1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for BPF code intermediate representation.
22 */
23
24#ifdef HAVE_CONFIG_H
25#include <config.h>
26#endif
27
28#include <pcap-types.h>
29
30#include <stdio.h>
31#include <stdlib.h>
32#include <memory.h>
33#include <setjmp.h>
34#include <string.h>
35#include <limits.h> /* for SIZE_MAX */
36#include <errno.h>
37
38#include "pcap-int.h"
39
40#include "gencode.h"
41#include "optimize.h"
42#include "diag-control.h"
43
44#ifdef HAVE_OS_PROTO_H
45#include "os-proto.h"
46#endif
47
48#ifdef BDEBUG
49/*
50 * The internal "debug printout" flag for the filter expression optimizer.
51 * The code to print that stuff is present only if BDEBUG is defined, so
52 * the flag, and the routine to set it, are defined only if BDEBUG is
53 * defined.
54 */
55static int pcap_optimizer_debug;
56
57/*
58 * Routine to set that flag.
59 *
60 * This is intended for libpcap developers, not for general use.
61 * If you want to set these in a program, you'll have to declare this
62 * routine yourself, with the appropriate DLL import attribute on Windows;
63 * it's not declared in any header file, and won't be declared in any
64 * header file provided by libpcap.
65 */
66PCAP_API void pcap_set_optimizer_debug(int value);
67
68PCAP_API_DEF void
69pcap_set_optimizer_debug(int value)
70{
71	pcap_optimizer_debug = value;
72}
73
74/*
75 * The internal "print dot graph" flag for the filter expression optimizer.
76 * The code to print that stuff is present only if BDEBUG is defined, so
77 * the flag, and the routine to set it, are defined only if BDEBUG is
78 * defined.
79 */
80static int pcap_print_dot_graph;
81
82/*
83 * Routine to set that flag.
84 *
85 * This is intended for libpcap developers, not for general use.
86 * If you want to set these in a program, you'll have to declare this
87 * routine yourself, with the appropriate DLL import attribute on Windows;
88 * it's not declared in any header file, and won't be declared in any
89 * header file provided by libpcap.
90 */
91PCAP_API void pcap_set_print_dot_graph(int value);
92
93PCAP_API_DEF void
94pcap_set_print_dot_graph(int value)
95{
96	pcap_print_dot_graph = value;
97}
98
99#endif
100
101/*
102 * lowest_set_bit().
103 *
104 * Takes a 32-bit integer as an argument.
105 *
106 * If handed a non-zero value, returns the index of the lowest set bit,
107 * counting upwards from zero.
108 *
109 * If handed zero, the results are platform- and compiler-dependent.
110 * Keep it out of the light, don't give it any water, don't feed it
111 * after midnight, and don't pass zero to it.
112 *
113 * This is the same as the count of trailing zeroes in the word.
114 */
115#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116  /*
117   * GCC 3.4 and later; we have __builtin_ctz().
118   */
119  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120#elif defined(_MSC_VER)
121  /*
122   * Visual Studio; we support only 2005 and later, so use
123   * _BitScanForward().
124   */
125#include <intrin.h>
126
127#ifndef __clang__
128#pragma intrinsic(_BitScanForward)
129#endif
130
131static __forceinline u_int
132lowest_set_bit(int mask)
133{
134	unsigned long bit;
135
136	/*
137	 * Don't sign-extend mask if long is longer than int.
138	 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139	 */
140	if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141		abort();	/* mask is zero */
142	return (u_int)bit;
143}
144#elif defined(MSDOS) && defined(__DJGPP__)
145  /*
146   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147   * we've already included.
148   */
149  #define lowest_set_bit(mask)	((u_int)(ffs((mask)) - 1))
150#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151  /*
152   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153   * or some other platform (UN*X conforming to a sufficient recent version
154   * of the Single UNIX Specification).
155   */
156  #include <strings.h>
157  #define lowest_set_bit(mask)	(u_int)((ffs((mask)) - 1))
158#else
159/*
160 * None of the above.
161 * Use a perfect-hash-function-based function.
162 */
163static u_int
164lowest_set_bit(int mask)
165{
166	unsigned int v = (unsigned int)mask;
167
168	static const u_int MultiplyDeBruijnBitPosition[32] = {
169		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171	};
172
173	/*
174	 * We strip off all but the lowermost set bit (v & ~v),
175	 * and perform a minimal perfect hash on it to look up the
176	 * number of low-order zero bits in a table.
177	 *
178	 * See:
179	 *
180	 *	http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181	 *
182	 *	http://supertech.csail.mit.edu/papers/debruijn.pdf
183	 */
184	return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185}
186#endif
187
188/*
189 * Represents a deleted instruction.
190 */
191#define NOP -1
192
193/*
194 * Register numbers for use-def values.
195 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196 * location.  A_ATOM is the accumulator and X_ATOM is the index
197 * register.
198 */
199#define A_ATOM BPF_MEMWORDS
200#define X_ATOM (BPF_MEMWORDS+1)
201
202/*
203 * This define is used to represent *both* the accumulator and
204 * x register in use-def computations.
205 * Currently, the use-def code assumes only one definition per instruction.
206 */
207#define AX_ATOM N_ATOMS
208
209/*
210 * These data structures are used in a Cocke and Shwarz style
211 * value numbering scheme.  Since the flowgraph is acyclic,
212 * exit values can be propagated from a node's predecessors
213 * provided it is uniquely defined.
214 */
215struct valnode {
216	int code;
217	bpf_u_int32 v0, v1;
218	int val;		/* the value number */
219	struct valnode *next;
220};
221
222/* Integer constants mapped with the load immediate opcode. */
223#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225struct vmapinfo {
226	int is_const;
227	bpf_u_int32 const_val;
228};
229
230typedef struct {
231	/*
232	 * Place to longjmp to on an error.
233	 */
234	jmp_buf top_ctx;
235
236	/*
237	 * The buffer into which to put error message.
238	 */
239	char *errbuf;
240
241	/*
242	 * A flag to indicate that further optimization is needed.
243	 * Iterative passes are continued until a given pass yields no
244	 * code simplification or branch movement.
245	 */
246	int done;
247
248	/*
249	 * XXX - detect loops that do nothing but repeated AND/OR pullups
250	 * and edge moves.
251	 * If 100 passes in a row do nothing but that, treat that as a
252	 * sign that we're in a loop that just shuffles in a cycle in
253	 * which each pass just shuffles the code and we eventually
254	 * get back to the original configuration.
255	 *
256	 * XXX - we need a non-heuristic way of detecting, or preventing,
257	 * such a cycle.
258	 */
259	int non_branch_movement_performed;
260
261	u_int n_blocks;		/* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262	struct block **blocks;
263	u_int n_edges;		/* twice n_blocks, so guaranteed to be > 0 */
264	struct edge **edges;
265
266	/*
267	 * A bit vector set representation of the dominators.
268	 * We round up the set size to the next power of two.
269	 */
270	u_int nodewords;	/* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271	u_int edgewords;	/* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272	struct block **levels;
273	bpf_u_int32 *space;
274
275#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276/*
277 * True if a is in uset {p}
278 */
279#define SET_MEMBER(p, a) \
280((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282/*
283 * Add 'a' to uset p.
284 */
285#define SET_INSERT(p, a) \
286(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288/*
289 * Delete 'a' from uset p.
290 */
291#define SET_DELETE(p, a) \
292(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294/*
295 * a := a intersect b
296 * n must be guaranteed to be > 0
297 */
298#define SET_INTERSECT(a, b, n)\
299{\
300	register bpf_u_int32 *_x = a, *_y = b;\
301	register u_int _n = n;\
302	do *_x++ &= *_y++; while (--_n != 0);\
303}
304
305/*
306 * a := a - b
307 * n must be guaranteed to be > 0
308 */
309#define SET_SUBTRACT(a, b, n)\
310{\
311	register bpf_u_int32 *_x = a, *_y = b;\
312	register u_int _n = n;\
313	do *_x++ &=~ *_y++; while (--_n != 0);\
314}
315
316/*
317 * a := a union b
318 * n must be guaranteed to be > 0
319 */
320#define SET_UNION(a, b, n)\
321{\
322	register bpf_u_int32 *_x = a, *_y = b;\
323	register u_int _n = n;\
324	do *_x++ |= *_y++; while (--_n != 0);\
325}
326
327	uset all_dom_sets;
328	uset all_closure_sets;
329	uset all_edge_sets;
330
331#define MODULUS 213
332	struct valnode *hashtbl[MODULUS];
333	bpf_u_int32 curval;
334	bpf_u_int32 maxval;
335
336	struct vmapinfo *vmap;
337	struct valnode *vnode_base;
338	struct valnode *next_vnode;
339} opt_state_t;
340
341typedef struct {
342	/*
343	 * Place to longjmp to on an error.
344	 */
345	jmp_buf top_ctx;
346
347	/*
348	 * The buffer into which to put error message.
349	 */
350	char *errbuf;
351
352	/*
353	 * Some pointers used to convert the basic block form of the code,
354	 * into the array form that BPF requires.  'fstart' will point to
355	 * the malloc'd array while 'ftail' is used during the recursive
356	 * traversal.
357	 */
358	struct bpf_insn *fstart;
359	struct bpf_insn *ftail;
360} conv_state_t;
361
362static void opt_init(opt_state_t *, struct icode *);
363static void opt_cleanup(opt_state_t *);
364static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365    PCAP_PRINTFLIKE(2, 3);
366
367static void intern_blocks(opt_state_t *, struct icode *);
368
369static void find_inedges(opt_state_t *, struct block *);
370#ifdef BDEBUG
371static void opt_dump(opt_state_t *, struct icode *);
372#endif
373
374#ifndef MAX
375#define MAX(a,b) ((a)>(b)?(a):(b))
376#endif
377
378static void
379find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380{
381	int level;
382
383	if (isMarked(ic, b))
384		return;
385
386	Mark(ic, b);
387	b->link = 0;
388
389	if (JT(b)) {
390		find_levels_r(opt_state, ic, JT(b));
391		find_levels_r(opt_state, ic, JF(b));
392		level = MAX(JT(b)->level, JF(b)->level) + 1;
393	} else
394		level = 0;
395	b->level = level;
396	b->link = opt_state->levels[level];
397	opt_state->levels[level] = b;
398}
399
400/*
401 * Level graph.  The levels go from 0 at the leaves to
402 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403 * first node of the level list, whose elements are linked
404 * with the 'link' field of the struct block.
405 */
406static void
407find_levels(opt_state_t *opt_state, struct icode *ic)
408{
409	memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410	unMarkAll(ic);
411	find_levels_r(opt_state, ic, ic->root);
412}
413
414/*
415 * Find dominator relationships.
416 * Assumes graph has been leveled.
417 */
418static void
419find_dom(opt_state_t *opt_state, struct block *root)
420{
421	u_int i;
422	int level;
423	struct block *b;
424	bpf_u_int32 *x;
425
426	/*
427	 * Initialize sets to contain all nodes.
428	 */
429	x = opt_state->all_dom_sets;
430	/*
431	 * In opt_init(), we've made sure the product doesn't overflow.
