1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// Google Mock - a framework for writing C++ mock classes.
31//
32// This file tests the built-in actions.
33
34#include "gmock/gmock-actions.h"
35
36#include <algorithm>
37#include <functional>
38#include <iterator>
39#include <memory>
40#include <sstream>
41#include <string>
42#include <tuple>
43#include <type_traits>
44#include <utility>
45#include <vector>
46
47#include "gmock/gmock.h"
48#include "gmock/internal/gmock-port.h"
49#include "gtest/gtest-spi.h"
50#include "gtest/gtest.h"
51#include "gtest/internal/gtest-port.h"
52
53// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
54// length exceeded) for MSVC.
55GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503)
56#if defined(_MSC_VER) && (_MSC_VER == 1900)
57// and silence C4800 (C4800: 'int *const ': forcing value
58// to bool 'true' or 'false') for MSVC 15
59GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800)
60#endif
61
62namespace testing {
63namespace {
64
65using ::testing::internal::BuiltInDefaultValue;
66
67TEST(TypeTraits, Negation) {
68  // Direct use with std types.
69  static_assert(std::is_base_of<std::false_type,
70                                internal::negation<std::true_type>>::value,
71                "");
72
73  static_assert(std::is_base_of<std::true_type,
74                                internal::negation<std::false_type>>::value,
75                "");
76
77  // With other types that fit the requirement of a value member that is
78  // convertible to bool.
79  static_assert(std::is_base_of<
80                    std::true_type,
81                    internal::negation<std::integral_constant<int, 0>>>::value,
82                "");
83
84  static_assert(std::is_base_of<
85                    std::false_type,
86                    internal::negation<std::integral_constant<int, 1>>>::value,
87                "");
88
89  static_assert(std::is_base_of<
90                    std::false_type,
91                    internal::negation<std::integral_constant<int, -1>>>::value,
92                "");
93}
94
95// Weird false/true types that aren't actually bool constants (but should still
96// be legal according to [meta.logical] because `bool(T::value)` is valid), are
97// distinct from std::false_type and std::true_type, and are distinct from other
98// instantiations of the same template.
99//
100// These let us check finicky details mandated by the standard like
101// "std::conjunction should evaluate to a type that inherits from the first
102// false-y input".
103template <int>
104struct MyFalse : std::integral_constant<int, 0> {};
105
106template <int>
107struct MyTrue : std::integral_constant<int, -1> {};
108
109TEST(TypeTraits, Conjunction) {
110  // Base case: always true.
111  static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
112                "");
113
114  // One predicate: inherits from that predicate, regardless of value.
115  static_assert(
116      std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
117      "");
118
119  static_assert(
120      std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");
121
122  // Multiple predicates, with at least one false: inherits from that one.
123  static_assert(
124      std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
125                                                        MyTrue<2>>>::value,
126      "");
127
128  static_assert(
129      std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
130                                                        MyFalse<2>>>::value,
131      "");
132
133  // Short circuiting: in the case above, additional predicates need not even
134  // define a value member.
135  struct Empty {};
136  static_assert(
137      std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
138                                                        Empty>>::value,
139      "");
140
141  // All predicates true: inherits from the last.
142  static_assert(
143      std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
144                                                       MyTrue<2>>>::value,
145      "");
146}
147
148TEST(TypeTraits, Disjunction) {
149  // Base case: always false.
150  static_assert(
151      std::is_base_of<std::false_type, internal::disjunction<>>::value, "");
152
153  // One predicate: inherits from that predicate, regardless of value.
154  static_assert(
155      std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
156      "");
157
158  static_assert(
159      std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");
160
161  // Multiple predicates, with at least one true: inherits from that one.
162  static_assert(
163      std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
164                                                       MyFalse<2>>>::value,
165      "");
166
167  static_assert(
168      std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
169                                                       MyTrue<2>>>::value,
170      "");
171
172  // Short circuiting: in the case above, additional predicates need not even
173  // define a value member.
174  struct Empty {};
175  static_assert(
176      std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
177                                                       Empty>>::value,
178      "");
179
180  // All predicates false: inherits from the last.
181  static_assert(
182      std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
183                                                        MyFalse<2>>>::value,
184      "");
185}
186
187TEST(TypeTraits, IsInvocableRV) {
188  struct C {
189    int operator()() const { return 0; }
190    void operator()(int) & {}
191    std::string operator()(int) && { return ""; };
192  };
193
194  // The first overload is callable for const and non-const rvalues and lvalues.
195  // It can be used to obtain an int, cv void, or anything int is convertible
196  // to.
197  static_assert(internal::is_callable_r<int, C>::value, "");
198  static_assert(internal::is_callable_r<int, C&>::value, "");
199  static_assert(internal::is_callable_r<int, const C>::value, "");
200  static_assert(internal::is_callable_r<int, const C&>::value, "");
201
202  static_assert(internal::is_callable_r<void, C>::value, "");
203  static_assert(internal::is_callable_r<const volatile void, C>::value, "");
204  static_assert(internal::is_callable_r<char, C>::value, "");
205
206  // It's possible to provide an int. If it's given to an lvalue, the result is
207  // void. Otherwise it is std::string (which is also treated as allowed for a
208  // void result type).
209  static_assert(internal::is_callable_r<void, C&, int>::value, "");
210  static_assert(!internal::is_callable_r<int, C&, int>::value, "");
211  static_assert(!internal::is_callable_r<std::string, C&, int>::value, "");
212  static_assert(!internal::is_callable_r<void, const C&, int>::value, "");
213
214  static_assert(internal::is_callable_r<std::string, C, int>::value, "");
215  static_assert(internal::is_callable_r<void, C, int>::value, "");
216  static_assert(!internal::is_callable_r<int, C, int>::value, "");
217
218  // It's not possible to provide other arguments.
