1//===----------------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//
8// C++ interface to lower levels of libunwind
9//===----------------------------------------------------------------------===//
10
11#ifndef __UNWINDCURSOR_HPP__
12#define __UNWINDCURSOR_HPP__
13
14#include "cet_unwind.h"
15#include <stdint.h>
16#include <stdio.h>
17#include <stdlib.h>
18#include <unwind.h>
19
20#ifdef _WIN32
21  #include <windows.h>
22  #include <ntverp.h>
23#endif
24#ifdef __APPLE__
25  #include <mach-o/dyld.h>
26#endif
27#ifdef _AIX
28#include <dlfcn.h>
29#include <sys/debug.h>
30#include <sys/pseg.h>
31#endif
32
33#if defined(_LIBUNWIND_TARGET_LINUX) &&                                        \
34    (defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \
35     defined(_LIBUNWIND_TARGET_S390X))
36#include <errno.h>
37#include <signal.h>
38#include <sys/syscall.h>
39#include <sys/uio.h>
40#include <unistd.h>
41#define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1
42#endif
43
44#include "AddressSpace.hpp"
45#include "CompactUnwinder.hpp"
46#include "config.h"
47#include "DwarfInstructions.hpp"
48#include "EHHeaderParser.hpp"
49#include "libunwind.h"
50#include "libunwind_ext.h"
51#include "Registers.hpp"
52#include "RWMutex.hpp"
53#include "Unwind-EHABI.h"
54
55#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
56// Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and
57// earlier) SDKs.
58// MinGW-w64 has always provided this struct.
59  #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \
60      !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000
61struct _DISPATCHER_CONTEXT {
62  ULONG64 ControlPc;
63  ULONG64 ImageBase;
64  PRUNTIME_FUNCTION FunctionEntry;
65  ULONG64 EstablisherFrame;
66  ULONG64 TargetIp;
67  PCONTEXT ContextRecord;
68  PEXCEPTION_ROUTINE LanguageHandler;
69  PVOID HandlerData;
70  PUNWIND_HISTORY_TABLE HistoryTable;
71  ULONG ScopeIndex;
72  ULONG Fill0;
73};
74  #endif
75
76struct UNWIND_INFO {
77  uint8_t Version : 3;
78  uint8_t Flags : 5;
79  uint8_t SizeOfProlog;
80  uint8_t CountOfCodes;
81  uint8_t FrameRegister : 4;
82  uint8_t FrameOffset : 4;
83  uint16_t UnwindCodes[2];
84};
85
86extern "C" _Unwind_Reason_Code __libunwind_seh_personality(
87    int, _Unwind_Action, uint64_t, _Unwind_Exception *,
88    struct _Unwind_Context *);
89
90#endif
91
92namespace libunwind {
93
94#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
95/// Cache of recently found FDEs.
96template <typename A>
97class _LIBUNWIND_HIDDEN DwarfFDECache {
98  typedef typename A::pint_t pint_t;
99public:
100  static constexpr pint_t kSearchAll = static_cast<pint_t>(-1);
101  static pint_t findFDE(pint_t mh, pint_t pc);
102  static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
103  static void removeAllIn(pint_t mh);
104  static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
105                                               unw_word_t ip_end,
106                                               unw_word_t fde, unw_word_t mh));
107
108private:
109
110  struct entry {
111    pint_t mh;
112    pint_t ip_start;
113    pint_t ip_end;
114    pint_t fde;
115  };
116
117  // These fields are all static to avoid needing an initializer.
118  // There is only one instance of this class per process.
119  static RWMutex _lock;
120#ifdef __APPLE__
121  static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
122  static bool _registeredForDyldUnloads;
123#endif
124  static entry *_buffer;
125  static entry *_bufferUsed;
126  static entry *_bufferEnd;
127  static entry _initialBuffer[64];
128};
129
130template <typename A>
131typename DwarfFDECache<A>::entry *
132DwarfFDECache<A>::_buffer = _initialBuffer;
133
134template <typename A>
135typename DwarfFDECache<A>::entry *
136DwarfFDECache<A>::_bufferUsed = _initialBuffer;
137
138template <typename A>
139typename DwarfFDECache<A>::entry *
140DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
141
142template <typename A>
143typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
144
145template <typename A>
146RWMutex DwarfFDECache<A>::_lock;
147
148#ifdef __APPLE__
149template <typename A>
150bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
151#endif
152
153template <typename A>
154typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
155  pint_t result = 0;
156  _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared());
157  for (entry *p = _buffer; p < _bufferUsed; ++p) {
158    if ((mh == p->mh) || (mh == kSearchAll)) {
159      if ((p->ip_start <= pc) && (pc < p->ip_end)) {
160        result = p->fde;
161        break;
162      }
163    }
164  }
165  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared());
166  return result;
167}
168
169template <typename A>
170void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
171                           pint_t fde) {
172#if !defined(_LIBUNWIND_NO_HEAP)
173  _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
174  if (_bufferUsed >= _bufferEnd) {
175    size_t oldSize = (size_t)(_bufferEnd - _buffer);
176    size_t newSize = oldSize * 4;
177    // Can't use operator new (we are below it).
178    entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
179    memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
180    if (_buffer != _initialBuffer)
181      free(_buffer);
182    _buffer = newBuffer;
183    _bufferUsed = &newBuffer[oldSize];
184    _bufferEnd = &newBuffer[newSize];
185  }
186  _bufferUsed->mh = mh;
187  _bufferUsed->ip_start = ip_start;
188  _bufferUsed->ip_end = ip_end;
189  _bufferUsed->fde = fde;
190  ++_bufferUsed;
191#ifdef __APPLE__
192  if (!_registeredForDyldUnloads) {
193    _dyld_register_func_for_remove_image(&dyldUnloadHook);
194    _registeredForDyldUnloads = true;
195  }
196#endif
197  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
198#endif
199}
200
201template <typename A>
202void DwarfFDECache<A>::removeAllIn(pint_t mh) {
203  _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
204  entry *d = _buffer;
205  for (const entry *s = _buffer; s < _bufferUsed; ++s) {
206    if (s->mh != mh) {
207      if (d != s)
208        *d = *s;
209      ++d;
210    }
211  }
212  _bufferUsed = d;
213  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
214}
215
216#ifdef __APPLE__
217template <typename A>
218void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
219  removeAllIn((pint_t) mh);
220}
221#endif
222
223template <typename A>
224void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
225    unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
226  _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
227  for (entry *p = _buffer; p < _bufferUsed; ++p) {
228    (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
229  }
230  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
231}
232#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
233
234
235#define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
236
237#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
238template <typename A> class UnwindSectionHeader {
239public:
240  UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
241      : _addressSpace(addressSpace), _addr(addr) {}
242
243  uint32_t version() const {
244    return _addressSpace.get32(_addr +
245                               offsetof(unwind_info_section_header, version));
246  }
247  uint32_t commonEncodingsArraySectionOffset() const {
248    return _addressSpace.get32(_addr +
249                               offsetof(unwind_info_section_header,
250                                        commonEncodingsArraySectionOffset));
251  }
252  uint32_t commonEncodingsArrayCount() const {
253    return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
254                                                commonEncodingsArrayCount));
255  }
256  uint32_t personalityArraySectionOffset() const {
257    return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
258                                                personalityArraySectionOffset));
259  }
260  uint32_t personalityArrayCount() const {
261    return _addressSpace.get32(
262        _addr + offsetof(unwind_info_section_header, personalityArrayCount));
263  }
264  uint32_t indexSectionOffset() const {
265    return _addressSpace.get32(
266        _addr + offsetof(unwind_info_section_header, indexSectionOffset));
267  }
268  uint32_t indexCount() const {
269    return _addressSpace.get32(
270        _addr + offsetof(unwind_info_section_header, indexCount));
271  }
272
273private:
274  A                     &_addressSpace;
275  typename A::pint_t     _addr;
276};
277
278template <typename A> class UnwindSectionIndexArray {
279public:
280  UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
281      : _addressSpace(addressSpace), _addr(addr) {}
282
283  uint32_t functionOffset(uint32_t index) const {
284    return _addressSpace.get32(
285        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
286                              functionOffset));
287  }
288  uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
289    return _addressSpace.get32(
290        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
291                              secondLevelPagesSectionOffset));
292  }
293  uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
294    return _addressSpace.get32(
295        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
296                              lsdaIndexArraySectionOffset));
297  }
298
299private:
300  A                   &_addressSpace;
301  typename A::pint_t   _addr;
302};
303
304template <typename A> class UnwindSectionRegularPageHeader {
305public:
306  UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
307      : _addressSpace(addressSpace), _addr(addr) {}
308
309  uint32_t kind() const {
310    return _addressSpace.get32(
311        _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
312  }
313  uint16_t entryPageOffset() const {
314    return _addressSpace.get16(
315        _addr + offsetof(unwind_info_regular_second_level_page_header,
316                         entryPageOffset));
317  }
318  uint16_t entryCount() const {
319    return _addressSpace.get16(
320        _addr +
321        offsetof(unwind_info_regular_second_level_page_header, entryCount));
322  }
323
324private:
325  A &_addressSpace;
326  typename A::pint_t _addr;
327};
328
329template <typename A> class UnwindSectionRegularArray {
330public:
331  UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
332      : _addressSpace(addressSpace), _addr(addr) {}
333
334  uint32_t functionOffset(uint32_t index) const {
335    return _addressSpace.get32(
336        _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
337                              functionOffset));
338  }
339  uint32_t encoding(uint32_t index) const {
340    return _addressSpace.get32(
341        _addr +
342        arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
343  }
344
345private:
346  A &_addressSpace;
347  typename A::pint_t _addr;
348};
349
350template <typename A> class UnwindSectionCompressedPageHeader {
351public:
352  UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
353      : _addressSpace(addressSpace), _addr(addr) {}
354
355  uint32_t kind() const {
356    return _addressSpace.get32(
357        _addr +
358        offsetof(unwind_info_compressed_second_level_page_header, kind));
359  }
360  uint16_t entryPageOffset() const {
361    return _addressSpace.get16(
362        _addr + offsetof(unwind_info_compressed_second_level_page_header,
363                         entryPageOffset));
364  }
365  uint16_t entryCount() const {
366    return _addressSpace.get16(
367        _addr +
368        offsetof(unwind_info_compressed_second_level_page_header, entryCount));
369  }
370  uint16_t encodingsPageOffset() const {
371    return _addressSpace.get16(
372        _addr + offsetof(unwind_info_compressed_second_level_page_header,
373                         encodingsPageOffset));
374  }
375  uint16_t encodingsCount() const {
376    return _addressSpace.get16(
377        _addr + offsetof(unwind_info_compressed_second_level_page_header,
378                         encodingsCount));
379  }
380
381private:
382  A &_addressSpace;
383  typename A::pint_t _addr;
384};
385
386template <typename A> class UnwindSectionCompressedArray {
387public:
388  UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
389      : _addressSpace(addressSpace), _addr(addr) {}
390
391  uint32_t functionOffset(uint32_t index) const {
392    return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
393        _addressSpace.get32(_addr + index * sizeof(uint32_t)));
394  }
395  uint16_t encodingIndex(uint32_t index) const {
396    return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
397        _addressSpace.get32(_addr + index * sizeof(uint32_t)));
398  }
399
400private:
401  A &_addressSpace;
402  typename A::pint_t _addr;
403};
404
405template <typename A> class UnwindSectionLsdaArray {
406public:
407  UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
408      : _addressSpace(addressSpace), _addr(addr) {}
409
410  uint32_t functionOffset(uint32_t index) const {
411    return _addressSpace.get32(
412        _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
413                              index, functionOffset));
414  }
415  uint32_t lsdaOffset(uint32_t index) const {
416    return _addressSpace.get32(
417        _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
418                              index, lsdaOffset));
419  }
420
421private:
422  A                   &_addressSpace;
423  typename A::pint_t   _addr;
424};
425#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
426
427class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
428public:
429  // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
430  // This avoids an unnecessary dependency to libc++abi.
