeHash(const SCEVPredicate &X,
274                              FoldingSetNodeID &TempID) {
275    return X.FastID.ComputeHash();
276  }
277};
278
279/// This class represents an assumption that the expression LHS Pred RHS
280/// evaluates to true, and this can be checked at run-time.
281class SCEVComparePredicate final : public SCEVPredicate {
282  /// We assume that LHS Pred RHS is true.
283  const ICmpInst::Predicate Pred;
284  const SCEV *LHS;
285  const SCEV *RHS;
286
287public:
288  SCEVComparePredicate(const FoldingSetNodeIDRef ID,
289                       const ICmpInst::Predicate Pred,
290                       const SCEV *LHS, const SCEV *RHS);
291
292  /// Implementation of the SCEVPredicate interface
293  bool implies(const SCEVPredicate *N) const override;
294  void print(raw_ostream &OS, unsigned Depth = 0) const override;
295  bool isAlwaysTrue() const override;
296
297  ICmpInst::Predicate getPredicate() const { return Pred; }
298
299  /// Returns the left hand side of the predicate.
300  const SCEV *getLHS() const { return LHS; }
301
302  /// Returns the right hand side of the predicate.
303  const SCEV *getRHS() const { return RHS; }
304
305  /// Methods for support type inquiry through isa, cast, and dyn_cast:
306  static bool classof(const SCEVPredicate *P) {
307    return P->getKind() == P_Compare;
308  }
309};
310
311/// This class represents an assumption made on an AddRec expression. Given an
312/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
313/// flags (defined below) in the first X iterations of the loop, where X is a
314/// SCEV expression returned by getPredicatedBackedgeTakenCount).
315///
316/// Note that this does not imply that X is equal to the backedge taken
317/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
318/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
319/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
320/// have more than X iterations.
321class SCEVWrapPredicate final : public SCEVPredicate {
322public:
323  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
324  /// for FlagNUSW. The increment is considered to be signed, and a + b
325  /// (where b is the increment) is considered to wrap if:
326  ///    zext(a + b) != zext(a) + sext(b)
327  ///
328  /// If Signed is a function that takes an n-bit tuple and maps to the
329  /// integer domain as the tuples value interpreted as twos complement,
330  /// and Unsigned a function that takes an n-bit tuple and maps to the
331  /// integer domain as the base two value of input tuple, then a + b
332  /// has IncrementNUSW iff:
333  ///
334  /// 0 <= Unsigned(a) + Signed(b) < 2^n
335  ///
336  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
337  ///
338  /// Note that the IncrementNUSW flag is not commutative: if base + inc
339  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
340  /// property. The reason for this is that this is used for sign/zero
341  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
342  /// assumed. A {base,+,inc} expression is already non-commutative with
343  /// regards to base and inc, since it is interpreted as:
344  ///     (((base + inc) + inc) + inc) ...
345  enum IncrementWrapFlags {
346    IncrementAnyWrap = 0,     // No guarantee.
347    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
348    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
349                              // (equivalent with SCEV::NSW)
350    IncrementNoWrapMask = (1 << 2) - 1
351  };
352
353  /// Convenient IncrementWrapFlags manipulation methods.
354  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
355  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
357    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
359           "Invalid flags value!");
360    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
361  }
362
363  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
364  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
365    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
366    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
367
368    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
369  }
370
371  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
372  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
373           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
374    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
375    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
376           "Invalid flags value!");
377
378    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
379  }
380
381  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
382  /// SCEVAddRecExpr.
383  [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
384  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
385
386private:
387  const SCEVAddRecExpr *AR;
388  IncrementWrapFlags Flags;
389
390public:
391  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
392                             const SCEVAddRecExpr *AR,
393                             IncrementWrapFlags Flags);
394
395  /// Returns the set assumed no overflow flags.
396  IncrementWrapFlags getFlags() const { return Flags; }
397
398  /// Implementation of the SCEVPredicate interface
399  const SCEVAddRecExpr *getExpr() const;
400  bool implies(const SCEVPredicate *N) const override;
401  void print(raw_ostream &OS, unsigned Depth = 0) const override;
402  bool isAlwaysTrue() const override;
403
404  /// Methods for support type inquiry through isa, cast, and dyn_cast:
405  static bool classof(const SCEVPredicate *P) {
406    return P->getKind() == P_Wrap;
407  }
408};
409
410/// This class represents a composition of other SCEV predicates, and is the
411/// class that most clients will interact with.  This is equivalent to a
412/// logical "AND" of all the predicates in the union.
413///
414/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
415/// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
416class SCEVUnionPredicate final : public SCEVPredicate {
417private:
418  using PredicateMap =
419      DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
420
421  /// Vector with references to all predicates in this union.
422  SmallVector<const SCEVPredicate *, 16> Preds;
423
424  /// Adds a predicate to this union.
425  void add(const SCEVPredicate *N);
426
427public:
428  SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
429
430  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
431    return Preds;
432  }
433
434  /// Implementation of the SCEVPredicate interface
435  bool isAlwaysTrue() const override;
436  bool implies(const SCEVPredicate *N) const override;
437  void print(raw_ostream &OS, unsigned Depth) const override;
438
439  /// We estimate the complexity of a union predicate as the size number of
440  /// predicates in the union.
441  unsigned getComplexity() const override { return Preds.size(); }
442
443  /// Methods for support type inquiry through isa, cast, and dyn_cast:
444  static bool classof(const SCEVPredicate *P) {
445    return P->getKind() == P_Union;
446  }
447};
448
449/// The main scalar evolution driver. Because client code (intentionally)
450/// can't do much with the SCEV objects directly, they must ask this class
451/// for services.
452class ScalarEvolution {
453  friend class ScalarEvolutionsTest;
454
455public:
456  /// An enum describing the relationship between a SCEV and a loop.
457  enum LoopDisposition {
458    LoopVariant,   ///< The SCEV is loop-variant (unknown).
459    LoopInvariant, ///< The SCEV is loop-invariant.
460    LoopComputable ///< The SCEV varies predictably with the loop.
461  };
462
463  /// An enum describing the relationship between a SCEV and a basic block.
464  enum BlockDisposition {
465    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
466    DominatesBlock,        ///< The SCEV dominates the block.
467    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
468  };
469
470  /// Convenient NoWrapFlags manipulation that hides enum casts and is
471  /// visible in the ScalarEvolution name space.
472  [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
473                                                   int Mask) {
474    return (SCEV::NoWrapFlags)(Flags & Mask);
475  }
476  [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
477                                                  SCEV::NoWrapFlags OnFlags) {
478    return (SCEV::NoWrapFlags)(Flags | OnFlags);
479  }
480  [[nodiscard]] static SCEV::NoWrapFlags
481  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
482    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
483  }
484  [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
485                                     SCEV::NoWrapFlags TestFlags) {
486    return TestFlags == maskFlags(Flags, TestFlags);
487  };
488
489  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
490                  DominatorTree &DT, LoopInfo &LI);
491  ScalarEvolution(ScalarEvolution &&Arg);
492  ~ScalarEvolution();
493
494  LLVMContext &getContext() const { return F.getContext(); }
495
496  /// Test if values of the given type are analyzable within the SCEV
497  /// framework. This primarily includes integer types, and it can optionally
498  /// include pointer types if the ScalarEvolution class has access to
499  /// target-specific information.
500  bool isSCEVable(Type *Ty) const;
501
502  /// Return the size in bits of the specified type, for which isSCEVable must
503  /// return true.
504  uint64_t getTypeSizeInBits(Type *Ty) const;
505
506  /// Return a type with the same bitwidth as the given type and which
507  /// represents how SCEV will treat the given type, for which isSCEVable must
508  /// return true. For pointer types, this is the pointer-sized integer type.
509  Type *getEffectiveSCEVType(Type *Ty) const;
510
511  // Returns a wider type among {Ty1, Ty2}.
512  Type *getWiderType(Type *Ty1, Type *Ty2) const;
513
514  /// Return true if there exists a point in the program at which both
515  /// A and B could be operands to the same instruction.
516  /// SCEV expressions are generally assumed to correspond to instructions
517  /// which could exists in IR.  In general, this requires that there exists
518  /// a use point in the program where all operands dominate the use.
519  ///
520  /// Example:
521  /// loop {
522  ///   if
523  ///     loop { v1 = load @global1; }
524  ///   else
525  ///     loop { v2 = load @global2; }
526  /// }
527  /// No SCEV with operand V1, and v2 can exist in this program.
528  bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B);
529
530  /// Return true if the SCEV is a scAddRecExpr or it contains
531  /// scAddRecExpr. The result will be cached in HasRecMap.
532  bool containsAddRecurrence(const SCEV *S);
533
534  /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
535  /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
536  /// no-overflow fact should be true in the context of this instruction.
537  bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
538                       const SCEV *LHS, const SCEV *RHS,
539                       const Instruction *CtxI = nullptr);
540
541  /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
542  /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
543  /// Does not mutate the original instruction. Returns std::nullopt if it could
544  /// not deduce more precise flags than the instruction already has, otherwise
545  /// returns proven flags.
546  std::optional<SCEV::NoWrapFlags>
547  getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
548
549  /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
550  void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
551
552  /// Return true if the SCEV expression contains an undef value.
553  bool containsUndefs(const SCEV *S) const;
554
555  /// Return true if the SCEV expression contains a Value that has been
556  /// optimised out and is now a nullptr.