219  static_assert(!internal::is_callable_r<void, C, std::string>::value, "");
220  static_assert(!internal::is_callable_r<void, C, int, int>::value, "");
221
222  // In C++17 and above, where it's guaranteed that functions can return
223  // non-moveable objects, everything should work fine for non-moveable rsult
224  // types too.
225#if defined(GTEST_INTERNAL_CPLUSPLUS_LANG) && \
226    GTEST_INTERNAL_CPLUSPLUS_LANG >= 201703L
227  {
228    struct NonMoveable {
229      NonMoveable() = default;
230      NonMoveable(NonMoveable&&) = delete;
231    };
232
233    static_assert(!std::is_move_constructible_v<NonMoveable>);
234
235    struct Callable {
236      NonMoveable operator()() { return NonMoveable(); }
237    };
238
239    static_assert(internal::is_callable_r<NonMoveable, Callable>::value);
240    static_assert(internal::is_callable_r<void, Callable>::value);
241    static_assert(
242        internal::is_callable_r<const volatile void, Callable>::value);
243
244    static_assert(!internal::is_callable_r<int, Callable>::value);
245    static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value);
246  }
247#endif  // C++17 and above
248
249  // Nothing should choke when we try to call other arguments besides directly
250  // callable objects, but they should not show up as callable.
251  static_assert(!internal::is_callable_r<void, int>::value, "");
252  static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
253  static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
254}
255
256// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
257TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
258  EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
259  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
260  EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
261}
262
263// Tests that BuiltInDefaultValue<T*>::Exists() return true.
264TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
265  EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
266  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
267  EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
268}
269
270// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
271// built-in numeric type.
272TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
273  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
274  EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
275  EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
276#if GMOCK_WCHAR_T_IS_NATIVE_
277#if !defined(__WCHAR_UNSIGNED__)
278  EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
279#else
280  EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
281#endif
282#endif
283  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get());  // NOLINT
284  EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get());     // NOLINT
285  EXPECT_EQ(0, BuiltInDefaultValue<short>::Get());            // NOLINT
286  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
287  EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
288  EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
289  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get());       // NOLINT
290  EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get());          // NOLINT
291  EXPECT_EQ(0, BuiltInDefaultValue<long>::Get());                 // NOLINT
292  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get());  // NOLINT
293  EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get());     // NOLINT
294  EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get());            // NOLINT
295  EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
296  EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
297}
298
299// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
300// built-in numeric type.
301TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
302  EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
303  EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
304  EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
305#if GMOCK_WCHAR_T_IS_NATIVE_
306  EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
307#endif
308  EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists());  // NOLINT
309  EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists());    // NOLINT
310  EXPECT_TRUE(BuiltInDefaultValue<short>::Exists());           // NOLINT
311  EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
312  EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
313  EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
314  EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists());       // NOLINT
315  EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists());         // NOLINT
316  EXPECT_TRUE(BuiltInDefaultValue<long>::Exists());                // NOLINT
317  EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists());  // NOLINT
318  EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists());    // NOLINT
319  EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists());           // NOLINT
320  EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
321  EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
322}
323
324// Tests that BuiltInDefaultValue<bool>::Get() returns false.
325TEST(BuiltInDefaultValueTest, IsFalseForBool) {
326  EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
327}
328
329// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
330TEST(BuiltInDefaultValueTest, BoolExists) {
331  EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
332}
333
334// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
335// string type.
336TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
337  EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
338}
339
340// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
341// string type.
342TEST(BuiltInDefaultValueTest, ExistsForString) {
343  EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
344}
345
346// Tests that BuiltInDefaultValue<const T>::Get() returns the same
347// value as BuiltInDefaultValue<T>::Get() does.
348TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
349  EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
350  EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
351  EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
352  EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
353}
354
355// A type that's default constructible.
356class MyDefaultConstructible {
357 public:
358  MyDefaultConstructible() : value_(42) {}
359
360  int value() const { return value_; }
361
362 private:
363  int value_;
364};
365
366// A type that's not default constructible.
367class MyNonDefaultConstructible {
368 public:
369  // Does not have a default ctor.
370  explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
371
372  int value() const { return value_; }
373
374 private:
375  int value_;
376};
377
378TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
379  EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
380}
381
382TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
383  EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
384}
385
386TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
387  EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
388}
389
390// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
391TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
392  EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
393  EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
394}
395
396TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
397  EXPECT_DEATH_IF_SUPPORTED(
398      { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
399}
400
401// Tests that DefaultValue<T>::IsSet() is false initially.
402TEST(DefaultValueTest, IsInitiallyUnset) {
403  EXPECT_FALSE(DefaultValue<int>::IsSet());
404  EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
405  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
406}
407
408// Tests that DefaultValue<T> can be set and then unset.
409TEST(DefaultValueTest, CanBeSetAndUnset) {
410  EXPECT_TRUE(DefaultValue<int>::Exists());
411  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
412
413  DefaultValue<int>::Set(1);
414  DefaultValue<const MyNonDefaultConstructible>::Set(
415      MyNonDefaultConstructible(42));
416
417  EXPECT_EQ(1, DefaultValue<int>::Get());
418  EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
419
420  EXPECT_TRUE(DefaultValue<int>::Exists());
421  EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
422
423  DefaultValue<int>::Clear();
424  DefaultValue<const MyNonDefaultConstructible>::Clear();
425
426  EXPECT_FALSE(DefaultValue<int>::IsSet());
427  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
428
429  EXPECT_TRUE(DefaultValue<int>::Exists());
430  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
431}
432
433// Tests that DefaultValue<T>::Get() returns the
434// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
435// false.
436TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
437  EXPECT_FALSE(DefaultValue<int>::IsSet());
438  EXPECT_TRUE(DefaultValue<int>::Exists());
439  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
440  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
441
442  EXPECT_EQ(0, DefaultValue<int>::Get());
443
444  EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
445                            "");
446}
447
448TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
449  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
450  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
451  DefaultValue<std::unique_ptr<int>>::SetFactory(
452      [] { return std::make_unique<int>(42); });
453  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
454  std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
455  EXPECT_EQ(42, *i);
456}
457
458// Tests that DefaultValue<void>::Get() returns void.
459TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }
460
461// Tests using DefaultValue with a reference type.
462
463// Tests that DefaultValue<T&>::IsSet() is false initially.
464TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
465  EXPECT_FALSE(DefaultValue<int&>::IsSet());
466  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
467  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
468}
469
470// Tests that DefaultValue<T&>::Exists is false initially.
471TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
472  EXPECT_FALSE(DefaultValue<int&>::Exists());
473  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
474  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
475}
476
477// Tests that DefaultValue<T&> can be set and then unset.
478TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
479  int n = 1;
480  DefaultValue<const int&>::Set(n);
481  MyNonDefaultConstructible x(42);
482  DefaultValue<MyNonDefaultConstructible&>::Set(x);
483
484  EXPECT_TRUE(DefaultValue<const int&>::Exists());
485  EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
486
487  EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
488  EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
489
490  DefaultValue<const int&>::Clear();
491  DefaultValue<MyNonDefaultConstructible&>::Clear();
492
493  EXPECT_FALSE(DefaultValue<const int&>::Exists());
494  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
495
496  EXPECT_FALSE(DefaultValue<const int&>::IsSet());
497  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
498}
499
500// Tests that DefaultValue<T&>::Get() returns the
501// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
502// false.
503TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
504  EXPECT_FALSE(DefaultValue<int&>::IsSet());
505  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
506
507  EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, "");
508  EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
509                            "");
510}
511
512// Tests that ActionInterface can be implemented by defining the
513// Perform method.
514
515typedef int MyGlobalFunction(bool, int);
516
517class MyActionImpl : public ActionInterface<MyGlobalFunction> {
518 public:
519  int Perform(const std::tuple<bool, int>& args) override {
520    return std::get<0>(args) ? std::get<1>(args) : 0;
521  }
522};
523
524TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
525  MyActionImpl my_action_impl;
526  (void)my_action_impl;
527}
528
529TEST(ActionInterfaceTest, MakeAction) {
530  Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
531
532  // When exercising the Perform() method of Action<F>, we must pass
533  // it a tuple whose size and type are compatible with F's argument
534  // types.  For example, if F is int(), then Perform() takes a
535  // 0-tuple; if F is void(bool, int), then Perform() takes a
536  // std::tuple<bool, int>, and so on.
537  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
538}
539
540// Tests that Action<F> can be constructed from a pointer to
541// ActionInterface<F>.
542TEST(ActionTest, CanBeConstructedFromActionInterface) {
543  Action<MyGlobalFunction> action(new MyActionImpl);
544}
545
546// Tests that Action<F> delegates actual work to ActionInterface<F>.
547TEST(ActionTest, DelegatesWorkToActionInterface) {
548  const Action<MyGlobalFunction> action(new MyActionImpl);
549
550  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
551  EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
552}
553
554// Tests that Action<F> can be copied.
555TEST(ActionTest, IsCopyable) {
556  Action<MyGlobalFunction> a1(new MyActionImpl);
557  Action<MyGlobalFunction> a2(a1);  // Tests the copy constructor.
558
559  // a1 should continue to work after being copied from.
560  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
561  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
562
563  // a2 should work like the action it was copied from.
564  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
565  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
566
567  a2 = a1;  // Tests the assignment operator.
568
569  // a1 should continue to work after being copied from.
570  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
571  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
572
573  // a2 should work like the action it was copied from.
574  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
575  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
576}
577
578// Tests that an Action<From> object can be converted to a
579// compatible Action<To> object.
580
581class IsNotZero : public ActionInterface<bool(int)> {  // NOLINT
582 public:
583  bool Perform(const std::tuple<int>& arg) override {
584    return std::get<0>(arg) != 0;
585  }
586};
587
588TEST(ActionTest, CanBeConvertedToOtherActionType) {
589  const Action<bool(int)> a1(new IsNotZero);           // NOLINT
590  const Action<int(char)> a2 = Action<int(char)>(a1);  // NOLINT
591  EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
592  EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
593}
594
595// The following two classes are for testing MakePolymorphicAction().
596
597// Implements a polymorphic action that returns the second of the
598// arguments it receives.
599class ReturnSecondArgumentAction {
600 public:
601  // We want to verify that MakePolymorphicAction() can work with a
602  // polymorphic action whose Perform() method template is either
603  // const or not.  This lets us verify the non-const case.
604  template <typename Result, typename ArgumentTuple>
605  Result Perform(const ArgumentTuple& args) {
606    return std::get<1>(args);
607  }
608};
609
610// Implements a polymorphic action that can be used in a nullary
611// function to return 0.