432	 */
433	i = opt_state->n_blocks * opt_state->nodewords;
434	while (i != 0) {
435		--i;
436		*x++ = 0xFFFFFFFFU;
437	}
438	/* Root starts off empty. */
439	for (i = opt_state->nodewords; i != 0;) {
440		--i;
441		root->dom[i] = 0;
442	}
443
444	/* root->level is the highest level no found. */
445	for (level = root->level; level >= 0; --level) {
446		for (b = opt_state->levels[level]; b; b = b->link) {
447			SET_INSERT(b->dom, b->id);
448			if (JT(b) == 0)
449				continue;
450			SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451			SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452		}
453	}
454}
455
456static void
457propedom(opt_state_t *opt_state, struct edge *ep)
458{
459	SET_INSERT(ep->edom, ep->id);
460	if (ep->succ) {
461		SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462		SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463	}
464}
465
466/*
467 * Compute edge dominators.
468 * Assumes graph has been leveled and predecessors established.
469 */
470static void
471find_edom(opt_state_t *opt_state, struct block *root)
472{
473	u_int i;
474	uset x;
475	int level;
476	struct block *b;
477
478	x = opt_state->all_edge_sets;
479	/*
480	 * In opt_init(), we've made sure the product doesn't overflow.
481	 */
482	for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483		--i;
484		x[i] = 0xFFFFFFFFU;
485	}
486
487	/* root->level is the highest level no found. */
488	memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489	memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490	for (level = root->level; level >= 0; --level) {
491		for (b = opt_state->levels[level]; b != 0; b = b->link) {
492			propedom(opt_state, &b->et);
493			propedom(opt_state, &b->ef);
494		}
495	}
496}
497
498/*
499 * Find the backwards transitive closure of the flow graph.  These sets
500 * are backwards in the sense that we find the set of nodes that reach
501 * a given node, not the set of nodes that can be reached by a node.
502 *
503 * Assumes graph has been leveled.
504 */
505static void
506find_closure(opt_state_t *opt_state, struct block *root)
507{
508	int level;
509	struct block *b;
510
511	/*
512	 * Initialize sets to contain no nodes.
513	 */
514	memset((char *)opt_state->all_closure_sets, 0,
515	      opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517	/* root->level is the highest level no found. */
518	for (level = root->level; level >= 0; --level) {
519		for (b = opt_state->levels[level]; b; b = b->link) {
520			SET_INSERT(b->closure, b->id);
521			if (JT(b) == 0)
522				continue;
523			SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524			SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525		}
526	}
527}
528
529/*
530 * Return the register number that is used by s.
531 *
532 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533 * are used, the scratch memory location's number if a scratch memory
534 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535 *
536 * The implementation should probably change to an array access.
537 */
538static int
539atomuse(struct stmt *s)
540{
541	register int c = s->code;
542
543	if (c == NOP)
544		return -1;
545
546	switch (BPF_CLASS(c)) {
547
548	case BPF_RET:
549		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552	case BPF_LD:
553	case BPF_LDX:
554		/*
555		 * As there are fewer than 2^31 memory locations,
556		 * s->k should be convertible to int without problems.
557		 */
558		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559			(BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561	case BPF_ST:
562		return A_ATOM;
563
564	case BPF_STX:
565		return X_ATOM;
566
567	case BPF_JMP:
568	case BPF_ALU:
569		if (BPF_SRC(c) == BPF_X)
570			return AX_ATOM;
571		return A_ATOM;
572
573	case BPF_MISC:
574		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575	}
576	abort();
577	/* NOTREACHED */
578}
579
580/*
581 * Return the register number that is defined by 's'.  We assume that
582 * a single stmt cannot define more than one register.  If no register
583 * is defined, return -1.
584 *
585 * The implementation should probably change to an array access.
586 */
587static int
588atomdef(struct stmt *s)
589{
590	if (s->code == NOP)
591		return -1;
592
593	switch (BPF_CLASS(s->code)) {
594
595	case BPF_LD:
596	case BPF_ALU:
597		return A_ATOM;
598
599	case BPF_LDX:
600		return X_ATOM;
601
602	case BPF_ST:
603	case BPF_STX:
604		return s->k;
605
606	case BPF_MISC:
607		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608	}
609	return -1;
610}
611
612/*
613 * Compute the sets of registers used, defined, and killed by 'b'.
614 *
615 * "Used" means that a statement in 'b' uses the register before any
616 * statement in 'b' defines it, i.e. it uses the value left in
617 * that register by a predecessor block of this block.
618 * "Defined" means that a statement in 'b' defines it.
619 * "Killed" means that a statement in 'b' defines it before any
620 * statement in 'b' uses it, i.e. it kills the value left in that
621 * register by a predecessor block of this block.
622 */
623static void
624compute_local_ud(struct block *b)
625{
626	struct slist *s;
627	atomset def = 0, use = 0, killed = 0;
628	int atom;
629
630	for (s = b->stmts; s; s = s->next) {
631		if (s->s.code == NOP)
632			continue;
633		atom = atomuse(&s->s);
634		if (atom >= 0) {
635			if (atom == AX_ATOM) {
636				if (!ATOMELEM(def, X_ATOM))
637					use |= ATOMMASK(X_ATOM);
638				if (!ATOMELEM(def, A_ATOM))
639					use |= ATOMMASK(A_ATOM);
640			}
641			else if (atom < N_ATOMS) {
642				if (!ATOMELEM(def, atom))
643					use |= ATOMMASK(atom);
644			}
645			else
646				abort();
647		}
648		atom = atomdef(&s->s);
649		if (atom >= 0) {
650			if (!ATOMELEM(use, atom))
651				killed |= ATOMMASK(atom);
652			def |= ATOMMASK(atom);
653		}
654	}
655	if (BPF_CLASS(b->s.code) == BPF_JMP) {
656		/*
657		 * XXX - what about RET?
658		 */
659		atom = atomuse(&b->s);
660		if (atom >= 0) {
661			if (atom == AX_ATOM) {
662				if (!ATOMELEM(def, X_ATOM))
663					use |= ATOMMASK(X_ATOM);
664				if (!ATOMELEM(def, A_ATOM))
665					use |= ATOMMASK(A_ATOM);
666			}
667			else if (atom < N_ATOMS) {
668				if (!ATOMELEM(def, atom))
669					use |= ATOMMASK(atom);
670			}
671			else
672				abort();
673		}
674	}
675
676	b->def = def;
677	b->kill = killed;
678	b->in_use = use;
679}
680
681/*
682 * Assume graph is already leveled.
683 */
684static void
685find_ud(opt_state_t *opt_state, struct block *root)
686{
687	int i, maxlevel;
688	struct block *p;
689
690	/*
691	 * root->level is the highest level no found;
692	 * count down from there.
693	 */
694	maxlevel = root->level;
695	for (i = maxlevel; i >= 0; --i)
696		for (p = opt_state->levels[i]; p; p = p->link) {
697			compute_local_ud(p);
698			p->out_use = 0;
699		}
700
701	for (i = 1; i <= maxlevel; ++i) {
702		for (p = opt_state->levels[i]; p; p = p->link) {
703			p->out_use |= JT(p)->in_use | JF(p)->in_use;
704			p->in_use |= p->out_use &~ p->kill;
705		}
706	}
707}
708static void
709init_val(opt_state_t *opt_state)
710{
711	opt_state->curval = 0;
712	opt_state->next_vnode = opt_state->vnode_base;
713	memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714	memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715}
716
717/*
718 * Because we really don't have an IR, this stuff is a little messy.
719 *
720 * This routine looks in the table of existing value number for a value
721 * with generated from an operation with the specified opcode and
722 * the specified values.  If it finds it, it returns its value number,
723 * otherwise it makes a new entry in the table and returns the
724 * value number of that entry.
725 */
726static bpf_u_int32
727F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728{
729	u_int hash;
730	bpf_u_int32 val;
731	struct valnode *p;
732
733	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734	hash %= MODULUS;
735
736	for (p = opt_state->hashtbl[hash]; p; p = p->next)
737		if (p->code == code && p->v0 == v0 && p->v1 == v1)
738			return p->val;
739
740	/*
741	 * Not found.  Allocate a new value, and assign it a new
742	 * value number.
743	 *
744	 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745	 * increment it before using it as the new value number, which
746	 * means we never assign VAL_UNKNOWN.
747	 *
748	 * XXX - unless we overflow, but we probably won't have 2^32-1
749	 * values; we treat 32 bits as effectively infinite.
750	 */
751	val = ++opt_state->curval;
752	if (BPF_MODE(code) == BPF_IMM &&
753	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754		opt_state->vmap[val].const_val = v0;
755		opt_state->vmap[val].is_const = 1;
756	}
757	p = opt_state->next_vnode++;
758	p->val = val;
759	p->code = code;
760	p->v0 = v0;
761	p->v1 = v1;
762	p->next = opt_state->hashtbl[hash];
763	opt_state->hashtbl[hash] = p;
764
765	return val;
766}
767
768static inline void
769vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770{
771	if (alter && newval != VAL_UNKNOWN && *valp == newval)
772		s->code = NOP;
773	else
774		*valp = newval;
775}
776
777/*
778 * Do constant-folding on binary operators.
779 * (Unary operators are handled elsewhere.)
780 */
781static void
782fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783{
784	bpf_u_int32 a, b;
785
786	a = opt_state->vmap[v0].const_val;
787	b = opt_state->vmap[v1].const_val;
788
789	switch (BPF_OP(s->code)) {
790	case BPF_ADD:
791		a += b;
792		break;
793
794	case BPF_SUB:
795		a -= b;
796		break;
797
798	case BPF_MUL:
799		a *= b;
800		break;
801
802	case BPF_DIV:
803		if (b == 0)
804			opt_error(opt_state, "division by zero");
805		a /= b;
806		break;
807
808	case BPF_MOD:
809		if (b == 0)
810			opt_error(opt_state, "modulus by zero");
811		a %= b;
812		break;
813
814	case BPF_AND:
815		a &= b;
816		break;
817
818	case BPF_OR:
819		a |= b;
820		break;
821
822	case BPF_XOR:
823		a ^= b;
824		break;
825
826	case BPF_LSH:
827		/*
828		 * A left shift of more than the width of the type
829		 * is undefined in C; we'll just treat it as shifting
830		 * all the bits out.
831		 *
832		 * XXX - the BPF interpreter doesn't check for this,
833		 * so its behavior is dependent on the behavior of
834		 * the processor on which it's running.  There are
835		 * processors on which it shifts all the bits out
836		 * and processors on which it does no shift.
837		 */
838		if (b < 32)
839			a <<= b;
840		else
841			a = 0;
842		break;
843
844	case BPF_RSH:
845		/*
846		 * A right shift of more than the width of the type
847		 * is undefined in C; we'll just treat it as shifting
848		 * all the bits out.
849		 *
850		 * XXX - the BPF interpreter doesn't check for this,
851		 * so its behavior is dependent on the behavior of
852		 * the processor on which it's running.  There are
853		 * processors on which it shifts all the bits out
854		 * and processors on which it does no shift.
855		 */
856		if (b < 32)
857			a >>= b;
858		else
859			a = 0;
860		break;
861
862	default:
863		abort();
864	}
865	s->k = a;
866	s->code = BPF_LD|BPF_IMM;
867	/*
868	 * XXX - optimizer loop detection.