431  void operator delete(void *, size_t) {}
432
433  virtual ~AbstractUnwindCursor() {}
434  virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
435  virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
436  virtual void setReg(int, unw_word_t) {
437    _LIBUNWIND_ABORT("setReg not implemented");
438  }
439  virtual bool validFloatReg(int) {
440    _LIBUNWIND_ABORT("validFloatReg not implemented");
441  }
442  virtual unw_fpreg_t getFloatReg(int) {
443    _LIBUNWIND_ABORT("getFloatReg not implemented");
444  }
445  virtual void setFloatReg(int, unw_fpreg_t) {
446    _LIBUNWIND_ABORT("setFloatReg not implemented");
447  }
448  virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); }
449  virtual void getInfo(unw_proc_info_t *) {
450    _LIBUNWIND_ABORT("getInfo not implemented");
451  }
452  virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
453  virtual bool isSignalFrame() {
454    _LIBUNWIND_ABORT("isSignalFrame not implemented");
455  }
456  virtual bool getFunctionName(char *, size_t, unw_word_t *) {
457    _LIBUNWIND_ABORT("getFunctionName not implemented");
458  }
459  virtual void setInfoBasedOnIPRegister(bool = false) {
460    _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
461  }
462  virtual const char *getRegisterName(int) {
463    _LIBUNWIND_ABORT("getRegisterName not implemented");
464  }
465#ifdef __arm__
466  virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
467#endif
468
469#ifdef _AIX
470  virtual uintptr_t getDataRelBase() {
471    _LIBUNWIND_ABORT("getDataRelBase not implemented");
472  }
473#endif
474
475#if defined(_LIBUNWIND_USE_CET)
476  virtual void *get_registers() {
477    _LIBUNWIND_ABORT("get_registers not implemented");
478  }
479#endif
480};
481
482#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)
483
484/// \c UnwindCursor contains all state (including all register values) during
485/// an unwind.  This is normally stack-allocated inside a unw_cursor_t.
486template <typename A, typename R>
487class UnwindCursor : public AbstractUnwindCursor {
488  typedef typename A::pint_t pint_t;
489public:
490                      UnwindCursor(unw_context_t *context, A &as);
491                      UnwindCursor(CONTEXT *context, A &as);
492                      UnwindCursor(A &as, void *threadArg);
493  virtual             ~UnwindCursor() {}
494  virtual bool        validReg(int);
495  virtual unw_word_t  getReg(int);
496  virtual void        setReg(int, unw_word_t);
497  virtual bool        validFloatReg(int);
498  virtual unw_fpreg_t getFloatReg(int);
499  virtual void        setFloatReg(int, unw_fpreg_t);
500  virtual int         step(bool = false);
501  virtual void        getInfo(unw_proc_info_t *);
502  virtual void        jumpto();
503  virtual bool        isSignalFrame();
504  virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
505  virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
506  virtual const char *getRegisterName(int num);
507#ifdef __arm__
508  virtual void        saveVFPAsX();
509#endif
510
511  DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; }
512  void setDispatcherContext(DISPATCHER_CONTEXT *disp) {
513    _dispContext = *disp;
514    _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
515    if (_dispContext.LanguageHandler) {
516      _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
517    } else
518      _info.handler = 0;
519  }
520
521  // libunwind does not and should not depend on C++ library which means that we
522  // need our own definition of inline placement new.
523  static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
524
525private:
526
527  pint_t getLastPC() const { return _dispContext.ControlPc; }
528  void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; }
529  RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
530#ifdef __arm__
531    // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit.
532    pc &= ~1U;
533#endif
534    // If pc points exactly at the end of the range, we might resolve the
535    // next function instead. Decrement pc by 1 to fit inside the current
536    // function.
537    pc -= 1;
538    _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc,
539                                                        &_dispContext.ImageBase,
540                                                        _dispContext.HistoryTable);
541    *base = _dispContext.ImageBase;
542    return _dispContext.FunctionEntry;
543  }
544  bool getInfoFromSEH(pint_t pc);
545  int stepWithSEHData() {
546    _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER,
547                                                    _dispContext.ImageBase,
548                                                    _dispContext.ControlPc,
549                                                    _dispContext.FunctionEntry,
550                                                    _dispContext.ContextRecord,
551                                                    &_dispContext.HandlerData,
552                                                    &_dispContext.EstablisherFrame,
553                                                    NULL);
554    // Update some fields of the unwind info now, since we have them.
555    _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
556    if (_dispContext.LanguageHandler) {
557      _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
558    } else
559      _info.handler = 0;
560    return UNW_STEP_SUCCESS;
561  }
562
563  A                   &_addressSpace;
564  unw_proc_info_t      _info;
565  DISPATCHER_CONTEXT   _dispContext;
566  CONTEXT              _msContext;
567  UNWIND_HISTORY_TABLE _histTable;
568  bool                 _unwindInfoMissing;
569};
570
571
572template <typename A, typename R>
573UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
574    : _addressSpace(as), _unwindInfoMissing(false) {
575  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
576                "UnwindCursor<> does not fit in unw_cursor_t");
577  static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
578                "UnwindCursor<> requires more alignment than unw_cursor_t");
579  memset(&_info, 0, sizeof(_info));
580  memset(&_histTable, 0, sizeof(_histTable));
581  memset(&_dispContext, 0, sizeof(_dispContext));
582  _dispContext.ContextRecord = &_msContext;
583  _dispContext.HistoryTable = &_histTable;
584  // Initialize MS context from ours.
585  R r(context);
586  RtlCaptureContext(&_msContext);
587  _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT;
588#if defined(_LIBUNWIND_TARGET_X86_64)
589  _msContext.Rax = r.getRegister(UNW_X86_64_RAX);
590  _msContext.Rcx = r.getRegister(UNW_X86_64_RCX);
591  _msContext.Rdx = r.getRegister(UNW_X86_64_RDX);
592  _msContext.Rbx = r.getRegister(UNW_X86_64_RBX);
593  _msContext.Rsp = r.getRegister(UNW_X86_64_RSP);
594  _msContext.Rbp = r.getRegister(UNW_X86_64_RBP);
595  _msContext.Rsi = r.getRegister(UNW_X86_64_RSI);
596  _msContext.Rdi = r.getRegister(UNW_X86_64_RDI);
597  _msContext.R8 = r.getRegister(UNW_X86_64_R8);
598  _msContext.R9 = r.getRegister(UNW_X86_64_R9);
599  _msContext.R10 = r.getRegister(UNW_X86_64_R10);
600  _msContext.R11 = r.getRegister(UNW_X86_64_R11);
601  _msContext.R12 = r.getRegister(UNW_X86_64_R12);
602  _msContext.R13 = r.getRegister(UNW_X86_64_R13);
603  _msContext.R14 = r.getRegister(UNW_X86_64_R14);
604  _msContext.R15 = r.getRegister(UNW_X86_64_R15);
605  _msContext.Rip = r.getRegister(UNW_REG_IP);
606  union {
607    v128 v;
608    M128A m;
609  } t;
610  t.v = r.getVectorRegister(UNW_X86_64_XMM0);
611  _msContext.Xmm0 = t.m;
612  t.v = r.getVectorRegister(UNW_X86_64_XMM1);
613  _msContext.Xmm1 = t.m;
614  t.v = r.getVectorRegister(UNW_X86_64_XMM2);
615  _msContext.Xmm2 = t.m;
616  t.v = r.getVectorRegister(UNW_X86_64_XMM3);
617  _msContext.Xmm3 = t.m;
618  t.v = r.getVectorRegister(UNW_X86_64_XMM4);
619  _msContext.Xmm4 = t.m;
620  t.v = r.getVectorRegister(UNW_X86_64_XMM5);
621  _msContext.Xmm5 = t.m;
622  t.v = r.getVectorRegister(UNW_X86_64_XMM6);
623  _msContext.Xmm6 = t.m;
624  t.v = r.getVectorRegister(UNW_X86_64_XMM7);
625  _msContext.Xmm7 = t.m;
626  t.v = r.getVectorRegister(UNW_X86_64_XMM8);
627  _msContext.Xmm8 = t.m;
628  t.v = r.getVectorRegister(UNW_X86_64_XMM9);
629  _msContext.Xmm9 = t.m;
630  t.v = r.getVectorRegister(UNW_X86_64_XMM10);
631  _msContext.Xmm10 = t.m;
632  t.v = r.getVectorRegister(UNW_X86_64_XMM11);
633  _msContext.Xmm11 = t.m;
634  t.v = r.getVectorRegister(UNW_X86_64_XMM12);
635  _msContext.Xmm12 = t.m;
636  t.v = r.getVectorRegister(UNW_X86_64_XMM13);
637  _msContext.Xmm13 = t.m;
638  t.v = r.getVectorRegister(UNW_X86_64_XMM14);
639  _msContext.Xmm14 = t.m;
640  t.v = r.getVectorRegister(UNW_X86_64_XMM15);
641  _msContext.Xmm15 = t.m;
642#elif defined(_LIBUNWIND_TARGET_ARM)
643  _msContext.R0 = r.getRegister(UNW_ARM_R0);
644  _msContext.R1 = r.getRegister(UNW_ARM_R1);
645  _msContext.R2 = r.getRegister(UNW_ARM_R2);
646  _msContext.R3 = r.getRegister(UNW_ARM_R3);
647  _msContext.R4 = r.getRegister(UNW_ARM_R4);
648  _msContext.R5 = r.getRegister(UNW_ARM_R5);
649  _msContext.R6 = r.getRegister(UNW_ARM_R6);
650  _msContext.R7 = r.getRegister(UNW_ARM_R7);
651  _msContext.R8 = r.getRegister(UNW_ARM_R8);
652  _msContext.R9 = r.getRegister(UNW_ARM_R9);
653  _msContext.R10 = r.getRegister(UNW_ARM_R10);
654  _msContext.R11 = r.getRegister(UNW_ARM_R11);
655  _msContext.R12 = r.getRegister(UNW_ARM_R12);
656  _msContext.Sp = r.getRegister(UNW_ARM_SP);
657  _msContext.Lr = r.getRegister(UNW_ARM_LR);
658  _msContext.Pc = r.getRegister(UNW_ARM_IP);
659  for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) {
660    union {
661      uint64_t w;
662      double d;
663    } d;
664    d.d = r.getFloatRegister(i);
665    _msContext.D[i - UNW_ARM_D0] = d.w;
666  }
667#elif defined(_LIBUNWIND_TARGET_AARCH64)
668  for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i)
669    _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i);
670  _msContext.Sp = r.getRegister(UNW_REG_SP);
671  _msContext.Pc = r.getRegister(UNW_REG_IP);
672  for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i)
673    _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i);
674#endif
675}
676
677template <typename A, typename R>
678UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as)
679    : _addressSpace(as), _unwindInfoMissing(false) {
680  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
681                "UnwindCursor<> does not fit in unw_cursor_t");
682  memset(&_info, 0, sizeof(_info));
