1//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// DependenceAnalysis is an LLVM pass that analyses dependences between memory
10// accesses. Currently, it is an implementation of the approach described in
11//
12//            Practical Dependence Testing
13//            Goff, Kennedy, Tseng
14//            PLDI 1991
15//
16// There's a single entry point that analyzes the dependence between a pair
17// of memory references in a function, returning either NULL, for no dependence,
18// or a more-or-less detailed description of the dependence between them.
19//
20// This pass exists to support the DependenceGraph pass. There are two separate
21// passes because there's a useful separation of concerns. A dependence exists
22// if two conditions are met:
23//
24//    1) Two instructions reference the same memory location, and
25//    2) There is a flow of control leading from one instruction to the other.
26//
27// DependenceAnalysis attacks the first condition; DependenceGraph will attack
28// the second (it's not yet ready).
29//
30// Please note that this is work in progress and the interface is subject to
31// change.
32//
33// Plausible changes:
34//    Return a set of more precise dependences instead of just one dependence
35//    summarizing all.
36//
37//===----------------------------------------------------------------------===//
38
39#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
40#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41
42#include "llvm/ADT/SmallBitVector.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/PassManager.h"
45#include "llvm/Pass.h"
46
47namespace llvm {
48  class AAResults;
49  template <typename T> class ArrayRef;
50  class Loop;
51  class LoopInfo;
52  class ScalarEvolution;
53  class SCEV;
54  class SCEVConstant;
55  class raw_ostream;
56
57  /// Dependence - This class represents a dependence between two memory
58  /// memory references in a function. It contains minimal information and
59  /// is used in the very common situation where the compiler is unable to
60  /// determine anything beyond the existence of a dependence; that is, it
61  /// represents a confused dependence (see also FullDependence). In most
62  /// cases (for output, flow, and anti dependences), the dependence implies
63  /// an ordering, where the source must precede the destination; in contrast,
64  /// input dependences are unordered.
65  ///
66  /// When a dependence graph is built, each Dependence will be a member of
67  /// the set of predecessor edges for its destination instruction and a set
68  /// if successor edges for its source instruction. These sets are represented
69  /// as singly-linked lists, with the "next" fields stored in the dependence
70  /// itelf.
71  class Dependence {
72  protected:
73    Dependence(Dependence &&) = default;
74    Dependence &operator=(Dependence &&) = default;
75
76  public:
77    Dependence(Instruction *Source, Instruction *Destination)
78        : Src(Source), Dst(Destination) {}
79    virtual ~Dependence() = default;
80
81    /// Dependence::DVEntry - Each level in the distance/direction vector
82    /// has a direction (or perhaps a union of several directions), and
83    /// perhaps a distance.
84    struct DVEntry {
85      enum : unsigned char {
86        NONE = 0,
87        LT = 1,
88        EQ = 2,
89        LE = 3,
90        GT = 4,
91        NE = 5,
92        GE = 6,
93        ALL = 7
94      };
95      unsigned char Direction : 3; // Init to ALL, then refine.
96      bool Scalar    : 1; // Init to true.
97      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
98      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
99      bool Splitable : 1; // Splitting the loop will break dependence.
100      const SCEV *Distance = nullptr; // NULL implies no distance available.
101      DVEntry()
102          : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
103            Splitable(false) {}
104    };
105
106    /// getSrc - Returns the source instruction for this dependence.
107    ///
108    Instruction *getSrc() const { return Src; }
109
110    /// getDst - Returns the destination instruction for this dependence.
111    ///
112    Instruction *getDst() const { return Dst; }
113
114    /// isInput - Returns true if this is an input dependence.
115    ///
116    bool isInput() const;
117
118    /// isOutput - Returns true if this is an output dependence.
119    ///
120    bool isOutput() const;
121
122    /// isFlow - Returns true if this is a flow (aka true) dependence.
123    ///
124    bool isFlow() const;
125
126    /// isAnti - Returns true if this is an anti dependence.
127    ///
128    bool isAnti() const;
129
130    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
131    ///
132    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
133
134    /// isUnordered - Returns true if dependence is Input
135    ///
136    bool isUnordered() const { return isInput(); }
137
138    /// isLoopIndependent - Returns true if this is a loop-independent
139    /// dependence.
140    virtual bool isLoopIndependent() const { return true; }
141
142    /// isConfused - Returns true if this dependence is confused
143    /// (the compiler understands nothing and makes worst-case
144    /// assumptions).
145    virtual bool isConfused() const { return true; }
146
147    /// isConsistent - Returns true if this dependence is consistent
148    /// (occurs every time the source and destination are executed).
149    virtual bool isConsistent() const { return false; }
150
151    /// getLevels - Returns the number of common loops surrounding the
152    /// source and destination of the dependence.
153    virtual unsigned getLevels() const { return 0; }
154
155    /// getDirection - Returns the direction associated with a particular
156    /// level.