557  bool containsErasedValue(const SCEV *S) const;
558
559  /// Return a SCEV expression for the full generality of the specified
560  /// expression.
561  const SCEV *getSCEV(Value *V);
562
563  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
564  const SCEV *getExistingSCEV(Value *V);
565
566  const SCEV *getConstant(ConstantInt *V);
567  const SCEV *getConstant(const APInt &Val);
568  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
569  const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
570  const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
571  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
572  const SCEV *getVScale(Type *Ty);
573  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
574  const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
575                                    unsigned Depth = 0);
576  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
577  const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
578                                    unsigned Depth = 0);
579  const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
580  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
581  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
582                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
583                         unsigned Depth = 0);
584  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
585                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
586                         unsigned Depth = 0) {
587    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
588    return getAddExpr(Ops, Flags, Depth);
589  }
590  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
591                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
592                         unsigned Depth = 0) {
593    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
594    return getAddExpr(Ops, Flags, Depth);
595  }
596  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
597                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
598                         unsigned Depth = 0);
599  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
600                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
601                         unsigned Depth = 0) {
602    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
603    return getMulExpr(Ops, Flags, Depth);
604  }
605  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
606                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
607                         unsigned Depth = 0) {
608    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
609    return getMulExpr(Ops, Flags, Depth);
610  }
611  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
612  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
613  const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
614  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
615                            SCEV::NoWrapFlags Flags);
616  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
617                            const Loop *L, SCEV::NoWrapFlags Flags);
618  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
619                            const Loop *L, SCEV::NoWrapFlags Flags) {
620    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
621    return getAddRecExpr(NewOp, L, Flags);
622  }
623
624  /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
625  /// Predicates. If successful return these <AddRecExpr, Predicates>;
626  /// The function is intended to be called from PSCEV (the caller will decide
627  /// whether to actually add the predicates and carry out the rewrites).
628  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
629  createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
630
631  /// Returns an expression for a GEP
632  ///
633  /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
634  /// instead we use IndexExprs.
635  /// \p IndexExprs The expressions for the indices.
636  const SCEV *getGEPExpr(GEPOperator *GEP,
637                         const SmallVectorImpl<const SCEV *> &IndexExprs);
638  const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
639  const SCEV *getMinMaxExpr(SCEVTypes Kind,
640                            SmallVectorImpl<const SCEV *> &Operands);
641  const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
642                                      SmallVectorImpl<const SCEV *> &Operands);
643  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
644  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
645  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
646  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
647  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
648  const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
649  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
650                          bool Sequential = false);
651  const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
652                          bool Sequential = false);
653  const SCEV *getUnknown(Value *V);
654  const SCEV *getCouldNotCompute();
655
656  /// Return a SCEV for the constant 0 of a specific type.
657  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
658
659  /// Return a SCEV for the constant 1 of a specific type.
660  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
661
662  /// Return a SCEV for the constant \p Power of two.
663  const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
664    assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
665    return getConstant(APInt::getOneBitSet(getTypeSizeInBits(Ty), Power));
666  }
667
668  /// Return a SCEV for the constant -1 of a specific type.
669  const SCEV *getMinusOne(Type *Ty) {
670    return getConstant(Ty, -1, /*isSigned=*/true);
671  }
672
673  /// Return an expression for a TypeSize.
674  const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size);
675
676  /// Return an expression for the alloc size of AllocTy that is type IntTy
677  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
678
679  /// Return an expression for the store size of StoreTy that is type IntTy
680  const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
681
682  /// Return an expression for offsetof on the given field with type IntTy
683  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
684
685  /// Return the SCEV object corresponding to -V.
686  const SCEV *getNegativeSCEV(const SCEV *V,
687                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
688
689  /// Return the SCEV object corresponding to ~V.
690  const SCEV *getNotSCEV(const SCEV *V);
691
692  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
693  ///
694  /// If the LHS and RHS are pointers which don't share a common base
695  /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
696  /// To compute the difference between two unrelated pointers, you can
697  /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
698  /// types that support it.
699  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
700                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
701                           unsigned Depth = 0);
702
703  /// Compute ceil(N / D). N and D are treated as unsigned values.
704  ///
705  /// Since SCEV doesn't have native ceiling division, this generates a
706  /// SCEV expression of the following form:
707  ///
708  /// umin(N, 1) + floor((N - umin(N, 1)) / D)
709  ///
710  /// A denominator of zero or poison is handled the same way as getUDivExpr().
711  const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
712
713  /// Return a SCEV corresponding to a conversion of the input value to the
714  /// specified type.  If the type must be extended, it is zero extended.
715  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
716                                      unsigned Depth = 0);
717
718  /// Return a SCEV corresponding to a conversion of the input value to the
719  /// specified type.  If the type must be extended, it is sign extended.
720  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
721                                      unsigned Depth = 0);
722
723  /// Return a SCEV corresponding to a conversion of the input value to the
724  /// specified type.  If the type must be extended, it is zero extended.  The
725  /// conversion must not be narrowing.
726  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
727
728  /// Return a SCEV corresponding to a conversion of the input value to the
729  /// specified type.  If the type must be extended, it is sign extended.  The
730  /// conversion must not be narrowing.
731  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
732
733  /// Return a SCEV corresponding to a conversion of the input value to the
734  /// specified type. If the type must be extended, it is extended with
735  /// unspecified bits. The conversion must not be narrowing.
736  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
737
738  /// Return a SCEV corresponding to a conversion of the input value to the
739  /// specified type.  The conversion must not be widening.
740  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
741
742  /// Promote the operands to the wider of the types using zero-extension, and
743  /// then perform a umax operation with them.
744  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
745
746  /// Promote the operands to the wider of the types using zero-extension, and
747  /// then perform a umin operation with them.
748  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
749                                         bool Sequential = false);
750
751  /// Promote the operands to the wider of the types using zero-extension, and
752  /// then perform a umin operation with them. N-ary function.
753  const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
754                                         bool Sequential = false);
755
756  /// Transitively follow the chain of pointer-type operands until reaching a
757  /// SCEV that does not have a single pointer operand. This returns a
758  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
759  /// cases do exist.
760  const SCEV *getPointerBase(const SCEV *V);
761
762  /// Compute an expression equivalent to S - getPointerBase(S).
763  const SCEV *removePointerBase(const SCEV *S);
764
765  /// Return a SCEV expression for the specified value at the specified scope
766  /// in the program.  The L value specifies a loop nest to evaluate the
767  /// expression at, where null is the top-level or a specified loop is
768  /// immediately inside of the loop.
769  ///
770  /// This method can be used to compute the exit value for a variable defined
771  /// in a loop by querying what the value will hold in the parent loop.
772  ///
773  /// In the case that a relevant loop exit value cannot be computed, the
774  /// original value V is returned.
775  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
776
777  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
778  const SCEV *getSCEVAtScope(Value *V, const Loop *L);
779
780  /// Test whether entry to the loop is protected by a conditional between LHS
781  /// and RHS.  This is used to help avoid max expressions in loop trip
782  /// counts, and to eliminate casts.
783  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
784                                const SCEV *LHS, const SCEV *RHS);
785
786  /// Test whether entry to the basic block is protected by a conditional
787  /// between LHS and RHS.
788  bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
789                                      ICmpInst::Predicate Pred, const SCEV *LHS,
790                                      const SCEV *RHS);
791
792  /// Test whether the backedge of the loop is protected by a conditional
793  /// between LHS and RHS.  This is used to eliminate casts.
794  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
795                                   const SCEV *LHS, const SCEV *RHS);
796
797  /// A version of getTripCountFromExitCount below which always picks an
798  /// evaluation type which can not result in overflow.
799  const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
800
801  /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
802  /// count".  A "trip count" is the number of times the header of the loop
803  /// will execute if an exit is taken after the specified number of backedges
804  /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
805  /// expression can overflow if ExitCount = UINT_MAX.  If EvalTy is not wide
806  /// enough to hold the result without overflow, result unsigned wraps with
807  /// 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
808  const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, Type *EvalTy,
809                                        const Loop *L);
810
811  /// Returns the exact trip count of the loop if we can compute it, and
812  /// the result is a small constant.  '0' is used to represent an unknown
813  /// or non-constant trip count.  Note that a trip count is simply one more
814  /// than the backedge taken count for the loop.
815  unsigned getSmallConstantTripCount(const Loop *L);
816
817  /// Return the exact trip count for this loop if we exit through ExitingBlock.
818  /// '0' is used to represent an unknown or non-constant trip count.  Note
819  /// that a trip count is simply one more than the backedge taken count for
820  /// the same exit.
821  /// This "trip count" assumes that control exits via ExitingBlock. More
822  /// precisely, it is the number of times that control will reach ExitingBlock
823  /// before taking the branch. For loops with multiple exits, it may not be
824  /// the number times that the loop header executes if the loop exits
825  /// prematurely via another branch.
826  unsigned getSmallConstantTripCount(const Loop *L,
827                                     const BasicBlock *ExitingBlock);
828
829  /// Returns the upper bound of the loop trip count as a normal unsigned
830  /// value.
831  /// Returns 0 if the trip count is unknown or not constant.
832  unsigned getSmallConstantMaxTripCount(const Loop *L);
833
834  /// Returns the largest constant divisor of the trip count as a normal
835  /// unsigned value, if possible. This means that the actual trip count is
836  /// always a multiple of the returned value. Returns 1 if the trip count is
837  /// unknown or not guaranteed to be the multiple of a constant., Will also
838  /// return 1 if the trip count is very large (>= 2^32).
