1/*
2 * FILE:	sha2.c
3 * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Modified by Jelte Jansen to fit in ldns, and not clash with any
9 * system-defined SHA code.
10 * Changes:
11 * - Renamed (external) functions and constants to fit ldns style
12 * - Removed _End and _Data functions
13 * - Added ldns_shaX(data, len, digest) convenience functions
14 * - Removed prototypes of _Transform functions and made those static
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the copyright holder nor the names of contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41 */
42
43#include <ldns/config.h>
44#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
45#include <assert.h>	/* assert() */
46#include <ldns/sha2.h>
47
48/*
49 * ASSERT NOTE:
50 * Some sanity checking code is included using assert().  On my FreeBSD
51 * system, this additional code can be removed by compiling with NDEBUG
52 * defined.  Check your own systems manpage on assert() to see how to
53 * compile WITHOUT the sanity checking code on your system.
54 *
55 * UNROLLED TRANSFORM LOOP NOTE:
56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57 * loop version for the hash transform rounds (defined using macros
58 * later in this file).  Either define on the command line, for example:
59 *
60 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61 *
62 * or define below:
63 *
64 *   #define SHA2_UNROLL_TRANSFORM
65 *
66 */
67
68
69/*** SHA-256/384/512 Machine Architecture Definitions *****************/
70/*
71 * BYTE_ORDER NOTE:
72 *
73 * Please make sure that your system defines BYTE_ORDER.  If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76 * equivalent.
77 *
78 * If your system does not define the above, then you can do so by
79 * hand like this:
80 *
81 *   #define LITTLE_ENDIAN 1234
82 *   #define BIG_ENDIAN    4321
83 *
84 * And for little-endian machines, add:
85 *
86 *   #define BYTE_ORDER LITTLE_ENDIAN
87 *
88 * Or for big-endian machines:
89 *
90 *   #define BYTE_ORDER BIG_ENDIAN
91 *
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
95 * made).
96 */
97#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99#endif
100
101typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
102typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
103#ifdef S_SPLINT_S
104typedef unsigned long long sha2_word64; /* lint 8 bytes */
105#else
106typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
107#endif
108
109/*** SHA-256/384/512 Various Length Definitions ***********************/
110/* NOTE: Most of these are in sha2.h */
111#define ldns_sha256_SHORT_BLOCK_LENGTH	(LDNS_SHA256_BLOCK_LENGTH - 8)
112#define ldns_sha384_SHORT_BLOCK_LENGTH	(LDNS_SHA384_BLOCK_LENGTH - 16)
113#define ldns_sha512_SHORT_BLOCK_LENGTH	(LDNS_SHA512_BLOCK_LENGTH - 16)
114
115
116/*** ENDIAN REVERSAL MACROS *******************************************/
117#if BYTE_ORDER == LITTLE_ENDIAN
118#define REVERSE32(w,x)	{ \
119	sha2_word32 tmp = (w); \
120	tmp = (tmp >> 16) | (tmp << 16); \
121	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122}
123#ifndef S_SPLINT_S
124#define REVERSE64(w,x)	{ \
125	sha2_word64 tmp = (w); \
126	tmp = (tmp >> 32) | (tmp << 32); \
127	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
131}
132#else /* splint */
133#define REVERSE64(w,x) /* splint */
134#endif /* splint */
135#endif /* BYTE_ORDER == LITTLE_ENDIAN */
136
137/*
138 * Macro for incrementally adding the unsigned 64-bit integer n to the
139 * unsigned 128-bit integer (represented using a two-element array of
140 * 64-bit words):
141 */
142#define ADDINC128(w,n)	{ \
143	(w)[0] += (sha2_word64)(n); \
144	if ((w)[0] < (n)) { \
145		(w)[1]++; \
146	} \
147}
148#ifdef S_SPLINT_S
149#undef ADDINC128
150#define ADDINC128(w,n) /* splint */
151#endif
152
153/*
154 * Macros for copying blocks of memory and for zeroing out ranges
155 * of memory.  Using these macros makes it easy to switch from
156 * using memset()/memcpy() and using bzero()/bcopy().