612class ReturnZeroFromNullaryFunctionAction {
613 public:
614  // For testing that MakePolymorphicAction() works when the
615  // implementation class' Perform() method template takes only one
616  // template parameter.
617  //
618  // We want to verify that MakePolymorphicAction() can work with a
619  // polymorphic action whose Perform() method template is either
620  // const or not.  This lets us verify the const case.
621  template <typename Result>
622  Result Perform(const std::tuple<>&) const {
623    return 0;
624  }
625};
626
627// These functions verify that MakePolymorphicAction() returns a
628// PolymorphicAction<T> where T is the argument's type.
629
630PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
631  return MakePolymorphicAction(ReturnSecondArgumentAction());
632}
633
634PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
635ReturnZeroFromNullaryFunction() {
636  return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
637}
638
639// Tests that MakePolymorphicAction() turns a polymorphic action
640// implementation class into a polymorphic action.
641TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
642  Action<int(bool, int, double)> a1 = ReturnSecondArgument();  // NOLINT
643  EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
644}
645
646// Tests that MakePolymorphicAction() works when the implementation
647// class' Perform() method template has only one template parameter.
648TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
649  Action<int()> a1 = ReturnZeroFromNullaryFunction();
650  EXPECT_EQ(0, a1.Perform(std::make_tuple()));
651
652  Action<void*()> a2 = ReturnZeroFromNullaryFunction();
653  EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
654}
655
656// Tests that Return() works as an action for void-returning
657// functions.
658TEST(ReturnTest, WorksForVoid) {
659  const Action<void(int)> ret = Return();  // NOLINT
660  return ret.Perform(std::make_tuple(1));
661}
662
663// Tests that Return(v) returns v.
664TEST(ReturnTest, ReturnsGivenValue) {
665  Action<int()> ret = Return(1);  // NOLINT
666  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
667
668  ret = Return(-5);
669  EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
670}
671
672// Tests that Return("string literal") works.
673TEST(ReturnTest, AcceptsStringLiteral) {
674  Action<const char*()> a1 = Return("Hello");
675  EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
676
677  Action<std::string()> a2 = Return("world");
678  EXPECT_EQ("world", a2.Perform(std::make_tuple()));
679}
680
681// Return(x) should work fine when the mock function's return type is a
682// reference-like wrapper for decltype(x), as when x is a std::string and the
683// mock function returns std::string_view.
684TEST(ReturnTest, SupportsReferenceLikeReturnType) {
685  // A reference wrapper for std::vector<int>, implicitly convertible from it.
686  struct Result {
687    const std::vector<int>* v;
688    Result(const std::vector<int>& vec) : v(&vec) {}  // NOLINT
689  };
690
691  // Set up an action for a mock function that returns the reference wrapper
692  // type, initializing it with an actual vector.
693  //
694  // The returned wrapper should be initialized with a copy of that vector
695  // that's embedded within the action itself (which should stay alive as long
696  // as the mock object is alive), rather than e.g. a reference to the temporary
697  // we feed to Return. This should work fine both for WillOnce and
698  // WillRepeatedly.
699  MockFunction<Result()> mock;
700  EXPECT_CALL(mock, Call)
701      .WillOnce(Return(std::vector<int>{17, 19, 23}))
702      .WillRepeatedly(Return(std::vector<int>{29, 31, 37}));
703
704  EXPECT_THAT(mock.AsStdFunction()(),
705              Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));
706
707  EXPECT_THAT(mock.AsStdFunction()(),
708              Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
709}
710
711TEST(ReturnTest, PrefersConversionOperator) {
712  // Define types In and Out such that:
713  //
714  //  *  In is implicitly convertible to Out.
715  //  *  Out also has an explicit constructor from In.
716  //
717  struct In;
718  struct Out {
719    int x;
720
721    explicit Out(const int val) : x(val) {}
722    explicit Out(const In&) : x(0) {}
723  };
724
725  struct In {
726    operator Out() const { return Out{19}; }  // NOLINT
727  };
728
729  // Assumption check: the C++ language rules are such that a function that
730  // returns Out which uses In a return statement will use the implicit
731  // conversion path rather than the explicit constructor.
732  EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));
733
734  // Return should work the same way: if the mock function's return type is Out
735  // and we feed Return an In value, then the Out should be created through the
736  // implicit conversion path rather than the explicit constructor.
737  MockFunction<Out()> mock;
738  EXPECT_CALL(mock, Call).WillOnce(Return(In()));
739  EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
740}
741
742// It should be possible to use Return(R) with a mock function result type U
743// that is convertible from const R& but *not* R (such as
744// std::reference_wrapper). This should work for both WillOnce and
745// WillRepeatedly.
746TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
747  using R = int;
748  using U = std::reference_wrapper<const int>;
749
750  static_assert(std::is_convertible<const R&, U>::value, "");
751  static_assert(!std::is_convertible<R, U>::value, "");
752
753  MockFunction<U()> mock;
754  EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));
755
756  EXPECT_EQ(17, mock.AsStdFunction()());
757  EXPECT_EQ(19, mock.AsStdFunction()());
758}
759
760// Return(x) should not be usable with a mock function result type that's
761// implicitly convertible from decltype(x) but requires a non-const lvalue
762// reference to the input. It doesn't make sense for the conversion operator to
763// modify the input.
764TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
765  // Set up a type that is implicitly convertible from std::string&, but not
766  // std::string&& or `const std::string&`.
767  //
768  // Avoid asserting about conversion from std::string on MSVC, which seems to
769  // implement std::is_convertible incorrectly in this case.
