1//===- InputFiles.cpp -----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "Config.h"
11#include "DWARF.h"
12#include "Driver.h"
13#include "InputSection.h"
14#include "LinkerScript.h"
15#include "SymbolTable.h"
16#include "Symbols.h"
17#include "SyntheticSections.h"
18#include "Target.h"
19#include "lld/Common/CommonLinkerContext.h"
20#include "lld/Common/DWARF.h"
21#include "llvm/ADT/CachedHashString.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/LTO/LTO.h"
24#include "llvm/Object/IRObjectFile.h"
25#include "llvm/Support/ARMAttributeParser.h"
26#include "llvm/Support/ARMBuildAttributes.h"
27#include "llvm/Support/Endian.h"
28#include "llvm/Support/FileSystem.h"
29#include "llvm/Support/Path.h"
30#include "llvm/Support/RISCVAttributeParser.h"
31#include "llvm/Support/TarWriter.h"
32#include "llvm/Support/raw_ostream.h"
33#include <optional>
34
35using namespace llvm;
36using namespace llvm::ELF;
37using namespace llvm::object;
38using namespace llvm::sys;
39using namespace llvm::sys::fs;
40using namespace llvm::support::endian;
41using namespace lld;
42using namespace lld::elf;
43
44// This function is explicity instantiated in ARM.cpp, don't do it here to avoid
45// warnings with MSVC.
46extern template void ObjFile<ELF32LE>::importCmseSymbols();
47extern template void ObjFile<ELF32BE>::importCmseSymbols();
48extern template void ObjFile<ELF64LE>::importCmseSymbols();
49extern template void ObjFile<ELF64BE>::importCmseSymbols();
50
51bool InputFile::isInGroup;
52uint32_t InputFile::nextGroupId;
53
54std::unique_ptr<TarWriter> elf::tar;
55
56// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
57std::string lld::toString(const InputFile *f) {
58  static std::mutex mu;
59  if (!f)
60    return "<internal>";
61
62  {
63    std::lock_guard<std::mutex> lock(mu);
64    if (f->toStringCache.empty()) {
65      if (f->archiveName.empty())
66        f->toStringCache = f->getName();
67      else
68        (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
69    }
70  }
71  return std::string(f->toStringCache);
72}
73
74static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
75  unsigned char size;
76  unsigned char endian;
77  std::tie(size, endian) = getElfArchType(mb.getBuffer());
78
79  auto report = [&](StringRef msg) {
80    StringRef filename = mb.getBufferIdentifier();
81    if (archiveName.empty())
82      fatal(filename + ": " + msg);
83    else
84      fatal(archiveName + "(" + filename + "): " + msg);
85  };
86
87  if (!mb.getBuffer().starts_with(ElfMagic))
88    report("not an ELF file");
89  if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
90    report("corrupted ELF file: invalid data encoding");
91  if (size != ELFCLASS32 && size != ELFCLASS64)
92    report("corrupted ELF file: invalid file class");
93
94  size_t bufSize = mb.getBuffer().size();
95  if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
96      (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
97    report("corrupted ELF file: file is too short");
98
99  if (size == ELFCLASS32)
100    return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
101  return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
102}
103
104// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
105// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
106// the input objects have been compiled.
107static void updateARMVFPArgs(const ARMAttributeParser &attributes,
108                             const InputFile *f) {
109  std::optional<unsigned> attr =
110      attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
111  if (!attr)
112    // If an ABI tag isn't present then it is implicitly given the value of 0
113    // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
114    // including some in glibc that don't use FP args (and should have value 3)
115    // don't have the attribute so we do not consider an implicit value of 0
116    // as a clash.
117    return;
118
119  unsigned vfpArgs = *attr;
120  ARMVFPArgKind arg;
121  switch (vfpArgs) {
122  case ARMBuildAttrs::BaseAAPCS:
123    arg = ARMVFPArgKind::Base;
124    break;
125  case ARMBuildAttrs::HardFPAAPCS:
126    arg = ARMVFPArgKind::VFP;
127    break;
128  case ARMBuildAttrs::ToolChainFPPCS:
129    // Tool chain specific convention that conforms to neither AAPCS variant.
130    arg = ARMVFPArgKind::ToolChain;
131    break;
132  case ARMBuildAttrs::CompatibleFPAAPCS:
133    // Object compatible with all conventions.
134    return;
135  default:
136    error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
137    return;
138  }
139  // Follow ld.bfd and error if there is a mix of calling conventions.
140  if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
141    error(toString(f) + ": incompatible Tag_ABI_VFP_args");
142  else
143    config->armVFPArgs = arg;
144}
145
146// The ARM support in lld makes some use of instructions that are not available
147// on all ARM architectures. Namely:
148// - Use of BLX instruction for interworking between ARM and Thumb state.
149// - Use of the extended Thumb branch encoding in relocation.
150// - Use of the MOVT/MOVW instructions in Thumb Thunks.
151// The ARM Attributes section contains information about the architecture chosen
152// at compile time. We follow the convention that if at least one input object
153// is compiled with an architecture that supports these features then lld is
154// permitted to use them.
155static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
156  std::optional<unsigned> attr =
157      attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
158  if (!attr)
159    return;
160  auto arch = *attr;
161  switch (arch) {
162  case ARMBuildAttrs::Pre_v4:
163  case ARMBuildAttrs::v4:
164  case ARMBuildAttrs::v4T:
165    // Architectures prior to v5 do not support BLX instruction
166    break;
167  case ARMBuildAttrs::v5T:
168  case ARMBuildAttrs::v5TE:
169  case ARMBuildAttrs::v5TEJ:
170  case ARMBuildAttrs::v6:
171  case ARMBuildAttrs::v6KZ:
172  case ARMBuildAttrs::v6K:
173    config->armHasBlx = true;
174    // Architectures used in pre-Cortex processors do not support
175    // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
176    // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
177    break;
178  default:
179    // All other Architectures have BLX and extended branch encoding
180    config->armHasBlx = true;
181    config->armJ1J2BranchEncoding = true;
182    if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
183      // All Architectures used in Cortex processors with the exception
184      // of v6-M and v6S-M have the MOVT and MOVW instructions.
185      config->armHasMovtMovw = true;
186    break;
187  }
188
189  // Only ARMv8-M or later architectures have CMSE support.
190  std::optional<unsigned> profile =
191      attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
192  if (!profile)
193    return;
194  if (arch >= ARMBuildAttrs::CPUArch::v8_M_Base &&
195      profile == ARMBuildAttrs::MicroControllerProfile)
196    config->armCMSESupport = true;
197}
198
199InputFile::InputFile(Kind k, MemoryBufferRef m)
200    : mb(m), groupId(nextGroupId), fileKind(k) {
201  // All files within the same --{start,end}-group get the same group ID.
202  // Otherwise, a new file will get a new group ID.
203  if (!isInGroup)
204    ++nextGroupId;
205}
206
207std::optional<MemoryBufferRef> elf::readFile(StringRef path) {
208  llvm::TimeTraceScope timeScope("Load input files", path);
209
210  // The --chroot option changes our virtual root directory.
211  // This is useful when you are dealing with files created by --reproduce.
212  if (!config->chroot.empty() && path.starts_with("/"))
213    path = saver().save(config->chroot + path);
214
215  bool remapped = false;
216  auto it = config->remapInputs.find(path);
217  if (it != config->remapInputs.end()) {
218    path = it->second;
219    remapped = true;
220  } else {
221    for (const auto &[pat, toFile] : config->remapInputsWildcards) {
222      if (pat.match(path)) {
223        path = toFile;
224        remapped = true;
225        break;
226      }
227    }
228  }
229  if (remapped) {
230    // Use /dev/null to indicate an input file that should be ignored. Change
231    // the path to NUL on Windows.