683  memset(&_histTable, 0, sizeof(_histTable));
684  memset(&_dispContext, 0, sizeof(_dispContext));
685  _dispContext.ContextRecord = &_msContext;
686  _dispContext.HistoryTable = &_histTable;
687  _msContext = *context;
688}
689
690
691template <typename A, typename R>
692bool UnwindCursor<A, R>::validReg(int regNum) {
693  if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true;
694#if defined(_LIBUNWIND_TARGET_X86_64)
695  if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true;
696#elif defined(_LIBUNWIND_TARGET_ARM)
697  if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) ||
698      regNum == UNW_ARM_RA_AUTH_CODE)
699    return true;
700#elif defined(_LIBUNWIND_TARGET_AARCH64)
701  if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true;
702#endif
703  return false;
704}
705
706template <typename A, typename R>
707unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
708  switch (regNum) {
709#if defined(_LIBUNWIND_TARGET_X86_64)
710  case UNW_X86_64_RIP:
711  case UNW_REG_IP: return _msContext.Rip;
712  case UNW_X86_64_RAX: return _msContext.Rax;
713  case UNW_X86_64_RDX: return _msContext.Rdx;
714  case UNW_X86_64_RCX: return _msContext.Rcx;
715  case UNW_X86_64_RBX: return _msContext.Rbx;
716  case UNW_REG_SP:
717  case UNW_X86_64_RSP: return _msContext.Rsp;
718  case UNW_X86_64_RBP: return _msContext.Rbp;
719  case UNW_X86_64_RSI: return _msContext.Rsi;
720  case UNW_X86_64_RDI: return _msContext.Rdi;
721  case UNW_X86_64_R8: return _msContext.R8;
722  case UNW_X86_64_R9: return _msContext.R9;
723  case UNW_X86_64_R10: return _msContext.R10;
724  case UNW_X86_64_R11: return _msContext.R11;
725  case UNW_X86_64_R12: return _msContext.R12;
726  case UNW_X86_64_R13: return _msContext.R13;
727  case UNW_X86_64_R14: return _msContext.R14;
728  case UNW_X86_64_R15: return _msContext.R15;
729#elif defined(_LIBUNWIND_TARGET_ARM)
730  case UNW_ARM_R0: return _msContext.R0;
731  case UNW_ARM_R1: return _msContext.R1;
732  case UNW_ARM_R2: return _msContext.R2;
733  case UNW_ARM_R3: return _msContext.R3;
734  case UNW_ARM_R4: return _msContext.R4;
735  case UNW_ARM_R5: return _msContext.R5;
736  case UNW_ARM_R6: return _msContext.R6;
737  case UNW_ARM_R7: return _msContext.R7;
738  case UNW_ARM_R8: return _msContext.R8;
739  case UNW_ARM_R9: return _msContext.R9;
740  case UNW_ARM_R10: return _msContext.R10;
741  case UNW_ARM_R11: return _msContext.R11;
742  case UNW_ARM_R12: return _msContext.R12;
743  case UNW_REG_SP:
744  case UNW_ARM_SP: return _msContext.Sp;
745  case UNW_ARM_LR: return _msContext.Lr;
746  case UNW_REG_IP:
747  case UNW_ARM_IP: return _msContext.Pc;
748#elif defined(_LIBUNWIND_TARGET_AARCH64)
749  case UNW_REG_SP: return _msContext.Sp;
750  case UNW_REG_IP: return _msContext.Pc;
751  default: return _msContext.X[regNum - UNW_AARCH64_X0];
752#endif
753  }
754  _LIBUNWIND_ABORT("unsupported register");
755}
756
757template <typename A, typename R>
758void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
759  switch (regNum) {
760#if defined(_LIBUNWIND_TARGET_X86_64)
761  case UNW_X86_64_RIP:
762  case UNW_REG_IP: _msContext.Rip = value; break;
763  case UNW_X86_64_RAX: _msContext.Rax = value; break;
764  case UNW_X86_64_RDX: _msContext.Rdx = value; break;
765  case UNW_X86_64_RCX: _msContext.Rcx = value; break;
766  case UNW_X86_64_RBX: _msContext.Rbx = value; break;
767  case UNW_REG_SP:
768  case UNW_X86_64_RSP: _msContext.Rsp = value; break;
769  case UNW_X86_64_RBP: _msContext.Rbp = value; break;
770  case UNW_X86_64_RSI: _msContext.Rsi = value; break;
771  case UNW_X86_64_RDI: _msContext.Rdi = value; break;
772  case UNW_X86_64_R8: _msContext.R8 = value; break;
773  case UNW_X86_64_R9: _msContext.R9 = value; break;
774  case UNW_X86_64_R10: _msContext.R10 = value; break;
775  case UNW_X86_64_R11: _msContext.R11 = value; break;
776  case UNW_X86_64_R12: _msContext.R12 = value; break;
777  case UNW_X86_64_R13: _msContext.R13 = value; break;
778  case UNW_X86_64_R14: _msContext.R14 = value; break;
779  case UNW_X86_64_R15: _msContext.R15 = value; break;
780#elif defined(_LIBUNWIND_TARGET_ARM)
781  case UNW_ARM_R0: _msContext.R0 = value; break;
782  case UNW_ARM_R1: _msContext.R1 = value; break;
783  case UNW_ARM_R2: _msContext.R2 = value; break;
784  case UNW_ARM_R3: _msContext.R3 = value; break;
785  case UNW_ARM_R4: _msContext.R4 = value; break;
786  case UNW_ARM_R5: _msContext.R5 = value; break;
787  case UNW_ARM_R6: _msContext.R6 = value; break;
788  case UNW_ARM_R7: _msContext.R7 = value; break;
789  case UNW_ARM_R8: _msContext.R8 = value; break;
790  case UNW_ARM_R9: _msContext.R9 = value; break;
791  case UNW_ARM_R10: _msContext.R10 = value; break;
792  case UNW_ARM_R11: _msContext.R11 = value; break;
793  case UNW_ARM_R12: _msContext.R12 = value; break;
794  case UNW_REG_SP:
795  case UNW_ARM_SP: _msContext.Sp = value; break;
796  case UNW_ARM_LR: _msContext.Lr = value; break;
797  case UNW_REG_IP:
798  case UNW_ARM_IP: _msContext.Pc = value; break;
799#elif defined(_LIBUNWIND_TARGET_AARCH64)
800  case UNW_REG_SP: _msContext.Sp = value; break;
801  case UNW_REG_IP: _msContext.Pc = value; break;
802  case UNW_AARCH64_X0:
803  case UNW_AARCH64_X1:
804  case UNW_AARCH64_X2:
805  case UNW_AARCH64_X3:
806  case UNW_AARCH64_X4:
807  case UNW_AARCH64_X5:
808  case UNW_AARCH64_X6:
809  case UNW_AARCH64_X7:
810  case UNW_AARCH64_X8:
811  case UNW_AARCH64_X9:
812  case UNW_AARCH64_X10:
813  case UNW_AARCH64_X11:
814  case UNW_AARCH64_X12:
815  case UNW_AARCH64_X13:
816  case UNW_AARCH64_X14:
817  case UNW_AARCH64_X15:
818  case UNW_AARCH64_X16:
819  case UNW_AARCH64_X17:
820  case UNW_AARCH64_X18:
821  case UNW_AARCH64_X19:
822  case UNW_AARCH64_X20:
823  case UNW_AARCH64_X21:
824  case UNW_AARCH64_X22:
825  case UNW_AARCH64_X23:
826  case UNW_AARCH64_X24:
827  case UNW_AARCH64_X25:
828  case UNW_AARCH64_X26:
829  case UNW_AARCH64_X27:
830  case UNW_AARCH64_X28:
831  case UNW_AARCH64_FP:
832  case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break;
833#endif
834  default:
835    _LIBUNWIND_ABORT("unsupported register");
836  }
837}
838
839template <typename A, typename R>
840bool UnwindCursor<A, R>::validFloatReg(int regNum) {
841#if defined(_LIBUNWIND_TARGET_ARM)
842  if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true;
843  if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true;
844#elif defined(_LIBUNWIND_TARGET_AARCH64)
845  if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true;
846#else
847  (void)regNum;
848#endif
849  return false;
850}
851
852template <typename A, typename R>
853unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
854#if defined(_LIBUNWIND_TARGET_ARM)
855  if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
856    union {
857      uint32_t w;
858      float f;
859    } d;
860    d.w = _msContext.S[regNum - UNW_ARM_S0];
861    return d.f;
862  }
863  if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
864    union {
865      uint64_t w;
866      double d;
867    } d;
868    d.w = _msContext.D[regNum - UNW_ARM_D0];
869    return d.d;
870  }
871  _LIBUNWIND_ABORT("unsupported float register");
872#elif defined(_LIBUNWIND_TARGET_AARCH64)
873  return _msContext.V[regNum - UNW_AARCH64_V0].D[0];
874#else
875  (void)regNum;
876  _LIBUNWIND_ABORT("float registers unimplemented");
877#endif
878}
879
880template <typename A, typename R>
881void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
882#if defined(_LIBUNWIND_TARGET_ARM)
883  if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
884    union {
885      uint32_t w;
886      float f;
887    } d;
888    d.f = (float)value;
889    _msContext.S[regNum - UNW_ARM_S0] = d.w;
890  }
891  if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
892    union {
893      uint64_t w;
894      double d;
895    } d;
896    d.d = value;
897    _msContext.D[regNum - UNW_ARM_D0] = d.w;
898  }
899  _LIBUNWIND_ABORT("unsupported float register");
900#elif defined(_LIBUNWIND_TARGET_AARCH64)
901  _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value;
902#else
903  (void)regNum;
904  (void)value;
905  _LIBUNWIND_ABORT("float registers unimplemented");
906#endif
907}
908
909template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
910  RtlRestoreContext(&_msContext, nullptr);
911}
912
913#ifdef __arm__
914template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {}
915#endif
916
917template <typename A, typename R>
918const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
919  return R::getRegisterName(regNum);
920}
921
922template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
923  return false;
924}
925
926#else  // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32)
927
928/// UnwindCursor contains all state (including all register values) during
929/// an unwind.  This is normally stack allocated inside a unw_cursor_t.
930template <typename A, typename R>
931class UnwindCursor : public AbstractUnwindCursor{
932  typedef typename A::pint_t pint_t;
933public:
934                      UnwindCursor(unw_context_t *context, A &as);
935                      UnwindCursor(A &as, void *threadArg);
936  virtual             ~UnwindCursor() {}
937  virtual bool        validReg(int);
938  virtual unw_word_t  getReg(int);
939  virtual void        setReg(int, unw_word_t);
940  virtual bool        validFloatReg(int);
941  virtual unw_fpreg_t getFloatReg(int);
942  virtual void        setFloatReg(int, unw_fpreg_t);
943  virtual int         step(bool stage2 = false);
944  virtual void        getInfo(unw_proc_info_t *);
945  virtual void        jumpto();
946  virtual bool        isSignalFrame();
947  virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
948  virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
949  virtual const char *getRegisterName(int num);
950#ifdef __arm__
951  virtual void        saveVFPAsX();
952#endif
953
954#ifdef _AIX
955  virtual uintptr_t getDataRelBase();
956#endif
957
958#if defined(_LIBUNWIND_USE_CET)
959  virtual void *get_registers() { return &_registers; }
960#endif
961
962  // libunwind does not and should not depend on C++ library which means that we
963  // need our own definition of inline placement new.
964  static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
965
966private:
967
968#if defined(_LIBUNWIND_ARM_EHABI)
969  bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
970
971  int stepWithEHABI() {
972    size_t len = 0;
973    size_t off = 0;
974    // FIXME: Calling decode_eht_entry() here is violating the libunwind
975    // abstraction layer.