157    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
158
159    /// getDistance - Returns the distance (or NULL) associated with a
160    /// particular level.
161    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
162
163    /// Check if the direction vector is negative. A negative direction
164    /// vector means Src and Dst are reversed in the actual program.
165    virtual bool isDirectionNegative() const { return false; }
166
167    /// If the direction vector is negative, normalize the direction
168    /// vector to make it non-negative. Normalization is done by reversing
169    /// Src and Dst, plus reversing the dependence directions and distances
170    /// in the vector.
171    virtual bool normalize(ScalarEvolution *SE) { return false; }
172
173    /// isPeelFirst - Returns true if peeling the first iteration from
174    /// this loop will break this dependence.
175    virtual bool isPeelFirst(unsigned Level) const { return false; }
176
177    /// isPeelLast - Returns true if peeling the last iteration from
178    /// this loop will break this dependence.
179    virtual bool isPeelLast(unsigned Level) const { return false; }
180
181    /// isSplitable - Returns true if splitting this loop will break
182    /// the dependence.
183    virtual bool isSplitable(unsigned Level) const { return false; }
184
185    /// isScalar - Returns true if a particular level is scalar; that is,
186    /// if no subscript in the source or destination mention the induction
187    /// variable associated with the loop at this level.
188    virtual bool isScalar(unsigned Level) const;
189
190    /// getNextPredecessor - Returns the value of the NextPredecessor
191    /// field.
192    const Dependence *getNextPredecessor() const { return NextPredecessor; }
193
194    /// getNextSuccessor - Returns the value of the NextSuccessor
195    /// field.
196    const Dependence *getNextSuccessor() const { return NextSuccessor; }
197
198    /// setNextPredecessor - Sets the value of the NextPredecessor
199    /// field.
200    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
201
202    /// setNextSuccessor - Sets the value of the NextSuccessor
203    /// field.
204    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
205
206    /// dump - For debugging purposes, dumps a dependence to OS.
207    ///
208    void dump(raw_ostream &OS) const;
209
210  protected:
211    Instruction *Src, *Dst;
212
213  private:
214    const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
215    friend class DependenceInfo;
216  };
217
218  /// FullDependence - This class represents a dependence between two memory
219  /// references in a function. It contains detailed information about the
220  /// dependence (direction vectors, etc.) and is used when the compiler is
221  /// able to accurately analyze the interaction of the references; that is,
222  /// it is not a confused dependence (see Dependence). In most cases
223  /// (for output, flow, and anti dependences), the dependence implies an
224  /// ordering, where the source must precede the destination; in contrast,
225  /// input dependences are unordered.
226  class FullDependence final : public Dependence {
227  public:
228    FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
229                   unsigned Levels);
230
231    /// isLoopIndependent - Returns true if this is a loop-independent
232    /// dependence.
233    bool isLoopIndependent() const override { return LoopIndependent; }
234
235    /// isConfused - Returns true if this dependence is confused
236    /// (the compiler understands nothing and makes worst-case
237    /// assumptions).
238    bool isConfused() const override { return false; }
239
240    /// isConsistent - Returns true if this dependence is consistent
241    /// (occurs every time the source and destination are executed).
242    bool isConsistent() const override { return Consistent; }
243
244    /// getLevels - Returns the number of common loops surrounding the
245    /// source and destination of the dependence.
246    unsigned getLevels() const override { return Levels; }
247
248    /// getDirection - Returns the direction associated with a particular
249    /// level.
250    unsigned getDirection(unsigned Level) const override;
251
252    /// getDistance - Returns the distance (or NULL) associated with a
253    /// particular level.
254    const SCEV *getDistance(unsigned Level) const override;
255
256    /// Check if the direction vector is negative. A negative direction
257    /// vector means Src and Dst are reversed in the actual program.
258    bool isDirectionNegative() const override;
259
260    /// If the direction vector is negative, normalize the direction
261    /// vector to make it non-negative. Normalization is done by reversing
262    /// Src and Dst, plus reversing the dependence directions and distances
263    /// in the vector.
264    bool normalize(ScalarEvolution *SE) override;
265
266    /// isPeelFirst - Returns true if peeling the first iteration from
267    /// this loop will break this dependence.
268    bool isPeelFirst(unsigned Level) const override;
269
270    /// isPeelLast - Returns true if peeling the last iteration from
271    /// this loop will break this dependence.
272    bool isPeelLast(unsigned Level) const override;
273
274    /// isSplitable - Returns true if splitting the loop will break
275    /// the dependence.
276    bool isSplitable(unsigned Level) const override;
277
278    /// isScalar - Returns true if a particular level is scalar; that is,
279    /// if no subscript in the source or destination mention the induction
280    /// variable associated with the loop at this level.
281    bool isScalar(unsigned Level) const override;
282
283  private:
284    unsigned short Levels;
285    bool LoopIndependent;
286    bool Consistent; // Init to true, then refine.