232#ifdef _WIN32
233    if (path == "/dev/null")
234      path = "NUL";
235#endif
236  }
237
238  log(path);
239  config->dependencyFiles.insert(llvm::CachedHashString(path));
240
241  auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
242                                       /*RequiresNullTerminator=*/false);
243  if (auto ec = mbOrErr.getError()) {
244    error("cannot open " + path + ": " + ec.message());
245    return std::nullopt;
246  }
247
248  MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
249  ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
250
251  if (tar)
252    tar->append(relativeToRoot(path), mbref.getBuffer());
253  return mbref;
254}
255
256// All input object files must be for the same architecture
257// (e.g. it does not make sense to link x86 object files with
258// MIPS object files.) This function checks for that error.
259static bool isCompatible(InputFile *file) {
260  if (!file->isElf() && !isa<BitcodeFile>(file))
261    return true;
262
263  if (file->ekind == config->ekind && file->emachine == config->emachine) {
264    if (config->emachine != EM_MIPS)
265      return true;
266    if (isMipsN32Abi(file) == config->mipsN32Abi)
267      return true;
268  }
269
270  StringRef target =
271      !config->bfdname.empty() ? config->bfdname : config->emulation;
272  if (!target.empty()) {
273    error(toString(file) + " is incompatible with " + target);
274    return false;
275  }
276
277  InputFile *existing = nullptr;
278  if (!ctx.objectFiles.empty())
279    existing = ctx.objectFiles[0];
280  else if (!ctx.sharedFiles.empty())
281    existing = ctx.sharedFiles[0];
282  else if (!ctx.bitcodeFiles.empty())
283    existing = ctx.bitcodeFiles[0];
284  std::string with;
285  if (existing)
286    with = " with " + toString(existing);
287  error(toString(file) + " is incompatible" + with);
288  return false;
289}
290
291template <class ELFT> static void doParseFile(InputFile *file) {
292  if (!isCompatible(file))
293    return;
294
295  // Lazy object file
296  if (file->lazy) {
297    if (auto *f = dyn_cast<BitcodeFile>(file)) {
298      ctx.lazyBitcodeFiles.push_back(f);
299      f->parseLazy();
300    } else {
301      cast<ObjFile<ELFT>>(file)->parseLazy();
302    }
303    return;
304  }
305
306  if (config->trace)
307    message(toString(file));
308
309  if (file->kind() == InputFile::ObjKind) {
310    ctx.objectFiles.push_back(cast<ELFFileBase>(file));
311    cast<ObjFile<ELFT>>(file)->parse();
312  } else if (auto *f = dyn_cast<SharedFile>(file)) {
313    f->parse<ELFT>();
314  } else if (auto *f = dyn_cast<BitcodeFile>(file)) {
315    ctx.bitcodeFiles.push_back(f);
316    f->parse();
317  } else {
318    ctx.binaryFiles.push_back(cast<BinaryFile>(file));
319    cast<BinaryFile>(file)->parse();
320  }
321}
322
323// Add symbols in File to the symbol table.
324void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
325
326// This function is explicity instantiated in ARM.cpp. Mark it extern here,
327// to avoid warnings when building with MSVC.
328extern template void ObjFile<ELF32LE>::importCmseSymbols();
329extern template void ObjFile<ELF32BE>::importCmseSymbols();
330extern template void ObjFile<ELF64LE>::importCmseSymbols();
331extern template void ObjFile<ELF64BE>::importCmseSymbols();
332
333template <class ELFT> static void doParseArmCMSEImportLib(InputFile *file) {
334  cast<ObjFile<ELFT>>(file)->importCmseSymbols();
335}
336
337void elf::parseArmCMSEImportLib(InputFile *file) {
338  invokeELFT(doParseArmCMSEImportLib, file);
339}
340
341// Concatenates arguments to construct a string representing an error location.
342static std::string createFileLineMsg(StringRef path, unsigned line) {
343  std::string filename = std::string(path::filename(path));
344  std::string lineno = ":" + std::to_string(line);
345  if (filename == path)
346    return filename + lineno;
347  return filename + lineno + " (" + path.str() + lineno + ")";
348}
349
350template <class ELFT>
351static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
352                                const InputSectionBase &sec, uint64_t offset) {
353  // In DWARF, functions and variables are stored to different places.
354  // First, look up a function for a given offset.
355  if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
356    return createFileLineMsg(info->FileName, info->Line);
357
358  // If it failed, look up again as a variable.
359  if (std::optional<std::pair<std::string, unsigned>> fileLine =
360          file.getVariableLoc(sym.getName()))
361    return createFileLineMsg(fileLine->first, fileLine->second);
362
363  // File.sourceFile contains STT_FILE symbol, and that is a last resort.
364  return std::string(file.sourceFile);
365}
366
367std::string InputFile::getSrcMsg(const Symbol &sym, const InputSectionBase &sec,
368                                 uint64_t offset) {
369  if (kind() != ObjKind)
370    return "";
371  switch (ekind) {
372  default:
373    llvm_unreachable("Invalid kind");
374  case ELF32LEKind:
375    return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
376  case ELF32BEKind:
377    return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
378  case ELF64LEKind:
379    return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
380  case ELF64BEKind:
381    return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
382  }
383}
384
385StringRef InputFile::getNameForScript() const {
386  if (archiveName.empty())
387    return getName();
388
389  if (nameForScriptCache.empty())
390    nameForScriptCache = (archiveName + Twine(':') + getName()).str();
391
392  return nameForScriptCache;
393}
394
395// An ELF object file may contain a `.deplibs` section. If it exists, the
396// section contains a list of library specifiers such as `m` for libm. This
397// function resolves a given name by finding the first matching library checking
398// the various ways that a library can be specified to LLD. This ELF extension
399// is a form of autolinking and is called `dependent libraries`. It is currently
400// unique to LLVM and lld.
401static void addDependentLibrary(StringRef specifier, const InputFile *f) {
402  if (!config->dependentLibraries)
403    return;
404  if (std::optional<std::string> s = searchLibraryBaseName(specifier))
405    ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
406  else if (std::optional<std::string> s = findFromSearchPaths(specifier))
407    ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
408  else if (fs::exists(specifier))
409    ctx.driver.addFile(specifier, /*withLOption=*/false);
410  else
411    error(toString(f) +
412          ": unable to find library from dependent library specifier: " +
413          specifier);
414}
415
416// Record the membership of a section group so that in the garbage collection
417// pass, section group members are kept or discarded as a unit.
418template <class ELFT>
419static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
420                               ArrayRef<typename ELFT::Word> entries) {
421  bool hasAlloc = false;
422  for (uint32_t index : entries.slice(1)) {
423    if (index >= sections.size())
424      return;
425    if (InputSectionBase *s = sections[index])
426      if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
427        hasAlloc = true;
428  }
429
430  // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
431  // collection. See the comment in markLive(). This rule retains .debug_types
432  // and .rela.debug_types.
433  if (!hasAlloc)
434    return;
435
436  // Connect the members in a circular doubly-linked list via
437  // nextInSectionGroup.
438  InputSectionBase *head;
439  InputSectionBase *prev = nullptr;
440  for (uint32_t index : entries.slice(1)) {
441    InputSectionBase *s = sections[index];
442    if (!s || s == &InputSection::discarded)
443      continue;
444    if (prev)
445      prev->nextInSectionGroup = s;
446    else
447      head = s;
448    prev = s;
449  }
450  if (prev)
451    prev->nextInSectionGroup = head;
452}
453
454template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
455  llvm::call_once(initDwarf, [this]() {
456    dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
457        std::make_unique<LLDDwarfObj<ELFT>>(this), "",
458        [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
459        [&](Error warning) {
460          warn(getName() + ": " + toString(std::move(warning)));
461        }));
462  });
463
464  return dwarf.get();
465}
466
467// Returns the pair of file name and line number describing location of data
468// object (variable, array, etc) definition.
469template <class ELFT>
470std::optional<std::pair<std::string, unsigned>>
471ObjFile<ELFT>::getVariableLoc(StringRef name) {
472  return getDwarf()->getVariableLoc(name);
473}
474
475// Returns source line information for a given offset
476// using DWARF debug info.
477template <class ELFT>
478std::optional<DILineInfo>
479ObjFile<ELFT>::getDILineInfo(const InputSectionBase *s, uint64_t offset) {
480  // Detect SectionIndex for specified section.