869	 */
870	opt_state->non_branch_movement_performed = 1;
871	opt_state->done = 0;
872}
873
874static inline struct slist *
875this_op(struct slist *s)
876{
877	while (s != 0 && s->s.code == NOP)
878		s = s->next;
879	return s;
880}
881
882static void
883opt_not(struct block *b)
884{
885	struct block *tmp = JT(b);
886
887	JT(b) = JF(b);
888	JF(b) = tmp;
889}
890
891static void
892opt_peep(opt_state_t *opt_state, struct block *b)
893{
894	struct slist *s;
895	struct slist *next, *last;
896	bpf_u_int32 val;
897
898	s = b->stmts;
899	if (s == 0)
900		return;
901
902	last = s;
903	for (/*empty*/; /*empty*/; s = next) {
904		/*
905		 * Skip over nops.
906		 */
907		s = this_op(s);
908		if (s == 0)
909			break;	/* nothing left in the block */
910
911		/*
912		 * Find the next real instruction after that one
913		 * (skipping nops).
914		 */
915		next = this_op(s->next);
916		if (next == 0)
917			break;	/* no next instruction */
918		last = next;
919
920		/*
921		 * st  M[k]	-->	st  M[k]
922		 * ldx M[k]		tax
923		 */
924		if (s->s.code == BPF_ST &&
925		    next->s.code == (BPF_LDX|BPF_MEM) &&
926		    s->s.k == next->s.k) {
927			/*
928			 * XXX - optimizer loop detection.
929			 */
930			opt_state->non_branch_movement_performed = 1;
931			opt_state->done = 0;
932			next->s.code = BPF_MISC|BPF_TAX;
933		}
934		/*
935		 * ld  #k	-->	ldx  #k
936		 * tax			txa
937		 */
938		if (s->s.code == (BPF_LD|BPF_IMM) &&
939		    next->s.code == (BPF_MISC|BPF_TAX)) {
940			s->s.code = BPF_LDX|BPF_IMM;
941			next->s.code = BPF_MISC|BPF_TXA;
942			/*
943			 * XXX - optimizer loop detection.
944			 */
945			opt_state->non_branch_movement_performed = 1;
946			opt_state->done = 0;
947		}
948		/*
949		 * This is an ugly special case, but it happens
950		 * when you say tcp[k] or udp[k] where k is a constant.
951		 */
952		if (s->s.code == (BPF_LD|BPF_IMM)) {
953			struct slist *add, *tax, *ild;
954
955			/*
956			 * Check that X isn't used on exit from this
957			 * block (which the optimizer might cause).
958			 * We know the code generator won't generate
959			 * any local dependencies.
960			 */
961			if (ATOMELEM(b->out_use, X_ATOM))
962				continue;
963
964			/*
965			 * Check that the instruction following the ldi
966			 * is an addx, or it's an ldxms with an addx
967			 * following it (with 0 or more nops between the
968			 * ldxms and addx).
969			 */
970			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971				add = next;
972			else
973				add = this_op(next->next);
974			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975				continue;
976
977			/*
978			 * Check that a tax follows that (with 0 or more
979			 * nops between them).
980			 */
981			tax = this_op(add->next);
982			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983				continue;
984
985			/*
986			 * Check that an ild follows that (with 0 or more
987			 * nops between them).
988			 */
989			ild = this_op(tax->next);
990			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991			    BPF_MODE(ild->s.code) != BPF_IND)
992				continue;
993			/*
994			 * We want to turn this sequence:
995			 *
996			 * (004) ldi     #0x2		{s}
997			 * (005) ldxms   [14]		{next}  -- optional
998			 * (006) addx			{add}
999			 * (007) tax			{tax}
1000			 * (008) ild     [x+0]		{ild}
1001			 *
1002			 * into this sequence:
1003			 *
1004			 * (004) nop
1005			 * (005) ldxms   [14]
1006			 * (006) nop
1007			 * (007) nop
1008			 * (008) ild     [x+2]
1009			 *
1010			 * XXX We need to check that X is not
1011			 * subsequently used, because we want to change
1012			 * what'll be in it after this sequence.
1013			 *
1014			 * We know we can eliminate the accumulator
1015			 * modifications earlier in the sequence since
1016			 * it is defined by the last stmt of this sequence
1017			 * (i.e., the last statement of the sequence loads
1018			 * a value into the accumulator, so we can eliminate
1019			 * earlier operations on the accumulator).
1020			 */
1021			ild->s.k += s->s.k;
1022			s->s.code = NOP;
1023			add->s.code = NOP;
1024			tax->s.code = NOP;
1025			/*
1026			 * XXX - optimizer loop detection.
1027			 */
1028			opt_state->non_branch_movement_performed = 1;
1029			opt_state->done = 0;
1030		}
1031	}
1032	/*
1033	 * If the comparison at the end of a block is an equality
1034	 * comparison against a constant, and nobody uses the value
1035	 * we leave in the A register at the end of a block, and
1036	 * the operation preceding the comparison is an arithmetic
1037	 * operation, we can sometime optimize it away.
1038	 */
1039	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040	    !ATOMELEM(b->out_use, A_ATOM)) {
1041		/*
1042		 * We can optimize away certain subtractions of the
1043		 * X register.
1044		 */
1045		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046			val = b->val[X_ATOM];
1047			if (opt_state->vmap[val].is_const) {
1048				/*
1049				 * If we have a subtract to do a comparison,
1050				 * and the X register is a known constant,
1051				 * we can merge this value into the
1052				 * comparison:
1053				 *
1054				 * sub x  ->	nop
1055				 * jeq #y	jeq #(x+y)
1056				 */
1057				b->s.k += opt_state->vmap[val].const_val;
1058				last->s.code = NOP;
1059				/*
1060				 * XXX - optimizer loop detection.
1061				 */
1062				opt_state->non_branch_movement_performed = 1;
1063				opt_state->done = 0;
1064			} else if (b->s.k == 0) {
1065				/*
1066				 * If the X register isn't a constant,
1067				 * and the comparison in the test is
1068				 * against 0, we can compare with the
1069				 * X register, instead:
1070				 *
1071				 * sub x  ->	nop
1072				 * jeq #0	jeq x
1073				 */
1074				last->s.code = NOP;
1075				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076				/*
1077				 * XXX - optimizer loop detection.
1078				 */
1079				opt_state->non_branch_movement_performed = 1;
1080				opt_state->done = 0;
1081			}
1082		}
1083		/*
1084		 * Likewise, a constant subtract can be simplified:
1085		 *
1086		 * sub #x ->	nop
1087		 * jeq #y ->	jeq #(x+y)
1088		 */
1089		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090			last->s.code = NOP;
1091			b->s.k += last->s.k;
1092			/*
1093			 * XXX - optimizer loop detection.
1094			 */
1095			opt_state->non_branch_movement_performed = 1;
1096			opt_state->done = 0;
1097		}
1098		/*
1099		 * And, similarly, a constant AND can be simplified
1100		 * if we're testing against 0, i.e.:
1101		 *
1102		 * and #k	nop
1103		 * jeq #0  ->	jset #k
1104		 */
1105		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106		    b->s.k == 0) {
1107			b->s.k = last->s.k;
1108			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109			last->s.code = NOP;
1110			/*
1111			 * XXX - optimizer loop detection.
1112			 */
1113			opt_state->non_branch_movement_performed = 1;
1114			opt_state->done = 0;
1115			opt_not(b);
1116		}
1117	}
1118	/*
1119	 * jset #0        ->   never
1120	 * jset #ffffffff ->   always
1121	 */
1122	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123		if (b->s.k == 0)
1124			JT(b) = JF(b);
1125		if (b->s.k == 0xffffffffU)
1126			JF(b) = JT(b);
1127	}
1128	/*
1129	 * If we're comparing against the index register, and the index
1130	 * register is a known constant, we can just compare against that
1131	 * constant.
1132	 */
1133	val = b->val[X_ATOM];
1134	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135		bpf_u_int32 v = opt_state->vmap[val].const_val;
1136		b->s.code &= ~BPF_X;
1137		b->s.k = v;
1138	}
1139	/*
1140	 * If the accumulator is a known constant, we can compute the
1141	 * comparison result.
1142	 */
1143	val = b->val[A_ATOM];
1144	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145		bpf_u_int32 v = opt_state->vmap[val].const_val;
1146		switch (BPF_OP(b->s.code)) {
1147
1148		case BPF_JEQ:
1149			v = v == b->s.k;
1150			break;
1151
1152		case BPF_JGT:
1153			v = v > b->s.k;
1154			break;
1155
1156		case BPF_JGE:
1157			v = v >= b->s.k;
1158			break;
1159
1160		case BPF_JSET:
1161			v &= b->s.k;
1162			break;
1163
1164		default:
1165			abort();
1166		}
1167		if (JF(b) != JT(b)) {
1168			/*
1169			 * XXX - optimizer loop detection.
1170			 */
1171			opt_state->non_branch_movement_performed = 1;
1172			opt_state->done = 0;
1173		}
1174		if (v)
1175			JF(b) = JT(b);
1176		else
1177			JT(b) = JF(b);
1178	}
1179}
1180
1181/*
1182 * Compute the symbolic value of expression of 's', and update
1183 * anything it defines in the value table 'val'.  If 'alter' is true,
1184 * do various optimizations.  This code would be cleaner if symbolic
1185 * evaluation and code transformations weren't folded together.
1186 */
1187static void
1188opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189{
1190	int op;
1191	bpf_u_int32 v;
1192
1193	switch (s->code) {
1194
1195	case BPF_LD|BPF_ABS|BPF_W:
1196	case BPF_LD|BPF_ABS|BPF_H:
1197	case BPF_LD|BPF_ABS|BPF_B:
1198		v = F(opt_state, s->code, s->k, 0L);
1199		vstore(s, &val[A_ATOM], v, alter);
1200		break;
1201
1202	case BPF_LD|BPF_IND|BPF_W:
1203	case BPF_LD|BPF_IND|BPF_H:
1204	case BPF_LD|BPF_IND|BPF_B:
1205		v = val[X_ATOM];
1206		if (alter && opt_state->vmap[v].is_const) {
1207			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208			s->k += opt_state->vmap[v].const_val;
1209			v = F(opt_state, s->code, s->k, 0L);
1210			/*
1211			 * XXX - optimizer loop detection.
1212			 */
1213			opt_state->non_branch_movement_performed = 1;
1214			opt_state->done = 0;
1215		}
1216		else
1217			v = F(opt_state, s->code, s->k, v);
1218		vstore(s, &val[A_ATOM], v, alter);
1219		break;
1220
1221	case BPF_LD|BPF_LEN:
1222		v = F(opt_state, s->code, 0L, 0L);
1223		vstore(s, &val[A_ATOM], v, alter);
1224		break;
1225
1226	case BPF_LD|BPF_IMM:
1227		v = K(s->k);
1228		vstore(s, &val[A_ATOM], v, alter);
1229		break;
1230
1231	case BPF_LDX|BPF_IMM:
1232		v = K(s->k);
1233		vstore(s, &val[X_ATOM], v, alter);
1234		break;
1235
1236	case BPF_LDX|BPF_MSH|BPF_B:
1237		v = F(opt_state, s->code, s->k, 0L);
1238		vstore(s, &val[X_ATOM], v, alter);
1239		break;
1240
1241	case BPF_ALU|BPF_NEG:
1242		if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243			s->code = BPF_LD|BPF_IMM;
1244			/*
1245			 * Do this negation as unsigned arithmetic; that's
1246			 * what modern BPF engines do, and it guarantees
1247			 * that all possible values can be negated.  (Yeah,
1248			 * negating 0x80000000, the minimum signed 32-bit
1249			 * two's-complement value, results in 0x80000000,
1250			 * so it's still negative, but we *should* be doing
1251			 * all unsigned arithmetic here, to match what
1252			 * modern BPF engines do.)