287    std::unique_ptr<DVEntry[]> DV;
288    friend class DependenceInfo;
289  };
290
291  /// DependenceInfo - This class is the main dependence-analysis driver.
292  ///
293  class DependenceInfo {
294  public:
295    DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
296                   LoopInfo *LI)
297        : AA(AA), SE(SE), LI(LI), F(F) {}
298
299    /// Handle transitive invalidation when the cached analysis results go away.
300    bool invalidate(Function &F, const PreservedAnalyses &PA,
301                    FunctionAnalysisManager::Invalidator &Inv);
302
303    /// depends - Tests for a dependence between the Src and Dst instructions.
304    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
305    /// FullDependence) with as much information as can be gleaned.
306    /// The flag PossiblyLoopIndependent should be set by the caller
307    /// if it appears that control flow can reach from Src to Dst
308    /// without traversing a loop back edge.
309    std::unique_ptr<Dependence> depends(Instruction *Src,
310                                        Instruction *Dst,
311                                        bool PossiblyLoopIndependent);
312
313    /// getSplitIteration - Give a dependence that's splittable at some
314    /// particular level, return the iteration that should be used to split
315    /// the loop.
316    ///
317    /// Generally, the dependence analyzer will be used to build
318    /// a dependence graph for a function (basically a map from instructions
319    /// to dependences). Looking for cycles in the graph shows us loops
320    /// that cannot be trivially vectorized/parallelized.
321    ///
322    /// We can try to improve the situation by examining all the dependences
323    /// that make up the cycle, looking for ones we can break.
324    /// Sometimes, peeling the first or last iteration of a loop will break
325    /// dependences, and there are flags for those possibilities.
326    /// Sometimes, splitting a loop at some other iteration will do the trick,
327    /// and we've got a flag for that case. Rather than waste the space to
328    /// record the exact iteration (since we rarely know), we provide
329    /// a method that calculates the iteration. It's a drag that it must work
330    /// from scratch, but wonderful in that it's possible.
331    ///
332    /// Here's an example:
333    ///
334    ///    for (i = 0; i < 10; i++)
335    ///        A[i] = ...
336    ///        ... = A[11 - i]
337    ///
338    /// There's a loop-carried flow dependence from the store to the load,
339    /// found by the weak-crossing SIV test. The dependence will have a flag,
340    /// indicating that the dependence can be broken by splitting the loop.
341    /// Calling getSplitIteration will return 5.
342    /// Splitting the loop breaks the dependence, like so:
343    ///
344    ///    for (i = 0; i <= 5; i++)
345    ///        A[i] = ...
346    ///        ... = A[11 - i]
347    ///    for (i = 6; i < 10; i++)
348    ///        A[i] = ...
349    ///        ... = A[11 - i]
350    ///
351    /// breaks the dependence and allows us to vectorize/parallelize
352    /// both loops.
353    const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
354
355    Function *getFunction() const { return F; }
356
357  private:
358    AAResults *AA;
359    ScalarEvolution *SE;
360    LoopInfo *LI;
361    Function *F;
362
363    /// Subscript - This private struct represents a pair of subscripts from
364    /// a pair of potentially multi-dimensional array references. We use a
365    /// vector of them to guide subscript partitioning.
366    struct Subscript {
367      const SCEV *Src;
368      const SCEV *Dst;
369      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
370      SmallBitVector Loops;
371      SmallBitVector GroupLoops;
372      SmallBitVector Group;
373    };
374
375    struct CoefficientInfo {
376      const SCEV *Coeff;
377      const SCEV *PosPart;
378      const SCEV *NegPart;
379      const SCEV *Iterations;
380    };
381
382    struct BoundInfo {
383      const SCEV *Iterations;
384      const SCEV *Upper[8];
385      const SCEV *Lower[8];
386      unsigned char Direction;
387      unsigned char DirSet;
388    };
389
390    /// Constraint - This private class represents a constraint, as defined
391    /// in the paper
392    ///
393    ///           Practical Dependence Testing
394    ///           Goff, Kennedy, Tseng
395    ///           PLDI 1991
396    ///
397    /// There are 5 kinds of constraint, in a hierarchy.
398    ///   1) Any - indicates no constraint, any dependence is possible.
399    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
400    ///             representing the dependence equation.
401    ///   3) Distance - The value d of the dependence distance;
402    ///   4) Point - A point <x, y> representing the dependence from
403    ///              iteration x to iteration y.
404    ///   5) Empty - No dependence is possible.
405    class Constraint {
406    private:
407      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
408      ScalarEvolution *SE;
409      const SCEV *A;
410      const SCEV *B;
411      const SCEV *C;
412      const Loop *AssociatedLoop;
413
414    public:
415      /// isEmpty - Return true if the constraint is of kind Empty.