976    const uint32_t *ehtp =
977        decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
978                         &off, &len);
979    if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
980            _URC_CONTINUE_UNWIND)
981      return UNW_STEP_END;
982    return UNW_STEP_SUCCESS;
983  }
984#endif
985
986#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
987  bool setInfoForSigReturn() {
988    R dummy;
989    return setInfoForSigReturn(dummy);
990  }
991  int stepThroughSigReturn() {
992    R dummy;
993    return stepThroughSigReturn(dummy);
994  }
995  bool isReadableAddr(const pint_t addr) const;
996#if defined(_LIBUNWIND_TARGET_AARCH64)
997  bool setInfoForSigReturn(Registers_arm64 &);
998  int stepThroughSigReturn(Registers_arm64 &);
999#endif
1000#if defined(_LIBUNWIND_TARGET_RISCV)
1001  bool setInfoForSigReturn(Registers_riscv &);
1002  int stepThroughSigReturn(Registers_riscv &);
1003#endif
1004#if defined(_LIBUNWIND_TARGET_S390X)
1005  bool setInfoForSigReturn(Registers_s390x &);
1006  int stepThroughSigReturn(Registers_s390x &);
1007#endif
1008  template <typename Registers> bool setInfoForSigReturn(Registers &) {
1009    return false;
1010  }
1011  template <typename Registers> int stepThroughSigReturn(Registers &) {
1012    return UNW_STEP_END;
1013  }
1014#endif
1015
1016#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1017  bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo,
1018                         const typename CFI_Parser<A>::CIE_Info &cieInfo,
1019                         pint_t pc, uintptr_t dso_base);
1020  bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
1021                                            uint32_t fdeSectionOffsetHint=0);
1022  int stepWithDwarfFDE(bool stage2) {
1023    return DwarfInstructions<A, R>::stepWithDwarf(
1024        _addressSpace, (pint_t)this->getReg(UNW_REG_IP),
1025        (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2);
1026  }
1027#endif
1028
1029#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1030  bool getInfoFromCompactEncodingSection(pint_t pc,
1031                                            const UnwindInfoSections &sects);
1032  int stepWithCompactEncoding(bool stage2 = false) {
1033#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1034    if ( compactSaysUseDwarf() )
1035      return stepWithDwarfFDE(stage2);
1036#endif
1037    R dummy;
1038    return stepWithCompactEncoding(dummy);
1039  }
1040
1041#if defined(_LIBUNWIND_TARGET_X86_64)
1042  int stepWithCompactEncoding(Registers_x86_64 &) {
1043    return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
1044        _info.format, _info.start_ip, _addressSpace, _registers);
1045  }
1046#endif
1047
1048#if defined(_LIBUNWIND_TARGET_I386)
1049  int stepWithCompactEncoding(Registers_x86 &) {
1050    return CompactUnwinder_x86<A>::stepWithCompactEncoding(
1051        _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
1052  }
1053#endif
1054
1055#if defined(_LIBUNWIND_TARGET_PPC)
1056  int stepWithCompactEncoding(Registers_ppc &) {
1057    return UNW_EINVAL;
1058  }
1059#endif
1060
1061#if defined(_LIBUNWIND_TARGET_PPC64)
1062  int stepWithCompactEncoding(Registers_ppc64 &) {
1063    return UNW_EINVAL;
1064  }
1065#endif
1066
1067
1068#if defined(_LIBUNWIND_TARGET_AARCH64)
1069  int stepWithCompactEncoding(Registers_arm64 &) {
1070    return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
1071        _info.format, _info.start_ip, _addressSpace, _registers);
1072  }
1073#endif
1074
1075#if defined(_LIBUNWIND_TARGET_MIPS_O32)
1076  int stepWithCompactEncoding(Registers_mips_o32 &) {
1077    return UNW_EINVAL;
1078  }
1079#endif
1080
1081#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
1082  int stepWithCompactEncoding(Registers_mips_newabi &) {
1083    return UNW_EINVAL;
1084  }
1085#endif
1086
1087#if defined(_LIBUNWIND_TARGET_LOONGARCH)
1088  int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; }
1089#endif
1090
1091#if defined(_LIBUNWIND_TARGET_SPARC)
1092  int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; }
1093#endif
1094
1095#if defined(_LIBUNWIND_TARGET_SPARC64)
1096  int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; }
1097#endif
1098
1099#if defined (_LIBUNWIND_TARGET_RISCV)
1100  int stepWithCompactEncoding(Registers_riscv &) {
1101    return UNW_EINVAL;
1102  }
1103#endif
1104
1105  bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
1106    R dummy;
1107    return compactSaysUseDwarf(dummy, offset);
1108  }
1109
1110#if defined(_LIBUNWIND_TARGET_X86_64)
1111  bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
1112    if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
1113      if (offset)
1114        *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
1115      return true;
1116    }
1117    return false;
1118  }
1119#endif
1120
1121#if defined(_LIBUNWIND_TARGET_I386)
1122  bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
1123    if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
1124      if (offset)
1125        *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
1126      return true;
1127    }
1128    return false;
1129  }
1130#endif
1131
1132#if defined(_LIBUNWIND_TARGET_PPC)
1133  bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
1134    return true;
1135  }
1136#endif
1137
1138#if defined(_LIBUNWIND_TARGET_PPC64)
1139  bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const {
1140    return true;
1141  }
1142#endif
1143
1144#if defined(_LIBUNWIND_TARGET_AARCH64)
1145  bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
1146    if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
1147      if (offset)
1148        *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
1149      return true;
1150    }
1151    return false;
1152  }
1153#endif
1154
1155#if defined(_LIBUNWIND_TARGET_MIPS_O32)
1156  bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
1157    return true;
1158  }
1159#endif
1160
1161#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
1162  bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
1163    return true;
1164  }
1165#endif
1166
1167#if defined(_LIBUNWIND_TARGET_LOONGARCH)
1168  bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const {
1169    return true;
1170  }
1171#endif
1172
1173#if defined(_LIBUNWIND_TARGET_SPARC)
1174  bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; }
1175#endif
1176
1177#if defined(_LIBUNWIND_TARGET_SPARC64)
1178  bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const {
1179    return true;
1180  }
1181#endif
1182
1183#if defined (_LIBUNWIND_TARGET_RISCV)
1184  bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const {
1185    return true;
1186  }
1187#endif
1188
1189#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1190
1191#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1192  compact_unwind_encoding_t dwarfEncoding() const {
1193    R dummy;
1194    return dwarfEncoding(dummy);
1195  }
1196
1197#if defined(_LIBUNWIND_TARGET_X86_64)
1198  compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
1199    return UNWIND_X86_64_MODE_DWARF;
1200  }
1201#endif
1202
1203#if defined(_LIBUNWIND_TARGET_I386)
1204  compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
1205    return UNWIND_X86_MODE_DWARF;
1206  }
1207#endif
1208
1209#if defined(_LIBUNWIND_TARGET_PPC)
1210  compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
1211    return 0;
1212  }
1213#endif
1214
1215#if defined(_LIBUNWIND_TARGET_PPC64)
1216  compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const {
1217    return 0;
1218  }
1219#endif
1220
1221#if defined(_LIBUNWIND_TARGET_AARCH64)
1222  compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
1223    return UNWIND_ARM64_MODE_DWARF;
1224  }
1225#endif
1226
1227#if defined(_LIBUNWIND_TARGET_ARM)
1228  compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const {
1229    return 0;
1230  }
1231#endif
1232
1233#if defined (_LIBUNWIND_TARGET_OR1K)
1234  compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
1235    return 0;
1236  }
1237#endif
1238
1239#if defined (_LIBUNWIND_TARGET_HEXAGON)
1240  compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const {
1241    return 0;
1242  }
1243#endif
1244
1245#if defined (_LIBUNWIND_TARGET_MIPS_O32)
1246  compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
1247    return 0;
1248  }
1249#endif
1250
1251#if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
1252  compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
1253    return 0;
1254  }
1255#endif
1256
1257#if defined(_LIBUNWIND_TARGET_LOONGARCH)
1258  compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const {
1259    return 0;
1260  }
1261#endif
1262
1263#if defined(_LIBUNWIND_TARGET_SPARC)
1264  compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; }
1265#endif
1266
1267#if defined(_LIBUNWIND_TARGET_SPARC64)
1268  compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const {
1269    return 0;
1270  }
1271#endif
1272
1273#if defined (_LIBUNWIND_TARGET_RISCV)
1274  compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
1275    return 0;
1276  }
1277#endif
1278
1279#if defined (_LIBUNWIND_TARGET_S390X)
1280  compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const {
1281    return 0;
1282  }
1283#endif
1284
1285#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1286
1287#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1288  // For runtime environments using SEH unwind data without Windows runtime
1289  // support.
1290  pint_t getLastPC() const { /* FIXME: Implement */ return 0; }
1291  void setLastPC(pint_t pc) { /* FIXME: Implement */ }
1292  RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
1293    /* FIXME: Implement */
1294    *base = 0;
1295    return nullptr;
1296  }
1297  bool getInfoFromSEH(pint_t pc);
1298  int stepWithSEHData() { /* FIXME: Implement */ return 0; }
1299#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1300
1301#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
1302  bool getInfoFromTBTable(pint_t pc, R &registers);
1303  int stepWithTBTable(pint_t pc, tbtable *TBTable, R &registers,
1304                      bool &isSignalFrame);
1305  int stepWithTBTableData() {
1306    return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)),
1307                           reinterpret_cast<tbtable *>(_info.unwind_info),
1308                           _registers, _isSignalFrame);
1309  }
1310#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
1311
1312  A               &_addressSpace;
1313  R                _registers;
1314  unw_proc_info_t  _info;
1315  bool             _unwindInfoMissing;
1316  bool             _isSignalFrame;
1317#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
1318  bool             _isSigReturn = false;
1319#endif
1320};
1321
1322
1323template <typename A, typename R>
1324UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
1325    : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
1326      _isSignalFrame(false) {
1327  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
1328                "UnwindCursor<> does not fit in unw_cursor_t");
1329  static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
1330                "UnwindCursor<> requires more alignment than unw_cursor_t");
1331  memset(&_info, 0, sizeof(_info));
1332}
1333
1334template <typename A, typename R>
1335UnwindCursor<A, R>::UnwindCursor(A &as, void *)
1336    : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
1337  memset(&_info, 0, sizeof(_info));
1338  // FIXME
1339  // fill in _registers from thread arg
1340}
1341
1342
1343template <typename A, typename R>
1344bool UnwindCursor<A, R>::validReg(int regNum) {
1345  return _registers.validRegister(regNum);
1346}
1347
1348template <typename A, typename R>
1349unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
1350  return _registers.getRegister(regNum);
1351}
1352
1353template <typename A, typename R>
1354void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
1355  _registers.setRegister(regNum, (typename A::pint_t)value);
1356}
1357
1358template <typename A, typename R>
1359bool UnwindCursor<A, R>::validFloatReg(int regNum) {
1360  return _registers.validFloatRegister(regNum);
1361}
1362
1363template <typename A, typename R>
1364unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
1365  return _registers.getFloatRegister(regNum);
1366}
1367
1368template <typename A, typename R>
1369void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
1370  _registers.setFloatRegister(regNum, value);
1371}
1372
1373template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
1374  _registers.jumpto();
1375}
1376
1377#ifdef __arm__
1378template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
1379  _registers.saveVFPAsX();
1380}
1381#endif
1382
1383#ifdef _AIX
1384template <typename A, typename R>
1385uintptr_t UnwindCursor<A, R>::getDataRelBase() {
1386  return reinterpret_cast<uintptr_t>(_info.extra);
1387}
1388#endif
1389
1390template <typename A, typename R>
1391const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
1392  return _registers.getRegisterName(regNum);
1393}
1394
1395template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
1396  return _isSignalFrame;
1397}
1398
1399#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1400
1401#if defined(_LIBUNWIND_ARM_EHABI)
1402template<typename A>
1403struct EHABISectionIterator {
1404  typedef EHABISectionIterator _Self;
1405
1406  typedef typename A::pint_t value_type;
1407  typedef typename A::pint_t* pointer;
1408  typedef typename A::pint_t& reference;
1409  typedef size_t size_type;
1410  typedef size_t difference_type;
1411
1412  static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
1413    return _Self(addressSpace, sects, 0);
1414  }
1415  static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
1416    return _Self(addressSpace, sects,
1417                 sects.arm_section_length / sizeof(EHABIIndexEntry));
1418  }
1419
1420  EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
1421      : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}
1422
1423  _Self& operator++() { ++_i; return *this; }
1424  _Self& operator+=(size_t a) { _i += a; return *this; }
1425  _Self& operator--() { assert(_i > 0); --_i; return *this; }
1426  _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
1427
1428  _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
1429  _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
1430
1431  size_t operator-(const _Self& other) const { return _i - other._i; }
1432
1433  bool operator==(const _Self& other) const {
1434    assert(_addressSpace == other._addressSpace);
1435    assert(_sects == other._sects);
1436    return _i == other._i;
1437  }
1438
1439  bool operator!=(const _Self& other) const {
1440    assert(_addressSpace == other._addressSpace);
1441    assert(_sects == other._sects);
1442    return _i != other._i;
1443  }
1444
1445  typename A::pint_t operator*() const { return functionAddress(); }
1446
1447  typename A::pint_t functionAddress() const {
1448    typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1449        EHABIIndexEntry, _i, functionOffset);
1450    return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
1451  }
1452
1453  typename A::pint_t dataAddress() {
1454    typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1455        EHABIIndexEntry, _i, data);
1456    return indexAddr;
1457  }
1458
1459 private:
1460  size_t _i;
1461  A* _addressSpace;
1462  const UnwindInfoSections* _sects;
1463};
1464
1465namespace {
1466
1467template <typename A>
1468EHABISectionIterator<A> EHABISectionUpperBound(
1469    EHABISectionIterator<A> first,
1470    EHABISectionIterator<A> last,
1471    typename A::pint_t value) {
1472  size_t len = last - first;
1473  while (len > 0) {
1474    size_t l2 = len / 2;
1475    EHABISectionIterator<A> m = first + l2;
1476    if (value < *m) {
1477        len = l2;
1478    } else {
1479        first = ++m;
1480        len -= l2 + 1;
1481    }
1482  }
1483  return first;
1484}
1485
1486}
1487
1488template <typename A, typename R>
1489bool UnwindCursor<A, R>::getInfoFromEHABISection(
1490    pint_t pc,
1491    const UnwindInfoSections &sects) {
1492  EHABISectionIterator<A> begin =
1493      EHABISectionIterator<A>::begin(_addressSpace, sects);
1494  EHABISectionIterator<A> end =
1495      EHABISectionIterator<A>::end(_addressSpace, sects);
1496  if (begin == end)
1497    return false;
1498
1499  EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc);
1500  if (itNextPC == begin)
1501    return false;
1502  EHABISectionIterator<A> itThisPC = itNextPC - 1;
1503
1504  pint_t thisPC = itThisPC.functionAddress();
1505  // If an exception is thrown from a function, corresponding to the last entry
1506  // in the table, we don't really know the function extent and have to choose a
1507  // value for nextPC. Choosing max() will allow the range check during trace to
1508  // succeed.
1509  pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress();
1510  pint_t indexDataAddr = itThisPC.dataAddress();
1511
1512  if (indexDataAddr == 0)
1513    return false;
1514
1515  uint32_t indexData = _addressSpace.get32(indexDataAddr);
1516  if (indexData == UNW_EXIDX_CANTUNWIND)
1517    return false;
1518
1519  // If the high bit is set, the exception handling table entry is inline inside
1520  // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
1521  // the table points at an offset in the exception handling table (section 5
1522  // EHABI).
1523  pint_t exceptionTableAddr;
1524  uint32_t exceptionTableData;
1525  bool isSingleWordEHT;
1526  if (indexData & 0x80000000) {
1527    exceptionTableAddr = indexDataAddr;
1528    // TODO(ajwong): Should this data be 0?
1529    exceptionTableData = indexData;
1530    isSingleWordEHT = true;
1531  } else {
1532    exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
1533    exceptionTableData = _addressSpace.get32(exceptionTableAddr);
1534    isSingleWordEHT = false;
1535  }
1536
1537  // Now we know the 3 things:
1538  //   exceptionTableAddr -- exception handler table entry.
1539  //   exceptionTableData -- the data inside the first word of the eht entry.