1253			 *
1254			 * Express it as 0U - (unsigned value) so that we
1255			 * don't get compiler warnings about negating an
1256			 * unsigned value and don't get UBSan warnings
1257			 * about the result of negating 0x80000000 being
1258			 * undefined.
1259			 */
1260			s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261			val[A_ATOM] = K(s->k);
1262		}
1263		else
1264			val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265		break;
1266
1267	case BPF_ALU|BPF_ADD|BPF_K:
1268	case BPF_ALU|BPF_SUB|BPF_K:
1269	case BPF_ALU|BPF_MUL|BPF_K:
1270	case BPF_ALU|BPF_DIV|BPF_K:
1271	case BPF_ALU|BPF_MOD|BPF_K:
1272	case BPF_ALU|BPF_AND|BPF_K:
1273	case BPF_ALU|BPF_OR|BPF_K:
1274	case BPF_ALU|BPF_XOR|BPF_K:
1275	case BPF_ALU|BPF_LSH|BPF_K:
1276	case BPF_ALU|BPF_RSH|BPF_K:
1277		op = BPF_OP(s->code);
1278		if (alter) {
1279			if (s->k == 0) {
1280				/*
1281				 * Optimize operations where the constant
1282				 * is zero.
1283				 *
1284				 * Don't optimize away "sub #0"
1285				 * as it may be needed later to
1286				 * fixup the generated math code.
1287				 *
1288				 * Fail if we're dividing by zero or taking
1289				 * a modulus by zero.
1290				 */
1291				if (op == BPF_ADD ||
1292				    op == BPF_LSH || op == BPF_RSH ||
1293				    op == BPF_OR || op == BPF_XOR) {
1294					s->code = NOP;
1295					break;
1296				}
1297				if (op == BPF_MUL || op == BPF_AND) {
1298					s->code = BPF_LD|BPF_IMM;
1299					val[A_ATOM] = K(s->k);
1300					break;
1301				}
1302				if (op == BPF_DIV)
1303					opt_error(opt_state,
1304					    "division by zero");
1305				if (op == BPF_MOD)
1306					opt_error(opt_state,
1307					    "modulus by zero");
1308			}
1309			if (opt_state->vmap[val[A_ATOM]].is_const) {
1310				fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311				val[A_ATOM] = K(s->k);
1312				break;
1313			}
1314		}
1315		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316		break;
1317
1318	case BPF_ALU|BPF_ADD|BPF_X:
1319	case BPF_ALU|BPF_SUB|BPF_X:
1320	case BPF_ALU|BPF_MUL|BPF_X:
1321	case BPF_ALU|BPF_DIV|BPF_X:
1322	case BPF_ALU|BPF_MOD|BPF_X:
1323	case BPF_ALU|BPF_AND|BPF_X:
1324	case BPF_ALU|BPF_OR|BPF_X:
1325	case BPF_ALU|BPF_XOR|BPF_X:
1326	case BPF_ALU|BPF_LSH|BPF_X:
1327	case BPF_ALU|BPF_RSH|BPF_X:
1328		op = BPF_OP(s->code);
1329		if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330			if (opt_state->vmap[val[A_ATOM]].is_const) {
1331				fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332				val[A_ATOM] = K(s->k);
1333			}
1334			else {
1335				s->code = BPF_ALU|BPF_K|op;
1336				s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337				if ((op == BPF_LSH || op == BPF_RSH) &&
1338				    s->k > 31)
1339					opt_error(opt_state,
1340					    "shift by more than 31 bits");
1341				/*
1342				 * XXX - optimizer loop detection.
1343				 */
1344				opt_state->non_branch_movement_performed = 1;
1345				opt_state->done = 0;
1346				val[A_ATOM] =
1347					F(opt_state, s->code, val[A_ATOM], K(s->k));
1348			}
1349			break;
1350		}
1351		/*
1352		 * Check if we're doing something to an accumulator
1353		 * that is 0, and simplify.  This may not seem like
1354		 * much of a simplification but it could open up further
1355		 * optimizations.
1356		 * XXX We could also check for mul by 1, etc.
1357		 */
1358		if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359		    && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361				s->code = BPF_MISC|BPF_TXA;
1362				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363				break;
1364			}
1365			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367				s->code = BPF_LD|BPF_IMM;
1368				s->k = 0;
1369				vstore(s, &val[A_ATOM], K(s->k), alter);
1370				break;
1371			}
1372			else if (op == BPF_NEG) {
1373				s->code = NOP;
1374				break;
1375			}
1376		}
1377		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378		break;
1379
1380	case BPF_MISC|BPF_TXA:
1381		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382		break;
1383
1384	case BPF_LD|BPF_MEM:
1385		v = val[s->k];
1386		if (alter && opt_state->vmap[v].is_const) {
1387			s->code = BPF_LD|BPF_IMM;
1388			s->k = opt_state->vmap[v].const_val;
1389			/*
1390			 * XXX - optimizer loop detection.
1391			 */
1392			opt_state->non_branch_movement_performed = 1;
1393			opt_state->done = 0;
1394		}
1395		vstore(s, &val[A_ATOM], v, alter);
1396		break;
1397
1398	case BPF_MISC|BPF_TAX:
1399		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400		break;
1401
1402	case BPF_LDX|BPF_MEM:
1403		v = val[s->k];
1404		if (alter && opt_state->vmap[v].is_const) {
1405			s->code = BPF_LDX|BPF_IMM;
1406			s->k = opt_state->vmap[v].const_val;
1407			/*
1408			 * XXX - optimizer loop detection.
1409			 */
1410			opt_state->non_branch_movement_performed = 1;
1411			opt_state->done = 0;
1412		}
1413		vstore(s, &val[X_ATOM], v, alter);
1414		break;
1415
1416	case BPF_ST:
1417		vstore(s, &val[s->k], val[A_ATOM], alter);
1418		break;
1419
1420	case BPF_STX:
1421		vstore(s, &val[s->k], val[X_ATOM], alter);
1422		break;
1423	}
1424}
1425
1426static void
1427deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428{
1429	register int atom;
1430
1431	atom = atomuse(s);
1432	if (atom >= 0) {
1433		if (atom == AX_ATOM) {
1434			last[X_ATOM] = 0;
1435			last[A_ATOM] = 0;
1436		}
1437		else
1438			last[atom] = 0;
1439	}
1440	atom = atomdef(s);
1441	if (atom >= 0) {
1442		if (last[atom]) {
1443			/*
1444			 * XXX - optimizer loop detection.
1445			 */
1446			opt_state->non_branch_movement_performed = 1;
1447			opt_state->done = 0;
1448			last[atom]->code = NOP;
1449		}
1450		last[atom] = s;
1451	}
1452}
1453
1454static void
1455opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456{
1457	register struct slist *s;
1458	register int atom;
1459	struct stmt *last[N_ATOMS];
1460
1461	memset((char *)last, 0, sizeof last);
1462
1463	for (s = b->stmts; s != 0; s = s->next)
1464		deadstmt(opt_state, &s->s, last);
1465	deadstmt(opt_state, &b->s, last);
1466
1467	for (atom = 0; atom < N_ATOMS; ++atom)
1468		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469			last[atom]->code = NOP;
1470			/*
1471			 * XXX - optimizer loop detection.
1472			 */
1473			opt_state->non_branch_movement_performed = 1;
1474			opt_state->done = 0;
1475		}
1476}
1477
1478static void
1479opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480{
1481	struct slist *s;
1482	struct edge *p;
1483	int i;
1484	bpf_u_int32 aval, xval;
1485
1486#if 0
1487	for (s = b->stmts; s && s->next; s = s->next)
1488		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489			do_stmts = 0;
1490			break;
1491		}
1492#endif
1493
1494	/*
1495	 * Initialize the atom values.
1496	 */
1497	p = b->in_edges;
1498	if (p == 0) {
1499		/*
1500		 * We have no predecessors, so everything is undefined
1501		 * upon entry to this block.
1502		 */
1503		memset((char *)b->val, 0, sizeof(b->val));
1504	} else {
1505		/*
1506		 * Inherit values from our predecessors.
1507		 *
1508		 * First, get the values from the predecessor along the
1509		 * first edge leading to this node.
1510		 */
1511		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512		/*
1513		 * Now look at all the other nodes leading to this node.
1514		 * If, for the predecessor along that edge, a register
1515		 * has a different value from the one we have (i.e.,
1516		 * control paths are merging, and the merging paths
1517		 * assign different values to that register), give the
1518		 * register the undefined value of 0.
1519		 */
1520		while ((p = p->next) != NULL) {
1521			for (i = 0; i < N_ATOMS; ++i)
1522				if (b->val[i] != p->pred->val[i])
1523					b->val[i] = 0;
1524		}
1525	}
1526	aval = b->val[A_ATOM];
1527	xval = b->val[X_ATOM];
1528	for (s = b->stmts; s; s = s->next)
1529		opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531	/*
1532	 * This is a special case: if we don't use anything from this
1533	 * block, and we load the accumulator or index register with a
1534	 * value that is already there, or if this block is a return,
1535	 * eliminate all the statements.
1536	 *
1537	 * XXX - what if it does a store?  Presumably that falls under
1538	 * the heading of "if we don't use anything from this block",
1539	 * i.e., if we use any memory location set to a different
1540	 * value by this block, then we use something from this block.
1541	 *
1542	 * XXX - why does it matter whether we use anything from this
1543	 * block?  If the accumulator or index register doesn't change
1544	 * its value, isn't that OK even if we use that value?
1545	 *
1546	 * XXX - if we load the accumulator with a different value,
1547	 * and the block ends with a conditional branch, we obviously
1548	 * can't eliminate it, as the branch depends on that value.
1549	 * For the index register, the conditional branch only depends
1550	 * on the index register value if the test is against the index
1551	 * register value rather than a constant; if nothing uses the
1552	 * value we put into the index register, and we're not testing
1553	 * against the index register's value, and there aren't any
1554	 * other problems that would keep us from eliminating this
1555	 * block, can we eliminate it?
1556	 */
1557	if (do_stmts &&
1558	    ((b->out_use == 0 &&
1559	      aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560	      xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561	     BPF_CLASS(b->s.code) == BPF_RET)) {
1562		if (b->stmts != 0) {
1563			b->stmts = 0;
1564			/*
1565			 * XXX - optimizer loop detection.
1566			 */
1567			opt_state->non_branch_movement_performed = 1;
1568			opt_state->done = 0;
1569		}
1570	} else {
1571		opt_peep(opt_state, b);
1572		opt_deadstores(opt_state, b);
1573	}
1574	/*
1575	 * Set up values for branch optimizer.