416      bool isEmpty() const { return Kind == Empty; }
417
418      /// isPoint - Return true if the constraint is of kind Point.
419      bool isPoint() const { return Kind == Point; }
420
421      /// isDistance - Return true if the constraint is of kind Distance.
422      bool isDistance() const { return Kind == Distance; }
423
424      /// isLine - Return true if the constraint is of kind Line.
425      /// Since Distance's can also be represented as Lines, we also return
426      /// true if the constraint is of kind Distance.
427      bool isLine() const { return Kind == Line || Kind == Distance; }
428
429      /// isAny - Return true if the constraint is of kind Any;
430      bool isAny() const { return Kind == Any; }
431
432      /// getX - If constraint is a point <X, Y>, returns X.
433      /// Otherwise assert.
434      const SCEV *getX() const;
435
436      /// getY - If constraint is a point <X, Y>, returns Y.
437      /// Otherwise assert.
438      const SCEV *getY() const;
439
440      /// getA - If constraint is a line AX + BY = C, returns A.
441      /// Otherwise assert.
442      const SCEV *getA() const;
443
444      /// getB - If constraint is a line AX + BY = C, returns B.
445      /// Otherwise assert.
446      const SCEV *getB() const;
447
448      /// getC - If constraint is a line AX + BY = C, returns C.
449      /// Otherwise assert.
450      const SCEV *getC() const;
451
452      /// getD - If constraint is a distance, returns D.
453      /// Otherwise assert.
454      const SCEV *getD() const;
455
456      /// getAssociatedLoop - Returns the loop associated with this constraint.
457      const Loop *getAssociatedLoop() const;
458
459      /// setPoint - Change a constraint to Point.
460      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
461
462      /// setLine - Change a constraint to Line.
463      void setLine(const SCEV *A, const SCEV *B,
464                   const SCEV *C, const Loop *CurrentLoop);
465
466      /// setDistance - Change a constraint to Distance.
467      void setDistance(const SCEV *D, const Loop *CurrentLoop);
468
469      /// setEmpty - Change a constraint to Empty.
470      void setEmpty();
471
472      /// setAny - Change a constraint to Any.
473      void setAny(ScalarEvolution *SE);
474
475      /// dump - For debugging purposes. Dumps the constraint
476      /// out to OS.
477      void dump(raw_ostream &OS) const;
478    };
479
480    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
481    /// instructions and establishes their shared loops. Sets the variables
482    /// CommonLevels, SrcLevels, and MaxLevels.
483    /// The source and destination instructions needn't be contained in the same
484    /// loop. The routine establishNestingLevels finds the level of most deeply
485    /// nested loop that contains them both, CommonLevels. An instruction that's
486    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
487    /// of the source plus the level of the destination, minus CommonLevels.
488    /// This lets us allocate vectors MaxLevels in length, with room for every
489    /// distinct loop referenced in both the source and destination subscripts.
490    /// The variable SrcLevels is the nesting depth of the source instruction.
491    /// It's used to help calculate distinct loops referenced by the destination.
492    /// Here's the map from loops to levels:
493    ///            0 - unused
494    ///            1 - outermost common loop
495    ///          ... - other common loops
496    /// CommonLevels - innermost common loop
497    ///          ... - loops containing Src but not Dst
498    ///    SrcLevels - innermost loop containing Src but not Dst
499    ///          ... - loops containing Dst but not Src
500    ///    MaxLevels - innermost loop containing Dst but not Src
501    /// Consider the follow code fragment:
502    ///    for (a = ...) {
503    ///      for (b = ...) {
504    ///        for (c = ...) {
505    ///          for (d = ...) {
506    ///            A[] = ...;
507    ///          }
508    ///        }
509    ///        for (e = ...) {
510    ///          for (f = ...) {
511    ///            for (g = ...) {
512    ///              ... = A[];
513    ///            }
514    ///          }
515    ///        }
516    ///      }
517    ///    }
518    /// If we're looking at the possibility of a dependence between the store
519    /// to A (the Src) and the load from A (the Dst), we'll note that they
520    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
521    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
522    /// A map from loop names to level indices would look like
523    ///     a - 1
524    ///     b - 2 = CommonLevels
525    ///     c - 3
526    ///     d - 4 = SrcLevels
527    ///     e - 5
528    ///     f - 6
529    ///     g - 7 = MaxLevels
530    void establishNestingLevels(const Instruction *Src,
531                                const Instruction *Dst);
532
533    unsigned CommonLevels, SrcLevels, MaxLevels;
534
535    /// mapSrcLoop - Given one of the loops containing the source, return
536    /// its level index in our numbering scheme.
537    unsigned mapSrcLoop(const Loop *SrcLoop) const;
538
539    /// mapDstLoop - Given one of the loops containing the destination,
540    /// return its level index in our numbering scheme.
541    unsigned mapDstLoop(const Loop *DstLoop) const;
542
543    /// isLoopInvariant - Returns true if Expression is loop invariant
544    /// in LoopNest.