839  /// Note that the argument is an exit count for loop L, NOT a trip count.
840  unsigned getSmallConstantTripMultiple(const Loop *L,
841                                        const SCEV *ExitCount);
842
843  /// Returns the largest constant divisor of the trip count of the
844  /// loop.  Will return 1 if no trip count could be computed, or if a
845  /// divisor could not be found.
846  unsigned getSmallConstantTripMultiple(const Loop *L);
847
848  /// Returns the largest constant divisor of the trip count of this loop as a
849  /// normal unsigned value, if possible. This means that the actual trip
850  /// count is always a multiple of the returned value (don't forget the trip
851  /// count could very well be zero as well!). As explained in the comments
852  /// for getSmallConstantTripCount, this assumes that control exits the loop
853  /// via ExitingBlock.
854  unsigned getSmallConstantTripMultiple(const Loop *L,
855                                        const BasicBlock *ExitingBlock);
856
857  /// The terms "backedge taken count" and "exit count" are used
858  /// interchangeably to refer to the number of times the backedge of a loop
859  /// has executed before the loop is exited.
860  enum ExitCountKind {
861    /// An expression exactly describing the number of times the backedge has
862    /// executed when a loop is exited.
863    Exact,
864    /// A constant which provides an upper bound on the exact trip count.
865    ConstantMaximum,
866    /// An expression which provides an upper bound on the exact trip count.
867    SymbolicMaximum,
868  };
869
870  /// Return the number of times the backedge executes before the given exit
871  /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
872  /// For a single exit loop, this value is equivelent to the result of
873  /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
874  /// before the backedge is executed (ExitCount + 1) times.  Note that there
875  /// is no guarantee about *which* exit is taken on the exiting iteration.
876  const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
877                           ExitCountKind Kind = Exact);
878
879  /// If the specified loop has a predictable backedge-taken count, return it,
880  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
881  /// the number of times the loop header will be branched to from within the
882  /// loop, assuming there are no abnormal exists like exception throws. This is
883  /// one less than the trip count of the loop, since it doesn't count the first
884  /// iteration, when the header is branched to from outside the loop.
885  ///
886  /// Note that it is not valid to call this method on a loop without a
887  /// loop-invariant backedge-taken count (see
888  /// hasLoopInvariantBackedgeTakenCount).
889  const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
890
891  /// Similar to getBackedgeTakenCount, except it will add a set of
892  /// SCEV predicates to Predicates that are required to be true in order for
893  /// the answer to be correct. Predicates can be checked with run-time
894  /// checks and can be used to perform loop versioning.
895  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
896                                              SmallVector<const SCEVPredicate *, 4> &Predicates);
897
898  /// When successful, this returns a SCEVConstant that is greater than or equal
899  /// to (i.e. a "conservative over-approximation") of the value returend by
900  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
901  /// SCEVCouldNotCompute object.
902  const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
903    return getBackedgeTakenCount(L, ConstantMaximum);
904  }
905
906  /// When successful, this returns a SCEV that is greater than or equal
907  /// to (i.e. a "conservative over-approximation") of the value returend by
908  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
909  /// SCEVCouldNotCompute object.
910  const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
911    return getBackedgeTakenCount(L, SymbolicMaximum);
912  }
913
914  /// Return true if the backedge taken count is either the value returned by
915  /// getConstantMaxBackedgeTakenCount or zero.
916  bool isBackedgeTakenCountMaxOrZero(const Loop *L);
917
918  /// Return true if the specified loop has an analyzable loop-invariant
919  /// backedge-taken count.
920  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
921
922  // This method should be called by the client when it made any change that
923  // would invalidate SCEV's answers, and the client wants to remove all loop
924  // information held internally by ScalarEvolution. This is intended to be used
925  // when the alternative to forget a loop is too expensive (i.e. large loop
926  // bodies).
927  void forgetAllLoops();
928
929  /// This method should be called by the client when it has changed a loop in
930  /// a way that may effect ScalarEvolution's ability to compute a trip count,
931  /// or if the loop is deleted.  This call is potentially expensive for large
932  /// loop bodies.
933  void forgetLoop(const Loop *L);
934
935  // This method invokes forgetLoop for the outermost loop of the given loop
936  // \p L, making ScalarEvolution forget about all this subtree. This needs to
937  // be done whenever we make a transform that may affect the parameters of the
938  // outer loop, such as exit counts for branches.
939  void forgetTopmostLoop(const Loop *L);
940
941  /// This method should be called by the client when it has changed a value
942  /// in a way that may effect its value, or which may disconnect it from a
943  /// def-use chain linking it to a loop.
944  void forgetValue(Value *V);
945
946  /// Forget LCSSA phi node V of loop L to which a new predecessor was added,
947  /// such that it may no longer be trivial.
948  void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V);
949
950  /// Called when the client has changed the disposition of values in
951  /// this loop.
952  ///
953  /// We don't have a way to invalidate per-loop dispositions. Clear and
954  /// recompute is simpler.
955  void forgetLoopDispositions();
956
957  /// Called when the client has changed the disposition of values in
958  /// a loop or block.
959  ///
960  /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
961  /// and recompute is simpler.
962  void forgetBlockAndLoopDispositions(Value *V = nullptr);
963
964  /// Determine the minimum number of zero bits that S is guaranteed to end in
965  /// (at every loop iteration).  It is, at the same time, the minimum number
966  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
967  /// If S is guaranteed to be 0, it returns the bitwidth of S.
968  uint32_t getMinTrailingZeros(const SCEV *S);
969
970  /// Returns the max constant multiple of S.
971  APInt getConstantMultiple(const SCEV *S);
972
973  // Returns the max constant multiple of S. If S is exactly 0, return 1.
974  APInt getNonZeroConstantMultiple(const SCEV *S);
975
976  /// Determine the unsigned range for a particular SCEV.
977  /// NOTE: This returns a copy of the reference returned by getRangeRef.
978  ConstantRange getUnsignedRange(const SCEV *S) {
979    return getRangeRef(S, HINT_RANGE_UNSIGNED);
980  }
981
982  /// Determine the min of the unsigned range for a particular SCEV.
983  APInt getUnsignedRangeMin(const SCEV *S) {
984    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
985  }
986
987  /// Determine the max of the unsigned range for a particular SCEV.
988  APInt getUnsignedRangeMax(const SCEV *S) {
989    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
990  }
991
992  /// Determine the signed range for a particular SCEV.
993  /// NOTE: This returns a copy of the reference returned by getRangeRef.
994  ConstantRange getSignedRange(const SCEV *S) {
995    return getRangeRef(S, HINT_RANGE_SIGNED);
996  }
997
998  /// Determine the min of the signed range for a particular SCEV.
999  APInt getSignedRangeMin(const SCEV *S) {
1000    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
1001  }
1002
1003  /// Determine the max of the signed range for a particular SCEV.
1004  APInt getSignedRangeMax(const SCEV *S) {
1005    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
1006  }
1007
1008  /// Test if the given expression is known to be negative.
1009  bool isKnownNegative(const SCEV *S);
1010
1011  /// Test if the given expression is known to be positive.
1012  bool isKnownPositive(const SCEV *S);
1013
1014  /// Test if the given expression is known to be non-negative.
1015  bool isKnownNonNegative(const SCEV *S);
1016
1017  /// Test if the given expression is known to be non-positive.
1018  bool isKnownNonPositive(const SCEV *S);
1019
1020  /// Test if the given expression is known to be non-zero.
1021  bool isKnownNonZero(const SCEV *S);
1022
1023  /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1024  /// \p S by substitution of all AddRec sub-expression related to loop \p L
1025  /// with initial value of that SCEV. The second is obtained from \p S by
1026  /// substitution of all AddRec sub-expressions related to loop \p L with post
1027  /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1028  /// sub-expressions (not related to \p L) remain the same.
1029  /// If the \p S contains non-invariant unknown SCEV the function returns
1030  /// CouldNotCompute SCEV in both values of std::pair.
1031  /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1032  /// the function returns pair:
1033  /// first = {0, +, 1}<L2>
1034  /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1035  /// We can see that for the first AddRec sub-expression it was replaced with
1036  /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1037  /// increment value) for the second one. In both cases AddRec expression
1038  /// related to L2 remains the same.
1039  std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1040                                                                const SCEV *S);
1041
1042  /// We'd like to check the predicate on every iteration of the most dominated
1043  /// loop between loops used in LHS and RHS.
1044  /// To do this we use the following list of steps:
1045  /// 1. Collect set S all loops on which either LHS or RHS depend.
1046  /// 2. If S is non-empty
1047  /// a. Let PD be the element of S which is dominated by all other elements.
1048  /// b. Let E(LHS) be value of LHS on entry of PD.
1049  ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
1050  ///    attached to PD on with their entry values.
1051  ///    Define E(RHS) in the same way.
1052  /// c. Let B(LHS) be value of L on backedge of PD.
1053  ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
1054  ///    attached to PD on with their backedge values.
1055  ///    Define B(RHS) in the same way.
1056  /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1057  ///    so we can assert on that.
1058  /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1059  ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1060  bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
1061                           const SCEV *RHS);
1062
1063  /// Test if the given expression is known to satisfy the condition described
1064  /// by Pred, LHS, and RHS.
1065  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1066                        const SCEV *RHS);
1067
1068  /// Check whether the condition described by Pred, LHS, and RHS is true or
1069  /// false. If we know it, return the evaluation of this condition. If neither
1070  /// is proved, return std::nullopt.