1576	 */
1577	if (BPF_SRC(b->s.code) == BPF_K)
1578		b->oval = K(b->s.k);
1579	else
1580		b->oval = b->val[X_ATOM];
1581	b->et.code = b->s.code;
1582	b->ef.code = -b->s.code;
1583}
1584
1585/*
1586 * Return true if any register that is used on exit from 'succ', has
1587 * an exit value that is different from the corresponding exit value
1588 * from 'b'.
1589 */
1590static int
1591use_conflict(struct block *b, struct block *succ)
1592{
1593	int atom;
1594	atomset use = succ->out_use;
1595
1596	if (use == 0)
1597		return 0;
1598
1599	for (atom = 0; atom < N_ATOMS; ++atom)
1600		if (ATOMELEM(use, atom))
1601			if (b->val[atom] != succ->val[atom])
1602				return 1;
1603	return 0;
1604}
1605
1606/*
1607 * Given a block that is the successor of an edge, and an edge that
1608 * dominates that edge, return either a pointer to a child of that
1609 * block (a block to which that block jumps) if that block is a
1610 * candidate to replace the successor of the latter edge or NULL
1611 * if neither of the children of the first block are candidates.
1612 */
1613static struct block *
1614fold_edge(struct block *child, struct edge *ep)
1615{
1616	int sense;
1617	bpf_u_int32 aval0, aval1, oval0, oval1;
1618	int code = ep->code;
1619
1620	if (code < 0) {
1621		/*
1622		 * This edge is a "branch if false" edge.
1623		 */
1624		code = -code;
1625		sense = 0;
1626	} else {
1627		/*
1628		 * This edge is a "branch if true" edge.
1629		 */
1630		sense = 1;
1631	}
1632
1633	/*
1634	 * If the opcode for the branch at the end of the block we
1635	 * were handed isn't the same as the opcode for the branch
1636	 * to which the edge we were handed corresponds, the tests
1637	 * for those branches aren't testing the same conditions,
1638	 * so the blocks to which the first block branches aren't
1639	 * candidates to replace the successor of the edge.
1640	 */
1641	if (child->s.code != code)
1642		return 0;
1643
1644	aval0 = child->val[A_ATOM];
1645	oval0 = child->oval;
1646	aval1 = ep->pred->val[A_ATOM];
1647	oval1 = ep->pred->oval;
1648
1649	/*
1650	 * If the A register value on exit from the successor block
1651	 * isn't the same as the A register value on exit from the
1652	 * predecessor of the edge, the blocks to which the first
1653	 * block branches aren't candidates to replace the successor
1654	 * of the edge.
1655	 */
1656	if (aval0 != aval1)
1657		return 0;
1658
1659	if (oval0 == oval1)
1660		/*
1661		 * The operands of the branch instructions are
1662		 * identical, so the branches are testing the
1663		 * same condition, and the result is true if a true
1664		 * branch was taken to get here, otherwise false.
1665		 */
1666		return sense ? JT(child) : JF(child);
1667
1668	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669		/*
1670		 * At this point, we only know the comparison if we
1671		 * came down the true branch, and it was an equality
1672		 * comparison with a constant.
1673		 *
1674		 * I.e., if we came down the true branch, and the branch
1675		 * was an equality comparison with a constant, we know the
1676		 * accumulator contains that constant.  If we came down
1677		 * the false branch, or the comparison wasn't with a
1678		 * constant, we don't know what was in the accumulator.
1679		 *
1680		 * We rely on the fact that distinct constants have distinct
1681		 * value numbers.
1682		 */
1683		return JF(child);
1684
1685	return 0;
1686}
1687
1688/*
1689 * If we can make this edge go directly to a child of the edge's current
1690 * successor, do so.
1691 */
1692static void
1693opt_j(opt_state_t *opt_state, struct edge *ep)
1694{
1695	register u_int i, k;
1696	register struct block *target;
1697
1698	/*
1699	 * Does this edge go to a block where, if the test
1700	 * at the end of it succeeds, it goes to a block
1701	 * that's a leaf node of the DAG, i.e. a return
1702	 * statement?
1703	 * If so, there's nothing to optimize.
1704	 */
1705	if (JT(ep->succ) == 0)
1706		return;
1707
1708	/*
1709	 * Does this edge go to a block that goes, in turn, to
1710	 * the same block regardless of whether the test at the
1711	 * end succeeds or fails?
1712	 */
1713	if (JT(ep->succ) == JF(ep->succ)) {
1714		/*
1715		 * Common branch targets can be eliminated, provided
1716		 * there is no data dependency.
1717		 *
1718		 * Check whether any register used on exit from the
1719		 * block to which the successor of this edge goes
1720		 * has a value at that point that's different from
1721		 * the value it has on exit from the predecessor of
1722		 * this edge.  If not, the predecessor of this edge
1723		 * can just go to the block to which the successor
1724		 * of this edge goes, bypassing the successor of this
1725		 * edge, as the successor of this edge isn't doing
1726		 * any calculations whose results are different
1727		 * from what the blocks before it did and isn't
1728		 * doing any tests the results of which matter.
1729		 */
1730		if (!use_conflict(ep->pred, JT(ep->succ))) {
1731			/*
1732			 * No, there isn't.
1733			 * Make this edge go to the block to
1734			 * which the successor of that edge
1735			 * goes.
1736			 *
1737			 * XXX - optimizer loop detection.
1738			 */
1739			opt_state->non_branch_movement_performed = 1;
1740			opt_state->done = 0;
1741			ep->succ = JT(ep->succ);
1742		}
1743	}
1744	/*
1745	 * For each edge dominator that matches the successor of this
1746	 * edge, promote the edge successor to the its grandchild.
1747	 *
1748	 * XXX We violate the set abstraction here in favor a reasonably
1749	 * efficient loop.
1750	 */
1751 top:
1752	for (i = 0; i < opt_state->edgewords; ++i) {
1753		/* i'th word in the bitset of dominators */
1754		register bpf_u_int32 x = ep->edom[i];
1755
1756		while (x != 0) {
1757			/* Find the next dominator in that word and mark it as found */
1758			k = lowest_set_bit(x);
1759			x &=~ ((bpf_u_int32)1 << k);
1760			k += i * BITS_PER_WORD;
1761
1762			target = fold_edge(ep->succ, opt_state->edges[k]);
1763			/*
1764			 * We have a candidate to replace the successor
1765			 * of ep.
1766			 *
1767			 * Check that there is no data dependency between
1768			 * nodes that will be violated if we move the edge;
1769			 * i.e., if any register used on exit from the
1770			 * candidate has a value at that point different
1771			 * from the value it has when we exit the
1772			 * predecessor of that edge, there's a data
1773			 * dependency that will be violated.
1774			 */
1775			if (target != 0 && !use_conflict(ep->pred, target)) {
1776				/*
1777				 * It's safe to replace the successor of
1778				 * ep; do so, and note that we've made
1779				 * at least one change.
1780				 *
1781				 * XXX - this is one of the operations that
1782				 * happens when the optimizer gets into
1783				 * one of those infinite loops.
1784				 */
1785				opt_state->done = 0;
1786				ep->succ = target;
1787				if (JT(target) != 0)
1788					/*
1789					 * Start over unless we hit a leaf.
1790					 */
1791					goto top;
1792				return;
1793			}
1794		}
1795	}
1796}
1797
1798/*
1799 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800 * "Predicate Assertion Propagation" in the BPF+ paper?
1801 *
1802 * Note that this looks at block dominators, not edge dominators.
1803 * Don't think so.
1804 *
1805 * "A or B" compiles into
1806 *
1807 *          A
1808 *       t / \ f
1809 *        /   B
1810 *       / t / \ f
1811 *      \   /
1812 *       \ /
1813 *        X
1814 *
1815 *
1816 */
1817static void
1818or_pullup(opt_state_t *opt_state, struct block *b)
1819{
1820	bpf_u_int32 val;
1821	int at_top;
1822	struct block *pull;
1823	struct block **diffp, **samep;
1824	struct edge *ep;
1825
1826	ep = b->in_edges;
1827	if (ep == 0)
1828		return;
1829
1830	/*
1831	 * Make sure each predecessor loads the same value.
1832	 * XXX why?
1833	 */
1834	val = ep->pred->val[A_ATOM];
1835	for (ep = ep->next; ep != 0; ep = ep->next)
1836		if (val != ep->pred->val[A_ATOM])
1837			return;
1838
1839	/*
1840	 * For the first edge in the list of edges coming into this block,
1841	 * see whether the predecessor of that edge comes here via a true
1842	 * branch or a false branch.
1843	 */
1844	if (JT(b->in_edges->pred) == b)
1845		diffp = &JT(b->in_edges->pred);	/* jt */
1846	else
1847		diffp = &JF(b->in_edges->pred);	/* jf */
1848
1849	/*
1850	 * diffp is a pointer to a pointer to the block.
1851	 *
1852	 * Go down the false chain looking as far as you can,
1853	 * making sure that each jump-compare is doing the
1854	 * same as the original block.
1855	 *
1856	 * If you reach the bottom before you reach a
1857	 * different jump-compare, just exit.  There's nothing
1858	 * to do here.  XXX - no, this version is checking for
1859	 * the value leaving the block; that's from the BPF+
1860	 * pullup routine.
1861	 */
1862	at_top = 1;
1863	for (;;) {
1864		/*
1865		 * Done if that's not going anywhere XXX
1866		 */
1867		if (*diffp == 0)
1868			return;
1869
1870		/*
1871		 * Done if that predecessor blah blah blah isn't
1872		 * going the same place we're going XXX
1873		 *
1874		 * Does the true edge of this block point to the same
1875		 * location as the true edge of b?
1876		 */
1877		if (JT(*diffp) != JT(b))
1878			return;
1879
1880		/*
1881		 * Done if this node isn't a dominator of that
1882		 * node blah blah blah XXX
1883		 *
1884		 * Does b dominate diffp?
1885		 */
1886		if (!SET_MEMBER((*diffp)->dom, b->id))
1887			return;
1888
1889		/*
1890		 * Break out of the loop if that node's value of A
1891		 * isn't the value of A above XXX
1892		 */
1893		if ((*diffp)->val[A_ATOM] != val)
1894			break;
1895
1896		/*
1897		 * Get the JF for that node XXX
1898		 * Go down the false path.
1899		 */
1900		diffp = &JF(*diffp);
1901		at_top = 0;
1902	}
1903
1904	/*
1905	 * Now that we've found a different jump-compare in a chain
1906	 * below b, search further down until we find another
1907	 * jump-compare that looks at the original value.  This
1908	 * jump-compare should get pulled up.  XXX again we're
1909	 * comparing values not jump-compares.
1910	 */
1911	samep = &JF(*diffp);
1912	for (;;) {
1913		/*
1914		 * Done if that's not going anywhere XXX
1915		 */
1916		if (*samep == 0)
1917			return;
1918
1919		/*
1920		 * Done if that predecessor blah blah blah isn't
1921		 * going the same place we're going XXX
1922		 */
1923		if (JT(*samep) != JT(b))
1924			return;
1925
1926		/*
1927		 * Done if this node isn't a dominator of that
1928		 * node blah blah blah XXX
1929		 *
1930		 * Does b dominate samep?