545    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
546
547    /// Makes sure all subscript pairs share the same integer type by
548    /// sign-extending as necessary.
549    /// Sign-extending a subscript is safe because getelementptr assumes the
550    /// array subscripts are signed.
551    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
552
553    /// removeMatchingExtensions - Examines a subscript pair.
554    /// If the source and destination are identically sign (or zero)
555    /// extended, it strips off the extension in an effort to
556    /// simplify the actual analysis.
557    void removeMatchingExtensions(Subscript *Pair);
558
559    /// collectCommonLoops - Finds the set of loops from the LoopNest that
560    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
561    void collectCommonLoops(const SCEV *Expression,
562                            const Loop *LoopNest,
563                            SmallBitVector &Loops) const;
564
565    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
566    /// linear. Collect the set of loops mentioned by Src.
567    bool checkSrcSubscript(const SCEV *Src,
568                           const Loop *LoopNest,
569                           SmallBitVector &Loops);
570
571    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
572    /// linear. Collect the set of loops mentioned by Dst.
573    bool checkDstSubscript(const SCEV *Dst,
574                           const Loop *LoopNest,
575                           SmallBitVector &Loops);
576
577    /// isKnownPredicate - Compare X and Y using the predicate Pred.
578    /// Basically a wrapper for SCEV::isKnownPredicate,
579    /// but tries harder, especially in the presence of sign and zero
580    /// extensions and symbolics.
581    bool isKnownPredicate(ICmpInst::Predicate Pred,
582                          const SCEV *X,
583                          const SCEV *Y) const;
584
585    /// isKnownLessThan - Compare to see if S is less than Size
586    /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
587    /// checking if S is an AddRec and we can prove lessthan using the loop
588    /// bounds.
589    bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
590
591    /// isKnownNonNegative - Compare to see if S is known not to be negative
592    /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
593    /// Proving there is no wrapping going on.
594    bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
595
596    /// collectUpperBound - All subscripts are the same type (on my machine,
597    /// an i64). The loop bound may be a smaller type. collectUpperBound
598    /// find the bound, if available, and zero extends it to the Type T.
599    /// (I zero extend since the bound should always be >= 0.)
600    /// If no upper bound is available, return NULL.
601    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
602
603    /// collectConstantUpperBound - Calls collectUpperBound(), then
604    /// attempts to cast it to SCEVConstant. If the cast fails,
605    /// returns NULL.
606    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
607
608    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
609    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
610    /// Collects the associated loops in a set.
611    Subscript::ClassificationKind classifyPair(const SCEV *Src,
612                                           const Loop *SrcLoopNest,
613                                           const SCEV *Dst,
614                                           const Loop *DstLoopNest,
615                                           SmallBitVector &Loops);
616
617    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
618    /// Returns true if any possible dependence is disproved.
619    /// If there might be a dependence, returns false.
620    /// If the dependence isn't proven to exist,
621    /// marks the Result as inconsistent.
622    bool testZIV(const SCEV *Src,
623                 const SCEV *Dst,
624                 FullDependence &Result) const;
625
626    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
627    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
628    /// i and j are induction variables, c1 and c2 are loop invariant,
629    /// and a1 and a2 are constant.
630    /// Returns true if any possible dependence is disproved.
631    /// If there might be a dependence, returns false.
632    /// Sets appropriate direction vector entry and, when possible,
633    /// the distance vector entry.
634    /// If the dependence isn't proven to exist,
635    /// marks the Result as inconsistent.
636    bool testSIV(const SCEV *Src,
637                 const SCEV *Dst,
638                 unsigned &Level,
639                 FullDependence &Result,
640                 Constraint &NewConstraint,
641                 const SCEV *&SplitIter) const;
642
643    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
644    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
645    /// where i and j are induction variables, c1 and c2 are loop invariant,
646    /// and a1 and a2 are constant.
647    /// With minor algebra, this test can also be used for things like
648    /// [c1 + a1*i + a2*j][c2].
649    /// Returns true if any possible dependence is disproved.
650    /// If there might be a dependence, returns false.
651    /// Marks the Result as inconsistent.
652    bool testRDIV(const SCEV *Src,
653                  const SCEV *Dst,
654                  FullDependence &Result) const;
655
656    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
657    /// Returns true if dependence disproved.
658    /// Can sometimes refine direction vectors.
659    bool testMIV(const SCEV *Src,
660                 const SCEV *Dst,
661                 const SmallBitVector &Loops,
662                 FullDependence &Result) const;
663
664    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
665    /// for dependence.
666    /// Things of the form [c1 + a*i] and [c2 + a*i],
667    /// where i is an induction variable, c1 and c2 are loop invariant,
668    /// and a is a constant
669    /// Returns true if any possible dependence is disproved.
670    /// If there might be a dependence, returns false.