481  uint64_t sectionIndex = object::SectionedAddress::UndefSection;
482  ArrayRef<InputSectionBase *> sections = s->file->getSections();
483  for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
484    if (s == sections[curIndex]) {
485      sectionIndex = curIndex;
486      break;
487    }
488  }
489
490  return getDwarf()->getDILineInfo(offset, sectionIndex);
491}
492
493ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb)
494    : InputFile(k, mb) {
495  this->ekind = ekind;
496}
497
498template <typename Elf_Shdr>
499static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
500  for (const Elf_Shdr &sec : sections)
501    if (sec.sh_type == type)
502      return &sec;
503  return nullptr;
504}
505
506void ELFFileBase::init() {
507  switch (ekind) {
508  case ELF32LEKind:
509    init<ELF32LE>(fileKind);
510    break;
511  case ELF32BEKind:
512    init<ELF32BE>(fileKind);
513    break;
514  case ELF64LEKind:
515    init<ELF64LE>(fileKind);
516    break;
517  case ELF64BEKind:
518    init<ELF64BE>(fileKind);
519    break;
520  default:
521    llvm_unreachable("getELFKind");
522  }
523}
524
525template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
526  using Elf_Shdr = typename ELFT::Shdr;
527  using Elf_Sym = typename ELFT::Sym;
528
529  // Initialize trivial attributes.
530  const ELFFile<ELFT> &obj = getObj<ELFT>();
531  emachine = obj.getHeader().e_machine;
532  osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
533  abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
534
535  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
536  elfShdrs = sections.data();
537  numELFShdrs = sections.size();
538
539  // Find a symbol table.
540  const Elf_Shdr *symtabSec =
541      findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
542
543  if (!symtabSec)
544    return;
545
546  // Initialize members corresponding to a symbol table.
547  firstGlobal = symtabSec->sh_info;
548
549  ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
550  if (firstGlobal == 0 || firstGlobal > eSyms.size())
551    fatal(toString(this) + ": invalid sh_info in symbol table");
552
553  elfSyms = reinterpret_cast<const void *>(eSyms.data());
554  numELFSyms = uint32_t(eSyms.size());
555  stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
556}
557
558template <class ELFT>
559uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
560  return CHECK(
561      this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
562      this);
563}
564
565template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
566  object::ELFFile<ELFT> obj = this->getObj();
567  // Read a section table. justSymbols is usually false.
568  if (this->justSymbols) {
569    initializeJustSymbols();
570    initializeSymbols(obj);
571    return;
572  }
573
574  // Handle dependent libraries and selection of section groups as these are not
575  // done in parallel.
576  ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
577  StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
578  uint64_t size = objSections.size();
579  sections.resize(size);
580  for (size_t i = 0; i != size; ++i) {
581    const Elf_Shdr &sec = objSections[i];
582    if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
583      StringRef name = check(obj.getSectionName(sec, shstrtab));
584      ArrayRef<char> data = CHECK(
585          this->getObj().template getSectionContentsAsArray<char>(sec), this);
586      if (!data.empty() && data.back() != '\0') {
587        error(
588            toString(this) +
589            ": corrupted dependent libraries section (unterminated string): " +
590            name);
591      } else {
592        for (const char *d = data.begin(), *e = data.end(); d < e;) {
593          StringRef s(d);
594          addDependentLibrary(s, this);
595          d += s.size() + 1;
596        }
597      }
598      this->sections[i] = &InputSection::discarded;
599      continue;
600    }
601
602    if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
603      ARMAttributeParser attributes;
604      ArrayRef<uint8_t> contents =
605          check(this->getObj().getSectionContents(sec));
606      StringRef name = check(obj.getSectionName(sec, shstrtab));
607      this->sections[i] = &InputSection::discarded;
608      if (Error e = attributes.parse(contents, ekind == ELF32LEKind
609                                                   ? llvm::endianness::little
610                                                   : llvm::endianness::big)) {
611        InputSection isec(*this, sec, name);
612        warn(toString(&isec) + ": " + llvm::toString(std::move(e)));
613      } else {
614        updateSupportedARMFeatures(attributes);
615        updateARMVFPArgs(attributes, this);
616
617        // FIXME: Retain the first attribute section we see. The eglibc ARM
618        // dynamic loaders require the presence of an attribute section for
619        // dlopen to work. In a full implementation we would merge all attribute
620        // sections.
621        if (in.attributes == nullptr) {
622          in.attributes = std::make_unique<InputSection>(*this, sec, name);
623          this->sections[i] = in.attributes.get();
624        }
625      }
626    }
627
628    // Producing a static binary with MTE globals is not currently supported,
629    // remove all SHT_AARCH64_MEMTAG_GLOBALS_STATIC sections as they're unused
630    // medatada, and we don't want them to end up in the output file for static
631    // executables.
632    if (sec.sh_type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC &&
633        !canHaveMemtagGlobals()) {
634      this->sections[i] = &InputSection::discarded;
635      continue;
636    }
637
638    if (sec.sh_type != SHT_GROUP)
639      continue;
640    StringRef signature = getShtGroupSignature(objSections, sec);
641    ArrayRef<Elf_Word> entries =
642        CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
643    if (entries.empty())
644      fatal(toString(this) + ": empty SHT_GROUP");
645
646    Elf_Word flag = entries[0];
647    if (flag && flag != GRP_COMDAT)
648      fatal(toString(this) + ": unsupported SHT_GROUP format");
649
650    bool keepGroup =
651        (flag & GRP_COMDAT) == 0 || ignoreComdats ||
652        symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this)
653            .second;
654    if (keepGroup) {
655      if (config->relocatable)
656        this->sections[i] = createInputSection(
657            i, sec, check(obj.getSectionName(sec, shstrtab)));
658      continue;
659    }
660
661    // Otherwise, discard group members.
662    for (uint32_t secIndex : entries.slice(1)) {
663      if (secIndex >= size)
664        fatal(toString(this) +
665              ": invalid section index in group: " + Twine(secIndex));
666      this->sections[secIndex] = &InputSection::discarded;
667    }
668  }
669
670  // Read a symbol table.
671  initializeSymbols(obj);
672}
673
674// Sections with SHT_GROUP and comdat bits define comdat section groups.
675// They are identified and deduplicated by group name. This function
676// returns a group name.
677template <class ELFT>
678StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
679                                              const Elf_Shdr &sec) {
680  typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
681  if (sec.sh_info >= symbols.size())
682    fatal(toString(this) + ": invalid symbol index");
683  const typename ELFT::Sym &sym = symbols[sec.sh_info];
684  return CHECK(sym.getName(this->stringTable), this);
685}
686
687template <class ELFT>
688bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
689  // On a regular link we don't merge sections if -O0 (default is -O1). This
690  // sometimes makes the linker significantly faster, although the output will
691  // be bigger.
692  //
693  // Doing the same for -r would create a problem as it would combine sections
694  // with different sh_entsize. One option would be to just copy every SHF_MERGE
695  // section as is to the output. While this would produce a valid ELF file with
696  // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
697  // they see two .debug_str. We could have separate logic for combining
698  // SHF_MERGE sections based both on their name and sh_entsize, but that seems
699  // to be more trouble than it is worth. Instead, we just use the regular (-O1)
700  // logic for -r.
701  if (config->optimize == 0 && !config->relocatable)
702    return false;
703
704  // A mergeable section with size 0 is useless because they don't have
705  // any data to merge. A mergeable string section with size 0 can be
706  // argued as invalid because it doesn't end with a null character.
707  // We'll avoid a mess by handling them as if they were non-mergeable.
708  if (sec.sh_size == 0)
709    return false;
710
711  // Check for sh_entsize. The ELF spec is not clear about the zero
712  // sh_entsize. It says that "the member [sh_entsize] contains 0 if
713  // the section does not hold a table of fixed-size entries". We know
714  // that Rust 1.13 produces a string mergeable section with a zero
715  // sh_entsize. Here we just accept it rather than being picky about it.