1931		 */
1932		if (!SET_MEMBER((*samep)->dom, b->id))
1933			return;
1934
1935		/*
1936		 * Break out of the loop if that node's value of A
1937		 * is the value of A above XXX
1938		 */
1939		if ((*samep)->val[A_ATOM] == val)
1940			break;
1941
1942		/* XXX Need to check that there are no data dependencies
1943		   between dp0 and dp1.  Currently, the code generator
1944		   will not produce such dependencies. */
1945		samep = &JF(*samep);
1946	}
1947#ifdef notdef
1948	/* XXX This doesn't cover everything. */
1949	for (i = 0; i < N_ATOMS; ++i)
1950		if ((*samep)->val[i] != pred->val[i])
1951			return;
1952#endif
1953	/* Pull up the node. */
1954	pull = *samep;
1955	*samep = JF(pull);
1956	JF(pull) = *diffp;
1957
1958	/*
1959	 * At the top of the chain, each predecessor needs to point at the
1960	 * pulled up node.  Inside the chain, there is only one predecessor
1961	 * to worry about.
1962	 */
1963	if (at_top) {
1964		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965			if (JT(ep->pred) == b)
1966				JT(ep->pred) = pull;
1967			else
1968				JF(ep->pred) = pull;
1969		}
1970	}
1971	else
1972		*diffp = pull;
1973
1974	/*
1975	 * XXX - this is one of the operations that happens when the
1976	 * optimizer gets into one of those infinite loops.
1977	 */
1978	opt_state->done = 0;
1979}
1980
1981static void
1982and_pullup(opt_state_t *opt_state, struct block *b)
1983{
1984	bpf_u_int32 val;
1985	int at_top;
1986	struct block *pull;
1987	struct block **diffp, **samep;
1988	struct edge *ep;
1989
1990	ep = b->in_edges;
1991	if (ep == 0)
1992		return;
1993
1994	/*
1995	 * Make sure each predecessor loads the same value.
1996	 */
1997	val = ep->pred->val[A_ATOM];
1998	for (ep = ep->next; ep != 0; ep = ep->next)
1999		if (val != ep->pred->val[A_ATOM])
2000			return;
2001
2002	if (JT(b->in_edges->pred) == b)
2003		diffp = &JT(b->in_edges->pred);
2004	else
2005		diffp = &JF(b->in_edges->pred);
2006
2007	at_top = 1;
2008	for (;;) {
2009		if (*diffp == 0)
2010			return;
2011
2012		if (JF(*diffp) != JF(b))
2013			return;
2014
2015		if (!SET_MEMBER((*diffp)->dom, b->id))
2016			return;
2017
2018		if ((*diffp)->val[A_ATOM] != val)
2019			break;
2020
2021		diffp = &JT(*diffp);
2022		at_top = 0;
2023	}
2024	samep = &JT(*diffp);
2025	for (;;) {
2026		if (*samep == 0)
2027			return;
2028
2029		if (JF(*samep) != JF(b))
2030			return;
2031
2032		if (!SET_MEMBER((*samep)->dom, b->id))
2033			return;
2034
2035		if ((*samep)->val[A_ATOM] == val)
2036			break;
2037
2038		/* XXX Need to check that there are no data dependencies
2039		   between diffp and samep.  Currently, the code generator
2040		   will not produce such dependencies. */
2041		samep = &JT(*samep);
2042	}
2043#ifdef notdef
2044	/* XXX This doesn't cover everything. */
2045	for (i = 0; i < N_ATOMS; ++i)
2046		if ((*samep)->val[i] != pred->val[i])
2047			return;
2048#endif
2049	/* Pull up the node. */
2050	pull = *samep;
2051	*samep = JT(pull);
2052	JT(pull) = *diffp;
2053
2054	/*
2055	 * At the top of the chain, each predecessor needs to point at the
2056	 * pulled up node.  Inside the chain, there is only one predecessor
2057	 * to worry about.
2058	 */
2059	if (at_top) {
2060		for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061			if (JT(ep->pred) == b)
2062				JT(ep->pred) = pull;
2063			else
2064				JF(ep->pred) = pull;
2065		}
2066	}
2067	else
2068		*diffp = pull;
2069
2070	/*
2071	 * XXX - this is one of the operations that happens when the
2072	 * optimizer gets into one of those infinite loops.
2073	 */
2074	opt_state->done = 0;
2075}
2076
2077static void
2078opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079{
2080	int i, maxlevel;
2081	struct block *p;
2082
2083	init_val(opt_state);
2084	maxlevel = ic->root->level;
2085
2086	find_inedges(opt_state, ic->root);
2087	for (i = maxlevel; i >= 0; --i)
2088		for (p = opt_state->levels[i]; p; p = p->link)
2089			opt_blk(opt_state, p, do_stmts);
2090
2091	if (do_stmts)
2092		/*
2093		 * No point trying to move branches; it can't possibly
2094		 * make a difference at this point.
2095		 *
2096		 * XXX - this might be after we detect a loop where
2097		 * we were just looping infinitely moving branches
2098		 * in such a fashion that we went through two or more
2099		 * versions of the machine code, eventually returning
2100		 * to the first version.  (We're really not doing a
2101		 * full loop detection, we're just testing for two
2102		 * passes in a row where we do nothing but
2103		 * move branches.)
2104		 */
2105		return;
2106
2107	/*
2108	 * Is this what the BPF+ paper describes in sections 6.1.1,
2109	 * 6.1.2, and 6.1.3?
2110	 */
2111	for (i = 1; i <= maxlevel; ++i) {
2112		for (p = opt_state->levels[i]; p; p = p->link) {
2113			opt_j(opt_state, &p->et);
2114			opt_j(opt_state, &p->ef);
2115		}
2116	}
2117
2118	find_inedges(opt_state, ic->root);
2119	for (i = 1; i <= maxlevel; ++i) {
2120		for (p = opt_state->levels[i]; p; p = p->link) {
2121			or_pullup(opt_state, p);
2122			and_pullup(opt_state, p);
2123		}
2124	}
2125}
2126
2127static inline void
2128link_inedge(struct edge *parent, struct block *child)
2129{
2130	parent->next = child->in_edges;
2131	child->in_edges = parent;
2132}
2133
2134static void
2135find_inedges(opt_state_t *opt_state, struct block *root)
2136{
2137	u_int i;
2138	int level;
2139	struct block *b;
2140
2141	for (i = 0; i < opt_state->n_blocks; ++i)
2142		opt_state->blocks[i]->in_edges = 0;
2143
2144	/*
2145	 * Traverse the graph, adding each edge to the predecessor
2146	 * list of its successors.  Skip the leaves (i.e. level 0).
2147	 */
2148	for (level = root->level; level > 0; --level) {
2149		for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150			link_inedge(&b->et, JT(b));
2151			link_inedge(&b->ef, JF(b));
2152		}
2153	}
2154}
2155
2156static void
2157opt_root(struct block **b)
2158{
2159	struct slist *tmp, *s;
2160
2161	s = (*b)->stmts;
2162	(*b)->stmts = 0;
2163	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164		*b = JT(*b);
2165
2166	tmp = (*b)->stmts;
2167	if (tmp != 0)
2168		sappend(s, tmp);
2169	(*b)->stmts = s;
2170
2171	/*
2172	 * If the root node is a return, then there is no
2173	 * point executing any statements (since the bpf machine
2174	 * has no side effects).
2175	 */
2176	if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177		(*b)->stmts = 0;
2178}
2179
2180static void
2181opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182{
2183
2184#ifdef BDEBUG
2185	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186		printf("opt_loop(root, %d) begin\n", do_stmts);
2187		opt_dump(opt_state, ic);
2188	}
2189#endif
2190
2191	/*
2192	 * XXX - optimizer loop detection.
2193	 */
2194	int loop_count = 0;
2195	for (;;) {
2196		opt_state->done = 1;
2197		/*
2198		 * XXX - optimizer loop detection.
2199		 */
2200		opt_state->non_branch_movement_performed = 0;
2201		find_levels(opt_state, ic);
2202		find_dom(opt_state, ic->root);
2203		find_closure(opt_state, ic->root);
2204		find_ud(opt_state, ic->root);
2205		find_edom(opt_state, ic->root);
2206		opt_blks(opt_state, ic, do_stmts);
2207#ifdef BDEBUG
2208		if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210			opt_dump(opt_state, ic);
2211		}
2212#endif
2213
2214		/*
2215		 * Was anything done in this optimizer pass?
2216		 */
2217		if (opt_state->done) {
2218			/*
2219			 * No, so we've reached a fixed point.
2220			 * We're done.
2221			 */
2222			break;
2223		}
2224
2225		/*
2226		 * XXX - was anything done other than branch movement
2227		 * in this pass?
2228		 */
2229		if (opt_state->non_branch_movement_performed) {
2230			/*
2231			 * Yes.  Clear any loop-detection counter;
2232			 * we're making some form of progress (assuming
2233			 * we can't get into a cycle doing *other*
2234			 * optimizations...).
2235			 */
2236			loop_count = 0;
2237		} else {
2238			/*
2239			 * No - increment the counter, and quit if
2240			 * it's up to 100.
2241			 */
2242			loop_count++;
2243			if (loop_count >= 100) {
2244				/*
2245				 * We've done nothing but branch movement
2246				 * for 100 passes; we're probably
2247				 * in a cycle and will never reach a
2248				 * fixed point.
2249				 *
2250				 * XXX - yes, we really need a non-
2251				 * heuristic way of detecting a cycle.
2252				 */
2253				opt_state->done = 1;
2254				break;
2255			}
2256		}
2257	}
2258}
2259
2260/*
2261 * Optimize the filter code in its dag representation.
2262 * Return 0 on success, -1 on error.
2263 */
2264int
2265bpf_optimize(struct icode *ic, char *errbuf)
2266{
2267	opt_state_t opt_state;
2268
2269	memset(&opt_state, 0, sizeof(opt_state));
2270	opt_state.errbuf = errbuf;
2271	opt_state.non_branch_movement_performed = 0;
2272	if (setjmp(opt_state.top_ctx)) {
2273		opt_cleanup(&opt_state);
2274		return -1;
2275	}
2276	opt_init(&opt_state, ic);
2277	opt_loop(&opt_state, ic, 0);
2278	opt_loop(&opt_state, ic, 1);
2279	intern_blocks(&opt_state, ic);
2280#ifdef BDEBUG
2281	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282		printf("after intern_blocks()\n");
2283		opt_dump(&opt_state, ic);
2284	}
2285#endif
2286	opt_root(&ic->root);
2287#ifdef BDEBUG
2288	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289		printf("after opt_root()\n");
2290		opt_dump(&opt_state, ic);
2291	}
2292#endif
2293	opt_cleanup(&opt_state);
2294	return 0;
2295}
2296
2297static void
2298make_marks(struct icode *ic, struct block *p)
2299{
2300	if (!isMarked(ic, p)) {
2301		Mark(ic, p);
2302		if (BPF_CLASS(p->s.code) != BPF_RET) {
2303			make_marks(ic, JT(p));
2304			make_marks(ic, JF(p));
2305		}
2306	}
2307}
2308
2309/*
2310 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311 * only for nodes that are alive.
2312 */
2313static void
2314mark_code(struct icode *ic)
2315{
2316	ic->cur_mark += 1;
2317	make_marks(ic, ic->root);
2318}
2319
2320/*
2321 * True iff the two stmt lists load the same value from the packet into
2322 * the accumulator.