671    /// Sets appropriate direction and distance.
672    bool strongSIVtest(const SCEV *Coeff,
673                       const SCEV *SrcConst,
674                       const SCEV *DstConst,
675                       const Loop *CurrentLoop,
676                       unsigned Level,
677                       FullDependence &Result,
678                       Constraint &NewConstraint) const;
679
680    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
681    /// (Src and Dst) for dependence.
682    /// Things of the form [c1 + a*i] and [c2 - a*i],
683    /// where i is an induction variable, c1 and c2 are loop invariant,
684    /// and a is a constant.
685    /// Returns true if any possible dependence is disproved.
686    /// If there might be a dependence, returns false.
687    /// Sets appropriate direction entry.
688    /// Set consistent to false.
689    /// Marks the dependence as splitable.
690    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
691                             const SCEV *SrcConst,
692                             const SCEV *DstConst,
693                             const Loop *CurrentLoop,
694                             unsigned Level,
695                             FullDependence &Result,
696                             Constraint &NewConstraint,
697                             const SCEV *&SplitIter) const;
698
699    /// ExactSIVtest - Tests the SIV subscript pair
700    /// (Src and Dst) for dependence.
701    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
702    /// where i is an induction variable, c1 and c2 are loop invariant,
703    /// and a1 and a2 are constant.
704    /// Returns true if any possible dependence is disproved.
705    /// If there might be a dependence, returns false.
706    /// Sets appropriate direction entry.
707    /// Set consistent to false.
708    bool exactSIVtest(const SCEV *SrcCoeff,
709                      const SCEV *DstCoeff,
710                      const SCEV *SrcConst,
711                      const SCEV *DstConst,
712                      const Loop *CurrentLoop,
713                      unsigned Level,
714                      FullDependence &Result,
715                      Constraint &NewConstraint) const;
716
717    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
718    /// (Src and Dst) for dependence.
719    /// Things of the form [c1] and [c2 + a*i],
720    /// where i is an induction variable, c1 and c2 are loop invariant,
721    /// and a is a constant. See also weakZeroDstSIVtest.
722    /// Returns true if any possible dependence is disproved.
723    /// If there might be a dependence, returns false.
724    /// Sets appropriate direction entry.
725    /// Set consistent to false.
726    /// If loop peeling will break the dependence, mark appropriately.
727    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
728                            const SCEV *SrcConst,
729                            const SCEV *DstConst,
730                            const Loop *CurrentLoop,
731                            unsigned Level,
732                            FullDependence &Result,
733                            Constraint &NewConstraint) const;
734
735    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
736    /// (Src and Dst) for dependence.
737    /// Things of the form [c1 + a*i] and [c2],
738    /// where i is an induction variable, c1 and c2 are loop invariant,
739    /// and a is a constant. See also weakZeroSrcSIVtest.
740    /// Returns true if any possible dependence is disproved.
741    /// If there might be a dependence, returns false.
742    /// Sets appropriate direction entry.
743    /// Set consistent to false.
744    /// If loop peeling will break the dependence, mark appropriately.
745    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
746                            const SCEV *SrcConst,
747                            const SCEV *DstConst,
748                            const Loop *CurrentLoop,
749                            unsigned Level,
750                            FullDependence &Result,
751                            Constraint &NewConstraint) const;
752
753    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
754    /// Things of the form [c1 + a*i] and [c2 + b*j],
755    /// where i and j are induction variable, c1 and c2 are loop invariant,
756    /// and a and b are constants.
757    /// Returns true if any possible dependence is disproved.
758    /// Marks the result as inconsistent.
759    /// Works in some cases that symbolicRDIVtest doesn't,
760    /// and vice versa.
761    bool exactRDIVtest(const SCEV *SrcCoeff,
762                       const SCEV *DstCoeff,
763                       const SCEV *SrcConst,
764                       const SCEV *DstConst,
765                       const Loop *SrcLoop,
766                       const Loop *DstLoop,
767                       FullDependence &Result) const;
768
769    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
770    /// Things of the form [c1 + a*i] and [c2 + b*j],
771    /// where i and j are induction variable, c1 and c2 are loop invariant,
772    /// and a and b are constants.
773    /// Returns true if any possible dependence is disproved.
774    /// Marks the result as inconsistent.
775    /// Works in some cases that exactRDIVtest doesn't,
776    /// and vice versa. Can also be used as a backup for
777    /// ordinary SIV tests.
778    bool symbolicRDIVtest(const SCEV *SrcCoeff,
779                          const SCEV *DstCoeff,
780                          const SCEV *SrcConst,
781                          const SCEV *DstConst,
782                          const Loop *SrcLoop,
783                          const Loop *DstLoop) const;
784
785    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
786    /// Returns true if any possible dependence is disproved.
787    /// Marks the result as inconsistent.
788    /// Can sometimes disprove the equal direction for 1 or more loops.