1071  std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred,
1072                                        const SCEV *LHS, const SCEV *RHS);
1073
1074  /// Test if the given expression is known to satisfy the condition described
1075  /// by Pred, LHS, and RHS in the given Context.
1076  bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1077                          const SCEV *RHS, const Instruction *CtxI);
1078
1079  /// Check whether the condition described by Pred, LHS, and RHS is true or
1080  /// false in the given \p Context. If we know it, return the evaluation of
1081  /// this condition. If neither is proved, return std::nullopt.
1082  std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred,
1083                                          const SCEV *LHS, const SCEV *RHS,
1084                                          const Instruction *CtxI);
1085
1086  /// Test if the condition described by Pred, LHS, RHS is known to be true on
1087  /// every iteration of the loop of the recurrency LHS.
1088  bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1089                               const SCEVAddRecExpr *LHS, const SCEV *RHS);
1090
1091  /// Information about the number of loop iterations for which a loop exit's
1092  /// branch condition evaluates to the not-taken path.  This is a temporary
1093  /// pair of exact and max expressions that are eventually summarized in
1094  /// ExitNotTakenInfo and BackedgeTakenInfo.
1095  struct ExitLimit {
1096    const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1097    const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1098                                     // times
1099    const SCEV *SymbolicMaxNotTaken;
1100
1101    // Not taken either exactly ConstantMaxNotTaken or zero times
1102    bool MaxOrZero = false;
1103
1104    /// A set of predicate guards for this ExitLimit. The result is only valid
1105    /// if all of the predicates in \c Predicates evaluate to 'true' at
1106    /// run-time.
1107    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1108
1109    void addPredicate(const SCEVPredicate *P) {
1110      assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1111      Predicates.insert(P);
1112    }
1113
1114    /// Construct either an exact exit limit from a constant, or an unknown
1115    /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1116    /// as arguments and asserts enforce that internally.
1117    /*implicit*/ ExitLimit(const SCEV *E);
1118
1119    ExitLimit(
1120        const SCEV *E, const SCEV *ConstantMaxNotTaken,
1121        const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1122        ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList =
1123            std::nullopt);
1124
1125    ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1126              const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1127              const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1128
1129    /// Test whether this ExitLimit contains any computed information, or
1130    /// whether it's all SCEVCouldNotCompute values.
1131    bool hasAnyInfo() const {
1132      return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1133             !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
1134    }
1135
1136    /// Test whether this ExitLimit contains all information.
1137    bool hasFullInfo() const {
1138      return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1139    }
1140  };
1141
1142  /// Compute the number of times the backedge of the specified loop will
1143  /// execute if its exit condition were a conditional branch of ExitCond.
1144  ///
1145  /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
1146  /// branch. In this case, we can assume that the loop exits only if the
1147  /// condition is true and can infer that failing to meet the condition prior
1148  /// to integer wraparound results in undefined behavior.
1149  ///
1150  /// If \p AllowPredicates is set, this call will try to use a minimal set of
1151  /// SCEV predicates in order to return an exact answer.
1152  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1153                                     bool ExitIfTrue, bool ControlsOnlyExit,
1154                                     bool AllowPredicates = false);
1155
1156  /// A predicate is said to be monotonically increasing if may go from being
1157  /// false to being true as the loop iterates, but never the other way
1158  /// around.  A predicate is said to be monotonically decreasing if may go
1159  /// from being true to being false as the loop iterates, but never the other
1160  /// way around.
1161  enum MonotonicPredicateType {
1162    MonotonicallyIncreasing,
1163    MonotonicallyDecreasing
1164  };
1165
1166  /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1167  /// monotonically increasing or decreasing, returns
1168  /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1169  /// respectively. If we could not prove either of these facts, returns
1170  /// std::nullopt.
1171  std::optional<MonotonicPredicateType>
1172  getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1173                            ICmpInst::Predicate Pred);
1174
1175  struct LoopInvariantPredicate {
1176    ICmpInst::Predicate Pred;
1177    const SCEV *LHS;
1178    const SCEV *RHS;
1179
1180    LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1181                           const SCEV *RHS)
1182        : Pred(Pred), LHS(LHS), RHS(RHS) {}
1183  };
1184  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1185  /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1186  /// invariants, available at L's entry. Otherwise, return std::nullopt.
1187  std::optional<LoopInvariantPredicate>
1188  getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1189                            const SCEV *RHS, const Loop *L,
1190                            const Instruction *CtxI = nullptr);
1191
1192  /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1193  /// respect to L at given Context during at least first MaxIter iterations,
1194  /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1195  /// available at L's entry. Otherwise, return std::nullopt. The predicate
1196  /// should be the loop's exit condition.
1197  std::optional<LoopInvariantPredicate>
1198  getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1199                                                const SCEV *LHS,
1200                                                const SCEV *RHS, const Loop *L,
1201                                                const Instruction *CtxI,
1202                                                const SCEV *MaxIter);
1203
1204  std::optional<LoopInvariantPredicate>
1205  getLoopInvariantExitCondDuringFirstIterationsImpl(
1206      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1207      const Instruction *CtxI, const SCEV *MaxIter);
1208
1209  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1210  /// iff any changes were made. If the operands are provably equal or
1211  /// unequal, LHS and RHS are set to the same value and Pred is set to either
1212  /// ICMP_EQ or ICMP_NE.
1213  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1214                            const SCEV *&RHS, unsigned Depth = 0);
1215
1216  /// Return the "disposition" of the given SCEV with respect to the given
1217  /// loop.
1218  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1219
1220  /// Return true if the value of the given SCEV is unchanging in the
1221  /// specified loop.
1222  bool isLoopInvariant(const SCEV *S, const Loop *L);
1223
1224  /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1225  /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1226  /// the header of loop L.
1227  bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1228
1229  /// Return true if the given SCEV changes value in a known way in the
1230  /// specified loop.  This property being true implies that the value is
1231  /// variant in the loop AND that we can emit an expression to compute the
1232  /// value of the expression at any particular loop iteration.
1233  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1234
1235  /// Return the "disposition" of the given SCEV with respect to the given
1236  /// block.
1237  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1238
1239  /// Return true if elements that makes up the given SCEV dominate the
1240  /// specified basic block.
1241  bool dominates(const SCEV *S, const BasicBlock *BB);
1242
1243  /// Return true if elements that makes up the given SCEV properly dominate
1244  /// the specified basic block.
1245  bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1246
1247  /// Test whether the given SCEV has Op as a direct or indirect operand.
1248  bool hasOperand(const SCEV *S, const SCEV *Op) const;
1249
1250  /// Return the size of an element read or written by Inst.
1251  const SCEV *getElementSize(Instruction *Inst);
1252
1253  void print(raw_ostream &OS) const;
1254  void verify() const;
1255  bool invalidate(Function &F, const PreservedAnalyses &PA,
1256                  FunctionAnalysisManager::Invalidator &Inv);
1257
1258  /// Return the DataLayout associated with the module this SCEV instance is
1259  /// operating on.
1260  const DataLayout &getDataLayout() const {
1261    return F.getParent()->getDataLayout();
1262  }
1263
1264  const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1265  const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
1266                                           const SCEV *LHS, const SCEV *RHS);
1267
1268  const SCEVPredicate *
1269  getWrapPredicate(const SCEVAddRecExpr *AR,
1270                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1271
1272  /// Re-writes the SCEV according to the Predicates in \p A.
1273  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1274                                    const SCEVPredicate &A);
1275  /// Tries to convert the \p S expression to an AddRec expression,
1276  /// adding additional predicates to \p Preds as required.
1277  const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1278      const SCEV *S, const Loop *L,
1279      SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1280
1281  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1282  /// constant, and std::nullopt if it isn't.
1283  ///
1284  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1285  /// frugal here since we just bail out of actually constructing and
1286  /// canonicalizing an expression in the cases where the result isn't going
1287  /// to be a constant.
1288  std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1289                                                 const SCEV *RHS);
1290
1291  /// Update no-wrap flags of an AddRec. This may drop the cached info about
1292  /// this AddRec (such as range info) in case if new flags may potentially
1293  /// sharpen it.
1294  void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1295
1296  /// Try to apply information from loop guards for \p L to \p Expr.
1297  const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1298
1299  /// Return true if the loop has no abnormal exits. That is, if the loop
1300  /// is not infinite, it must exit through an explicit edge in the CFG.
1301  /// (As opposed to either a) throwing out of the function or b) entering a
1302  /// well defined infinite loop in some callee.)
1303  bool loopHasNoAbnormalExits(const Loop *L) {
1304    return getLoopProperties(L).HasNoAbnormalExits;
1305  }
1306
1307  /// Return true if this loop is finite by assumption.  That is,
1308  /// to be infinite, it must also be undefined.
1309  bool loopIsFiniteByAssumption(const Loop *L);
1310
1311  /// Return the set of Values that, if poison, will definitively result in S
1312  /// being poison as well. The returned set may be incomplete, i.e. there can
1313  /// be additional Values that also result in S being poison.
1314  void getPoisonGeneratingValues(SmallPtrSetImpl<const Value *> &Result,
1315                                 const SCEV *S);
1316
1317  /// Check whether it is poison-safe to represent the expression S using the
1318  /// instruction I. If such a replacement is performed, the poison flags of
1319  /// instructions in DropPoisonGeneratingInsts must be dropped.