716  uint64_t entSize = sec.sh_entsize;
717  if (entSize == 0)
718    return false;
719  if (sec.sh_size % entSize)
720    fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
721          Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
722          Twine(entSize) + ")");
723
724  if (sec.sh_flags & SHF_WRITE)
725    fatal(toString(this) + ":(" + name +
726          "): writable SHF_MERGE section is not supported");
727
728  return true;
729}
730
731// This is for --just-symbols.
732//
733// --just-symbols is a very minor feature that allows you to link your
734// output against other existing program, so that if you load both your
735// program and the other program into memory, your output can refer the
736// other program's symbols.
737//
738// When the option is given, we link "just symbols". The section table is
739// initialized with null pointers.
740template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
741  sections.resize(numELFShdrs);
742}
743
744template <class ELFT>
745void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
746                                       const llvm::object::ELFFile<ELFT> &obj) {
747  ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
748  StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
749  uint64_t size = objSections.size();
750  SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
751  for (size_t i = 0; i != size; ++i) {
752    if (this->sections[i] == &InputSection::discarded)
753      continue;
754    const Elf_Shdr &sec = objSections[i];
755
756    // SHF_EXCLUDE'ed sections are discarded by the linker. However,
757    // if -r is given, we'll let the final link discard such sections.
758    // This is compatible with GNU.
759    if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
760      if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
761        cgProfileSectionIndex = i;
762      if (sec.sh_type == SHT_LLVM_ADDRSIG) {
763        // We ignore the address-significance table if we know that the object
764        // file was created by objcopy or ld -r. This is because these tools
765        // will reorder the symbols in the symbol table, invalidating the data
766        // in the address-significance table, which refers to symbols by index.
767        if (sec.sh_link != 0)
768          this->addrsigSec = &sec;
769        else if (config->icf == ICFLevel::Safe)
770          warn(toString(this) +
771               ": --icf=safe conservatively ignores "
772               "SHT_LLVM_ADDRSIG [index " +
773               Twine(i) +
774               "] with sh_link=0 "
775               "(likely created using objcopy or ld -r)");
776      }
777      this->sections[i] = &InputSection::discarded;
778      continue;
779    }
780
781    switch (sec.sh_type) {
782    case SHT_GROUP: {
783      if (!config->relocatable)
784        sections[i] = &InputSection::discarded;
785      StringRef signature =
786          cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
787      ArrayRef<Elf_Word> entries =
788          cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
789      if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
790          symtab.comdatGroups.find(CachedHashStringRef(signature))->second ==
791              this)
792        selectedGroups.push_back(entries);
793      break;
794    }
795    case SHT_SYMTAB_SHNDX:
796      shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
797      break;
798    case SHT_SYMTAB:
799    case SHT_STRTAB:
800    case SHT_REL:
801    case SHT_RELA:
802    case SHT_NULL:
803      break;
804    case SHT_LLVM_SYMPART:
805      ctx.hasSympart.store(true, std::memory_order_relaxed);
806      [[fallthrough]];
807    default:
808      this->sections[i] =
809          createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
810    }
811  }
812
813  // We have a second loop. It is used to:
814  // 1) handle SHF_LINK_ORDER sections.
815  // 2) create SHT_REL[A] sections. In some cases the section header index of a
816  //    relocation section may be smaller than that of the relocated section. In
817  //    such cases, the relocation section would attempt to reference a target
818  //    section that has not yet been created. For simplicity, delay creation of
819  //    relocation sections until now.
820  for (size_t i = 0; i != size; ++i) {
821    if (this->sections[i] == &InputSection::discarded)
822      continue;
823    const Elf_Shdr &sec = objSections[i];
824
825    if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
826      // Find a relocation target section and associate this section with that.
827      // Target may have been discarded if it is in a different section group
828      // and the group is discarded, even though it's a violation of the spec.
829      // We handle that situation gracefully by discarding dangling relocation
830      // sections.
831      const uint32_t info = sec.sh_info;
832      InputSectionBase *s = getRelocTarget(i, sec, info);
833      if (!s)
834        continue;
835
836      // ELF spec allows mergeable sections with relocations, but they are rare,
837      // and it is in practice hard to merge such sections by contents, because
838      // applying relocations at end of linking changes section contents. So, we
839      // simply handle such sections as non-mergeable ones. Degrading like this
840      // is acceptable because section merging is optional.
841      if (auto *ms = dyn_cast<MergeInputSection>(s)) {
842        s = makeThreadLocal<InputSection>(
843            ms->file, ms->flags, ms->type, ms->addralign,
844            ms->contentMaybeDecompress(), ms->name);
845        sections[info] = s;
846      }
847
848      if (s->relSecIdx != 0)
849        error(
850            toString(s) +
851            ": multiple relocation sections to one section are not supported");
852      s->relSecIdx = i;
853
854      // Relocation sections are usually removed from the output, so return
855      // `nullptr` for the normal case. However, if -r or --emit-relocs is
856      // specified, we need to copy them to the output. (Some post link analysis
857      // tools specify --emit-relocs to obtain the information.)
858      if (config->copyRelocs) {
859        auto *isec = makeThreadLocal<InputSection>(
860            *this, sec, check(obj.getSectionName(sec, shstrtab)));
861        // If the relocated section is discarded (due to /DISCARD/ or
862        // --gc-sections), the relocation section should be discarded as well.
863        s->dependentSections.push_back(isec);
864        sections[i] = isec;
865      }
866      continue;
867    }
868
869    // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
870    // the flag.
871    if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
872      continue;
873
874    InputSectionBase *linkSec = nullptr;
875    if (sec.sh_link < size)
876      linkSec = this->sections[sec.sh_link];
877    if (!linkSec)
878      fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
879
880    // A SHF_LINK_ORDER section is discarded if its linked-to section is
881    // discarded.
882    InputSection *isec = cast<InputSection>(this->sections[i]);
883    linkSec->dependentSections.push_back(isec);
884    if (!isa<InputSection>(linkSec))
885      error("a section " + isec->name +
886            " with SHF_LINK_ORDER should not refer a non-regular section: " +
887            toString(linkSec));
888  }
889
890  for (ArrayRef<Elf_Word> entries : selectedGroups)
891    handleSectionGroup<ELFT>(this->sections, entries);
892}
893
894// If a source file is compiled with x86 hardware-assisted call flow control
895// enabled, the generated object file contains feature flags indicating that
896// fact. This function reads the feature flags and returns it.
897//
898// Essentially we want to read a single 32-bit value in this function, but this
899// function is rather complicated because the value is buried deep inside a
900// .note.gnu.property section.
901//
902// The section consists of one or more NOTE records. Each NOTE record consists
903// of zero or more type-length-value fields. We want to find a field of a
904// certain type. It seems a bit too much to just store a 32-bit value, perhaps
905// the ABI is unnecessarily complicated.
906template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
907  using Elf_Nhdr = typename ELFT::Nhdr;
908  using Elf_Note = typename ELFT::Note;
909
910  uint32_t featuresSet = 0;
911  ArrayRef<uint8_t> data = sec.content();
912  auto reportFatal = [&](const uint8_t *place, const char *msg) {
913    fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
914          Twine::utohexstr(place - sec.content().data()) + "): " + msg);
915  };
916  while (!data.empty()) {
917    // Read one NOTE record.
918    auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
919    if (data.size() < sizeof(Elf_Nhdr) ||
920        data.size() < nhdr->getSize(sec.addralign))
921      reportFatal(data.data(), "data is too short");
922
923    Elf_Note note(*nhdr);
924    if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
925      data = data.slice(nhdr->getSize(sec.addralign));
926      continue;
927    }
928
929    uint32_t featureAndType = config->emachine == EM_AARCH64
930                                  ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
931                                  : GNU_PROPERTY_X86_FEATURE_1_AND;
932
933    // Read a body of a NOTE record, which consists of type-length-value fields.