1540  //   isSingleWordEHT -- whether the entry is in the index.
1541  unw_word_t personalityRoutine = 0xbadf00d;
1542  bool scope32 = false;
1543  uintptr_t lsda;
1544
1545  // If the high bit in the exception handling table entry is set, the entry is
1546  // in compact form (section 6.3 EHABI).
1547  if (exceptionTableData & 0x80000000) {
1548    // Grab the index of the personality routine from the compact form.
1549    uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
1550    uint32_t extraWords = 0;
1551    switch (choice) {
1552      case 0:
1553        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
1554        extraWords = 0;
1555        scope32 = false;
1556        lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
1557        break;
1558      case 1:
1559        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
1560        extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1561        scope32 = false;
1562        lsda = exceptionTableAddr + (extraWords + 1) * 4;
1563        break;
1564      case 2:
1565        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
1566        extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1567        scope32 = true;
1568        lsda = exceptionTableAddr + (extraWords + 1) * 4;
1569        break;
1570      default:
1571        _LIBUNWIND_ABORT("unknown personality routine");
1572        return false;
1573    }
1574
1575    if (isSingleWordEHT) {
1576      if (extraWords != 0) {
1577        _LIBUNWIND_ABORT("index inlined table detected but pr function "
1578                         "requires extra words");
1579        return false;
1580      }
1581    }
1582  } else {
1583    pint_t personalityAddr =
1584        exceptionTableAddr + signExtendPrel31(exceptionTableData);
1585    personalityRoutine = personalityAddr;
1586
1587    // ARM EHABI # 6.2, # 9.2
1588    //
1589    //  +---- ehtp
1590    //  v
1591    // +--------------------------------------+
1592    // | +--------+--------+--------+-------+ |
1593    // | |0| prel31 to personalityRoutine   | |
1594    // | +--------+--------+--------+-------+ |
1595    // | |      N |      unwind opcodes     | |  <-- UnwindData
1596    // | +--------+--------+--------+-------+ |
1597    // | | Word 2        unwind opcodes     | |
1598    // | +--------+--------+--------+-------+ |
1599    // | ...                                  |
1600    // | +--------+--------+--------+-------+ |
1601    // | | Word N        unwind opcodes     | |
1602    // | +--------+--------+--------+-------+ |
1603    // | | LSDA                             | |  <-- lsda
1604    // | | ...                              | |
1605    // | +--------+--------+--------+-------+ |
1606    // +--------------------------------------+
1607
1608    uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
1609    uint32_t FirstDataWord = *UnwindData;
1610    size_t N = ((FirstDataWord >> 24) & 0xff);
1611    size_t NDataWords = N + 1;
1612    lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
1613  }
1614
1615  _info.start_ip = thisPC;
1616  _info.end_ip = nextPC;
1617  _info.handler = personalityRoutine;
1618  _info.unwind_info = exceptionTableAddr;
1619  _info.lsda = lsda;
1620  // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
1621  _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0);  // Use enum?
1622
1623  return true;
1624}
1625#endif
1626
1627#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1628template <typename A, typename R>
1629bool UnwindCursor<A, R>::getInfoFromFdeCie(
1630    const typename CFI_Parser<A>::FDE_Info &fdeInfo,
1631    const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc,
1632    uintptr_t dso_base) {
1633  typename CFI_Parser<A>::PrologInfo prolog;
1634  if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
1635                                          R::getArch(), &prolog)) {
1636    // Save off parsed FDE info
1637    _info.start_ip          = fdeInfo.pcStart;
1638    _info.end_ip            = fdeInfo.pcEnd;
1639    _info.lsda              = fdeInfo.lsda;
1640    _info.handler           = cieInfo.personality;
1641    // Some frameless functions need SP altered when resuming in function, so
1642    // propagate spExtraArgSize.
1643    _info.gp                = prolog.spExtraArgSize;
1644    _info.flags             = 0;
1645    _info.format            = dwarfEncoding();
1646    _info.unwind_info       = fdeInfo.fdeStart;
1647    _info.unwind_info_size  = static_cast<uint32_t>(fdeInfo.fdeLength);
1648    _info.extra             = static_cast<unw_word_t>(dso_base);
1649    return true;
1650  }
1651  return false;
1652}
1653
1654template <typename A, typename R>
1655bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
1656                                                const UnwindInfoSections &sects,
1657                                                uint32_t fdeSectionOffsetHint) {
1658  typename CFI_Parser<A>::FDE_Info fdeInfo;
1659  typename CFI_Parser<A>::CIE_Info cieInfo;
1660  bool foundFDE = false;
1661  bool foundInCache = false;
1662  // If compact encoding table gave offset into dwarf section, go directly there
1663  if (fdeSectionOffsetHint != 0) {
1664    foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1665                                    sects.dwarf_section_length,
1666                                    sects.dwarf_section + fdeSectionOffsetHint,
1667                                    &fdeInfo, &cieInfo);
1668  }
1669#if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1670  if (!foundFDE && (sects.dwarf_index_section != 0)) {
1671    foundFDE = EHHeaderParser<A>::findFDE(
1672        _addressSpace, pc, sects.dwarf_index_section,
1673        (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
1674  }
1675#endif
1676  if (!foundFDE) {
1677    // otherwise, search cache of previously found FDEs.
1678    pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
1679    if (cachedFDE != 0) {
1680      foundFDE =
1681          CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1682                                 sects.dwarf_section_length,
1683                                 cachedFDE, &fdeInfo, &cieInfo);
1684      foundInCache = foundFDE;
1685    }
1686  }
1687  if (!foundFDE) {
1688    // Still not found, do full scan of __eh_frame section.
1689    foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1690                                      sects.dwarf_section_length, 0,
1691                                      &fdeInfo, &cieInfo);
1692  }
1693  if (foundFDE) {
1694    if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) {
1695      // Add to cache (to make next lookup faster) if we had no hint
1696      // and there was no index.
1697      if (!foundInCache && (fdeSectionOffsetHint == 0)) {
1698  #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1699        if (sects.dwarf_index_section == 0)
1700  #endif
1701        DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
1702                              fdeInfo.fdeStart);
1703      }
1704      return true;
1705    }
1706  }
1707  //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
1708  return false;
1709}
1710#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1711
1712
1713#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1714template <typename A, typename R>
1715bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
1716                                              const UnwindInfoSections &sects) {
1717  const bool log = false;
1718  if (log)
1719    fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
1720            (uint64_t)pc, (uint64_t)sects.dso_base);
1721
1722  const UnwindSectionHeader<A> sectionHeader(_addressSpace,
1723                                                sects.compact_unwind_section);
1724  if (sectionHeader.version() != UNWIND_SECTION_VERSION)
1725    return false;
1726
1727  // do a binary search of top level index to find page with unwind info
1728  pint_t targetFunctionOffset = pc - sects.dso_base;
1729  const UnwindSectionIndexArray<A> topIndex(_addressSpace,
1730                                           sects.compact_unwind_section
1731                                         + sectionHeader.indexSectionOffset());
1732  uint32_t low = 0;
1733  uint32_t high = sectionHeader.indexCount();
1734  uint32_t last = high - 1;
1735  while (low < high) {
1736    uint32_t mid = (low + high) / 2;
1737    //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
1738    //mid, low, high, topIndex.functionOffset(mid));
1739    if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
1740      if ((mid == last) ||
1741          (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
1742        low = mid;
1743        break;
1744      } else {
1745        low = mid + 1;
1746      }
1747    } else {
1748      high = mid;
1749    }
1750  }
1751  const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
1752  const uint32_t firstLevelNextPageFunctionOffset =
1753      topIndex.functionOffset(low + 1);
1754  const pint_t secondLevelAddr =
1755      sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
1756  const pint_t lsdaArrayStartAddr =
1757      sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
1758  const pint_t lsdaArrayEndAddr =
1759      sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
1760  if (log)
1761    fprintf(stderr, "\tfirst level search for result index=%d "
1762                    "to secondLevelAddr=0x%llX\n",
1763                    low, (uint64_t) secondLevelAddr);
1764  // do a binary search of second level page index
1765  uint32_t encoding = 0;
1766  pint_t funcStart = 0;
1767  pint_t funcEnd = 0;
1768  pint_t lsda = 0;
1769  pint_t personality = 0;
1770  uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
1771  if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
1772    // regular page
1773    UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
1774                                                 secondLevelAddr);
1775    UnwindSectionRegularArray<A> pageIndex(
1776        _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1777    // binary search looks for entry with e where index[e].offset <= pc <
1778    // index[e+1].offset
1779    if (log)
1780      fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
1781                      "regular page starting at secondLevelAddr=0x%llX\n",
1782              (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
1783    low = 0;
1784    high = pageHeader.entryCount();
1785    while (low < high) {
1786      uint32_t mid = (low + high) / 2;
1787      if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
1788        if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
1789          // at end of table
1790          low = mid;
1791          funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1792          break;
1793        } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
1794          // next is too big, so we found it
1795          low = mid;
1796          funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
1797          break;
1798        } else {
1799          low = mid + 1;
1800        }
1801      } else {
1802        high = mid;
1803      }
1804    }
1805    encoding = pageIndex.encoding(low);
1806    funcStart = pageIndex.functionOffset(low) + sects.dso_base;
1807    if (pc < funcStart) {
1808      if (log)
1809        fprintf(
1810            stderr,
1811            "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1812            (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1813      return false;
1814    }
1815    if (pc > funcEnd) {
1816      if (log)
1817        fprintf(
1818            stderr,
1819            "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1820            (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1821      return false;
1822    }
1823  } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
1824    // compressed page
1825    UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
1826                                                    secondLevelAddr);
1827    UnwindSectionCompressedArray<A> pageIndex(
1828        _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1829    const uint32_t targetFunctionPageOffset =
1830        (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
1831    // binary search looks for entry with e where index[e].offset <= pc <
1832    // index[e+1].offset
1833    if (log)
1834      fprintf(stderr, "\tbinary search of compressed page starting at "
1835                      "secondLevelAddr=0x%llX\n",
1836              (uint64_t) secondLevelAddr);
1837    low = 0;
1838    last = pageHeader.entryCount() - 1;
1839    high = pageHeader.entryCount();
1840    while (low < high) {
1841      uint32_t mid = (low + high) / 2;
1842      if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
1843        if ((mid == last) ||
1844            (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
1845          low = mid;
1846          break;
1847        } else {
1848          low = mid + 1;
1849        }
1850      } else {
1851        high = mid;
1852      }
1853    }
1854    funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
1855                                                              + sects.dso_base;
1856    if (low < last)
1857      funcEnd =
1858          pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
1859                                                              + sects.dso_base;
1860    else
1861      funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1862    if (pc < funcStart) {
1863      _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
1864                           "not in second level compressed unwind table. "
1865                           "funcStart=0x%llX",
1866                            (uint64_t) pc, (uint64_t) funcStart);
1867      return false;
1868    }
1869    if (pc > funcEnd) {
1870      _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
1871                           "not in second level compressed unwind table. "
1872                           "funcEnd=0x%llX",
1873                           (uint64_t) pc, (uint64_t) funcEnd);
1874      return false;
1875    }
1876    uint16_t encodingIndex = pageIndex.encodingIndex(low);
1877    if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
1878      // encoding is in common table in section header
1879      encoding = _addressSpace.get32(
1880          sects.compact_unwind_section +
1881          sectionHeader.commonEncodingsArraySectionOffset() +
1882          encodingIndex * sizeof(uint32_t));
1883    } else {
1884      // encoding is in page specific table
1885      uint16_t pageEncodingIndex =
1886          encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
1887      encoding = _addressSpace.get32(secondLevelAddr +
1888                                     pageHeader.encodingsPageOffset() +
1889                                     pageEncodingIndex * sizeof(uint32_t));
1890    }
1891  } else {
1892    _LIBUNWIND_DEBUG_LOG(
1893        "malformed __unwind_info at 0x%0llX bad second level page",
1894        (uint64_t)sects.compact_unwind_section);
1895    return false;
1896  }
1897
1898  // look up LSDA, if encoding says function has one
1899  if (encoding & UNWIND_HAS_LSDA) {
1900    UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
1901    uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
1902    low = 0;
1903    high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
1904                    sizeof(unwind_info_section_header_lsda_index_entry);
1905    // binary search looks for entry with exact match for functionOffset
1906    if (log)
1907      fprintf(stderr,
1908              "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
1909              funcStartOffset);
1910    while (low < high) {
1911      uint32_t mid = (low + high) / 2;
1912      if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
1913        lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
1914        break;
1915      } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
1916        low = mid + 1;
1917      } else {
1918        high = mid;
1919      }
1920    }
1921    if (lsda == 0) {
1922      _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
1923                    "pc=0x%0llX, but lsda table has no entry",
1924                    encoding, (uint64_t) pc);
1925      return false;
1926    }
1927  }
1928
1929  // extract personality routine, if encoding says function has one
1930  uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
1931                              (__builtin_ctz(UNWIND_PERSONALITY_MASK));
1932  if (personalityIndex != 0) {
1933    --personalityIndex; // change 1-based to zero-based index
1934    if (personalityIndex >= sectionHeader.personalityArrayCount()) {
1935      _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
1936                            "but personality table has only %d entries",
1937                            encoding, personalityIndex,
1938                            sectionHeader.personalityArrayCount());
1939      return false;
1940    }
1941    int32_t personalityDelta = (int32_t)_addressSpace.get32(
1942        sects.compact_unwind_section +
1943        sectionHeader.personalityArraySectionOffset() +
1944        personalityIndex * sizeof(uint32_t));
1945    pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
1946    personality = _addressSpace.getP(personalityPointer);
1947    if (log)
1948      fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1949                      "personalityDelta=0x%08X, personality=0x%08llX\n",
1950              (uint64_t) pc, personalityDelta, (uint64_t) personality);
1951  }
1952
1953  if (log)
1954    fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1955                    "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
1956            (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
1957  _info.start_ip = funcStart;
1958  _info.end_ip = funcEnd;
1959  _info.lsda = lsda;
1960  _info.handler = personality;
1961  _info.gp = 0;
1962  _info.flags = 0;
1963  _info.format = encoding;
1964  _info.unwind_info = 0;
1965  _info.unwind_info_size = 0;
1966  _info.extra = sects.dso_base;
1967  return true;
1968}
1969#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1970
1971
1972#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1973template <typename A, typename R>
1974bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) {
1975  pint_t base;
1976  RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base);
1977  if (!unwindEntry) {
1978    _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc);
1979    return false;
1980  }
1981  _info.gp = 0;
1982  _info.flags = 0;
1983  _info.format = 0;
1984  _info.unwind_info_size = sizeof(RUNTIME_FUNCTION);
1985  _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry);
1986  _info.extra = base;
1987  _info.start_ip = base + unwindEntry->BeginAddress;
1988#ifdef _LIBUNWIND_TARGET_X86_64
1989  _info.end_ip = base + unwindEntry->EndAddress;
1990  // Only fill in the handler and LSDA if they're stale.