157 *
158 * Please define either SHA2_USE_MEMSET_MEMCPY or define
159 * SHA2_USE_BZERO_BCOPY depending on which function set you
160 * choose to use:
161 */
162#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163/* Default to memset()/memcpy() if no option is specified */
164#define	SHA2_USE_MEMSET_MEMCPY	1
165#endif
166#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167/* Abort with an error if BOTH options are defined */
168#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169#endif
170
171#ifdef SHA2_USE_MEMSET_MEMCPY
172#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
173#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
174#endif
175#ifdef SHA2_USE_BZERO_BCOPY
176#define MEMSET_BZERO(p,l)	bzero((p), (l))
177#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
178#endif
179
180
181/*** THE SIX LOGICAL FUNCTIONS ****************************************/
182/*
183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184 *
185 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
186 *   S is a ROTATION) because the SHA-256/384/512 description document
187 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188 *   same "backwards" definition.
189 */
190/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191#define R(b,x) 		((x) >> (b))
192/* 32-bit Rotate-right (used in SHA-256): */
193#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
194/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
196
197/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
199#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200
201/* Four of six logical functions used in SHA-256: */
202#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
205#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
206
207/* Four of six logical functions used in SHA-384 and SHA-512: */
208#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
211#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
212
213/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214/* Hash constant words K for SHA-256: */
215static const sha2_word32 K256[64] = {
216	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232};
233
234/* initial hash value H for SHA-256: */
235static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236	0x6a09e667UL,
237	0xbb67ae85UL,
238	0x3c6ef372UL,
239	0xa54ff53aUL,
240	0x510e527fUL,
241	0x9b05688cUL,
242	0x1f83d9abUL,
243	0x5be0cd19UL
244};
245
246/* Hash constant words K for SHA-384 and SHA-512: */
247static const sha2_word64 K512[80] = {
248	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288};
289
290/* initial hash value H for SHA-384 */
291static const sha2_word64 sha384_initial_hash_value[8] = {
292	0xcbbb9d5dc1059ed8ULL,
293	0x629a292a367cd507ULL,
294	0x9159015a3070dd17ULL,
295	0x152fecd8f70e5939ULL,
296	0x67332667ffc00b31ULL,
297	0x8eb44a8768581511ULL,
298	0xdb0c2e0d64f98fa7ULL,
299	0x47b5481dbefa4fa4ULL
300};
301
302/* initial hash value H for SHA-512 */
303static const sha2_word64 sha512_initial_hash_value[8] = {
304	0x6a09e667f3bcc908ULL,
305	0xbb67ae8584caa73bULL,
306	0x3c6ef372fe94f82bULL,
307	0xa54ff53a5f1d36f1ULL,
308	0x510e527fade682d1ULL,
309	0x9b05688c2b3e6c1fULL,
310	0x1f83d9abfb41bd6bULL,
311	0x5be0cd19137e2179ULL
312};
313
314/*** SHA-256: *********************************************************/
315void ldns_sha256_init(ldns_sha256_CTX* context) {
316	if (context == (ldns_sha256_CTX*)0) {
317		return;
318	}
319	MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320	MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321	context->bitcount = 0;
322}
323
324#ifdef SHA2_UNROLL_TRANSFORM
325
326/* Unrolled SHA-256 round macros: */
327
328#if BYTE_ORDER == LITTLE_ENDIAN
329
330#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
331	REVERSE32(*data++, W256[j]); \
332	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333             K256[j] + W256[j]; \
334	(d) += T1; \
335	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336	j++
337
338
339#else /* BYTE_ORDER == LITTLE_ENDIAN */
340
341#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
342	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343	     K256[j] + (W256[j] = *data++); \
344	(d) += T1; \
345	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346	j++
347
348#endif /* BYTE_ORDER == LITTLE_ENDIAN */
349
350#define ROUND256(a,b,c,d,e,f,g,h)	\
351	s0 = W256[(j+1)&0x0f]; \
352	s0 = sigma0_256(s0); \
353	s1 = W256[(j+14)&0x0f]; \
354	s1 = sigma1_256(s1); \
355	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357	(d) += T1; \
358	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359	j++
360
361static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362                                  const sha2_word32* data) {