934    ArrayRef<uint8_t> desc = note.getDesc(sec.addralign);
935    while (!desc.empty()) {
936      const uint8_t *place = desc.data();
937      if (desc.size() < 8)
938        reportFatal(place, "program property is too short");
939      uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
940      uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
941      desc = desc.slice(8);
942      if (desc.size() < size)
943        reportFatal(place, "program property is too short");
944
945      if (type == featureAndType) {
946        // We found a FEATURE_1_AND field. There may be more than one of these
947        // in a .note.gnu.property section, for a relocatable object we
948        // accumulate the bits set.
949        if (size < 4)
950          reportFatal(place, "FEATURE_1_AND entry is too short");
951        featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
952      }
953
954      // Padding is present in the note descriptor, if necessary.
955      desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
956    }
957
958    // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
959    data = data.slice(nhdr->getSize(sec.addralign));
960  }
961
962  return featuresSet;
963}
964
965template <class ELFT>
966InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
967                                                const Elf_Shdr &sec,
968                                                uint32_t info) {
969  if (info < this->sections.size()) {
970    InputSectionBase *target = this->sections[info];
971
972    // Strictly speaking, a relocation section must be included in the
973    // group of the section it relocates. However, LLVM 3.3 and earlier
974    // would fail to do so, so we gracefully handle that case.
975    if (target == &InputSection::discarded)
976      return nullptr;
977
978    if (target != nullptr)
979      return target;
980  }
981
982  error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
983        ") has invalid sh_info (" + Twine(info) + ")");
984  return nullptr;
985}
986
987// The function may be called concurrently for different input files. For
988// allocation, prefer makeThreadLocal which does not require holding a lock.
989template <class ELFT>
990InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
991                                                    const Elf_Shdr &sec,
992                                                    StringRef name) {
993  if (name.starts_with(".n")) {
994    // The GNU linker uses .note.GNU-stack section as a marker indicating
995    // that the code in the object file does not expect that the stack is
996    // executable (in terms of NX bit). If all input files have the marker,
997    // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
998    // make the stack non-executable. Most object files have this section as
999    // of 2017.
1000    //
1001    // But making the stack non-executable is a norm today for security
1002    // reasons. Failure to do so may result in a serious security issue.
1003    // Therefore, we make LLD always add PT_GNU_STACK unless it is
1004    // explicitly told to do otherwise (by -z execstack). Because the stack
1005    // executable-ness is controlled solely by command line options,
1006    // .note.GNU-stack sections are simply ignored.
1007    if (name == ".note.GNU-stack")
1008      return &InputSection::discarded;
1009
1010    // Object files that use processor features such as Intel Control-Flow
1011    // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1012    // .note.gnu.property section containing a bitfield of feature bits like the
1013    // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1014    //
1015    // Since we merge bitmaps from multiple object files to create a new
1016    // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1017    // file's .note.gnu.property section.
1018    if (name == ".note.gnu.property") {
1019      this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1020      return &InputSection::discarded;
1021    }
1022
1023    // Split stacks is a feature to support a discontiguous stack,
1024    // commonly used in the programming language Go. For the details,
1025    // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1026    // for split stack will include a .note.GNU-split-stack section.
1027    if (name == ".note.GNU-split-stack") {
1028      if (config->relocatable) {
1029        error(
1030            "cannot mix split-stack and non-split-stack in a relocatable link");
1031        return &InputSection::discarded;
1032      }
1033      this->splitStack = true;
1034      return &InputSection::discarded;
1035    }
1036
1037    // An object file compiled for split stack, but where some of the
1038    // functions were compiled with the no_split_stack_attribute will
1039    // include a .note.GNU-no-split-stack section.
1040    if (name == ".note.GNU-no-split-stack") {
1041      this->someNoSplitStack = true;
1042      return &InputSection::discarded;
1043    }
1044
1045    // Strip existing .note.gnu.build-id sections so that the output won't have
1046    // more than one build-id. This is not usually a problem because input
1047    // object files normally don't have .build-id sections, but you can create
1048    // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1049    // against it.
1050    if (name == ".note.gnu.build-id")
1051      return &InputSection::discarded;
1052  }
1053
1054  // The linker merges EH (exception handling) frames and creates a
1055  // .eh_frame_hdr section for runtime. So we handle them with a special
1056  // class. For relocatable outputs, they are just passed through.
1057  if (name == ".eh_frame" && !config->relocatable)
1058    return makeThreadLocal<EhInputSection>(*this, sec, name);
1059
1060  if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1061    return makeThreadLocal<MergeInputSection>(*this, sec, name);
1062  return makeThreadLocal<InputSection>(*this, sec, name);
1063}
1064
1065// Initialize symbols. symbols is a parallel array to the corresponding ELF
1066// symbol table.
1067template <class ELFT>
1068void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1069  ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1070  if (numSymbols == 0) {
1071    numSymbols = eSyms.size();
1072    symbols = std::make_unique<Symbol *[]>(numSymbols);
1073  }
1074
1075  // Some entries have been filled by LazyObjFile.
1076  for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1077    if (!symbols[i])
1078      symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1079
1080  // Perform symbol resolution on non-local symbols.
1081  SmallVector<unsigned, 32> undefineds;
1082  for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1083    const Elf_Sym &eSym = eSyms[i];
1084    uint32_t secIdx = eSym.st_shndx;
1085    if (secIdx == SHN_UNDEF) {
1086      undefineds.push_back(i);
1087      continue;
1088    }
1089
1090    uint8_t binding = eSym.getBinding();
1091    uint8_t stOther = eSym.st_other;
1092    uint8_t type = eSym.getType();
1093    uint64_t value = eSym.st_value;
1094    uint64_t size = eSym.st_size;
1095
1096    Symbol *sym = symbols[i];
1097    sym->isUsedInRegularObj = true;
1098    if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1099      if (value == 0 || value >= UINT32_MAX)
1100        fatal(toString(this) + ": common symbol '" + sym->getName() +
1101              "' has invalid alignment: " + Twine(value));
1102      hasCommonSyms = true;
1103      sym->resolve(
1104          CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1105      continue;
1106    }
1107
1108    // Handle global defined symbols. Defined::section will be set in postParse.
1109    sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1110                         nullptr});
1111  }
1112
1113  // Undefined symbols (excluding those defined relative to non-prevailing
1114  // sections) can trigger recursive extract. Process defined symbols first so
1115  // that the relative order between a defined symbol and an undefined symbol
1116  // does not change the symbol resolution behavior. In addition, a set of
1117  // interconnected symbols will all be resolved to the same file, instead of
1118  // being resolved to different files.
1119  for (unsigned i : undefineds) {
1120    const Elf_Sym &eSym = eSyms[i];
1121    Symbol *sym = symbols[i];
1122    sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1123                           eSym.getType()});
1124    sym->isUsedInRegularObj = true;
1125    sym->referenced = true;
1126  }
1127}
1128
1129template <class ELFT>
1130void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
1131  if (!justSymbols)
1132    initializeSections(ignoreComdats, getObj());
1133
1134  if (!firstGlobal)
1135    return;
1136  SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
1137  memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
1138
1139  ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1140  for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1141    const Elf_Sym &eSym = eSyms[i];
1142    uint32_t secIdx = eSym.st_shndx;
1143    if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1144      secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1145    else if (secIdx >= SHN_LORESERVE)
1146      secIdx = 0;
1147    if (LLVM_UNLIKELY(secIdx >= sections.size()))
1148      fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1149    if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1150      error(toString(this) + ": non-local symbol (" + Twine(i) +
1151            ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1152
1153    InputSectionBase *sec = sections[secIdx];
1154    uint8_t type = eSym.getType();
1155    if (type == STT_FILE)
1156      sourceFile = CHECK(eSym.getName(stringTable), this);
1157    if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1158      fatal(toString(this) + ": invalid symbol name offset");
1159    StringRef name(stringTable.data() + eSym.st_name);
1160
1161    symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1162    if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1163      new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1164                                 /*discardedSecIdx=*/secIdx);
1165    else
1166      new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1167                               eSym.st_value, eSym.st_size, sec);
1168    symbols[i]->partition = 1;
1169    symbols[i]->isUsedInRegularObj = true;
1170  }
1171}
1172
1173// Called after all ObjFile::parse is called for all ObjFiles. This checks
1174// duplicate symbols and may do symbol property merge in the future.