1991  if (pc != getLastPC()) {
1992    UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData);
1993    if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) {
1994      // The personality is given in the UNWIND_INFO itself. The LSDA immediately
1995      // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit
1996      // these structures.)
1997      // N.B. UNWIND_INFO structs are DWORD-aligned.
1998      uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1;
1999      const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]);
2000      _info.lsda = reinterpret_cast<unw_word_t>(handler+1);
2001      _dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda);
2002      _dispContext.LanguageHandler =
2003          reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler);
2004      if (*handler) {
2005        _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
2006      } else
2007        _info.handler = 0;
2008    } else {
2009      _info.lsda = 0;
2010      _info.handler = 0;
2011    }
2012  }
2013#endif
2014  setLastPC(pc);
2015  return true;
2016}
2017#endif
2018
2019#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2020// Masks for traceback table field xtbtable.
2021enum xTBTableMask : uint8_t {
2022  reservedBit = 0x02, // The traceback table was incorrectly generated if set
2023                      // (see comments in function getInfoFromTBTable().
2024  ehInfoBit = 0x08    // Exception handling info is present if set
2025};
2026
2027enum frameType : unw_word_t {
2028  frameWithXLEHStateTable = 0,
2029  frameWithEHInfo = 1
2030};
2031
2032extern "C" {
2033typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action,
2034                                                     uint64_t,
2035                                                     _Unwind_Exception *,
2036                                                     struct _Unwind_Context *);
2037__attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0;
2038}
2039
2040static __xlcxx_personality_v0_t *xlcPersonalityV0;
2041static RWMutex xlcPersonalityV0InitLock;
2042
2043template <typename A, typename R>
2044bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R &registers) {
2045  uint32_t *p = reinterpret_cast<uint32_t *>(pc);
2046
2047  // Keep looking forward until a word of 0 is found. The traceback
2048  // table starts at the following word.
2049  while (*p)
2050    ++p;
2051  tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1);
2052
2053  if (_LIBUNWIND_TRACING_UNWINDING) {
2054    char functionBuf[512];
2055    const char *functionName = functionBuf;
2056    unw_word_t offset;
2057    if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
2058      functionName = ".anonymous.";
2059    }
2060    _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p",
2061                               __func__, functionName,
2062                               reinterpret_cast<void *>(TBTable));
2063  }
2064
2065  // If the traceback table does not contain necessary info, bypass this frame.
2066  if (!TBTable->tb.has_tboff)
2067    return false;
2068
2069  // Structure tbtable_ext contains important data we are looking for.
2070  p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
2071
2072  // Skip field parminfo if it exists.
2073  if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
2074    ++p;
2075
2076  // p now points to tb_offset, the offset from start of function to TB table.
2077  unw_word_t start_ip =
2078      reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t);
2079  unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable);
2080  ++p;
2081
2082  _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n",
2083                             reinterpret_cast<void *>(start_ip),
2084                             reinterpret_cast<void *>(end_ip));
2085
2086  // Skip field hand_mask if it exists.
2087  if (TBTable->tb.int_hndl)
2088    ++p;
2089
2090  unw_word_t lsda = 0;
2091  unw_word_t handler = 0;
2092  unw_word_t flags = frameType::frameWithXLEHStateTable;
2093
2094  if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) {
2095    // State table info is available. The ctl_info field indicates the
2096    // number of CTL anchors. There should be only one entry for the C++
2097    // state table.
2098    assert(*p == 1 && "libunwind: there must be only one ctl_info entry");
2099    ++p;
2100    // p points to the offset of the state table into the stack.
2101    pint_t stateTableOffset = *p++;
2102
2103    int framePointerReg;
2104
2105    // Skip fields name_len and name if exist.
2106    if (TBTable->tb.name_present) {
2107      const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p));
2108      p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len +
2109                                       sizeof(uint16_t));
2110    }
2111
2112    if (TBTable->tb.uses_alloca)
2113      framePointerReg = *(reinterpret_cast<char *>(p));
2114    else
2115      framePointerReg = 1; // default frame pointer == SP
2116
2117    _LIBUNWIND_TRACE_UNWINDING(
2118        "framePointerReg=%d, framePointer=%p, "
2119        "stateTableOffset=%#lx\n",
2120        framePointerReg,
2121        reinterpret_cast<void *>(_registers.getRegister(framePointerReg)),
2122        stateTableOffset);
2123    lsda = _registers.getRegister(framePointerReg) + stateTableOffset;
2124
2125    // Since the traceback table generated by the legacy XLC++ does not
2126    // provide the location of the personality for the state table,
2127    // function __xlcxx_personality_v0(), which is the personality for the state
2128    // table and is exported from libc++abi, is directly assigned as the
2129    // handler here. When a legacy XLC++ frame is encountered, the symbol
2130    // is resolved dynamically using dlopen() to avoid hard dependency from
2131    // libunwind on libc++abi.
2132
2133    // Resolve the function pointer to the state table personality if it has
2134    // not already.
2135    if (xlcPersonalityV0 == NULL) {
2136      xlcPersonalityV0InitLock.lock();
2137      if (xlcPersonalityV0 == NULL) {
2138        // If libc++abi is statically linked in, symbol __xlcxx_personality_v0
2139        // has been resolved at the link time.
2140        xlcPersonalityV0 = &__xlcxx_personality_v0;
2141        if (xlcPersonalityV0 == NULL) {
2142          // libc++abi is dynamically linked. Resolve __xlcxx_personality_v0
2143          // using dlopen().
2144          const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)";
2145          void *libHandle;
2146          // The AIX dlopen() sets errno to 0 when it is successful, which
2147          // clobbers the value of errno from the user code. This is an AIX
2148          // bug because according to POSIX it should not set errno to 0. To
2149          // workaround before AIX fixes the bug, errno is saved and restored.
2150          int saveErrno = errno;
2151          libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW);
2152          if (libHandle == NULL) {
2153            _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n",
2154                                       errno);
2155            assert(0 && "dlopen() failed");
2156          }
2157          xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>(
2158              dlsym(libHandle, "__xlcxx_personality_v0"));
2159          if (xlcPersonalityV0 == NULL) {
2160            _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno);
2161            assert(0 && "dlsym() failed");
2162          }
2163          dlclose(libHandle);
2164          errno = saveErrno;
2165        }
2166      }
2167      xlcPersonalityV0InitLock.unlock();
2168    }
2169    handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0);
2170    _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n",
2171                               reinterpret_cast<void *>(lsda),
2172                               reinterpret_cast<void *>(handler));
2173  } else if (TBTable->tb.longtbtable) {
2174    // This frame has the traceback table extension. Possible cases are
2175    // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that
2176    // is not EH aware; or, 3) a frame of other languages. We need to figure out
2177    // if the traceback table extension contains the 'eh_info' structure.
2178    //
2179    // We also need to deal with the complexity arising from some XL compiler
2180    // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits
2181    // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice
2182    // versa. For frames of code generated by those compilers, the 'longtbtable'
2183    // bit may be set but there isn't really a traceback table extension.
2184    //
2185    // In </usr/include/sys/debug.h>, there is the following definition of
2186    // 'struct tbtable_ext'. It is not really a structure but a dummy to
2187    // collect the description of optional parts of the traceback table.
2188    //
2189    // struct tbtable_ext {
2190    //   ...
2191    //   char alloca_reg;        /* Register for alloca automatic storage */
2192    //   struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */
2193    //   unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/
2194    // };
2195    //
2196    // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data
2197    // following 'alloca_reg' can be treated either as 'struct vec_ext' or
2198    // 'unsigned char xtbtable'. 'xtbtable' bits are defined in
2199    // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently
2200    // unused and should not be set. 'struct vec_ext' is defined in
2201    // </usr/include/sys/debug.h> as follows:
2202    //
2203    // struct vec_ext {
2204    //   unsigned vr_saved:6;      /* Number of non-volatile vector regs saved
2205    //   */
2206    //                             /* first register saved is assumed to be */
2207    //                             /* 32 - vr_saved                         */
2208    //   unsigned saves_vrsave:1;  /* Set if vrsave is saved on the stack */
2209    //   unsigned has_varargs:1;
2210    //   ...
2211    // };
2212    //
2213    // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it
2214    // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg',
2215    // we checks if the 7th bit is set or not because 'xtbtable' should
2216    // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved
2217    // in the future to make sure the mitigation works. This mitigation
2218    // is not 100% bullet proof because 'struct vec_ext' may not always have
2219    // 'saves_vrsave' bit set.
2220    //
2221    // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for
2222    // checking the 7th bit.
2223
2224    // p points to field name len.
2225    uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
2226
2227    // Skip fields name_len and name if they exist.
2228    if (TBTable->tb.name_present) {
2229      const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
2230      charPtr = charPtr + name_len + sizeof(uint16_t);
2231    }
2232
2233    // Skip field alloc_reg if it exists.
2234    if (TBTable->tb.uses_alloca)
2235      ++charPtr;
2236
2237    // Check traceback table bit has_vec. Skip struct vec_ext if it exists.
2238    if (TBTable->tb.has_vec)
2239      // Note struct vec_ext does exist at this point because whether the
2240      // ordering of longtbtable and has_vec bits is correct or not, both
2241      // are set.
2242      charPtr += sizeof(struct vec_ext);
2243
2244    // charPtr points to field 'xtbtable'. Check if the EH info is available.
2245    // Also check if the reserved bit of the extended traceback table field
2246    // 'xtbtable' is set. If it is, the traceback table was incorrectly
2247    // generated by an XL compiler that uses the wrong ordering of 'longtbtable'
2248    // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the
2249    // frame.
2250    if ((*charPtr & xTBTableMask::ehInfoBit) &&
2251        !(*charPtr & xTBTableMask::reservedBit)) {
2252      // Mark this frame has the new EH info.
2253      flags = frameType::frameWithEHInfo;
2254
2255      // eh_info is available.
2256      charPtr++;
2257      // The pointer is 4-byte aligned.
2258      if (reinterpret_cast<uintptr_t>(charPtr) % 4)
2259        charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4;
2260      uintptr_t *ehInfo =
2261          reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>(
2262              registers.getRegister(2) +
2263              *(reinterpret_cast<uintptr_t *>(charPtr)))));
2264
2265      // ehInfo points to structure en_info. The first member is version.
2266      // Only version 0 is currently supported.
2267      assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 &&
2268             "libunwind: ehInfo version other than 0 is not supported");
2269
2270      // Increment ehInfo to point to member lsda.