363	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
364	sha2_word32	T1, *W256;
365	int		j;
366
367	W256 = (sha2_word32*)context->buffer;
368
369	/* initialize registers with the prev. intermediate value */
370	a = context->state[0];
371	b = context->state[1];
372	c = context->state[2];
373	d = context->state[3];
374	e = context->state[4];
375	f = context->state[5];
376	g = context->state[6];
377	h = context->state[7];
378
379	j = 0;
380	do {
381		/* Rounds 0 to 15 (unrolled): */
382		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390	} while (j < 16);
391
392	/* Now for the remaining rounds to 64: */
393	do {
394		ROUND256(a,b,c,d,e,f,g,h);
395		ROUND256(h,a,b,c,d,e,f,g);
396		ROUND256(g,h,a,b,c,d,e,f);
397		ROUND256(f,g,h,a,b,c,d,e);
398		ROUND256(e,f,g,h,a,b,c,d);
399		ROUND256(d,e,f,g,h,a,b,c);
400		ROUND256(c,d,e,f,g,h,a,b);
401		ROUND256(b,c,d,e,f,g,h,a);
402	} while (j < 64);
403
404	/* Compute the current intermediate hash value */
405	context->state[0] += a;
406	context->state[1] += b;
407	context->state[2] += c;
408	context->state[3] += d;
409	context->state[4] += e;
410	context->state[5] += f;
411	context->state[6] += g;
412	context->state[7] += h;
413
414	/* Clean up */
415	a = b = c = d = e = f = g = h = T1 = 0;
416}
417
418#else /* SHA2_UNROLL_TRANSFORM */
419
420static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421                                  const sha2_word32* data) {
422	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
423	sha2_word32	T1, T2, *W256;
424	int		j;
425
426	W256 = (sha2_word32*)context->buffer;
427
428	/* initialize registers with the prev. intermediate value */
429	a = context->state[0];
430	b = context->state[1];
431	c = context->state[2];
432	d = context->state[3];
433	e = context->state[4];
434	f = context->state[5];
435	g = context->state[6];
436	h = context->state[7];
437
438	j = 0;
439	do {
440#if BYTE_ORDER == LITTLE_ENDIAN
441		/* Copy data while converting to host byte order */
442		REVERSE32(*data++,W256[j]);
443		/* Apply the SHA-256 compression function to update a..h */
444		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445#else /* BYTE_ORDER == LITTLE_ENDIAN */
446		/* Apply the SHA-256 compression function to update a..h with copy */
447		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448#endif /* BYTE_ORDER == LITTLE_ENDIAN */
449		T2 = Sigma0_256(a) + Maj(a, b, c);
450		h = g;
451		g = f;
452		f = e;
453		e = d + T1;
454		d = c;
455		c = b;
456		b = a;
457		a = T1 + T2;
458
459		j++;
460	} while (j < 16);
461
462	do {
463		/* Part of the message block expansion: */
464		s0 = W256[(j+1)&0x0f];
465		s0 = sigma0_256(s0);
466		s1 = W256[(j+14)&0x0f];
467		s1 = sigma1_256(s1);
468
469		/* Apply the SHA-256 compression function to update a..h */
470		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472		T2 = Sigma0_256(a) + Maj(a, b, c);
473		h = g;
474		g = f;
475		f = e;
476		e = d + T1;
477		d = c;
478		c = b;
479		b = a;
480		a = T1 + T2;
481
482		j++;
483	} while (j < 64);
484
485	/* Compute the current intermediate hash value */
486	context->state[0] += a;
487	context->state[1] += b;
488	context->state[2] += c;
489	context->state[3] += d;
490	context->state[4] += e;
491	context->state[5] += f;
492	context->state[6] += g;
493	context->state[7] += h;
494
495	/* Clean up */
496	a = b = c = d = e = f = g = h = T1 = T2 = 0;
497	(void)a;
498}
499
500#endif /* SHA2_UNROLL_TRANSFORM */
501
502void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
503	size_t freespace, usedspace;
504
505	if (len == 0) {
506		/* Calling with no data is valid - we do nothing */
507		return;
508	}
509
510	/* Sanity check: */
511	assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
512
513	usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
514	if (usedspace > 0) {
515		/* Calculate how much free space is available in the buffer */
516		freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
517
518		if (len >= freespace) {
519			/* Fill the buffer completely and process it */
520			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
521			context->bitcount += freespace << 3;
522			len -= freespace;
523			data += freespace;
524			ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
525		} else {
526			/* The buffer is not yet full */
527			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
528			context->bitcount += len << 3;
529			/* Clean up: */
530			usedspace = freespace = 0;
531			(void)usedspace;
532			return;
533		}
534	}
535	while (len >= LDNS_SHA256_BLOCK_LENGTH) {
536		/* Process as many complete blocks as we can */
537		ldns_sha256_Transform(context, (sha2_word32*)data);
538		context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