1175template <class ELFT> void ObjFile<ELFT>::postParse() {
1176  static std::mutex mu;
1177  ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1178  for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1179    const Elf_Sym &eSym = eSyms[i];
1180    Symbol &sym = *symbols[i];
1181    uint32_t secIdx = eSym.st_shndx;
1182    uint8_t binding = eSym.getBinding();
1183    if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1184                      binding != STB_GNU_UNIQUE))
1185      errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1186                  ") has invalid binding: " + Twine((int)binding));
1187
1188    // st_value of STT_TLS represents the assigned offset, not the actual
1189    // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1190    // only be referenced by special TLS relocations. It is usually an error if
1191    // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1192    if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1193        eSym.getType() != STT_NOTYPE)
1194      errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1195                  toString(sym.file) + "\n>>> in " + toString(this));
1196
1197    // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1198    // assignment to redefine a symbol without an error.
1199    if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1200        secIdx == SHN_COMMON)
1201      continue;
1202
1203    if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1204      secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1205    else if (secIdx >= SHN_LORESERVE)
1206      secIdx = 0;
1207    if (LLVM_UNLIKELY(secIdx >= sections.size()))
1208      fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1209    InputSectionBase *sec = sections[secIdx];
1210    if (sec == &InputSection::discarded) {
1211      if (sym.traced) {
1212        printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1213                                   sym.stOther, sym.type, secIdx},
1214                         sym.getName());
1215      }
1216      if (sym.file == this) {
1217        std::lock_guard<std::mutex> lock(mu);
1218        ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
1219      }
1220      continue;
1221    }
1222
1223    if (sym.file == this) {
1224      cast<Defined>(sym).section = sec;
1225      continue;
1226    }
1227
1228    if (sym.binding == STB_WEAK || binding == STB_WEAK)
1229      continue;
1230    std::lock_guard<std::mutex> lock(mu);
1231    ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
1232  }
1233}
1234
1235// The handling of tentative definitions (COMMON symbols) in archives is murky.
1236// A tentative definition will be promoted to a global definition if there are
1237// no non-tentative definitions to dominate it. When we hold a tentative
1238// definition to a symbol and are inspecting archive members for inclusion
1239// there are 2 ways we can proceed:
1240//
1241// 1) Consider the tentative definition a 'real' definition (ie promotion from
1242//    tentative to real definition has already happened) and not inspect
1243//    archive members for Global/Weak definitions to replace the tentative
1244//    definition. An archive member would only be included if it satisfies some
1245//    other undefined symbol. This is the behavior Gold uses.
1246//
1247// 2) Consider the tentative definition as still undefined (ie the promotion to
1248//    a real definition happens only after all symbol resolution is done).
1249//    The linker searches archive members for STB_GLOBAL definitions to
1250//    replace the tentative definition with. This is the behavior used by
1251//    GNU ld.
1252//
1253//  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1254//  COMMON BLOCK model. This behavior is needed for proper initialization in old
1255//  (pre F90) FORTRAN code that is packaged into an archive.
1256//
1257//  The following functions search archive members for definitions to replace
1258//  tentative definitions (implementing behavior 2).
1259static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1260                                  StringRef archiveName) {
1261  IRSymtabFile symtabFile = check(readIRSymtab(mb));
1262  for (const irsymtab::Reader::SymbolRef &sym :
1263       symtabFile.TheReader.symbols()) {
1264    if (sym.isGlobal() && sym.getName() == symName)
1265      return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1266  }
1267  return false;
1268}
1269
1270template <class ELFT>
1271static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName,
1272                           StringRef archiveName) {
1273  ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName);
1274  obj->init();
1275  StringRef stringtable = obj->getStringTable();
1276
1277  for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1278    Expected<StringRef> name = sym.getName(stringtable);
1279    if (name && name.get() == symName)
1280      return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1281             !sym.isCommon();
1282  }
1283  return false;
1284}
1285
1286static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1287                           StringRef archiveName) {
1288  switch (getELFKind(mb, archiveName)) {
1289  case ELF32LEKind:
1290    return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName);
1291  case ELF32BEKind:
1292    return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName);
1293  case ELF64LEKind:
1294    return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName);
1295  case ELF64BEKind:
1296    return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName);
1297  default:
1298    llvm_unreachable("getELFKind");
1299  }
1300}
1301
1302unsigned SharedFile::vernauxNum;
1303
1304SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName)
1305    : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName),
1306      isNeeded(!config->asNeeded) {}
1307
1308// Parse the version definitions in the object file if present, and return a
1309// vector whose nth element contains a pointer to the Elf_Verdef for version
1310// identifier n. Version identifiers that are not definitions map to nullptr.
1311template <typename ELFT>
1312static SmallVector<const void *, 0>
1313parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1314  if (!sec)
1315    return {};
1316
1317  // Build the Verdefs array by following the chain of Elf_Verdef objects
1318  // from the start of the .gnu.version_d section.
1319  SmallVector<const void *, 0> verdefs;
1320  const uint8_t *verdef = base + sec->sh_offset;
1321  for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1322    auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1323    verdef += curVerdef->vd_next;
1324    unsigned verdefIndex = curVerdef->vd_ndx;
1325    if (verdefIndex >= verdefs.size())
1326      verdefs.resize(verdefIndex + 1);
1327    verdefs[verdefIndex] = curVerdef;
1328  }
1329  return verdefs;
1330}
1331
1332// Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1333// symbol. We detect fatal issues which would cause vulnerabilities, but do not
1334// implement sophisticated error checking like in llvm-readobj because the value
1335// of such diagnostics is low.
1336template <typename ELFT>
1337std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1338                                               const typename ELFT::Shdr *sec) {
1339  if (!sec)
1340    return {};
1341  std::vector<uint32_t> verneeds;
1342  ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1343  const uint8_t *verneedBuf = data.begin();
1344  for (unsigned i = 0; i != sec->sh_info; ++i) {
1345    if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1346      fatal(toString(this) + " has an invalid Verneed");
1347    auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1348    const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1349    for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1350      if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1351        fatal(toString(this) + " has an invalid Vernaux");
1352      auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1353      if (aux->vna_name >= this->stringTable.size())
1354        fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1355      uint16_t version = aux->vna_other & VERSYM_VERSION;
1356      if (version >= verneeds.size())
1357        verneeds.resize(version + 1);
1358      verneeds[version] = aux->vna_name;
1359      vernauxBuf += aux->vna_next;
1360    }
1361    verneedBuf += vn->vn_next;
1362  }
1363  return verneeds;
1364}
1365
1366// We do not usually care about alignments of data in shared object
1367// files because the loader takes care of it. However, if we promote a
1368// DSO symbol to point to .bss due to copy relocation, we need to keep
1369// the original alignment requirements. We infer it in this function.
1370template <typename ELFT>
1371static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1372                             const typename ELFT::Sym &sym) {
1373  uint64_t ret = UINT64_MAX;
1374  if (sym.st_value)
1375    ret = 1ULL << llvm::countr_zero((uint64_t)sym.st_value);
1376  if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1377    ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1378  return (ret > UINT32_MAX) ? 0 : ret;
1379}
1380
1381// Fully parse the shared object file.
1382//
1383// This function parses symbol versions. If a DSO has version information,
1384// the file has a ".gnu.version_d" section which contains symbol version
1385// definitions. Each symbol is associated to one version through a table in
1386// ".gnu.version" section. That table is a parallel array for the symbol
1387// table, and each table entry contains an index in ".gnu.version_d".
1388//
1389// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1390// VER_NDX_GLOBAL. There's no table entry for these special versions in
1391// ".gnu.version_d".
1392//
1393// The file format for symbol versioning is perhaps a bit more complicated
1394// than necessary, but you can easily understand the code if you wrap your
1395// head around the data structure described above.