770  struct S {
771    S(std::string&) {}  // NOLINT
772  };
773
774  static_assert(std::is_convertible<std::string&, S>::value, "");
775#ifndef _MSC_VER
776  static_assert(!std::is_convertible<std::string&&, S>::value, "");
777#endif
778  static_assert(!std::is_convertible<const std::string&, S>::value, "");
779
780  // It shouldn't be possible to use the result of Return(std::string) in a
781  // context where an S is needed.
782  //
783  // Here too we disable the assertion for MSVC, since its incorrect
784  // implementation of is_convertible causes our SFINAE to be wrong.
785  using RA = decltype(Return(std::string()));
786
787  static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
788#ifndef _MSC_VER
789  static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
790#endif
791}
792
793TEST(ReturnTest, MoveOnlyResultType) {
794  // Return should support move-only result types when used with WillOnce.
795  {
796    MockFunction<std::unique_ptr<int>()> mock;
797    EXPECT_CALL(mock, Call)
798        // NOLINTNEXTLINE
799        .WillOnce(Return(std::unique_ptr<int>(new int(17))));
800
801    EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
802  }
803
804  // The result of Return should not be convertible to Action (so it can't be
805  // used with WillRepeatedly).
806  static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
807                                     Action<std::unique_ptr<int>()>>::value,
808                "");
809}
810
811// Tests that Return(v) is covariant.
812
813struct Base {
814  bool operator==(const Base&) { return true; }
815};
816
817struct Derived : public Base {
818  bool operator==(const Derived&) { return true; }
819};
820
821TEST(ReturnTest, IsCovariant) {
822  Base base;
823  Derived derived;
824  Action<Base*()> ret = Return(&base);
825  EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
826
827  ret = Return(&derived);
828  EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
829}
830
831// Tests that the type of the value passed into Return is converted into T
832// when the action is cast to Action<T(...)> rather than when the action is
833// performed. See comments on testing::internal::ReturnAction in
834// gmock-actions.h for more information.
835class FromType {
836 public:
837  explicit FromType(bool* is_converted) : converted_(is_converted) {}
838  bool* converted() const { return converted_; }
839
840 private:
841  bool* const converted_;
842};
843
844class ToType {
845 public:
846  // Must allow implicit conversion due to use in ImplicitCast_<T>.
847  ToType(const FromType& x) { *x.converted() = true; }  // NOLINT
848};
849
850TEST(ReturnTest, ConvertsArgumentWhenConverted) {
851  bool converted = false;
852  FromType x(&converted);
853  Action<ToType()> action(Return(x));
854  EXPECT_TRUE(converted) << "Return must convert its argument in its own "
855                         << "conversion operator.";
856  converted = false;
857  action.Perform(std::tuple<>());
858  EXPECT_FALSE(converted) << "Action must NOT convert its argument "
859                          << "when performed.";
860}
861
862// Tests that ReturnNull() returns NULL in a pointer-returning function.
863TEST(ReturnNullTest, WorksInPointerReturningFunction) {
864  const Action<int*()> a1 = ReturnNull();
865  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
866
867  const Action<const char*(bool)> a2 = ReturnNull();  // NOLINT
868  EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
869}
870
871// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
872// functions.
873TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
874  const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
875  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
876
877  const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
878  EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
879}
880
881// Tests that ReturnRef(v) works for reference types.
882TEST(ReturnRefTest, WorksForReference) {
883  const int n = 0;
884  const Action<const int&(bool)> ret = ReturnRef(n);  // NOLINT
885
886  EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
887}
888
889// Tests that ReturnRef(v) is covariant.
890TEST(ReturnRefTest, IsCovariant) {
891  Base base;
892  Derived derived;
893  Action<Base&()> a = ReturnRef(base);
894  EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
895
896  a = ReturnRef(derived);
897  EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
898}
899
900template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
901bool CanCallReturnRef(T&&) {
902  return true;
903}
904bool CanCallReturnRef(Unused) { return false; }
905
906// Tests that ReturnRef(v) is working with non-temporaries (T&)
907TEST(ReturnRefTest, WorksForNonTemporary) {
908  int scalar_value = 123;
909  EXPECT_TRUE(CanCallReturnRef(scalar_value));
910
911  std::string non_scalar_value("ABC");
912  EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
913
914  const int const_scalar_value{321};
915  EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
916
917  const std::string const_non_scalar_value("CBA");
918  EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
919}
920
921// Tests that ReturnRef(v) is not working with temporaries (T&&)
922TEST(ReturnRefTest, DoesNotWorkForTemporary) {
923  auto scalar_value = []() -> int { return 123; };
924  EXPECT_FALSE(CanCallReturnRef(scalar_value()));
925
926  auto non_scalar_value = []() -> std::string { return "ABC"; };
927  EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
928
929  // cannot use here callable returning "const scalar type",
930  // because such const for scalar return type is ignored
931  EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
932
933  auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
934  EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
935}
936
937// Tests that ReturnRefOfCopy(v) works for reference types.
938TEST(ReturnRefOfCopyTest, WorksForReference) {
939  int n = 42;
940  const Action<const int&()> ret = ReturnRefOfCopy(n);
941
942  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
943  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
944
945  n = 43;
946  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
947  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
948}
949
950// Tests that ReturnRefOfCopy(v) is covariant.