539		len -= LDNS_SHA256_BLOCK_LENGTH;
540		data += LDNS_SHA256_BLOCK_LENGTH;
541	}
542	if (len > 0) {
543		/* There's left-overs, so save 'em */
544		MEMCPY_BCOPY(context->buffer, data, len);
545		context->bitcount += len << 3;
546	}
547	/* Clean up: */
548	usedspace = freespace = 0;
549	(void)usedspace;
550}
551
552typedef union _ldns_sha2_buffer_union {
553        uint8_t*  theChars;
554        uint64_t* theLongs;
555} ldns_sha2_buffer_union;
556
557void ldns_sha256_final(sha2_byte digest[LDNS_SHA256_DIGEST_LENGTH], ldns_sha256_CTX* context) {
558	sha2_word32	*d = (sha2_word32*)digest;
559	size_t usedspace;
560	ldns_sha2_buffer_union cast_var;
561
562	/* Sanity check: */
563	assert(context != (ldns_sha256_CTX*)0);
564
565	/* If no digest buffer is passed, we don't bother doing this: */
566	if (digest != (sha2_byte*)0) {
567		usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
568#if BYTE_ORDER == LITTLE_ENDIAN
569		/* Convert FROM host byte order */
570		REVERSE64(context->bitcount,context->bitcount);
571#endif
572		if (usedspace > 0) {
573			/* Begin padding with a 1 bit: */
574			context->buffer[usedspace++] = 0x80;
575
576			if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
577				/* Set-up for the last transform: */
578				MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
579			} else {
580				if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
581					MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
582				}
583				/* Do second-to-last transform: */
584				ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
585
586				/* And set-up for the last transform: */
587				MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
588			}
589		} else {
590			/* Set-up for the last transform: */
591			MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
592
593			/* Begin padding with a 1 bit: */
594			*context->buffer = 0x80;
595		}
596		/* Set the bit count: */
597		cast_var.theChars = context->buffer;
598		cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount;
599
600		/* final transform: */
601		ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
602
603#if BYTE_ORDER == LITTLE_ENDIAN
604		{
605			/* Convert TO host byte order */
606			int	j;
607			for (j = 0; j < 8; j++) {
608				REVERSE32(context->state[j],context->state[j]);
609				*d++ = context->state[j];
610			}
611		}
612#else
613		MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
614#endif
615	}
616
617	/* Clean up state data: */
618	MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
619	usedspace = 0;
620	(void)usedspace;
621}
622
623unsigned char *
624ldns_sha256(const unsigned char *data, unsigned int data_len, unsigned char *digest)
625{
626    ldns_sha256_CTX ctx;
627    ldns_sha256_init(&ctx);
628    ldns_sha256_update(&ctx, data, data_len);
629    ldns_sha256_final(digest, &ctx);
630    return digest;
631}
632
633/*** SHA-512: *********************************************************/
634void ldns_sha512_init(ldns_sha512_CTX* context) {
635	if (context == (ldns_sha512_CTX*)0) {
636		return;
637	}
638	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
639	MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
640	context->bitcount[0] = context->bitcount[1] =  0;
641}
642
643#ifdef SHA2_UNROLL_TRANSFORM
644
645/* Unrolled SHA-512 round macros: */
646#if BYTE_ORDER == LITTLE_ENDIAN
647
648#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
649	REVERSE64(*data++, W512[j]); \
650	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
651             K512[j] + W512[j]; \
652	(d) += T1, \
653	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
654	j++
655
656
657#else /* BYTE_ORDER == LITTLE_ENDIAN */
658
659#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
660	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
661             K512[j] + (W512[j] = *data++); \
662	(d) += T1; \
663	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
664	j++
665
666#endif /* BYTE_ORDER == LITTLE_ENDIAN */
667
668#define ROUND512(a,b,c,d,e,f,g,h)	\
669	s0 = W512[(j+1)&0x0f]; \
670	s0 = sigma0_512(s0); \
671	s1 = W512[(j+14)&0x0f]; \
672	s1 = sigma1_512(s1); \
673	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
674             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
675	(d) += T1; \
676	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
677	j++
678
679static void ldns_sha512_Transform(ldns_sha512_CTX* context,
680                                  const sha2_word64* data) {
681	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
682	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
683	int		j;
684
685	/* initialize registers with the prev. intermediate value */
686	a = context->state[0];
687	b = context->state[1];