789    //  Can handle some symbolics that even the SIV tests don't get,
790    /// so we use it as a backup for everything.
791    bool gcdMIVtest(const SCEV *Src,
792                    const SCEV *Dst,
793                    FullDependence &Result) const;
794
795    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
796    /// Returns true if any possible dependence is disproved.
797    /// Marks the result as inconsistent.
798    /// Computes directions.
799    bool banerjeeMIVtest(const SCEV *Src,
800                         const SCEV *Dst,
801                         const SmallBitVector &Loops,
802                         FullDependence &Result) const;
803
804    /// collectCoefficientInfo - Walks through the subscript,
805    /// collecting each coefficient, the associated loop bounds,
806    /// and recording its positive and negative parts for later use.
807    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
808                                      bool SrcFlag,
809                                      const SCEV *&Constant) const;
810
811    /// getPositivePart - X^+ = max(X, 0).
812    ///
813    const SCEV *getPositivePart(const SCEV *X) const;
814
815    /// getNegativePart - X^- = min(X, 0).
816    ///
817    const SCEV *getNegativePart(const SCEV *X) const;
818
819    /// getLowerBound - Looks through all the bounds info and
820    /// computes the lower bound given the current direction settings
821    /// at each level.
822    const SCEV *getLowerBound(BoundInfo *Bound) const;
823
824    /// getUpperBound - Looks through all the bounds info and
825    /// computes the upper bound given the current direction settings
826    /// at each level.
827    const SCEV *getUpperBound(BoundInfo *Bound) const;
828
829    /// exploreDirections - Hierarchically expands the direction vector
830    /// search space, combining the directions of discovered dependences
831    /// in the DirSet field of Bound. Returns the number of distinct
832    /// dependences discovered. If the dependence is disproved,
833    /// it will return 0.
834    unsigned exploreDirections(unsigned Level,
835                               CoefficientInfo *A,
836                               CoefficientInfo *B,
837                               BoundInfo *Bound,
838                               const SmallBitVector &Loops,
839                               unsigned &DepthExpanded,
840                               const SCEV *Delta) const;
841
842    /// testBounds - Returns true iff the current bounds are plausible.
843    bool testBounds(unsigned char DirKind,
844                    unsigned Level,
845                    BoundInfo *Bound,
846                    const SCEV *Delta) const;
847
848    /// findBoundsALL - Computes the upper and lower bounds for level K
849    /// using the * direction. Records them in Bound.
850    void findBoundsALL(CoefficientInfo *A,
851                       CoefficientInfo *B,
852                       BoundInfo *Bound,
853                       unsigned K) const;
854
855    /// findBoundsLT - Computes the upper and lower bounds for level K
856    /// using the < direction. Records them in Bound.
857    void findBoundsLT(CoefficientInfo *A,
858                      CoefficientInfo *B,
859                      BoundInfo *Bound,
860                      unsigned K) const;
861
862    /// findBoundsGT - Computes the upper and lower bounds for level K
863    /// using the > direction. Records them in Bound.
864    void findBoundsGT(CoefficientInfo *A,
865                      CoefficientInfo *B,
866                      BoundInfo *Bound,
867                      unsigned K) const;
868
869    /// findBoundsEQ - Computes the upper and lower bounds for level K
870    /// using the = direction. Records them in Bound.
871    void findBoundsEQ(CoefficientInfo *A,
872                      CoefficientInfo *B,
873                      BoundInfo *Bound,
874                      unsigned K) const;
875
876    /// intersectConstraints - Updates X with the intersection
877    /// of the Constraints X and Y. Returns true if X has changed.
878    bool intersectConstraints(Constraint *X,
879                              const Constraint *Y);
880
881    /// propagate - Review the constraints, looking for opportunities
882    /// to simplify a subscript pair (Src and Dst).
883    /// Return true if some simplification occurs.
884    /// If the simplification isn't exact (that is, if it is conservative
885    /// in terms of dependence), set consistent to false.
886    bool propagate(const SCEV *&Src,
887                   const SCEV *&Dst,
888                   SmallBitVector &Loops,
889                   SmallVectorImpl<Constraint> &Constraints,
890                   bool &Consistent);
891
892    /// propagateDistance - Attempt to propagate a distance
893    /// constraint into a subscript pair (Src and Dst).
894    /// Return true if some simplification occurs.
895    /// If the simplification isn't exact (that is, if it is conservative
896    /// in terms of dependence), set consistent to false.
897    bool propagateDistance(const SCEV *&Src,
898                           const SCEV *&Dst,
899                           Constraint &CurConstraint,
900                           bool &Consistent);
901
902    /// propagatePoint - Attempt to propagate a point
903    /// constraint into a subscript pair (Src and Dst).
904    /// Return true if some simplification occurs.
905    bool propagatePoint(const SCEV *&Src,
906                        const SCEV *&Dst,
907                        Constraint &CurConstraint);
908
909    /// propagateLine - Attempt to propagate a line
910    /// constraint into a subscript pair (Src and Dst).