2271      ++ehInfo;
2272      lsda = *ehInfo++;
2273
2274      // enInfo now points to member personality.
2275      handler = *ehInfo;
2276
2277      _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n",
2278                                 lsda, handler);
2279    }
2280  }
2281
2282  _info.start_ip = start_ip;
2283  _info.end_ip = end_ip;
2284  _info.lsda = lsda;
2285  _info.handler = handler;
2286  _info.gp = 0;
2287  _info.flags = flags;
2288  _info.format = 0;
2289  _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable);
2290  _info.unwind_info_size = 0;
2291  _info.extra = registers.getRegister(2);
2292
2293  return true;
2294}
2295
2296// Step back up the stack following the frame back link.
2297template <typename A, typename R>
2298int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable,
2299                                        R &registers, bool &isSignalFrame) {
2300  if (_LIBUNWIND_TRACING_UNWINDING) {
2301    char functionBuf[512];
2302    const char *functionName = functionBuf;
2303    unw_word_t offset;
2304    if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
2305      functionName = ".anonymous.";
2306    }
2307    _LIBUNWIND_TRACE_UNWINDING(
2308        "%s: Look up traceback table of func=%s at %p, pc=%p, "
2309        "SP=%p, saves_lr=%d, stores_bc=%d",
2310        __func__, functionName, reinterpret_cast<void *>(TBTable),
2311        reinterpret_cast<void *>(pc),
2312        reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr,
2313        TBTable->tb.stores_bc);
2314  }
2315
2316#if defined(__powerpc64__)
2317  // Instruction to reload TOC register "ld r2,40(r1)"
2318  const uint32_t loadTOCRegInst = 0xe8410028;
2319  const int32_t unwPPCF0Index = UNW_PPC64_F0;
2320  const int32_t unwPPCV0Index = UNW_PPC64_V0;
2321#else
2322  // Instruction to reload TOC register "lwz r2,20(r1)"
2323  const uint32_t loadTOCRegInst = 0x80410014;
2324  const int32_t unwPPCF0Index = UNW_PPC_F0;
2325  const int32_t unwPPCV0Index = UNW_PPC_V0;
2326#endif
2327
2328  // lastStack points to the stack frame of the next routine up.
2329  pint_t curStack = static_cast<pint_t>(registers.getSP());
2330  pint_t lastStack = *reinterpret_cast<pint_t *>(curStack);
2331
2332  if (lastStack == 0)
2333    return UNW_STEP_END;
2334
2335  R newRegisters = registers;
2336
2337  // If backchain is not stored, use the current stack frame.
2338  if (!TBTable->tb.stores_bc)
2339    lastStack = curStack;
2340
2341  // Return address is the address after call site instruction.
2342  pint_t returnAddress;
2343
2344  if (isSignalFrame) {
2345    _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p",
2346                               reinterpret_cast<void *>(lastStack));
2347
2348    sigcontext *sigContext = reinterpret_cast<sigcontext *>(
2349        reinterpret_cast<char *>(lastStack) + STKMINALIGN);
2350    returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
2351
2352    bool useSTKMIN = false;
2353    if (returnAddress < 0x10000000) {
2354      // Try again using STKMIN.
2355      sigContext = reinterpret_cast<sigcontext *>(
2356          reinterpret_cast<char *>(lastStack) + STKMIN);
2357      returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
2358      if (returnAddress < 0x10000000) {
2359        _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p",
2360                                   reinterpret_cast<void *>(returnAddress),
2361                                   reinterpret_cast<void *>(sigContext));
2362        return UNW_EBADFRAME;
2363      }
2364      useSTKMIN = true;
2365    }
2366    _LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: "
2367                               "sigContext=%p, returnAddress=%p. "
2368                               "Seems to be a valid address",
2369                               useSTKMIN ? "STKMIN" : "STKMINALIGN",
2370                               reinterpret_cast<void *>(sigContext),
2371                               reinterpret_cast<void *>(returnAddress));
2372
2373    // Restore the condition register from sigcontext.
2374    newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr);
2375
2376    // Save the LR in sigcontext for stepping up when the function that
2377    // raised the signal is a leaf function. This LR has the return address
2378    // to the caller of the leaf function.
2379    newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr);
2380    _LIBUNWIND_TRACE_UNWINDING(
2381        "Save LR=%p from sigcontext",
2382        reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr));
2383
2384    // Restore GPRs from sigcontext.
2385    for (int i = 0; i < 32; ++i)
2386      newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]);
2387
2388    // Restore FPRs from sigcontext.
2389    for (int i = 0; i < 32; ++i)
2390      newRegisters.setFloatRegister(i + unwPPCF0Index,
2391                                    sigContext->sc_jmpbuf.jmp_context.fpr[i]);
2392
2393    // Restore vector registers if there is an associated extended context
2394    // structure.
2395    if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) {
2396      ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext);
2397      if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) {
2398        for (int i = 0; i < 32; ++i)
2399          newRegisters.setVectorRegister(
2400              i + unwPPCV0Index, *(reinterpret_cast<v128 *>(
2401                                     &(uContext->__extctx->__vmx.__vr[i]))));
2402      }
2403    }
2404  } else {
2405    // Step up a normal frame.
2406
2407    if (!TBTable->tb.saves_lr && registers.getLR()) {
2408      // This case should only occur if we were called from a signal handler
2409      // and the signal occurred in a function that doesn't save the LR.
2410      returnAddress = static_cast<pint_t>(registers.getLR());
2411      _LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p",
2412                                 reinterpret_cast<void *>(returnAddress));
2413    } else {
2414      // Otherwise, use the LR value in the stack link area.
2415      returnAddress = reinterpret_cast<pint_t *>(lastStack)[2];
2416    }
2417
2418    // Reset LR in the current context.
2419    newRegisters.setLR(NULL);
2420
2421    _LIBUNWIND_TRACE_UNWINDING(
2422        "Extract info from lastStack=%p, returnAddress=%p",
2423        reinterpret_cast<void *>(lastStack),
2424        reinterpret_cast<void *>(returnAddress));
2425    _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d",
2426                               TBTable->tb.fpr_saved, TBTable->tb.gpr_saved,
2427                               TBTable->tb.saves_cr);
2428
2429    // Restore FP registers.
2430    char *ptrToRegs = reinterpret_cast<char *>(lastStack);
2431    double *FPRegs = reinterpret_cast<double *>(
2432        ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double)));
2433    for (int i = 0; i < TBTable->tb.fpr_saved; ++i)
2434      newRegisters.setFloatRegister(
2435          32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]);
2436
2437    // Restore GP registers.
2438    ptrToRegs = reinterpret_cast<char *>(FPRegs);
2439    uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>(
2440        ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t)));
2441    for (int i = 0; i < TBTable->tb.gpr_saved; ++i)
2442      newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]);
2443
2444    // Restore Vector registers.
2445    ptrToRegs = reinterpret_cast<char *>(GPRegs);
2446
2447    // Restore vector registers only if this is a Clang frame. Also
2448    // check if traceback table bit has_vec is set. If it is, structure
2449    // vec_ext is available.
2450    if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) {
2451
2452      // Get to the vec_ext structure to check if vector registers are saved.
2453      uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
2454
2455      // Skip field parminfo if exists.
2456      if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
2457        ++p;
2458
2459      // Skip field tb_offset if exists.
2460      if (TBTable->tb.has_tboff)
2461        ++p;
2462
2463      // Skip field hand_mask if exists.
2464      if (TBTable->tb.int_hndl)
2465        ++p;
2466
2467      // Skip fields ctl_info and ctl_info_disp if exist.
2468      if (TBTable->tb.has_ctl) {
2469        // Skip field ctl_info.
2470        ++p;
2471        // Skip field ctl_info_disp.
2472        ++p;
2473      }
2474
2475      // Skip fields name_len and name if exist.
2476      // p is supposed to point to field name_len now.
2477      uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
2478      if (TBTable->tb.name_present) {
2479        const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
2480        charPtr = charPtr + name_len + sizeof(uint16_t);
2481      }
2482
2483      // Skip field alloc_reg if it exists.
2484      if (TBTable->tb.uses_alloca)
2485        ++charPtr;
2486
2487      struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr);
2488
2489      _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d", vec_ext->vr_saved);
2490
2491      // Restore vector register(s) if saved on the stack.
2492      if (vec_ext->vr_saved) {
2493        // Saved vector registers are 16-byte aligned.
2494        if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16)
2495          ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16;
2496        v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved *
2497                                                                 sizeof(v128));
2498        for (int i = 0; i < vec_ext->vr_saved; ++i) {
2499          newRegisters.setVectorRegister(
2500              32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]);
2501        }
2502      }
2503    }
2504    if (TBTable->tb.saves_cr) {
2505      // Get the saved condition register. The condition register is only
2506      // a single word.
2507      newRegisters.setCR(
2508          *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t))));
2509    }
2510
2511    // Restore the SP.
2512    newRegisters.setSP(lastStack);
2513
2514    // The first instruction after return.
2515    uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress));
2516
2517    // Do we need to set the TOC register?
2518    _LIBUNWIND_TRACE_UNWINDING(
2519        "Current gpr2=%p",
2520        reinterpret_cast<void *>(newRegisters.getRegister(2)));
2521    if (firstInstruction == loadTOCRegInst) {
2522      _LIBUNWIND_TRACE_UNWINDING(
2523          "Set gpr2=%p from frame",
2524          reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5]));
2525      newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]);
2526    }
2527  }
2528  _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n",
2529                             reinterpret_cast<void *>(lastStack),
2530                             reinterpret_cast<void *>(returnAddress),
2531                             reinterpret_cast<void *>(pc));
2532
2533  // The return address is the address after call site instruction, so
2534  // setting IP to that simulates a return.
2535  newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress));
2536
2537  // Simulate the step by replacing the register set with the new ones.
2538  registers = newRegisters;
2539
2540  // Check if the next frame is a signal frame.
2541  pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP()));
2542
2543  // Return address is the address after call site instruction.
2544  pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2];
2545
2546  if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) {
2547    _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: "
2548                               "nextStack=%p, next return address=%p\n",
2549                               reinterpret_cast<void *>(nextStack),
2550                               reinterpret_cast<void *>(nextReturnAddress));
2551    isSignalFrame = true;
2552  } else {
2553    isSignalFrame = false;
2554  }
2555  return UNW_STEP_SUCCESS;
2556}
2557#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2558
2559template <typename A, typename R>
2560void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
2561#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2562  _isSigReturn = false;
2563#endif
2564
2565  pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2566#if defined(_LIBUNWIND_ARM_EHABI)
2567  // Remove the thumb bit so the IP represents the actual instruction address.
2568  // This matches the behaviour of _Unwind_GetIP on arm.
2569  pc &= (pint_t)~0x1;
2570#endif
2571
2572  // Exit early if at the top of the stack.
2573  if (pc == 0) {
2574    _unwindInfoMissing = true;
2575    return;
2576  }
2577
2578  // If the last line of a function is a "throw" the compiler sometimes
2579  // emits no instructions after the call to __cxa_throw.  This means
2580  // the return address is actually the start of the next function.
2581  // To disambiguate this, back up the pc when we know it is a return
2582  // address.
2583  if (isReturnAddress)
2584#if defined(_AIX)
2585    // PC needs to be a 4-byte aligned address to be able to look for a
2586    // word of 0 that indicates the start of the traceback table at the end
2587    // of a function on AIX.
2588    pc -= 4;
2589#else
2590    --pc;
2591#endif
2592
2593  // Ask address space object to find unwind sections for this pc.
2594  UnwindInfoSections sects;
2595  if (_addressSpace.findUnwindSections(pc, sects)) {
2596#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2597    // If there is a compact unwind encoding table, look there first.
2598    if (sects.compact_unwind_section != 0) {
2599      if (this->getInfoFromCompactEncodingSection(pc, sects)) {
2600  #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2601        // Found info in table, done unless encoding says to use dwarf.
2602        uint32_t dwarfOffset;
2603        if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
2604          if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
2605            // found info in dwarf, done
2606            return;
2607          }
2608        }
2609  #endif
2610        // If unwind table has entry, but entry says there is no unwind info,
2611        // record that we have no unwind info.
2612        if (_info.format == 0)
2613          _unwindInfoMissing = true;
2614        return;
2615      }
2616    }
2617#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2618
2619#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
2620    // If there is SEH unwind info, look there next.
2621    if (this->getInfoFromSEH(pc))
2622      return;
2623#endif
2624
2625#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2626    // If there is unwind info in the traceback table, look there next.
2627    if (this->getInfoFromTBTable(pc, _registers))
2628      return;
2629#endif
2630
2631#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2632    // If there is dwarf unwind info, look there next.