688	c = context->state[2];
689	d = context->state[3];
690	e = context->state[4];
691	f = context->state[5];
692	g = context->state[6];
693	h = context->state[7];
694
695	j = 0;
696	do {
697		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
698		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
699		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
700		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
701		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
702		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
703		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
704		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
705	} while (j < 16);
706
707	/* Now for the remaining rounds up to 79: */
708	do {
709		ROUND512(a,b,c,d,e,f,g,h);
710		ROUND512(h,a,b,c,d,e,f,g);
711		ROUND512(g,h,a,b,c,d,e,f);
712		ROUND512(f,g,h,a,b,c,d,e);
713		ROUND512(e,f,g,h,a,b,c,d);
714		ROUND512(d,e,f,g,h,a,b,c);
715		ROUND512(c,d,e,f,g,h,a,b);
716		ROUND512(b,c,d,e,f,g,h,a);
717	} while (j < 80);
718
719	/* Compute the current intermediate hash value */
720	context->state[0] += a;
721	context->state[1] += b;
722	context->state[2] += c;
723	context->state[3] += d;
724	context->state[4] += e;
725	context->state[5] += f;
726	context->state[6] += g;
727	context->state[7] += h;
728
729	/* Clean up */
730	a = b = c = d = e = f = g = h = T1 = 0;
731}
732
733#else /* SHA2_UNROLL_TRANSFORM */
734
735static void ldns_sha512_Transform(ldns_sha512_CTX* context,
736                                  const sha2_word64* data) {
737	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
738	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
739	int		j;
740
741	/* initialize registers with the prev. intermediate value */
742	a = context->state[0];
743	b = context->state[1];
744	c = context->state[2];
745	d = context->state[3];
746	e = context->state[4];
747	f = context->state[5];
748	g = context->state[6];
749	h = context->state[7];
750
751	j = 0;
752	do {
753#if BYTE_ORDER == LITTLE_ENDIAN
754		/* Convert TO host byte order */
755		REVERSE64(*data++, W512[j]);
756		/* Apply the SHA-512 compression function to update a..h */
757		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
758#else /* BYTE_ORDER == LITTLE_ENDIAN */
759		/* Apply the SHA-512 compression function to update a..h with copy */
760		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
761#endif /* BYTE_ORDER == LITTLE_ENDIAN */
762		T2 = Sigma0_512(a) + Maj(a, b, c);
763		h = g;
764		g = f;
765		f = e;
766		e = d + T1;
767		d = c;
768		c = b;
769		b = a;
770		a = T1 + T2;
771
772		j++;
773	} while (j < 16);
774
775	do {
776		/* Part of the message block expansion: */
777		s0 = W512[(j+1)&0x0f];
778		s0 = sigma0_512(s0);
779		s1 = W512[(j+14)&0x0f];
780		s1 =  sigma1_512(s1);
781
782		/* Apply the SHA-512 compression function to update a..h */
783		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
784		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
785		T2 = Sigma0_512(a) + Maj(a, b, c);
786		h = g;
787		g = f;
788		f = e;
789		e = d + T1;
790		d = c;
791		c = b;
792		b = a;
793		a = T1 + T2;
794
795		j++;
796	} while (j < 80);
797
798	/* Compute the current intermediate hash value */
799	context->state[0] += a;
800	context->state[1] += b;
801	context->state[2] += c;
802	context->state[3] += d;
803	context->state[4] += e;
804	context->state[5] += f;
805	context->state[6] += g;
806	context->state[7] += h;
807
808	/* Clean up */
809	a = b = c = d = e = f = g = h = T1 = T2 = 0;
810	(void)a;
811}
812
813#endif /* SHA2_UNROLL_TRANSFORM */
814
815void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
816	size_t freespace, usedspace;
817
818	if (len == 0) {
819		/* Calling with no data is valid - we do nothing */
820		return;
821	}
822
823	/* Sanity check: */
824	assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
825
826	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
827	if (usedspace > 0) {
828		/* Calculate how much free space is available in the buffer */
829		freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
830
831		if (len >= freespace) {
832			/* Fill the buffer completely and process it */
833			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
834			ADDINC128(context->bitcount, freespace << 3);
835			len -= freespace;
836			data += freespace;
837			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
838		} else {
839			/* The buffer is not yet full */
840			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
841			ADDINC128(context->bitcount, len << 3);
842			/* Clean up: */
843			usedspace = freespace = 0;
844			(void)usedspace;
845			return;
846		}
847	}
848	while (len >= LDNS_SHA512_BLOCK_LENGTH) {