911    /// Return true if some simplification occurs.
912    /// If the simplification isn't exact (that is, if it is conservative
913    /// in terms of dependence), set consistent to false.
914    bool propagateLine(const SCEV *&Src,
915                       const SCEV *&Dst,
916                       Constraint &CurConstraint,
917                       bool &Consistent);
918
919    /// findCoefficient - Given a linear SCEV,
920    /// return the coefficient corresponding to specified loop.
921    /// If there isn't one, return the SCEV constant 0.
922    /// For example, given a*i + b*j + c*k, returning the coefficient
923    /// corresponding to the j loop would yield b.
924    const SCEV *findCoefficient(const SCEV *Expr,
925                                const Loop *TargetLoop) const;
926
927    /// zeroCoefficient - Given a linear SCEV,
928    /// return the SCEV given by zeroing out the coefficient
929    /// corresponding to the specified loop.
930    /// For example, given a*i + b*j + c*k, zeroing the coefficient
931    /// corresponding to the j loop would yield a*i + c*k.
932    const SCEV *zeroCoefficient(const SCEV *Expr,
933                                const Loop *TargetLoop) const;
934
935    /// addToCoefficient - Given a linear SCEV Expr,
936    /// return the SCEV given by adding some Value to the
937    /// coefficient corresponding to the specified TargetLoop.
938    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
939    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
940    const SCEV *addToCoefficient(const SCEV *Expr,
941                                 const Loop *TargetLoop,
942                                 const SCEV *Value)  const;
943
944    /// updateDirection - Update direction vector entry
945    /// based on the current constraint.
946    void updateDirection(Dependence::DVEntry &Level,
947                         const Constraint &CurConstraint) const;
948
949    /// Given a linear access function, tries to recover subscripts
950    /// for each dimension of the array element access.
951    bool tryDelinearize(Instruction *Src, Instruction *Dst,
952                        SmallVectorImpl<Subscript> &Pair);
953
954    /// Tries to delinearize \p Src and \p Dst access functions for a fixed size
955    /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to
956    /// delinearize \p Src and \p Dst separately,
957    bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
958                                 const SCEV *SrcAccessFn,
959                                 const SCEV *DstAccessFn,
960                                 SmallVectorImpl<const SCEV *> &SrcSubscripts,
961                                 SmallVectorImpl<const SCEV *> &DstSubscripts);
962
963    /// Tries to delinearize access function for a multi-dimensional array with
964    /// symbolic runtime sizes.
965    /// Returns true upon success and false otherwise.
966    bool tryDelinearizeParametricSize(
967        Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
968        const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
969        SmallVectorImpl<const SCEV *> &DstSubscripts);
970
971    /// checkSubscript - Helper function for checkSrcSubscript and
972    /// checkDstSubscript to avoid duplicate code
973    bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
974                        SmallBitVector &Loops, bool IsSrc);
975  }; // class DependenceInfo
976
977  /// AnalysisPass to compute dependence information in a function
978  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
979  public:
980    typedef DependenceInfo Result;
981    Result run(Function &F, FunctionAnalysisManager &FAM);
982
983  private:
984    static AnalysisKey Key;
985    friend struct AnalysisInfoMixin<DependenceAnalysis>;
986  }; // class DependenceAnalysis
987
988  /// Printer pass to dump DA results.
989  struct DependenceAnalysisPrinterPass
990      : public PassInfoMixin<DependenceAnalysisPrinterPass> {
991    DependenceAnalysisPrinterPass(raw_ostream &OS,
992                                  bool NormalizeResults = false)
993        : OS(OS), NormalizeResults(NormalizeResults) {}
994
995    PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
996
997    static bool isRequired() { return true; }
998
999  private:
1000    raw_ostream &OS;
1001    bool NormalizeResults;
1002  }; // class DependenceAnalysisPrinterPass
1003
1004  /// Legacy pass manager pass to access dependence information
1005  class DependenceAnalysisWrapperPass : public FunctionPass {
1006  public:
1007    static char ID; // Class identification, replacement for typeinfo
1008    DependenceAnalysisWrapperPass();
1009
1010    bool runOnFunction(Function &F) override;
1011    void releaseMemory() override;
1012    void getAnalysisUsage(AnalysisUsage &) const override;
1013    void print(raw_ostream &, const Module * = nullptr) const override;
1014    DependenceInfo &getDI() const;
1015
1016  private:
1017    std::unique_ptr<DependenceInfo> info;
1018  }; // class DependenceAnalysisWrapperPass
1019
1020  /// createDependenceAnalysisPass - This creates an instance of the
1021  /// DependenceAnalysis wrapper pass.
1022  FunctionPass *createDependenceAnalysisWrapperPass();
1023
1024} // namespace llvm
1025
1026#endif
1027