1396template <class ELFT> void SharedFile::parse() {
1397  using Elf_Dyn = typename ELFT::Dyn;
1398  using Elf_Shdr = typename ELFT::Shdr;
1399  using Elf_Sym = typename ELFT::Sym;
1400  using Elf_Verdef = typename ELFT::Verdef;
1401  using Elf_Versym = typename ELFT::Versym;
1402
1403  ArrayRef<Elf_Dyn> dynamicTags;
1404  const ELFFile<ELFT> obj = this->getObj<ELFT>();
1405  ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1406
1407  const Elf_Shdr *versymSec = nullptr;
1408  const Elf_Shdr *verdefSec = nullptr;
1409  const Elf_Shdr *verneedSec = nullptr;
1410
1411  // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1412  for (const Elf_Shdr &sec : sections) {
1413    switch (sec.sh_type) {
1414    default:
1415      continue;
1416    case SHT_DYNAMIC:
1417      dynamicTags =
1418          CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1419      break;
1420    case SHT_GNU_versym:
1421      versymSec = &sec;
1422      break;
1423    case SHT_GNU_verdef:
1424      verdefSec = &sec;
1425      break;
1426    case SHT_GNU_verneed:
1427      verneedSec = &sec;
1428      break;
1429    }
1430  }
1431
1432  if (versymSec && numELFSyms == 0) {
1433    error("SHT_GNU_versym should be associated with symbol table");
1434    return;
1435  }
1436
1437  // Search for a DT_SONAME tag to initialize this->soName.
1438  for (const Elf_Dyn &dyn : dynamicTags) {
1439    if (dyn.d_tag == DT_NEEDED) {
1440      uint64_t val = dyn.getVal();
1441      if (val >= this->stringTable.size())
1442        fatal(toString(this) + ": invalid DT_NEEDED entry");
1443      dtNeeded.push_back(this->stringTable.data() + val);
1444    } else if (dyn.d_tag == DT_SONAME) {
1445      uint64_t val = dyn.getVal();
1446      if (val >= this->stringTable.size())
1447        fatal(toString(this) + ": invalid DT_SONAME entry");
1448      soName = this->stringTable.data() + val;
1449    }
1450  }
1451
1452  // DSOs are uniquified not by filename but by soname.
1453  DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1454  bool wasInserted;
1455  std::tie(it, wasInserted) =
1456      symtab.soNames.try_emplace(CachedHashStringRef(soName), this);
1457
1458  // If a DSO appears more than once on the command line with and without
1459  // --as-needed, --no-as-needed takes precedence over --as-needed because a
1460  // user can add an extra DSO with --no-as-needed to force it to be added to
1461  // the dependency list.
1462  it->second->isNeeded |= isNeeded;
1463  if (!wasInserted)
1464    return;
1465
1466  ctx.sharedFiles.push_back(this);
1467
1468  verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1469  std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1470
1471  // Parse ".gnu.version" section which is a parallel array for the symbol
1472  // table. If a given file doesn't have a ".gnu.version" section, we use
1473  // VER_NDX_GLOBAL.
1474  size_t size = numELFSyms - firstGlobal;
1475  std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1476  if (versymSec) {
1477    ArrayRef<Elf_Versym> versym =
1478        CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1479              this)
1480            .slice(firstGlobal);
1481    for (size_t i = 0; i < size; ++i)
1482      versyms[i] = versym[i].vs_index;
1483  }
1484
1485  // System libraries can have a lot of symbols with versions. Using a
1486  // fixed buffer for computing the versions name (foo@ver) can save a
1487  // lot of allocations.
1488  SmallString<0> versionedNameBuffer;
1489
1490  // Add symbols to the symbol table.
1491  ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1492  for (size_t i = 0, e = syms.size(); i != e; ++i) {
1493    const Elf_Sym &sym = syms[i];
1494
1495    // ELF spec requires that all local symbols precede weak or global
1496    // symbols in each symbol table, and the index of first non-local symbol
1497    // is stored to sh_info. If a local symbol appears after some non-local
1498    // symbol, that's a violation of the spec.
1499    StringRef name = CHECK(sym.getName(stringTable), this);
1500    if (sym.getBinding() == STB_LOCAL) {
1501      errorOrWarn(toString(this) + ": invalid local symbol '" + name +
1502                  "' in global part of symbol table");
1503      continue;
1504    }
1505
1506    const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
1507    if (sym.isUndefined()) {
1508      // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1509      // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1510      if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
1511        if (idx >= verneeds.size()) {
1512          error("corrupt input file: version need index " + Twine(idx) +
1513                " for symbol " + name + " is out of bounds\n>>> defined in " +
1514                toString(this));
1515          continue;
1516        }
1517        StringRef verName = stringTable.data() + verneeds[idx];
1518        versionedNameBuffer.clear();
1519        name = saver().save(
1520            (name + "@" + verName).toStringRef(versionedNameBuffer));
1521      }
1522      Symbol *s = symtab.addSymbol(
1523          Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1524      s->exportDynamic = true;
1525      if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1526          config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1527        requiredSymbols.push_back(s);
1528      continue;
1529    }
1530
1531    if (ver == VER_NDX_LOCAL ||
1532        (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
1533      // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
1534      // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
1535      // VER_NDX_LOCAL. Workaround this bug.
1536      if (config->emachine == EM_MIPS && name == "_gp_disp")
1537        continue;
1538      error("corrupt input file: version definition index " + Twine(idx) +
1539            " for symbol " + name + " is out of bounds\n>>> defined in " +
1540            toString(this));
1541      continue;
1542    }
1543
1544    uint32_t alignment = getAlignment<ELFT>(sections, sym);
1545    if (ver == idx) {
1546      auto *s = symtab.addSymbol(
1547          SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1548                       sym.getType(), sym.st_value, sym.st_size, alignment});
1549      s->dsoDefined = true;
1550      if (s->file == this)
1551        s->versionId = ver;
1552    }
1553
1554    // Also add the symbol with the versioned name to handle undefined symbols
1555    // with explicit versions.
1556    if (ver == VER_NDX_GLOBAL)
1557      continue;
1558
1559    StringRef verName =
1560        stringTable.data() +
1561        reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1562    versionedNameBuffer.clear();
1563    name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1564    auto *s = symtab.addSymbol(
1565        SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1566                     sym.getType(), sym.st_value, sym.st_size, alignment});
1567    s->dsoDefined = true;
1568    if (s->file == this)
1569      s->versionId = idx;
1570  }
1571}
1572
1573static ELFKind getBitcodeELFKind(const Triple &t) {
1574  if (t.isLittleEndian())
1575    return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1576  return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1577}
1578
1579static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1580  switch (t.getArch()) {
1581  case Triple::aarch64:
1582  case Triple::aarch64_be:
1583    return EM_AARCH64;
1584  case Triple::amdgcn:
1585  case Triple::r600:
1586    return EM_AMDGPU;
1587  case Triple::arm:
1588  case Triple::armeb:
1589  case Triple::thumb:
1590  case Triple::thumbeb:
1591    return EM_ARM;
1592  case Triple::avr:
1593    return EM_AVR;
1594  case Triple::hexagon:
1595    return EM_HEXAGON;
1596  case Triple::loongarch32:
1597  case Triple::loongarch64:
1598    return EM_LOONGARCH;
1599  case Triple::mips:
1600  case Triple::mipsel:
1601  case Triple::mips64:
1602  case Triple::mips64el:
1603    return EM_MIPS;
1604  case Triple::msp430:
1605    return EM_MSP430;
1606  case Triple::ppc:
1607  case Triple::ppcle:
1608    return EM_PPC;
1609  case Triple::ppc64:
1610  case Triple::ppc64le:
1611    return EM_PPC64;
1612  case Triple::riscv32:
1613  case Triple::riscv64:
1614    return EM_RISCV;
1615  case Triple::sparcv9:
1616    return EM_SPARCV9;
1617  case Triple::systemz:
1618    return EM_S390;
1619  case Triple::x86:
1620    return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1621  case Triple::x86_64:
1622    return EM_X86_64;
1623  default:
1624    error(path + ": could not infer e_machine from bitcode target triple " +
1625          t.str());
1626    return EM_NONE;
1627  }
1628}
1629
1630static uint8_t getOsAbi(const Triple &t) {
1631  switch (t.getOS()) {
1632  case Triple::AMDHSA:
1633    return ELF::ELFOSABI_AMDGPU_HSA;
1634  case Triple::AMDPAL:
1635    return ELF::ELFOSABI_AMDGPU_PAL;
1636  case Triple::Mesa3D:
1637    return ELF::ELFOSABI_AMDGPU_MESA3D;
1638  default:
1639    return ELF::ELFOSABI_NONE;
1640  }
1641}
1642
1643BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1644                         uint64_t offsetInArchive, bool lazy)
1645    : InputFile(BitcodeKind, mb) {
1646  this->archiveName = archiveName;
1647  this->lazy = lazy;
1648
1649  std::string path = mb.getBufferIdentifier().str();
1650  if (config->thinLTOIndexOnly)
1651    path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1652
1653  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1654  // name. If two archives define two members with the same name, this
1655  // causes a collision which result in only one of the objects being taken
1656  // into consideration at LTO time (which very likely causes undefined
1657  // symbols later in the link stage). So we append file offset to make
1658  // filename unique.