951TEST(ReturnRefOfCopyTest, IsCovariant) {
952  Base base;
953  Derived derived;
954  Action<Base&()> a = ReturnRefOfCopy(base);
955  EXPECT_NE(&base, &a.Perform(std::make_tuple()));
956
957  a = ReturnRefOfCopy(derived);
958  EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
959}
960
961// Tests that ReturnRoundRobin(v) works with initializer lists
962TEST(ReturnRoundRobinTest, WorksForInitList) {
963  Action<int()> ret = ReturnRoundRobin({1, 2, 3});
964
965  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
966  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
967  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
968  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
969  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
970  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
971}
972
973// Tests that ReturnRoundRobin(v) works with vectors
974TEST(ReturnRoundRobinTest, WorksForVector) {
975  std::vector<double> v = {4.4, 5.5, 6.6};
976  Action<double()> ret = ReturnRoundRobin(v);
977
978  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
979  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
980  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
981  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
982  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
983  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
984}
985
986// Tests that DoDefault() does the default action for the mock method.
987
988class MockClass {
989 public:
990  MockClass() = default;
991
992  MOCK_METHOD1(IntFunc, int(bool flag));  // NOLINT
993  MOCK_METHOD0(Foo, MyNonDefaultConstructible());
994  MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
995  MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
996  MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
997  MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
998  MOCK_METHOD2(TakeUnique,
999               int(const std::unique_ptr<int>&, std::unique_ptr<int>));
1000
1001 private:
1002  MockClass(const MockClass&) = delete;
1003  MockClass& operator=(const MockClass&) = delete;
1004};
1005
1006// Tests that DoDefault() returns the built-in default value for the
1007// return type by default.
1008TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
1009  MockClass mock;
1010  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1011  EXPECT_EQ(0, mock.IntFunc(true));
1012}
1013
1014// Tests that DoDefault() throws (when exceptions are enabled) or aborts
1015// the process when there is no built-in default value for the return type.
1016TEST(DoDefaultDeathTest, DiesForUnknowType) {
1017  MockClass mock;
1018  EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
1019#if GTEST_HAS_EXCEPTIONS
1020  EXPECT_ANY_THROW(mock.Foo());
1021#else
1022  EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
1023#endif
1024}
1025
1026// Tests that using DoDefault() inside a composite action leads to a
1027// run-time error.
1028
1029void VoidFunc(bool /* flag */) {}
1030
1031TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
1032  MockClass mock;
1033  EXPECT_CALL(mock, IntFunc(_))
1034      .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));
1035
1036  // Ideally we should verify the error message as well.  Sadly,
1037  // EXPECT_DEATH() can only capture stderr, while Google Mock's
1038  // errors are printed on stdout.  Therefore we have to settle for
1039  // not verifying the message.
1040  EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
1041}
1042
1043// Tests that DoDefault() returns the default value set by
1044// DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
1045TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
1046  DefaultValue<int>::Set(1);
1047  MockClass mock;
1048  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1049  EXPECT_EQ(1, mock.IntFunc(false));
1050  DefaultValue<int>::Clear();
1051}
1052
1053// Tests that DoDefault() does the action specified by ON_CALL().
1054TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
1055  MockClass mock;
1056  ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
1057  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
1058  EXPECT_EQ(2, mock.IntFunc(false));
1059}
1060
1061// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
1062TEST(DoDefaultTest, CannotBeUsedInOnCall) {
1063  MockClass mock;
1064  EXPECT_NONFATAL_FAILURE(
1065      {  // NOLINT
1066        ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
1067      },
1068      "DoDefault() cannot be used in ON_CALL()");
1069}
1070
1071// Tests that SetArgPointee<N>(v) sets the variable pointed to by
1072// the N-th (0-based) argument to v.
1073TEST(SetArgPointeeTest, SetsTheNthPointee) {
1074  typedef void MyFunction(bool, int*, char*);
1075  Action<MyFunction> a = SetArgPointee<1>(2);
1076
1077  int n = 0;
1078  char ch = '\0';
1079  a.Perform(std::make_tuple(true, &n, &ch));
1080  EXPECT_EQ(2, n);
1081  EXPECT_EQ('\0', ch);
1082
1083  a = SetArgPointee<2>('a');
1084  n = 0;
1085  ch = '\0';
1086  a.Perform(std::make_tuple(true, &n, &ch));
1087  EXPECT_EQ(0, n);
1088  EXPECT_EQ('a', ch);
1089}
1090
1091// Tests that SetArgPointee<N>() accepts a string literal.
1092TEST(SetArgPointeeTest, AcceptsStringLiteral) {
1093  typedef void MyFunction(std::string*, const char**);
1094  Action<MyFunction> a = SetArgPointee<0>("hi");
1095  std::string str;
1096  const char* ptr = nullptr;
1097  a.Perform(std::make_tuple(&str, &ptr));
1098  EXPECT_EQ("hi", str);
1099  EXPECT_TRUE(ptr == nullptr);
1100
1101  a = SetArgPointee<1>("world");
1102  str = "";
1103  a.Perform(std::make_tuple(&str, &ptr));
1104  EXPECT_EQ("", str);
1105  EXPECT_STREQ("world", ptr);
1106}
1107
1108TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
1109  typedef void MyFunction(const wchar_t**);
1110  Action<MyFunction> a = SetArgPointee<0>(L"world");
1111  const wchar_t* ptr = nullptr;
1112  a.Perform(std::make_tuple(&ptr));
1113  EXPECT_STREQ(L"world", ptr);
1114
1115#if GTEST_HAS_STD_WSTRING
1116
1117  typedef void MyStringFunction(std::wstring*);
1118  Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
1119  std::wstring str = L"";
1120  a2.Perform(std::make_tuple(&str));
1121  EXPECT_EQ(L"world", str);
1122
1123#endif
1124}
1125
1126// Tests that SetArgPointee<N>() accepts a char pointer.