2633    if (sects.dwarf_section != 0) {
2634      if (this->getInfoFromDwarfSection(pc, sects)) {
2635        // found info in dwarf, done
2636        return;
2637      }
2638    }
2639#endif
2640
2641#if defined(_LIBUNWIND_ARM_EHABI)
2642    // If there is ARM EHABI unwind info, look there next.
2643    if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
2644      return;
2645#endif
2646  }
2647
2648#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2649  // There is no static unwind info for this pc. Look to see if an FDE was
2650  // dynamically registered for it.
2651  pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll,
2652                                               pc);
2653  if (cachedFDE != 0) {
2654    typename CFI_Parser<A>::FDE_Info fdeInfo;
2655    typename CFI_Parser<A>::CIE_Info cieInfo;
2656    if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo))
2657      if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
2658        return;
2659  }
2660
2661  // Lastly, ask AddressSpace object about platform specific ways to locate
2662  // other FDEs.
2663  pint_t fde;
2664  if (_addressSpace.findOtherFDE(pc, fde)) {
2665    typename CFI_Parser<A>::FDE_Info fdeInfo;
2666    typename CFI_Parser<A>::CIE_Info cieInfo;
2667    if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
2668      // Double check this FDE is for a function that includes the pc.
2669      if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd))
2670        if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
2671          return;
2672    }
2673  }
2674#endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2675
2676#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2677  if (setInfoForSigReturn())
2678    return;
2679#endif
2680
2681  // no unwind info, flag that we can't reliably unwind
2682  _unwindInfoMissing = true;
2683}
2684
2685#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
2686    defined(_LIBUNWIND_TARGET_AARCH64)
2687template <typename A, typename R>
2688bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) {
2689  // Look for the sigreturn trampoline. The trampoline's body is two
2690  // specific instructions (see below). Typically the trampoline comes from the
2691  // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its
2692  // own restorer function, though, or user-mode QEMU might write a trampoline
2693  // onto the stack.
2694  //
2695  // This special code path is a fallback that is only used if the trampoline
2696  // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register
2697  // constant for the PC needs to be defined before DWARF can handle a signal
2698  // trampoline. This code may segfault if the target PC is unreadable, e.g.:
2699  //  - The PC points at a function compiled without unwind info, and which is
2700  //    part of an execute-only mapping (e.g. using -Wl,--execute-only).
2701  //  - The PC is invalid and happens to point to unreadable or unmapped memory.
2702  //
2703  // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S
2704  const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2705  // The PC might contain an invalid address if the unwind info is bad, so
2706  // directly accessing it could cause a SIGSEGV.
2707  if (!isReadableAddr(pc))
2708    return false;
2709  auto *instructions = reinterpret_cast<const uint32_t *>(pc);
2710  // Look for instructions: mov x8, #0x8b; svc #0x0
2711  if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001)
2712    return false;
2713
2714  _info = {};
2715  _info.start_ip = pc;
2716  _info.end_ip = pc + 4;
2717  _isSigReturn = true;
2718  return true;
2719}
2720
2721template <typename A, typename R>
2722int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) {
2723  // In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
2724  //  - 128-byte siginfo struct
2725  //  - ucontext struct:
2726  //     - 8-byte long (uc_flags)
2727  //     - 8-byte pointer (uc_link)
2728  //     - 24-byte stack_t
2729  //     - 128-byte signal set
2730  //     - 8 bytes of padding because sigcontext has 16-byte alignment
2731  //     - sigcontext/mcontext_t
2732  // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c
2733  const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304
2734
2735  // Offsets from sigcontext to each register.
2736  const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field
2737  const pint_t kOffsetSp = 256; // offset to "__u64 sp" field
2738  const pint_t kOffsetPc = 264; // offset to "__u64 pc" field
2739
2740  pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
2741
2742  for (int i = 0; i <= 30; ++i) {
2743    uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs +
2744                                         static_cast<pint_t>(i * 8));
2745    _registers.setRegister(UNW_AARCH64_X0 + i, value);
2746  }
2747  _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp));
2748  _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc));
2749  _isSignalFrame = true;
2750  return UNW_STEP_SUCCESS;
2751}
2752#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2753       // defined(_LIBUNWIND_TARGET_AARCH64)
2754
2755#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
2756    defined(_LIBUNWIND_TARGET_RISCV)
2757template <typename A, typename R>
2758bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) {
2759  const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP));
2760  // The PC might contain an invalid address if the unwind info is bad, so
2761  // directly accessing it could cause a SIGSEGV.
2762  if (!isReadableAddr(pc))
2763    return false;
2764  const auto *instructions = reinterpret_cast<const uint32_t *>(pc);
2765  // Look for the two instructions used in the sigreturn trampoline
2766  // __vdso_rt_sigreturn:
2767  //
2768  // 0x08b00893 li a7,0x8b
2769  // 0x00000073 ecall
2770  if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073)
2771    return false;
2772
2773  _info = {};
2774  _info.start_ip = pc;
2775  _info.end_ip = pc + 4;
2776  _isSigReturn = true;
2777  return true;
2778}
2779
2780template <typename A, typename R>
2781int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) {
2782  // In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
2783  //  - 128-byte siginfo struct
2784  //  - ucontext_t struct:
2785  //     - 8-byte long (__uc_flags)
2786  //     - 8-byte pointer (*uc_link)
2787  //     - 24-byte uc_stack
2788  //     - 8-byte uc_sigmask
2789  //     - 120-byte of padding to allow sigset_t to be expanded in the future
2790  //     - 8 bytes of padding because sigcontext has 16-byte alignment
2791  //     - struct sigcontext uc_mcontext
2792  // [1]
2793  // https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c
2794  const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128;
2795
2796  const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
2797  _registers.setIP(_addressSpace.get64(sigctx));
2798  for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) {
2799    uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8));
2800    _registers.setRegister(i, value);
2801  }
2802  _isSignalFrame = true;
2803  return UNW_STEP_SUCCESS;
2804}
2805#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2806       // defined(_LIBUNWIND_TARGET_RISCV)
2807
2808#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
2809    defined(_LIBUNWIND_TARGET_S390X)
2810template <typename A, typename R>
2811bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) {
2812  // Look for the sigreturn trampoline. The trampoline's body is a
2813  // specific instruction (see below). Typically the trampoline comes from the
2814  // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its
2815  // own restorer function, though, or user-mode QEMU might write a trampoline
2816  // onto the stack.
2817  const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2818  // The PC might contain an invalid address if the unwind info is bad, so
2819  // directly accessing it could cause a SIGSEGV.
2820  if (!isReadableAddr(pc))
2821    return false;
2822  const auto inst = *reinterpret_cast<const uint16_t *>(pc);
2823  if (inst == 0x0a77 || inst == 0x0aad) {
2824    _info = {};
2825    _info.start_ip = pc;
2826    _info.end_ip = pc + 2;
2827    _isSigReturn = true;
2828    return true;
2829  }
2830  return false;
2831}
2832
2833template <typename A, typename R>
2834int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) {
2835  // Determine current SP.
2836  const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP));
2837  // According to the s390x ABI, the CFA is at (incoming) SP + 160.
2838  const pint_t cfa = sp + 160;
2839
2840  // Determine current PC and instruction there (this must be either
2841  // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn").
2842  const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2843  const uint16_t inst = _addressSpace.get16(pc);
2844
2845  // Find the addresses of the signo and sigcontext in the frame.
2846  pint_t pSigctx = 0;
2847  pint_t pSigno = 0;
2848
2849  // "svc __NR_sigreturn" uses a non-RT signal trampoline frame.
2850  if (inst == 0x0a77) {
2851    // Layout of a non-RT signal trampoline frame, starting at the CFA:
2852    //  - 8-byte signal mask
2853    //  - 8-byte pointer to sigcontext, followed by signo
2854    //  - 4-byte signo
2855    pSigctx = _addressSpace.get64(cfa + 8);
2856    pSigno = pSigctx + 344;
2857  }
2858
2859  // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame.
2860  if (inst == 0x0aad) {
2861    // Layout of a RT signal trampoline frame, starting at the CFA:
2862    //  - 8-byte retcode (+ alignment)
2863    //  - 128-byte siginfo struct (starts with signo)
2864    //  - ucontext struct:
2865    //     - 8-byte long (uc_flags)
2866    //     - 8-byte pointer (uc_link)
2867    //     - 24-byte stack_t
2868    //     - 8 bytes of padding because sigcontext has 16-byte alignment
2869    //     - sigcontext/mcontext_t
2870    pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8;
2871    pSigno = cfa + 8;
2872  }
2873
2874  assert(pSigctx != 0);
2875  assert(pSigno != 0);
2876
2877  // Offsets from sigcontext to each register.
2878  const pint_t kOffsetPc = 8;
2879  const pint_t kOffsetGprs = 16;
2880  const pint_t kOffsetFprs = 216;
2881
2882  // Restore all registers.
2883  for (int i = 0; i < 16; ++i) {
2884    uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs +
2885                                         static_cast<pint_t>(i * 8));
2886    _registers.setRegister(UNW_S390X_R0 + i, value);
2887  }
2888  for (int i = 0; i < 16; ++i) {
2889    static const int fpr[16] = {
2890      UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3,
2891      UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7,
2892      UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11,
2893      UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15
2894    };
2895    double value = _addressSpace.getDouble(pSigctx + kOffsetFprs +
2896                                           static_cast<pint_t>(i * 8));
2897    _registers.setFloatRegister(fpr[i], value);
2898  }
2899  _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc));
2900
2901  // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr
2902  // after the faulting instruction rather than before it.
2903  // Do not set _isSignalFrame in that case.
2904  uint32_t signo = _addressSpace.get32(pSigno);
2905  _isSignalFrame = (signo != 4 && signo != 5 && signo != 8);
2906
2907  return UNW_STEP_SUCCESS;
2908}
2909#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2910       // defined(_LIBUNWIND_TARGET_S390X)
2911
2912template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) {
2913  (void)stage2;
2914  // Bottom of stack is defined is when unwind info cannot be found.
2915  if (_unwindInfoMissing)
2916    return UNW_STEP_END;
2917
2918  // Use unwinding info to modify register set as if function returned.
2919  int result;
2920#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2921  if (_isSigReturn) {
2922    result = this->stepThroughSigReturn();
2923  } else
2924#endif
2925  {
2926#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2927    result = this->stepWithCompactEncoding(stage2);
2928#elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
2929    result = this->stepWithSEHData();
2930#elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2931    result = this->stepWithTBTableData();
2932#elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2933    result = this->stepWithDwarfFDE(stage2);
2934#elif defined(_LIBUNWIND_ARM_EHABI)
2935    result = this->stepWithEHABI();
2936#else
2937  #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
2938              _LIBUNWIND_SUPPORT_SEH_UNWIND or \
2939              _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
2940              _LIBUNWIND_ARM_EHABI
2941#endif
2942  }
2943
2944  // update info based on new PC
2945  if (result == UNW_STEP_SUCCESS) {
2946    this->setInfoBasedOnIPRegister(true);
2947    if (_unwindInfoMissing)
2948      return UNW_STEP_END;
2949  }
2950
2951  return result;
2952}
2953
2954template <typename A, typename R>
2955void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
2956  if (_unwindInfoMissing)
2957    memset(info, 0, sizeof(*info));
2958  else
2959    *info = _info;
2960}
2961
2962template <typename A, typename R>
2963bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
2964                                                           unw_word_t *offset) {
2965  return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
2966                                         buf, bufLen, offset);
2967}
2968
2969#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2970template <typename A, typename R>
2971bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const {
2972  // We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable.
2973
2974  const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr);
2975  // We have to check that addr is nullptr because sigprocmask allows that
2976  // as an argument without failure.
2977  if (!sigsetAddr)
2978    return false;
2979  const auto saveErrno = errno;
2980  // We MUST use a raw syscall here, as wrappers may try to access
2981  // sigsetAddr which may cause a SIGSEGV. A raw syscall however is
2982  // safe. Additionally, we need to pass the kernel_sigset_size, which is
2983  // different from libc sizeof(sigset_t). For the majority of architectures,
2984  // it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1.
2985  const auto kernelSigsetSize = NSIG / 8;
2986  [[maybe_unused]] const int Result = syscall(
2987      SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize);
2988  // Because our "how" is invalid, this syscall should always fail, and our
2989  // errno should always be EINVAL or an EFAULT. This relies on the Linux
2990  // kernel to check copy_from_user before checking if the "how" argument is
2991  // invalid.
2992  assert(Result == -1);
2993  assert(errno == EFAULT || errno == EINVAL);
2994  const auto readable = errno != EFAULT;
2995  errno = saveErrno;
2996  return readable;
2997}
2998#endif
2999
3000#if defined(_LIBUNWIND_USE_CET)
3001extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) {
3002  AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
3003  return co->get_registers();
3004}
3005#endif
3006} // namespace libunwind
3007
3008#endif // __UNWINDCURSOR_HPP__
3009