1320  bool canReuseInstruction(
1321      const SCEV *S, Instruction *I,
1322      SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
1323
1324  class FoldID {
1325    const SCEV *Op = nullptr;
1326    const Type *Ty = nullptr;
1327    unsigned short C;
1328
1329  public:
1330    FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
1331      assert(Op);
1332      assert(Ty);
1333    }
1334
1335    FoldID(unsigned short C) : C(C) {}
1336
1337    unsigned computeHash() const {
1338      return detail::combineHashValue(
1339          C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
1340                                      reinterpret_cast<uintptr_t>(Ty)));
1341    }
1342
1343    bool operator==(const FoldID &RHS) const {
1344      return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
1345    }
1346  };
1347
1348private:
1349  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1350  /// Value is deleted.
1351  class SCEVCallbackVH final : public CallbackVH {
1352    ScalarEvolution *SE;
1353
1354    void deleted() override;
1355    void allUsesReplacedWith(Value *New) override;
1356
1357  public:
1358    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1359  };
1360
1361  friend class SCEVCallbackVH;
1362  friend class SCEVExpander;
1363  friend class SCEVUnknown;
1364
1365  /// The function we are analyzing.
1366  Function &F;
1367
1368  /// Does the module have any calls to the llvm.experimental.guard intrinsic
1369  /// at all?  If this is false, we avoid doing work that will only help if
1370  /// thare are guards present in the IR.
1371  bool HasGuards;
1372
1373  /// The target library information for the target we are targeting.
1374  TargetLibraryInfo &TLI;
1375
1376  /// The tracker for \@llvm.assume intrinsics in this function.
1377  AssumptionCache &AC;
1378
1379  /// The dominator tree.
1380  DominatorTree &DT;
1381
1382  /// The loop information for the function we are currently analyzing.
1383  LoopInfo &LI;
1384
1385  /// This SCEV is used to represent unknown trip counts and things.
1386  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1387
1388  /// The type for HasRecMap.
1389  using HasRecMapType = DenseMap<const SCEV *, bool>;
1390
1391  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1392  HasRecMapType HasRecMap;
1393
1394  /// The type for ExprValueMap.
1395  using ValueSetVector = SmallSetVector<Value *, 4>;
1396  using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1397
1398  /// ExprValueMap -- This map records the original values from which
1399  /// the SCEV expr is generated from.
1400  ExprValueMapType ExprValueMap;
1401
1402  /// The type for ValueExprMap.
1403  using ValueExprMapType =
1404      DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1405
1406  /// This is a cache of the values we have analyzed so far.
1407  ValueExprMapType ValueExprMap;
1408
1409  /// This is a cache for expressions that got folded to a different existing
1410  /// SCEV.
1411  DenseMap<FoldID, const SCEV *> FoldCache;
1412  DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
1413
1414  /// Mark predicate values currently being processed by isImpliedCond.
1415  SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1416
1417  /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1418  SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1419
1420  /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1421  SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1422
1423  // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1424  SmallPtrSet<const PHINode *, 6> PendingMerges;
1425
1426  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1427  /// conditions dominating the backedge of a loop.
1428  bool WalkingBEDominatingConds = false;
1429
1430  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1431  /// predicate by splitting it into a set of independent predicates.
1432  bool ProvingSplitPredicate = false;
1433
1434  /// Memoized values for the getConstantMultiple
1435  DenseMap<const SCEV *, APInt> ConstantMultipleCache;
1436
1437  /// Return the Value set from which the SCEV expr is generated.
1438  ArrayRef<Value *> getSCEVValues(const SCEV *S);
1439
1440  /// Private helper method for the getConstantMultiple method.
1441  APInt getConstantMultipleImpl(const SCEV *S);
1442
1443  /// Information about the number of times a particular loop exit may be
1444  /// reached before exiting the loop.
1445  struct ExitNotTakenInfo {
1446    PoisoningVH<BasicBlock> ExitingBlock;
1447    const SCEV *ExactNotTaken;
1448    const SCEV *ConstantMaxNotTaken;
1449    const SCEV *SymbolicMaxNotTaken;
1450    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1451
1452    explicit ExitNotTakenInfo(
1453        PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken,
1454        const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken,
1455        const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
1456        : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1457          ConstantMaxNotTaken(ConstantMaxNotTaken),
1458          SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1459
1460    bool hasAlwaysTruePredicate() const {
1461      return Predicates.empty();
1462    }
1463  };
1464
1465  /// Information about the backedge-taken count of a loop. This currently
1466  /// includes an exact count and a maximum count.
1467  ///
1468  class BackedgeTakenInfo {
1469    friend class ScalarEvolution;
1470
1471    /// A list of computable exits and their not-taken counts.  Loops almost
1472    /// never have more than one computable exit.
1473    SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1474
1475    /// Expression indicating the least constant maximum backedge-taken count of
1476    /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1477    /// only valid if the redicates associated with all loop exits are true.
1478    const SCEV *ConstantMax = nullptr;
1479
1480    /// Indicating if \c ExitNotTaken has an element for every exiting block in
1481    /// the loop.
1482    bool IsComplete = false;
1483
1484    /// Expression indicating the least maximum backedge-taken count of the loop
1485    /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1486    const SCEV *SymbolicMax = nullptr;
1487
1488    /// True iff the backedge is taken either exactly Max or zero times.
1489    bool MaxOrZero = false;
1490
1491    bool isComplete() const { return IsComplete; }
1492    const SCEV *getConstantMax() const { return ConstantMax; }
1493
1494  public:
1495    BackedgeTakenInfo() = default;
1496    BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1497    BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1498
1499    using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1500
1501    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1502    BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1503                      const SCEV *ConstantMax, bool MaxOrZero);
1504
1505    /// Test whether this BackedgeTakenInfo contains any computed information,
1506    /// or whether it's all SCEVCouldNotCompute values.
1507    bool hasAnyInfo() const {
1508      return !ExitNotTaken.empty() ||
1509             !isa<SCEVCouldNotCompute>(getConstantMax());
1510    }
1511
1512    /// Test whether this BackedgeTakenInfo contains complete information.
1513    bool hasFullInfo() const { return isComplete(); }
1514
1515    /// Return an expression indicating the exact *backedge-taken*
1516    /// count of the loop if it is known or SCEVCouldNotCompute
1517    /// otherwise.  If execution makes it to the backedge on every
1518    /// iteration (i.e. there are no abnormal exists like exception
1519    /// throws and thread exits) then this is the number of times the
1520    /// loop header will execute minus one.
1521    ///
1522    /// If the SCEV predicate associated with the answer can be different
1523    /// from AlwaysTrue, we must add a (non null) Predicates argument.
1524    /// The SCEV predicate associated with the answer will be added to
1525    /// Predicates. A run-time check needs to be emitted for the SCEV
1526    /// predicate in order for the answer to be valid.
1527    ///
1528    /// Note that we should always know if we need to pass a predicate
1529    /// argument or not from the way the ExitCounts vector was computed.
1530    /// If we allowed SCEV predicates to be generated when populating this
1531    /// vector, this information can contain them and therefore a
1532    /// SCEVPredicate argument should be added to getExact.
1533    const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1534                         SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
1535
1536    /// Return the number of times this loop exit may fall through to the back
1537    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1538    /// this block before this number of iterations, but may exit via another
1539    /// block.
1540    const SCEV *getExact(const BasicBlock *ExitingBlock,
1541                         ScalarEvolution *SE) const;
1542
1543    /// Get the constant max backedge taken count for the loop.
1544    const SCEV *getConstantMax(ScalarEvolution *SE) const;
1545
1546    /// Get the constant max backedge taken count for the particular loop exit.
1547    const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1548                               ScalarEvolution *SE) const;
1549
1550    /// Get the symbolic max backedge taken count for the loop.
1551    const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1552
1553    /// Get the symbolic max backedge taken count for the particular loop exit.
1554    const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock,
1555                               ScalarEvolution *SE) const;
1556
1557    /// Return true if the number of times this backedge is taken is either the
1558    /// value returned by getConstantMax or zero.
1559    bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1560  };
1561
1562  /// Cache the backedge-taken count of the loops for this function as they
1563  /// are computed.
1564  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1565
1566  /// Cache the predicated backedge-taken count of the loops for this
1567  /// function as they are computed.
1568  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1569
1570  /// Loops whose backedge taken counts directly use this non-constant SCEV.
1571  DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1572      BECountUsers;
1573
1574  /// This map contains entries for all of the PHI instructions that we
1575  /// attempt to compute constant evolutions for.  This allows us to avoid
1576  /// potentially expensive recomputation of these properties.  An instruction
1577  /// maps to null if we are unable to compute its exit value.
1578  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1579
1580  /// This map contains entries for all the expressions that we attempt to
1581  /// compute getSCEVAtScope information for, which can be expensive in
1582  /// extreme cases.
1583  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1584      ValuesAtScopes;
1585
1586  /// Reverse map for invalidation purposes: Stores of which SCEV and which
1587  /// loop this is the value-at-scope of.
1588  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1589      ValuesAtScopesUsers;
1590
1591  /// Memoized computeLoopDisposition results.
1592  DenseMap<const SCEV *,
1593           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1594      LoopDispositions;
1595
1596  struct LoopProperties {
1597    /// Set to true if the loop contains no instruction that can abnormally exit
1598    /// the loop (i.e. via throwing an exception, by terminating the thread
1599    /// cleanly or by infinite looping in a called function).  Strictly
1600    /// speaking, the last one is not leaving the loop, but is identical to
1601    /// leaving the loop for reasoning about undefined behavior.