1127TEST(SetArgPointeeTest, AcceptsCharPointer) {
1128  typedef void MyFunction(bool, std::string*, const char**);
1129  const char* const hi = "hi";
1130  Action<MyFunction> a = SetArgPointee<1>(hi);
1131  std::string str;
1132  const char* ptr = nullptr;
1133  a.Perform(std::make_tuple(true, &str, &ptr));
1134  EXPECT_EQ("hi", str);
1135  EXPECT_TRUE(ptr == nullptr);
1136
1137  char world_array[] = "world";
1138  char* const world = world_array;
1139  a = SetArgPointee<2>(world);
1140  str = "";
1141  a.Perform(std::make_tuple(true, &str, &ptr));
1142  EXPECT_EQ("", str);
1143  EXPECT_EQ(world, ptr);
1144}
1145
1146TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
1147  typedef void MyFunction(bool, const wchar_t**);
1148  const wchar_t* const hi = L"hi";
1149  Action<MyFunction> a = SetArgPointee<1>(hi);
1150  const wchar_t* ptr = nullptr;
1151  a.Perform(std::make_tuple(true, &ptr));
1152  EXPECT_EQ(hi, ptr);
1153
1154#if GTEST_HAS_STD_WSTRING
1155
1156  typedef void MyStringFunction(bool, std::wstring*);
1157  wchar_t world_array[] = L"world";
1158  wchar_t* const world = world_array;
1159  Action<MyStringFunction> a2 = SetArgPointee<1>(world);
1160  std::wstring str;
1161  a2.Perform(std::make_tuple(true, &str));
1162  EXPECT_EQ(world_array, str);
1163#endif
1164}
1165
1166// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
1167// the N-th (0-based) argument to v.
1168TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
1169  typedef void MyFunction(bool, int*, char*);
1170  Action<MyFunction> a = SetArgumentPointee<1>(2);
1171
1172  int n = 0;
1173  char ch = '\0';
1174  a.Perform(std::make_tuple(true, &n, &ch));
1175  EXPECT_EQ(2, n);
1176  EXPECT_EQ('\0', ch);
1177
1178  a = SetArgumentPointee<2>('a');
1179  n = 0;
1180  ch = '\0';
1181  a.Perform(std::make_tuple(true, &n, &ch));
1182  EXPECT_EQ(0, n);
1183  EXPECT_EQ('a', ch);
1184}
1185
1186// Sample functions and functors for testing Invoke() and etc.
1187int Nullary() { return 1; }
1188
1189class NullaryFunctor {
1190 public:
1191  int operator()() { return 2; }
1192};
1193
1194bool g_done = false;
1195void VoidNullary() { g_done = true; }
1196
1197class VoidNullaryFunctor {
1198 public:
1199  void operator()() { g_done = true; }
1200};
1201
1202short Short(short n) { return n; }  // NOLINT
1203char Char(char ch) { return ch; }
1204
1205const char* CharPtr(const char* s) { return s; }
1206
1207bool Unary(int x) { return x < 0; }
1208
1209const char* Binary(const char* input, short n) { return input + n; }  // NOLINT
1210
1211void VoidBinary(int, char) { g_done = true; }
1212
1213int Ternary(int x, char y, short z) { return x + y + z; }  // NOLINT
1214
1215int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
1216
1217class Foo {
1218 public:
1219  Foo() : value_(123) {}
1220
1221  int Nullary() const { return value_; }
1222
1223 private:
1224  int value_;
1225};
1226
1227// Tests InvokeWithoutArgs(function).
1228TEST(InvokeWithoutArgsTest, Function) {
1229  // As an action that takes one argument.
1230  Action<int(int)> a = InvokeWithoutArgs(Nullary);  // NOLINT
1231  EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
1232
1233  // As an action that takes two arguments.
1234  Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary);  // NOLINT
1235  EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
1236
1237  // As an action that returns void.
1238  Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary);  // NOLINT
1239  g_done = false;
1240  a3.Perform(std::make_tuple(1));
1241  EXPECT_TRUE(g_done);
1242}
1243
1244// Tests InvokeWithoutArgs(functor).
1245TEST(InvokeWithoutArgsTest, Functor) {
1246  // As an action that takes no argument.
1247  Action<int()> a = InvokeWithoutArgs(NullaryFunctor());  // NOLINT
1248  EXPECT_EQ(2, a.Perform(std::make_tuple()));
1249
1250  // As an action that takes three arguments.
1251  Action<int(int, double, char)> a2 =  // NOLINT
1252      InvokeWithoutArgs(NullaryFunctor());
1253  EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
1254
1255  // As an action that returns void.
1256  Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
1257  g_done = false;
1258  a3.Perform(std::make_tuple());
1259  EXPECT_TRUE(g_done);
1260}
1261
1262// Tests InvokeWithoutArgs(obj_ptr, method).
1263TEST(InvokeWithoutArgsTest, Method) {
1264  Foo foo;
1265  Action<int(bool, char)> a =  // NOLINT
1266      InvokeWithoutArgs(&foo, &Foo::Nullary);
1267  EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
1268}
1269
1270// Tests using IgnoreResult() on a polymorphic action.
1271TEST(IgnoreResultTest, PolymorphicAction) {
1272  Action<void(int)> a = IgnoreResult(Return(5));  // NOLINT
1273  a.Perform(std::make_tuple(1));
1274}
1275
1276// Tests using IgnoreResult() on a monomorphic action.