1659  StringRef name = archiveName.empty()
1660                       ? saver().save(path)
1661                       : saver().save(archiveName + "(" + path::filename(path) +
1662                                      " at " + utostr(offsetInArchive) + ")");
1663  MemoryBufferRef mbref(mb.getBuffer(), name);
1664
1665  obj = CHECK(lto::InputFile::create(mbref), this);
1666
1667  Triple t(obj->getTargetTriple());
1668  ekind = getBitcodeELFKind(t);
1669  emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1670  osabi = getOsAbi(t);
1671}
1672
1673static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1674  switch (gvVisibility) {
1675  case GlobalValue::DefaultVisibility:
1676    return STV_DEFAULT;
1677  case GlobalValue::HiddenVisibility:
1678    return STV_HIDDEN;
1679  case GlobalValue::ProtectedVisibility:
1680    return STV_PROTECTED;
1681  }
1682  llvm_unreachable("unknown visibility");
1683}
1684
1685static void
1686createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1687                    const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1688  uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1689  uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1690  uint8_t visibility = mapVisibility(objSym.getVisibility());
1691
1692  if (!sym)
1693    sym = symtab.insert(saver().save(objSym.getName()));
1694
1695  int c = objSym.getComdatIndex();
1696  if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1697    Undefined newSym(&f, StringRef(), binding, visibility, type);
1698    sym->resolve(newSym);
1699    sym->referenced = true;
1700    return;
1701  }
1702
1703  if (objSym.isCommon()) {
1704    sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1705                              objSym.getCommonAlignment(),
1706                              objSym.getCommonSize()});
1707  } else {
1708    Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1709    if (objSym.canBeOmittedFromSymbolTable())
1710      newSym.exportDynamic = false;
1711    sym->resolve(newSym);
1712  }
1713}
1714
1715void BitcodeFile::parse() {
1716  for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1717    keptComdats.push_back(
1718        s.second == Comdat::NoDeduplicate ||
1719        symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1720            .second);
1721  }
1722
1723  if (numSymbols == 0) {
1724    numSymbols = obj->symbols().size();
1725    symbols = std::make_unique<Symbol *[]>(numSymbols);
1726  }
1727  // Process defined symbols first. See the comment in
1728  // ObjFile<ELFT>::initializeSymbols.
1729  for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1730    if (!irSym.isUndefined())
1731      createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1732  for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1733    if (irSym.isUndefined())
1734      createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1735
1736  for (auto l : obj->getDependentLibraries())
1737    addDependentLibrary(l, this);
1738}
1739
1740void BitcodeFile::parseLazy() {
1741  numSymbols = obj->symbols().size();
1742  symbols = std::make_unique<Symbol *[]>(numSymbols);
1743  for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1744    if (!irSym.isUndefined()) {
1745      auto *sym = symtab.insert(saver().save(irSym.getName()));
1746      sym->resolve(LazySymbol{*this});
1747      symbols[i] = sym;
1748    }
1749}
1750
1751void BitcodeFile::postParse() {
1752  for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
1753    const Symbol &sym = *symbols[i];
1754    if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
1755        irSym.isCommon() || irSym.isWeak())
1756      continue;
1757    int c = irSym.getComdatIndex();
1758    if (c != -1 && !keptComdats[c])
1759      continue;
1760    reportDuplicate(sym, this, nullptr, 0);
1761  }
1762}
1763
1764void BinaryFile::parse() {
1765  ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1766  auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1767                                     8, data, ".data");
1768  sections.push_back(section);
1769
1770  // For each input file foo that is embedded to a result as a binary
1771  // blob, we define _binary_foo_{start,end,size} symbols, so that
1772  // user programs can access blobs by name. Non-alphanumeric
1773  // characters in a filename are replaced with underscore.
1774  std::string s = "_binary_" + mb.getBufferIdentifier().str();
1775  for (char &c : s)
1776    if (!isAlnum(c))
1777      c = '_';
1778
1779  llvm::StringSaver &saver = lld::saver();
1780
1781  symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_start"),
1782                                      STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0,
1783                                      section});
1784  symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_end"), STB_GLOBAL,
1785                                      STV_DEFAULT, STT_OBJECT, data.size(), 0,
1786                                      section});
1787  symtab.addAndCheckDuplicate(Defined{this, saver.save(s + "_size"), STB_GLOBAL,
1788                                      STV_DEFAULT, STT_OBJECT, data.size(), 0,
1789                                      nullptr});
1790}
1791
1792InputFile *elf::createInternalFile(StringRef name) {
1793  auto *file =
1794      make<InputFile>(InputFile::InternalKind, MemoryBufferRef("", name));
1795  // References from an internal file do not lead to --warn-backrefs
1796  // diagnostics.
1797  file->groupId = 0;
1798  return file;
1799}
1800
1801ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
1802                                bool lazy) {
1803  ELFFileBase *f;
1804  switch (getELFKind(mb, archiveName)) {
1805  case ELF32LEKind:
1806    f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName);
1807    break;
1808  case ELF32BEKind:
1809    f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName);
1810    break;
1811  case ELF64LEKind:
1812    f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName);
1813    break;
1814  case ELF64BEKind:
1815    f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName);
1816    break;
1817  default:
1818    llvm_unreachable("getELFKind");
1819  }
1820  f->init();
1821  f->lazy = lazy;
1822  return f;
1823}
1824
1825template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1826  const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1827  numSymbols = eSyms.size();
1828  symbols = std::make_unique<Symbol *[]>(numSymbols);
1829
1830  // resolve() may trigger this->extract() if an existing symbol is an undefined
1831  // symbol. If that happens, this function has served its purpose, and we can
1832  // exit from the loop early.
1833  for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1834    if (eSyms[i].st_shndx == SHN_UNDEF)
1835      continue;
1836    symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1837    symbols[i]->resolve(LazySymbol{*this});
1838    if (!lazy)
1839      break;
1840  }
1841}
1842
1843bool InputFile::shouldExtractForCommon(StringRef name) const {
1844  if (isa<BitcodeFile>(this))
1845    return isBitcodeNonCommonDef(mb, name, archiveName);
1846
1847  return isNonCommonDef(mb, name, archiveName);
1848}
1849
1850std::string elf::replaceThinLTOSuffix(StringRef path) {
1851  auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
1852  if (path.consume_back(suffix))
1853    return (path + repl).str();
1854  return std::string(path);
1855}
1856
1857template class elf::ObjFile<ELF32LE>;
1858template class elf::ObjFile<ELF32BE>;
1859template class elf::ObjFile<ELF64LE>;
1860template class elf::ObjFile<ELF64BE>;
1861
1862template void SharedFile::parse<ELF32LE>();
1863template void SharedFile::parse<ELF32BE>();
1864template void SharedFile::parse<ELF64LE>();
1865template void SharedFile::parse<ELF64BE>();
1866