2323 */
2324static int
2325eq_slist(struct slist *x, struct slist *y)
2326{
2327	for (;;) {
2328		while (x && x->s.code == NOP)
2329			x = x->next;
2330		while (y && y->s.code == NOP)
2331			y = y->next;
2332		if (x == 0)
2333			return y == 0;
2334		if (y == 0)
2335			return x == 0;
2336		if (x->s.code != y->s.code || x->s.k != y->s.k)
2337			return 0;
2338		x = x->next;
2339		y = y->next;
2340	}
2341}
2342
2343static inline int
2344eq_blk(struct block *b0, struct block *b1)
2345{
2346	if (b0->s.code == b1->s.code &&
2347	    b0->s.k == b1->s.k &&
2348	    b0->et.succ == b1->et.succ &&
2349	    b0->ef.succ == b1->ef.succ)
2350		return eq_slist(b0->stmts, b1->stmts);
2351	return 0;
2352}
2353
2354static void
2355intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356{
2357	struct block *p;
2358	u_int i, j;
2359	int done1; /* don't shadow global */
2360 top:
2361	done1 = 1;
2362	for (i = 0; i < opt_state->n_blocks; ++i)
2363		opt_state->blocks[i]->link = 0;
2364
2365	mark_code(ic);
2366
2367	for (i = opt_state->n_blocks - 1; i != 0; ) {
2368		--i;
2369		if (!isMarked(ic, opt_state->blocks[i]))
2370			continue;
2371		for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372			if (!isMarked(ic, opt_state->blocks[j]))
2373				continue;
2374			if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375				opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376					opt_state->blocks[j]->link : opt_state->blocks[j];
2377				break;
2378			}
2379		}
2380	}
2381	for (i = 0; i < opt_state->n_blocks; ++i) {
2382		p = opt_state->blocks[i];
2383		if (JT(p) == 0)
2384			continue;
2385		if (JT(p)->link) {
2386			done1 = 0;
2387			JT(p) = JT(p)->link;
2388		}
2389		if (JF(p)->link) {
2390			done1 = 0;
2391			JF(p) = JF(p)->link;
2392		}
2393	}
2394	if (!done1)
2395		goto top;
2396}
2397
2398static void
2399opt_cleanup(opt_state_t *opt_state)
2400{
2401	free((void *)opt_state->vnode_base);
2402	free((void *)opt_state->vmap);
2403	free((void *)opt_state->edges);
2404	free((void *)opt_state->space);
2405	free((void *)opt_state->levels);
2406	free((void *)opt_state->blocks);
2407}
2408
2409/*
2410 * For optimizer errors.
2411 */
2412static void PCAP_NORETURN
2413opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414{
2415	va_list ap;
2416
2417	if (opt_state->errbuf != NULL) {
2418		va_start(ap, fmt);
2419		(void)vsnprintf(opt_state->errbuf,
2420		    PCAP_ERRBUF_SIZE, fmt, ap);
2421		va_end(ap);
2422	}
2423	longjmp(opt_state->top_ctx, 1);
2424	/* NOTREACHED */
2425#ifdef _AIX
2426	PCAP_UNREACHABLE
2427#endif /* _AIX */
2428}
2429
2430/*
2431 * Return the number of stmts in 's'.
2432 */
2433static u_int
2434slength(struct slist *s)
2435{
2436	u_int n = 0;
2437
2438	for (; s; s = s->next)
2439		if (s->s.code != NOP)
2440			++n;
2441	return n;
2442}
2443
2444/*
2445 * Return the number of nodes reachable by 'p'.
2446 * All nodes should be initially unmarked.
2447 */
2448static int
2449count_blocks(struct icode *ic, struct block *p)
2450{
2451	if (p == 0 || isMarked(ic, p))
2452		return 0;
2453	Mark(ic, p);
2454	return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455}
2456
2457/*
2458 * Do a depth first search on the flow graph, numbering the
2459 * the basic blocks, and entering them into the 'blocks' array.`
2460 */
2461static void
2462number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463{
2464	u_int n;
2465
2466	if (p == 0 || isMarked(ic, p))
2467		return;
2468
2469	Mark(ic, p);
2470	n = opt_state->n_blocks++;
2471	if (opt_state->n_blocks == 0) {
2472		/*
2473		 * Overflow.
2474		 */
2475		opt_error(opt_state, "filter is too complex to optimize");
2476	}
2477	p->id = n;
2478	opt_state->blocks[n] = p;
2479
2480	number_blks_r(opt_state, ic, JT(p));
2481	number_blks_r(opt_state, ic, JF(p));
2482}
2483
2484/*
2485 * Return the number of stmts in the flowgraph reachable by 'p'.
2486 * The nodes should be unmarked before calling.
2487 *
2488 * Note that "stmts" means "instructions", and that this includes
2489 *
2490 *	side-effect statements in 'p' (slength(p->stmts));
2491 *
2492 *	statements in the true branch from 'p' (count_stmts(JT(p)));
2493 *
2494 *	statements in the false branch from 'p' (count_stmts(JF(p)));
2495 *
2496 *	the conditional jump itself (1);
2497 *
2498 *	an extra long jump if the true branch requires it (p->longjt);
2499 *
2500 *	an extra long jump if the false branch requires it (p->longjf).
2501 */
2502static u_int
2503count_stmts(struct icode *ic, struct block *p)
2504{
2505	u_int n;
2506
2507	if (p == 0 || isMarked(ic, p))
2508		return 0;
2509	Mark(ic, p);
2510	n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512}
2513
2514/*
2515 * Allocate memory.  All allocation is done before optimization
2516 * is begun.  A linear bound on the size of all data structures is computed
2517 * from the total number of blocks and/or statements.
2518 */
2519static void
2520opt_init(opt_state_t *opt_state, struct icode *ic)
2521{
2522	bpf_u_int32 *p;
2523	int i, n, max_stmts;
2524	u_int product;
2525	size_t block_memsize, edge_memsize;
2526
2527	/*
2528	 * First, count the blocks, so we can malloc an array to map
2529	 * block number to block.  Then, put the blocks into the array.
2530	 */
2531	unMarkAll(ic);
2532	n = count_blocks(ic, ic->root);
2533	opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534	if (opt_state->blocks == NULL)
2535		opt_error(opt_state, "malloc");
2536	unMarkAll(ic);
2537	opt_state->n_blocks = 0;
2538	number_blks_r(opt_state, ic, ic->root);
2539
2540	/*
2541	 * This "should not happen".
2542	 */
2543	if (opt_state->n_blocks == 0)
2544		opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546	opt_state->n_edges = 2 * opt_state->n_blocks;
2547	if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548		/*
2549		 * Overflow.
2550		 */
2551		opt_error(opt_state, "filter is too complex to optimize");
2552	}
2553	opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554	if (opt_state->edges == NULL) {
2555		opt_error(opt_state, "malloc");
2556	}
2557
2558	/*
2559	 * The number of levels is bounded by the number of nodes.
2560	 */
2561	opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562	if (opt_state->levels == NULL) {
2563		opt_error(opt_state, "malloc");
2564	}
2565
2566	opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567	opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569	/*
2570	 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571	 * in a u_int; we use it as a u_int number-of-iterations
2572	 * value.
2573	 */
2574	product = opt_state->n_blocks * opt_state->nodewords;
2575	if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576		/*
2577		 * XXX - just punt and don't try to optimize?
2578		 * In practice, this is unlikely to happen with
2579		 * a normal filter.
2580		 */
2581		opt_error(opt_state, "filter is too complex to optimize");
2582	}
2583
2584	/*
2585	 * Make sure the total memory required for that doesn't
2586	 * overflow.
2587	 */
2588	block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589	if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590		opt_error(opt_state, "filter is too complex to optimize");
2591	}
2592
2593	/*
2594	 * Make sure opt_state->n_edges * opt_state->edgewords fits
2595	 * in a u_int; we use it as a u_int number-of-iterations
2596	 * value.
2597	 */
2598	product = opt_state->n_edges * opt_state->edgewords;
2599	if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600		opt_error(opt_state, "filter is too complex to optimize");
2601	}
2602
2603	/*
2604	 * Make sure the total memory required for that doesn't
2605	 * overflow.
2606	 */
2607	edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608	if (edge_memsize / product != sizeof(*opt_state->space)) {
2609		opt_error(opt_state, "filter is too complex to optimize");
2610	}
2611
2612	/*
2613	 * Make sure the total memory required for both of them doesn't
2614	 * overflow.
2615	 */
2616	if (block_memsize > SIZE_MAX - edge_memsize) {
2617		opt_error(opt_state, "filter is too complex to optimize");
2618	}
2619
2620	/* XXX */
2621	opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622	if (opt_state->space == NULL) {
2623		opt_error(opt_state, "malloc");
2624	}
2625	p = opt_state->space;
2626	opt_state->all_dom_sets = p;
2627	for (i = 0; i < n; ++i) {
2628		opt_state->blocks[i]->dom = p;
2629		p += opt_state->nodewords;
2630	}
2631	opt_state->all_closure_sets = p;
2632	for (i = 0; i < n; ++i) {
2633		opt_state->blocks[i]->closure = p;
2634		p += opt_state->nodewords;
2635	}
2636	opt_state->all_edge_sets = p;
2637	for (i = 0; i < n; ++i) {
2638		register struct block *b = opt_state->blocks[i];
2639
2640		b->et.edom = p;
2641		p += opt_state->edgewords;
2642		b->ef.edom = p;
2643		p += opt_state->edgewords;
2644		b->et.id = i;
2645		opt_state->edges[i] = &b->et;
2646		b->ef.id = opt_state->n_blocks + i;
2647		opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648		b->et.pred = b;
2649		b->ef.pred = b;
2650	}
2651	max_stmts = 0;
2652	for (i = 0; i < n; ++i)
2653		max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654	/*
2655	 * We allocate at most 3 value numbers per statement,
2656	 * so this is an upper bound on the number of valnodes
2657	 * we'll need.
2658	 */
2659	opt_state->maxval = 3 * max_stmts;
2660	opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661	if (opt_state->vmap == NULL) {
2662		opt_error(opt_state, "malloc");
2663	}
2664	opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665	if (opt_state->vnode_base == NULL) {
2666		opt_error(opt_state, "malloc");
2667	}
2668}
2669
2670/*
2671 * This is only used when supporting optimizer debugging.  It is
2672 * global state, so do *not* do more than one compile in parallel
2673 * and expect it to provide meaningful information.
2674 */
2675#ifdef BDEBUG
2676int bids[NBIDS];
2677#endif
2678
2679static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680    PCAP_PRINTFLIKE(2, 3);
2681
2682/*
2683 * Returns true if successful.  Returns false if a branch has
2684 * an offset that is too large.  If so, we have marked that
2685 * branch so that on a subsequent iteration, it will be treated
2686 * properly.