1602    bool HasNoAbnormalExits;
1603
1604    /// Set to true if the loop contains no instruction that can have side
1605    /// effects (i.e. via throwing an exception, volatile or atomic access).
1606    bool HasNoSideEffects;
1607  };
1608
1609  /// Cache for \c getLoopProperties.
1610  DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1611
1612  /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1613  LoopProperties getLoopProperties(const Loop *L);
1614
1615  bool loopHasNoSideEffects(const Loop *L) {
1616    return getLoopProperties(L).HasNoSideEffects;
1617  }
1618
1619  /// Compute a LoopDisposition value.
1620  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1621
1622  /// Memoized computeBlockDisposition results.
1623  DenseMap<
1624      const SCEV *,
1625      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1626      BlockDispositions;
1627
1628  /// Compute a BlockDisposition value.
1629  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1630
1631  /// Stores all SCEV that use a given SCEV as its direct operand.
1632  DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1633
1634  /// Memoized results from getRange
1635  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1636
1637  /// Memoized results from getRange
1638  DenseMap<const SCEV *, ConstantRange> SignedRanges;
1639
1640  /// Used to parameterize getRange
1641  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1642
1643  /// Set the memoized range for the given SCEV.
1644  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1645                                ConstantRange CR) {
1646    DenseMap<const SCEV *, ConstantRange> &Cache =
1647        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1648
1649    auto Pair = Cache.try_emplace(S, std::move(CR));
1650    if (!Pair.second)
1651      Pair.first->second = std::move(CR);
1652    return Pair.first->second;
1653  }
1654
1655  /// Determine the range for a particular SCEV.
1656  /// NOTE: This returns a reference to an entry in a cache. It must be
1657  /// copied if its needed for longer.
1658  const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1659                                   unsigned Depth = 0);
1660
1661  /// Determine the range for a particular SCEV, but evaluates ranges for
1662  /// operands iteratively first.
1663  const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1664
1665  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1666  /// Helper for \c getRange.
1667  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1668                                    const APInt &MaxBECount);
1669
1670  /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1671  /// Start,+,\p Step}<nw>.
1672  ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1673                                                  const SCEV *MaxBECount,
1674                                                  unsigned BitWidth,
1675                                                  RangeSignHint SignHint);
1676
1677  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1678  /// Step} by "factoring out" a ternary expression from the add recurrence.
1679  /// Helper called by \c getRange.
1680  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1681                                     const APInt &MaxBECount);
1682
1683  /// If the unknown expression U corresponds to a simple recurrence, return
1684  /// a constant range which represents the entire recurrence.  Note that
1685  /// *add* recurrences with loop invariant steps aren't represented by
1686  /// SCEVUnknowns and thus don't use this mechanism.
1687  ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1688
1689  /// We know that there is no SCEV for the specified value.  Analyze the
1690  /// expression recursively.
1691  const SCEV *createSCEV(Value *V);
1692
1693  /// We know that there is no SCEV for the specified value. Create a new SCEV
1694  /// for \p V iteratively.
1695  const SCEV *createSCEVIter(Value *V);
1696  /// Collect operands of \p V for which SCEV expressions should be constructed
1697  /// first. Returns a SCEV directly if it can be constructed trivially for \p
1698  /// V.
1699  const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1700
1701  /// Provide the special handling we need to analyze PHI SCEVs.
1702  const SCEV *createNodeForPHI(PHINode *PN);
1703
1704  /// Helper function called from createNodeForPHI.
1705  const SCEV *createAddRecFromPHI(PHINode *PN);
1706
1707  /// A helper function for createAddRecFromPHI to handle simple cases.
1708  const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1709                                            Value *StartValueV);
1710
1711  /// Helper function called from createNodeForPHI.
1712  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1713
1714  /// Provide special handling for a select-like instruction (currently this
1715  /// is either a select instruction or a phi node).  \p Ty is the type of the
1716  /// instruction being processed, that is assumed equivalent to
1717  /// "Cond ? TrueVal : FalseVal".
1718  std::optional<const SCEV *>
1719  createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1720                                               Value *TrueVal, Value *FalseVal);
1721
1722  /// See if we can model this select-like instruction via umin_seq expression.
1723  const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1724                                                 Value *TrueVal,
1725                                                 Value *FalseVal);
1726
1727  /// Given a value \p V, which is a select-like instruction (currently this is
1728  /// either a select instruction or a phi node), which is assumed equivalent to
1729  ///   Cond ? TrueVal : FalseVal
1730  /// see if we can model it as a SCEV expression.
1731  const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1732                                       Value *FalseVal);
1733
1734  /// Provide the special handling we need to analyze GEP SCEVs.
1735  const SCEV *createNodeForGEP(GEPOperator *GEP);
1736
1737  /// Implementation code for getSCEVAtScope; called at most once for each
1738  /// SCEV+Loop pair.
1739  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1740
1741  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1742  /// values if the loop hasn't been analyzed yet. The returned result is
1743  /// guaranteed not to be predicated.
1744  BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1745
1746  /// Similar to getBackedgeTakenInfo, but will add predicates as required
1747  /// with the purpose of returning complete information.
1748  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1749
1750  /// Compute the number of times the specified loop will iterate.
1751  /// If AllowPredicates is set, we will create new SCEV predicates as
1752  /// necessary in order to return an exact answer.
1753  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1754                                              bool AllowPredicates = false);
1755
1756  /// Compute the number of times the backedge of the specified loop will
1757  /// execute if it exits via the specified block. If AllowPredicates is set,
1758  /// this call will try to use a minimal set of SCEV predicates in order to
1759  /// return an exact answer.
1760  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1761                             bool AllowPredicates = false);
1762
1763  /// Return a symbolic upper bound for the backedge taken count of the loop.
1764  /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1765  /// an arbitrary expression as opposed to only constants.
1766  const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1767
1768  // Helper functions for computeExitLimitFromCond to avoid exponential time
1769  // complexity.
1770
1771  class ExitLimitCache {
1772    // It may look like we need key on the whole (L, ExitIfTrue,
1773    // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
1774    // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1775    // vary the in \c ExitCond and \c ControlsOnlyExit parameters.  We remember
1776    // the initial values of the other values to assert our assumption.
1777    SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1778
1779    const Loop *L;
1780    bool ExitIfTrue;
1781    bool AllowPredicates;
1782
1783  public:
1784    ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1785        : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1786
1787    std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1788                                  bool ExitIfTrue, bool ControlsOnlyExit,
1789                                  bool AllowPredicates);
1790
1791    void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1792                bool ControlsOnlyExit, bool AllowPredicates,
1793                const ExitLimit &EL);
1794  };
1795
1796  using ExitLimitCacheTy = ExitLimitCache;
1797
1798  ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1799                                           const Loop *L, Value *ExitCond,
1800                                           bool ExitIfTrue,
1801                                           bool ControlsOnlyExit,
1802                                           bool AllowPredicates);
1803  ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1804                                         Value *ExitCond, bool ExitIfTrue,
1805                                         bool ControlsOnlyExit,
1806                                         bool AllowPredicates);
1807  std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1808      ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
1809      bool ControlsOnlyExit, bool AllowPredicates);
1810
1811  /// Compute the number of times the backedge of the specified loop will
1812  /// execute if its exit condition were a conditional branch of the ICmpInst
1813  /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1814  /// to use a minimal set of SCEV predicates in order to return an exact
1815  /// answer.
1816  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1817                                     bool ExitIfTrue,
1818                                     bool IsSubExpr,
1819                                     bool AllowPredicates = false);
1820
1821  /// Variant of previous which takes the components representing an ICmp
1822  /// as opposed to the ICmpInst itself.  Note that the prior version can
1823  /// return more precise results in some cases and is preferred when caller
1824  /// has a materialized ICmp.
1825  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
1826                                     const SCEV *LHS, const SCEV *RHS,
1827                                     bool IsSubExpr,
1828                                     bool AllowPredicates = false);
1829
1830  /// Compute the number of times the backedge of the specified loop will
1831  /// execute if its exit condition were a switch with a single exiting case
1832  /// to ExitingBB.
1833  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1834                                                 SwitchInst *Switch,
1835                                                 BasicBlock *ExitingBB,
1836                                                 bool IsSubExpr);
1837
1838  /// Compute the exit limit of a loop that is controlled by a
1839  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1840  /// count in these cases (since SCEV has no way of expressing them), but we
1841  /// can still sometimes compute an upper bound.
1842  ///
1843  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1844  /// RHS`.
1845  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1846                                         ICmpInst::Predicate Pred);
1847
1848  /// If the loop is known to execute a constant number of times (the
1849  /// condition evolves only from constants), try to evaluate a few iterations
1850  /// of the loop until we get the exit condition gets a value of ExitWhen
1851  /// (true or false).  If we cannot evaluate the exit count of the loop,
1852  /// return CouldNotCompute.
1853  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1854                                           bool ExitWhen);
1855
1856  /// Return the number of times an exit condition comparing the specified
1857  /// value to zero will execute.  If not computable, return CouldNotCompute.
1858  /// If AllowPredicates is set, this call will try to use a minimal set of
1859  /// SCEV predicates in order to return an exact answer.
1860  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1861                         bool AllowPredicates = false);
1862
1863  /// Return the number of times an exit condition checking the specified
1864  /// value for nonzero will execute.  If not computable, return
1865  /// CouldNotCompute.
1866  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1867
1868  /// Return the number of times an exit condition containing the specified
1869  /// less-than comparison will execute.  If not computable, return
1870  /// CouldNotCompute.