849		/* Process as many complete blocks as we can */
850		ldns_sha512_Transform(context, (sha2_word64*)data);
851		ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
852		len -= LDNS_SHA512_BLOCK_LENGTH;
853		data += LDNS_SHA512_BLOCK_LENGTH;
854	}
855	if (len > 0) {
856		/* There's left-overs, so save 'em */
857		MEMCPY_BCOPY(context->buffer, data, len);
858		ADDINC128(context->bitcount, len << 3);
859	}
860	/* Clean up: */
861	usedspace = freespace = 0;
862	(void)usedspace;
863}
864
865static void ldns_sha512_Last(ldns_sha512_CTX* context) {
866	size_t usedspace;
867	ldns_sha2_buffer_union cast_var;
868
869	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
870#if BYTE_ORDER == LITTLE_ENDIAN
871	/* Convert FROM host byte order */
872	REVERSE64(context->bitcount[0],context->bitcount[0]);
873	REVERSE64(context->bitcount[1],context->bitcount[1]);
874#endif
875	if (usedspace > 0) {
876		/* Begin padding with a 1 bit: */
877		context->buffer[usedspace++] = 0x80;
878
879		if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
880			/* Set-up for the last transform: */
881			MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
882		} else {
883			if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
884				MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
885			}
886			/* Do second-to-last transform: */
887			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
888
889			/* And set-up for the last transform: */
890			MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
891		}
892	} else {
893		/* Prepare for final transform: */
894		MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
895
896		/* Begin padding with a 1 bit: */
897		*context->buffer = 0x80;
898	}
899	/* Store the length of input data (in bits): */
900	cast_var.theChars = context->buffer;
901	cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1];
902	cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
903
904	/* final transform: */
905	ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
906}
907
908void ldns_sha512_final(sha2_byte digest[LDNS_SHA512_DIGEST_LENGTH], ldns_sha512_CTX* context) {
909	sha2_word64	*d = (sha2_word64*)digest;
910
911	/* Sanity check: */
912	assert(context != (ldns_sha512_CTX*)0);
913
914	/* If no digest buffer is passed, we don't bother doing this: */
915	if (digest != (sha2_byte*)0) {
916		ldns_sha512_Last(context);
917
918		/* Save the hash data for output: */
919#if BYTE_ORDER == LITTLE_ENDIAN
920		{
921			/* Convert TO host byte order */
922			int	j;
923			for (j = 0; j < 8; j++) {
924				REVERSE64(context->state[j],context->state[j]);
925				*d++ = context->state[j];
926			}
927		}
928#else
929		MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
930#endif
931	}
932
933	/* Zero out state data */
934	MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
935}
936
937unsigned char *
938ldns_sha512(const unsigned char *data, unsigned int data_len, unsigned char *digest)
939{
940    ldns_sha512_CTX ctx;
941    ldns_sha512_init(&ctx);
942    ldns_sha512_update(&ctx, data, data_len);
943    ldns_sha512_final(digest, &ctx);
944    return digest;
945}
946
947/*** SHA-384: *********************************************************/
948void ldns_sha384_init(ldns_sha384_CTX* context) {
949	if (context == (ldns_sha384_CTX*)0) {
950		return;
951	}
952	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
953	MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
954	context->bitcount[0] = context->bitcount[1] = 0;
955}
956
957void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
958	ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
959}
960
961void ldns_sha384_final(sha2_byte digest[LDNS_SHA384_DIGEST_LENGTH], ldns_sha384_CTX* context) {
962	sha2_word64	*d = (sha2_word64*)digest;
963
964	/* Sanity check: */
965	assert(context != (ldns_sha384_CTX*)0);
966
967	/* If no digest buffer is passed, we don't bother doing this: */
968	if (digest != (sha2_byte*)0) {
969		ldns_sha512_Last((ldns_sha512_CTX*)context);
970
971		/* Save the hash data for output: */
972#if BYTE_ORDER == LITTLE_ENDIAN
973		{
974			/* Convert TO host byte order */
975			int	j;
976			for (j = 0; j < 6; j++) {
977				REVERSE64(context->state[j],context->state[j]);
978				*d++ = context->state[j];
979			}
980		}
981#else
982		MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
983#endif
984	}
985
986	/* Zero out state data */
987	MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
988}
989
990unsigned char *
991ldns_sha384(const unsigned char *data, unsigned int data_len, unsigned char *digest)
992{
993    ldns_sha384_CTX ctx;
994    ldns_sha384_init(&ctx);
995    ldns_sha384_update(&ctx, data, data_len);
996    ldns_sha384_final(digest, &ctx);
997    return digest;
998}
999