2687 */
2688static int
2689convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690{
2691	struct bpf_insn *dst;
2692	struct slist *src;
2693	u_int slen;
2694	u_int off;
2695	struct slist **offset = NULL;
2696
2697	if (p == 0 || isMarked(ic, p))
2698		return (1);
2699	Mark(ic, p);
2700
2701	if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702		return (0);
2703	if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704		return (0);
2705
2706	slen = slength(p->stmts);
2707	dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708		/* inflate length by any extra jumps */
2709
2710	p->offset = (int)(dst - conv_state->fstart);
2711
2712	/* generate offset[] for convenience  */
2713	if (slen) {
2714		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715		if (!offset) {
2716			conv_error(conv_state, "not enough core");
2717			/*NOTREACHED*/
2718		}
2719	}
2720	src = p->stmts;
2721	for (off = 0; off < slen && src; off++) {
2722#if 0
2723		printf("off=%d src=%x\n", off, src);
2724#endif
2725		offset[off] = src;
2726		src = src->next;
2727	}
2728
2729	off = 0;
2730	for (src = p->stmts; src; src = src->next) {
2731		if (src->s.code == NOP)
2732			continue;
2733		dst->code = (u_short)src->s.code;
2734		dst->k = src->s.k;
2735
2736		/* fill block-local relative jump */
2737		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738#if 0
2739			if (src->s.jt || src->s.jf) {
2740				free(offset);
2741				conv_error(conv_state, "illegal jmp destination");
2742				/*NOTREACHED*/
2743			}
2744#endif
2745			goto filled;
2746		}
2747		if (off == slen - 2)	/*???*/
2748			goto filled;
2749
2750	    {
2751		u_int i;
2752		int jt, jf;
2753		const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755#if 0
2756		printf("code=%x off=%d %x %x\n", src->s.code,
2757			off, src->s.jt, src->s.jf);
2758#endif
2759
2760		if (!src->s.jt || !src->s.jf) {
2761			free(offset);
2762			conv_error(conv_state, ljerr, "no jmp destination", off);
2763			/*NOTREACHED*/
2764		}
2765
2766		jt = jf = 0;
2767		for (i = 0; i < slen; i++) {
2768			if (offset[i] == src->s.jt) {
2769				if (jt) {
2770					free(offset);
2771					conv_error(conv_state, ljerr, "multiple matches", off);
2772					/*NOTREACHED*/
2773				}
2774
2775				if (i - off - 1 >= 256) {
2776					free(offset);
2777					conv_error(conv_state, ljerr, "out-of-range jump", off);
2778					/*NOTREACHED*/
2779				}
2780				dst->jt = (u_char)(i - off - 1);
2781				jt++;
2782			}
2783			if (offset[i] == src->s.jf) {
2784				if (jf) {
2785					free(offset);
2786					conv_error(conv_state, ljerr, "multiple matches", off);
2787					/*NOTREACHED*/
2788				}
2789				if (i - off - 1 >= 256) {
2790					free(offset);
2791					conv_error(conv_state, ljerr, "out-of-range jump", off);
2792					/*NOTREACHED*/
2793				}
2794				dst->jf = (u_char)(i - off - 1);
2795				jf++;
2796			}
2797		}
2798		if (!jt || !jf) {
2799			free(offset);
2800			conv_error(conv_state, ljerr, "no destination found", off);
2801			/*NOTREACHED*/
2802		}
2803	    }
2804filled:
2805		++dst;
2806		++off;
2807	}
2808	if (offset)
2809		free(offset);
2810
2811#ifdef BDEBUG
2812	if (dst - conv_state->fstart < NBIDS)
2813		bids[dst - conv_state->fstart] = p->id + 1;
2814#endif
2815	dst->code = (u_short)p->s.code;
2816	dst->k = p->s.k;
2817	if (JT(p)) {
2818		/* number of extra jumps inserted */
2819		u_char extrajmps = 0;
2820		off = JT(p)->offset - (p->offset + slen) - 1;
2821		if (off >= 256) {
2822		    /* offset too large for branch, must add a jump */
2823		    if (p->longjt == 0) {
2824			/* mark this instruction and retry */
2825			p->longjt++;
2826			return(0);
2827		    }
2828		    dst->jt = extrajmps;
2829		    extrajmps++;
2830		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2831		    dst[extrajmps].k = off - extrajmps;
2832		}
2833		else
2834		    dst->jt = (u_char)off;
2835		off = JF(p)->offset - (p->offset + slen) - 1;
2836		if (off >= 256) {
2837		    /* offset too large for branch, must add a jump */
2838		    if (p->longjf == 0) {
2839			/* mark this instruction and retry */
2840			p->longjf++;
2841			return(0);
2842		    }
2843		    /* branch if F to following jump */
2844		    /* if two jumps are inserted, F goes to second one */
2845		    dst->jf = extrajmps;
2846		    extrajmps++;
2847		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2848		    dst[extrajmps].k = off - extrajmps;
2849		}
2850		else
2851		    dst->jf = (u_char)off;
2852	}
2853	return (1);
2854}
2855
2856
2857/*
2858 * Convert flowgraph intermediate representation to the
2859 * BPF array representation.  Set *lenp to the number of instructions.
2860 *
2861 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862 * not* do free(fp) before returning fp; doing so would make no sense,
2863 * as the BPF array pointed to by the return value of icode_to_fcode()
2864 * must be valid - it's being returned for use in a bpf_program structure.
2865 *
2866 * If it appears that icode_to_fcode() is leaking, the problem is that
2867 * the program using pcap_compile() is failing to free the memory in
2868 * the BPF program when it's done - the leak is in the program, not in
2869 * the routine that happens to be allocating the memory.  (By analogy, if
2870 * a program calls fopen() without ever calling fclose() on the FILE *,
2871 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872 * the program.)  Change the program to use pcap_freecode() when it's
2873 * done with the filter program.  See the pcap man page.
2874 */
2875struct bpf_insn *
2876icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877    char *errbuf)
2878{
2879	u_int n;
2880	struct bpf_insn *fp;
2881	conv_state_t conv_state;
2882
2883	conv_state.fstart = NULL;
2884	conv_state.errbuf = errbuf;
2885	if (setjmp(conv_state.top_ctx) != 0) {
2886		free(conv_state.fstart);
2887		return NULL;
2888	}
2889
2890	/*
2891	 * Loop doing convert_code_r() until no branches remain
2892	 * with too-large offsets.
2893	 */
2894	for (;;) {
2895	    unMarkAll(ic);
2896	    n = *lenp = count_stmts(ic, root);
2897
2898	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899	    if (fp == NULL) {
2900		(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901		    "malloc");
2902		return NULL;
2903	    }
2904	    memset((char *)fp, 0, sizeof(*fp) * n);
2905	    conv_state.fstart = fp;
2906	    conv_state.ftail = fp + n;
2907
2908	    unMarkAll(ic);
2909	    if (convert_code_r(&conv_state, ic, root))
2910		break;
2911	    free(fp);
2912	}
2913
2914	return fp;
2915}
2916
2917/*
2918 * For iconv_to_fconv() errors.
2919 */
2920static void PCAP_NORETURN
2921conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922{
2923	va_list ap;
2924
2925	va_start(ap, fmt);
2926	(void)vsnprintf(conv_state->errbuf,
2927	    PCAP_ERRBUF_SIZE, fmt, ap);
2928	va_end(ap);
2929	longjmp(conv_state->top_ctx, 1);
2930	/* NOTREACHED */
2931#ifdef _AIX
2932	PCAP_UNREACHABLE
2933#endif /* _AIX */
2934}
2935
2936/*
2937 * Make a copy of a BPF program and put it in the "fcode" member of
2938 * a "pcap_t".
2939 *
2940 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941 * member of the "pcap_t" with an error message, and return -1;
2942 * otherwise, return 0.
2943 */
2944int
2945install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946{
2947	size_t prog_size;
2948
2949	/*
2950	 * Validate the program.
2951	 */
2952	if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953		snprintf(p->errbuf, sizeof(p->errbuf),
2954			"BPF program is not valid");
2955		return (-1);
2956	}
2957
2958	/*
2959	 * Free up any already installed program.
2960	 */
2961	pcap_freecode(&p->fcode);
2962
2963	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964	p->fcode.bf_len = fp->bf_len;
2965	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966	if (p->fcode.bf_insns == NULL) {
2967		pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968		    errno, "malloc");
2969		return (-1);
2970	}
2971	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972	return (0);
2973}
2974
2975#ifdef BDEBUG
2976static void
2977dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978    FILE *out)
2979{
2980	int icount, noffset;
2981	int i;
2982
2983	if (block == NULL || isMarked(ic, block))
2984		return;
2985	Mark(ic, block);
2986
2987	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988	noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990	fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991	for (i = block->offset; i < noffset; i++) {
2992		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993	}
2994	fprintf(out, "\" tooltip=\"");
2995	for (i = 0; i < BPF_MEMWORDS; i++)
2996		if (block->val[i] != VAL_UNKNOWN)
2997			fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000	fprintf(out, "\"");
3001	if (JT(block) == NULL)
3002		fprintf(out, ", peripheries=2");
3003	fprintf(out, "];\n");
3004
3005	dot_dump_node(ic, JT(block), prog, out);
3006	dot_dump_node(ic, JF(block), prog, out);
3007}
3008
3009static void
3010dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011{
3012	if (block == NULL || isMarked(ic, block))
3013		return;
3014	Mark(ic, block);
3015
3016	if (JT(block)) {
3017		fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018				block->id, JT(block)->id);
3019		fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020			   block->id, JF(block)->id);
3021	}
3022	dot_dump_edge(ic, JT(block), out);
3023	dot_dump_edge(ic, JF(block), out);
3024}
3025
3026/* Output the block CFG using graphviz/DOT language
3027 * In the CFG, block's code, value index for each registers at EXIT,
3028 * and the jump relationship is show.
3029 *
3030 * example DOT for BPF `ip src host 1.1.1.1' is:
3031    digraph BPF {
3032	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
3033	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
3034	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036	"block0":se -> "block1":n [label="T"];
3037	"block0":sw -> "block3":n [label="F"];
3038	"block1":se -> "block2":n [label="T"];
3039	"block1":sw -> "block3":n [label="F"];
3040    }
3041 *
3042 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044 */
3045static int
3046dot_dump(struct icode *ic, char *errbuf)
3047{
3048	struct bpf_program f;
3049	FILE *out = stdout;
3050
3051	memset(bids, 0, sizeof bids);
3052	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053	if (f.bf_insns == NULL)
3054		return -1;
3055
3056	fprintf(out, "digraph BPF {\n");
3057	unMarkAll(ic);
3058	dot_dump_node(ic, ic->root, &f, out);
3059	unMarkAll(ic);
3060	dot_dump_edge(ic, ic->root, out);
3061	fprintf(out, "}\n");
3062
3063	free((char *)f.bf_insns);
3064	return 0;
3065}
3066
3067static int
3068plain_dump(struct icode *ic, char *errbuf)
3069{
3070	struct bpf_program f;
3071
3072	memset(bids, 0, sizeof bids);
3073	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074	if (f.bf_insns == NULL)
3075		return -1;
3076	bpf_dump(&f, 1);
3077	putchar('\n');
3078	free((char *)f.bf_insns);
3079	return 0;
3080}
3081
3082static void
3083opt_dump(opt_state_t *opt_state, struct icode *ic)
3084{
3085	int status;
3086	char errbuf[PCAP_ERRBUF_SIZE];
3087
3088	/*
3089	 * If the CFG, in DOT format, is requested, output it rather than
3090	 * the code that would be generated from that graph.
3091	 */
3092	if (pcap_print_dot_graph)
3093		status = dot_dump(ic, errbuf);
3094	else
3095		status = plain_dump(ic, errbuf);
3096	if (status == -1)
3097		opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098}
3099#endif
3100