1871  ///
1872  /// \p isSigned specifies whether the less-than is signed.
1873  ///
1874  /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
1875  /// the branch (loops exits only if condition is true). In this case, we can
1876  /// use NoWrapFlags to skip overflow checks.
1877  ///
1878  /// If \p AllowPredicates is set, this call will try to use a minimal set of
1879  /// SCEV predicates in order to return an exact answer.
1880  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1881                             bool isSigned, bool ControlsOnlyExit,
1882                             bool AllowPredicates = false);
1883
1884  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1885                                bool isSigned, bool IsSubExpr,
1886                                bool AllowPredicates = false);
1887
1888  /// Return a predecessor of BB (which may not be an immediate predecessor)
1889  /// which has exactly one successor from which BB is reachable, or null if
1890  /// no such block is found.
1891  std::pair<const BasicBlock *, const BasicBlock *>
1892  getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1893
1894  /// Test whether the condition described by Pred, LHS, and RHS is true
1895  /// whenever the given FoundCondValue value evaluates to true in given
1896  /// Context. If Context is nullptr, then the found predicate is true
1897  /// everywhere. LHS and FoundLHS may have different type width.
1898  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1899                     const Value *FoundCondValue, bool Inverse,
1900                     const Instruction *Context = nullptr);
1901
1902  /// Test whether the condition described by Pred, LHS, and RHS is true
1903  /// whenever the given FoundCondValue value evaluates to true in given
1904  /// Context. If Context is nullptr, then the found predicate is true
1905  /// everywhere. LHS and FoundLHS must have same type width.
1906  bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1907                                  const SCEV *RHS,
1908                                  ICmpInst::Predicate FoundPred,
1909                                  const SCEV *FoundLHS, const SCEV *FoundRHS,
1910                                  const Instruction *CtxI);
1911
1912  /// Test whether the condition described by Pred, LHS, and RHS is true
1913  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1914  /// true in given Context. If Context is nullptr, then the found predicate is
1915  /// true everywhere.
1916  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1917                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1918                     const SCEV *FoundRHS,
1919                     const Instruction *Context = nullptr);
1920
1921  /// Test whether the condition described by Pred, LHS, and RHS is true
1922  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1923  /// true in given Context. If Context is nullptr, then the found predicate is
1924  /// true everywhere.
1925  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1926                             const SCEV *RHS, const SCEV *FoundLHS,
1927                             const SCEV *FoundRHS,
1928                             const Instruction *Context = nullptr);
1929
1930  /// Test whether the condition described by Pred, LHS, and RHS is true
1931  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1932  /// true. Here LHS is an operation that includes FoundLHS as one of its
1933  /// arguments.
1934  bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1935                              const SCEV *LHS, const SCEV *RHS,
1936                              const SCEV *FoundLHS, const SCEV *FoundRHS,
1937                              unsigned Depth = 0);
1938
1939  /// Test whether the condition described by Pred, LHS, and RHS is true.
1940  /// Use only simple non-recursive types of checks, such as range analysis etc.
1941  bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1942                                       const SCEV *LHS, const SCEV *RHS);
1943
1944  /// Test whether the condition described by Pred, LHS, and RHS is true
1945  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1946  /// true.
1947  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1948                                   const SCEV *RHS, const SCEV *FoundLHS,
1949                                   const SCEV *FoundRHS);
1950
1951  /// Test whether the condition described by Pred, LHS, and RHS is true
1952  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1953  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1954  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1955  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1956                                      const SCEV *RHS,
1957                                      ICmpInst::Predicate FoundPred,
1958                                      const SCEV *FoundLHS,
1959                                      const SCEV *FoundRHS);
1960
1961  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1962  /// by a call to @llvm.experimental.guard in \p BB.
1963  bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1964                         const SCEV *LHS, const SCEV *RHS);
1965
1966  /// Test whether the condition described by Pred, LHS, and RHS is true
1967  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1968  /// true.
1969  ///
1970  /// This routine tries to rule out certain kinds of integer overflow, and
1971  /// then tries to reason about arithmetic properties of the predicates.
1972  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1973                                          const SCEV *LHS, const SCEV *RHS,
1974                                          const SCEV *FoundLHS,
1975                                          const SCEV *FoundRHS);
1976
1977  /// Test whether the condition described by Pred, LHS, and RHS is true
1978  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1979  /// true.
1980  ///
1981  /// This routine tries to weaken the known condition basing on fact that
1982  /// FoundLHS is an AddRec.
1983  bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1984                                           const SCEV *LHS, const SCEV *RHS,
1985                                           const SCEV *FoundLHS,
1986                                           const SCEV *FoundRHS,
1987                                           const Instruction *CtxI);
1988
1989  /// Test whether the condition described by Pred, LHS, and RHS is true
1990  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1991  /// true.
1992  ///
1993  /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1994  /// if it is true for every possible incoming value from their respective
1995  /// basic blocks.
1996  bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1997                         const SCEV *LHS, const SCEV *RHS,
1998                         const SCEV *FoundLHS, const SCEV *FoundRHS,
1999                         unsigned Depth);
2000
2001  /// Test whether the condition described by Pred, LHS, and RHS is true
2002  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2003  /// true.
2004  ///
2005  /// This routine tries to reason about shifts.
2006  bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
2007                                     const SCEV *RHS, const SCEV *FoundLHS,
2008                                     const SCEV *FoundRHS);
2009
2010  /// If we know that the specified Phi is in the header of its containing
2011  /// loop, we know the loop executes a constant number of times, and the PHI
2012  /// node is just a recurrence involving constants, fold it.
2013  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2014                                              const Loop *L);
2015
2016  /// Test if the given expression is known to satisfy the condition described
2017  /// by Pred and the known constant ranges of LHS and RHS.
2018  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
2019                                         const SCEV *LHS, const SCEV *RHS);
2020
2021  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2022  /// integer overflow.
2023  ///
2024  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2025  /// positive.
2026  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
2027                                     const SCEV *RHS);
2028
2029  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2030  /// prove them individually.
2031  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
2032                                    const SCEV *RHS);
2033
2034  /// Try to match the Expr as "(L + R)<Flags>".
2035  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2036                      SCEV::NoWrapFlags &Flags);
2037
2038  /// Forget predicated/non-predicated backedge taken counts for the given loop.
2039  void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2040
2041  /// Drop memoized information for all \p SCEVs.
2042  void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2043
2044  /// Helper for forgetMemoizedResults.
2045  void forgetMemoizedResultsImpl(const SCEV *S);
2046
2047  /// Iterate over instructions in \p Worklist and their users. Erase entries
2048  /// from ValueExprMap and collect SCEV expressions in \p ToForget
2049  void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2050                          SmallPtrSetImpl<Instruction *> &Visited,
2051                          SmallVectorImpl<const SCEV *> &ToForget);
2052
2053  /// Erase Value from ValueExprMap and ExprValueMap.
2054  void eraseValueFromMap(Value *V);
2055
2056  /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2057  void insertValueToMap(Value *V, const SCEV *S);
2058
2059  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2060  /// pointer.
2061  bool checkValidity(const SCEV *S) const;
2062
2063  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2064  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
2065  /// equivalent to proving no signed (resp. unsigned) wrap in
2066  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2067  /// (resp. `SCEVZeroExtendExpr`).
2068  template <typename ExtendOpTy>
2069  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2070                                 const Loop *L);
2071
2072  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2073  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2074
2075  /// Try to prove NSW on \p AR by proving facts about conditions known  on
2076  /// entry and backedge.
2077  SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2078
2079  /// Try to prove NUW on \p AR by proving facts about conditions known on
2080  /// entry and backedge.
2081  SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2082
2083  std::optional<MonotonicPredicateType>
2084  getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2085                                ICmpInst::Predicate Pred);
2086
2087  /// Return SCEV no-wrap flags that can be proven based on reasoning about
2088  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2089  /// would trigger undefined behavior on overflow.
2090  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2091
2092  /// Return a scope which provides an upper bound on the defining scope of
2093  /// 'S'. Specifically, return the first instruction in said bounding scope.
2094  /// Return nullptr if the scope is trivial (function entry).
2095  /// (See scope definition rules associated with flag discussion above)
2096  const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2097
2098  /// Return a scope which provides an upper bound on the defining scope for
2099  /// a SCEV with the operands in Ops.  The outparam Precise is set if the
2100  /// bound found is a precise bound (i.e. must be the defining scope.)
2101  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2102                                           bool &Precise);
2103
2104  /// Wrapper around the above for cases which don't care if the bound
2105  /// is precise.
2106  const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2107
2108  /// Given two instructions in the same function, return true if we can
2109  /// prove B must execute given A executes.
2110  bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2111                                         const Instruction *B);
2112
2113  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
2114  /// this is more complex than proving that just \p I is never poison, since
2115  /// SCEV commons expressions across control flow, and you can have cases
2116  /// like:
2117  ///
2118  ///   idx0 = a + b;
2119  ///   ptr[idx0] = 100;
2120  ///   if (<condition>) {
2121  ///     idx1 = a +nsw b;
2122  ///     ptr[idx1] = 200;
2123  ///   }
2124  ///
2125  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2126  /// hence not sign-overflow) only if "<condition>" is true.  Since both
2127  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2128  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2129  bool isSCEVExprNeverPoison(const Instruction *I);
2130
2131  /// This is like \c isSCEVExprNeverPoison but it specifically works for
2132  /// instructions that will get mapped to SCEV add recurrences.  Return true
2133  /// if \p I will never generate poison under the assumption that \p I is an
2134  /// add recurrence on the loop \p L.
2135  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2136
2137  /// Similar to createAddRecFromPHI, but with the additional flexibility of
2138  /// suggesting runtime overflow checks in case casts are encountered.
2139  /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2140  /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2141  /// into an AddRec, assuming some predicates; The function then returns the
2142  /// AddRec and the predicates as a pair, and caches this pair in
2143  /// PredicatedSCEVRewrites.
2144  /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2145  /// itself (with no predicates) is recorded, and a nullptr with an empty
2146  /// predicates vector is returned as a pair.
2147  std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2148  createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2149
2150  /// Compute the maximum backedge count based on the range of values
2151  /// permitted by Start, End, and Stride. This is for loops of the form
2152  /// {Start, +, Stride} LT End.
2153  ///
2154  /// Preconditions:
2155  /// * the induction variable is known to be positive.
2156  /// * the induction variable is assumed not to overflow (i.e. either it
2157  ///   actually doesn't, or we'd have to immediately execute UB)
2158  /// We *don't* assert these preconditions so please be careful.
2159  const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2160                                     const SCEV *End, unsigned BitWidth,
2161                                     bool IsSigned);
2162
2163  /// Verify if an linear IV with positive stride can overflow when in a
2164  /// less-than comparison, knowing the invariant term of the comparison,
2165  /// the stride.
2166  bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2167
2168  /// Verify if an linear IV with negative stride can overflow when in a
2169  /// greater-than comparison, knowing the invariant term of the comparison,
2170  /// the stride.
2171  bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2172
2173  /// Get add expr already created or create a new one.
2174  const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2175                                 SCEV::NoWrapFlags Flags);
2176
2177  /// Get mul expr already created or create a new one.
2178  const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2179                                 SCEV::NoWrapFlags Flags);
2180
2181  // Get addrec expr already created or create a new one.
2182  const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2183                                    const Loop *L, SCEV::NoWrapFlags Flags);
2184
2185  /// Return x if \p Val is f(x) where f is a 1-1 function.
2186  const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2187
2188  /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2189  /// A loop is considered "used" by an expression if it contains
2190  /// an add rec on said loop.
2191  void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2192
2193  /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2194  /// Assign A and B to LHS and RHS, respectively.
2195  bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2196
2197  /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2198  /// `UniqueSCEVs`.  Return if found, else nullptr.
2199  SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2200
2201  /// Get reachable blocks in this function, making limited use of SCEV
2202  /// reasoning about conditions.
2203  void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2204                          Function &F);
2205
2206  /// Return the given SCEV expression with a new set of operands.
2207  /// This preserves the origial nowrap flags.
2208  const SCEV *getWithOperands(const SCEV *S,
2209                              SmallVectorImpl<const SCEV *> &NewOps);
2210
2211  FoldingSet<SCEV> UniqueSCEVs;
2212  FoldingSet<SCEVPredicate> UniquePreds;
2213  BumpPtrAllocator SCEVAllocator;
2214
2215  /// This maps loops to a list of addrecs that directly use said loop.
2216  DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2217
2218  /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2219  /// they can be rewritten into under certain predicates.
2220  DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2221           std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2222      PredicatedSCEVRewrites;
2223
2224  /// Set of AddRecs for which proving NUW via an induction has already been
2225  /// tried.
2226  SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2227
2228  /// Set of AddRecs for which proving NSW via an induction has already been
2229  /// tried.
2230  SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2231
2232  /// The head of a linked list of all SCEVUnknown values that have been
2233  /// allocated. This is used by releaseMemory to locate them all and call
2234  /// their destructors.
2235  SCEVUnknown *FirstUnknown = nullptr;
2236};
2237
2238/// Analysis pass that exposes the \c ScalarEvolution for a function.
2239class ScalarEvolutionAnalysis
2240    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2241  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2242
2243  static AnalysisKey Key;
2244
2245public:
2246  using Result = ScalarEvolution;
2247
2248  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2249};
2250
2251/// Verifier pass for the \c ScalarEvolutionAnalysis results.
2252class ScalarEvolutionVerifierPass
2253    : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2254public:
2255  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2256  static bool isRequired() { return true; }
2257};
2258
2259/// Printer pass for the \c ScalarEvolutionAnalysis results.
2260class ScalarEvolutionPrinterPass
2261    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2262  raw_ostream &OS;
2263
2264public:
2265  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2266
2267  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2268
2269  static bool isRequired() { return true; }
2270};
2271
2272class ScalarEvolutionWrapperPass : public FunctionPass {
2273  std::unique_ptr<ScalarEvolution> SE;
2274
2275public:
2276  static char ID;
2277
2278  ScalarEvolutionWrapperPass();
2279
2280  ScalarEvolution &getSE() { return *SE; }
2281  const ScalarEvolution &getSE() const { return *SE; }
2282
2283  bool runOnFunction(Function &F) override;
2284  void releaseMemory() override;
2285  void getAnalysisUsage(AnalysisUsage &AU) const override;
2286  void print(raw_ostream &OS, const Module * = nullptr) const override;
2287  void verifyAnalysis() const override;
2288};
2289
2290/// An interface layer with SCEV used to manage how we see SCEV expressions
2291/// for values in the context of existing predicates. We can add new
2292/// predicates, but we cannot remove them.
2293///
2294/// This layer has multiple purposes:
2295///   - provides a simple interface for SCEV versioning.
2296///   - guarantees that the order of transformations applied on a SCEV
2297///     expression for a single Value is consistent across two different
2298///     getSCEV calls. This means that, for example, once we've obtained
2299///     an AddRec expression for a certain value through expression
2300///     rewriting, we will continue to get an AddRec expression for that
2301///     Value.
2302///   - lowers the number of expression rewrites.
2303class PredicatedScalarEvolution {
2304public:
2305  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2306
2307  const SCEVPredicate &getPredicate() const;
2308
2309  /// Returns the SCEV expression of V, in the context of the current SCEV
2310  /// predicate.  The order of transformations applied on the expression of V
2311  /// returned by ScalarEvolution is guaranteed to be preserved, even when
2312  /// adding new predicates.
2313  const SCEV *getSCEV(Value *V);
2314
2315  /// Get the (predicated) backedge count for the analyzed loop.
2316  const SCEV *getBackedgeTakenCount();
2317
2318  /// Adds a new predicate.
2319  void addPredicate(const SCEVPredicate &Pred);
2320
2321  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2322  /// predicates. If we can't transform the expression into an AddRecExpr we
2323  /// return nullptr and not add additional SCEV predicates to the current
2324  /// context.
2325  const SCEVAddRecExpr *getAsAddRec(Value *V);
2326
2327  /// Proves that V doesn't overflow by adding SCEV predicate.
2328  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2329
2330  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2331  /// predicate.
2332  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2333
2334  /// Returns the ScalarEvolution analysis used.
2335  ScalarEvolution *getSE() const { return &SE; }
2336
2337  /// We need to explicitly define the copy constructor because of FlagsMap.
2338  PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2339
2340  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2341  /// The printed text is indented by \p Depth.
2342  void print(raw_ostream &OS, unsigned Depth) const;
2343
2344  /// Check if \p AR1 and \p AR2 are equal, while taking into account
2345  /// Equal predicates in Preds.
2346  bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2347                                const SCEVAddRecExpr *AR2) const;
2348
2349private:
2350  /// Increments the version number of the predicate.  This needs to be called
2351  /// every time the SCEV predicate changes.
2352  void updateGeneration();
2353
2354  /// Holds a SCEV and the version number of the SCEV predicate used to
2355  /// perform the rewrite of the expression.
2356  using RewriteEntry = std::pair<unsigned, const SCEV *>;
2357
2358  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2359  /// number. If this number doesn't match the current Generation, we will
2360  /// need to do a rewrite. To preserve the transformation order of previous
2361  /// rewrites, we will rewrite the previous result instead of the original
2362  /// SCEV.
2363  DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2364
2365  /// Records what NoWrap flags we've added to a Value *.
2366  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2367
2368  /// The ScalarEvolution analysis.
2369  ScalarEvolution &SE;
2370
2371  /// The analyzed Loop.
2372  const Loop &L;
2373
2374  /// The SCEVPredicate that forms our context. We will rewrite all
2375  /// expressions assuming that this predicate true.
2376  std::unique_ptr<SCEVUnionPredicate> Preds;
2377
2378  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2379  /// expression we mark it with the version of the predicate. We use this to
2380  /// figure out if the predicate has changed from the last rewrite of the
2381  /// SCEV. If so, we need to perform a new rewrite.
2382  unsigned Generation = 0;
2383
2384  /// The backedge taken count.
2385  const SCEV *BackedgeCount = nullptr;
2386};
2387
2388template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2389  static inline ScalarEvolution::FoldID getEmptyKey() {
2390    ScalarEvolution::FoldID ID(0);
2391    return ID;
2392  }
2393  static inline ScalarEvolution::FoldID getTombstoneKey() {
2394    ScalarEvolution::FoldID ID(1);
2395    return ID;
2396  }
2397
2398  static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2399    return Val.computeHash();
2400  }
2401
2402  static bool isEqual(const ScalarEvolution::FoldID &LHS,
2403                      const ScalarEvolution::FoldID &RHS) {
2404    return LHS == RHS;
2405  }
2406};
2407
2408} // end namespace llvm
2409
2410#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2411