1277
1278int ReturnOne() {
1279  g_done = true;
1280  return 1;
1281}
1282
1283TEST(IgnoreResultTest, MonomorphicAction) {
1284  g_done = false;
1285  Action<void()> a = IgnoreResult(Invoke(ReturnOne));
1286  a.Perform(std::make_tuple());
1287  EXPECT_TRUE(g_done);
1288}
1289
1290// Tests using IgnoreResult() on an action that returns a class type.
1291
1292MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
1293  g_done = true;
1294  return MyNonDefaultConstructible(42);
1295}
1296
1297TEST(IgnoreResultTest, ActionReturningClass) {
1298  g_done = false;
1299  Action<void(int)> a =
1300      IgnoreResult(Invoke(ReturnMyNonDefaultConstructible));  // NOLINT
1301  a.Perform(std::make_tuple(2));
1302  EXPECT_TRUE(g_done);
1303}
1304
1305TEST(AssignTest, Int) {
1306  int x = 0;
1307  Action<void(int)> a = Assign(&x, 5);
1308  a.Perform(std::make_tuple(0));
1309  EXPECT_EQ(5, x);
1310}
1311
1312TEST(AssignTest, String) {
1313  ::std::string x;
1314  Action<void(void)> a = Assign(&x, "Hello, world");
1315  a.Perform(std::make_tuple());
1316  EXPECT_EQ("Hello, world", x);
1317}
1318
1319TEST(AssignTest, CompatibleTypes) {
1320  double x = 0;
1321  Action<void(int)> a = Assign(&x, 5);
1322  a.Perform(std::make_tuple(0));
1323  EXPECT_DOUBLE_EQ(5, x);
1324}
1325
1326// DoAll should support &&-qualified actions when used with WillOnce.
1327TEST(DoAll, SupportsRefQualifiedActions) {
1328  struct InitialAction {
1329    void operator()(const int arg) && { EXPECT_EQ(17, arg); }
1330  };
1331
1332  struct FinalAction {
1333    int operator()() && { return 19; }
1334  };
1335
1336  MockFunction<int(int)> mock;
1337  EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
1338  EXPECT_EQ(19, mock.AsStdFunction()(17));
1339}
1340
1341// DoAll should never provide rvalue references to the initial actions. If the
1342// mock action itself accepts an rvalue reference or a non-scalar object by
1343// value then the final action should receive an rvalue reference, but initial
1344// actions should receive only lvalue references.
1345TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
1346  struct Obj {};
1347
1348  // Mock action accepts by value: the initial action should be fed a const
1349  // lvalue reference, and the final action an rvalue reference.
1350  {
1351    struct InitialAction {
1352      void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1353      void operator()(const Obj&) const {}
1354      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1355      void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1356    };
1357
1358    MockFunction<void(Obj)> mock;
1359    EXPECT_CALL(mock, Call)
1360        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1361        .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1362
1363    mock.AsStdFunction()(Obj{});
1364    mock.AsStdFunction()(Obj{});
1365  }
1366
1367  // Mock action accepts by const lvalue reference: both actions should receive
1368  // a const lvalue reference.
1369  {
1370    struct InitialAction {
1371      void operator()(Obj&) const { FAIL() << "Unexpected call"; }
1372      void operator()(const Obj&) const {}
1373      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1374      void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
1375    };
1376
1377    MockFunction<void(const Obj&)> mock;
1378    EXPECT_CALL(mock, Call)
1379        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
1380        .WillRepeatedly(
1381            DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));
1382
1383    mock.AsStdFunction()(Obj{});
1384    mock.AsStdFunction()(Obj{});
1385  }
1386
1387  // Mock action accepts by non-const lvalue reference: both actions should get
1388  // a non-const lvalue reference if they want them.
1389  {
1390    struct InitialAction {
1391      void operator()(Obj&) const {}
1392      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1393    };
1394
1395    MockFunction<void(Obj&)> mock;
1396    EXPECT_CALL(mock, Call)
1397        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
1398        .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1399
1400    Obj obj;
1401    mock.AsStdFunction()(obj);
1402    mock.AsStdFunction()(obj);
1403  }
1404
1405  // Mock action accepts by rvalue reference: the initial actions should receive
1406  // a non-const lvalue reference if it wants it, and the final action an rvalue
1407  // reference.
1408  {
1409    struct InitialAction {
1410      void operator()(Obj&) const {}
1411      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
1412    };
1413
1414    MockFunction<void(Obj&&)> mock;
1415    EXPECT_CALL(mock, Call)
1416        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
1417        .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1418
1419    mock.AsStdFunction()(Obj{});
1420    mock.AsStdFunction()(Obj{});
1421  }
1422
1423  // &&-qualified initial actions should also be allowed with WillOnce.
1424  {
1425    struct InitialAction {
1426      void operator()(Obj&) && {}
1427    };
1428
1429    MockFunction<void(Obj&)> mock;
1430    EXPECT_CALL(mock, Call)
1431        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
1432
1433    Obj obj;
1434    mock.AsStdFunction()(obj);
1435  }
1436
1437  {
1438    struct InitialAction {
1439      void operator()(Obj&) && {}
1440    };
1441
1442    MockFunction<void(Obj&&)> mock;
1443    EXPECT_CALL(mock, Call)
1444        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
1445
1446    mock.AsStdFunction()(Obj{});
1447  }
1448}
1449
1450// DoAll should support being used with type-erased Action objects, both through
1451// WillOnce and WillRepeatedly.
1452TEST(DoAll, SupportsTypeErasedActions) {
1453  // With only type-erased actions.
1454  const Action<void()> initial_action = [] {};
1455  const Action<int()> final_action = [] { return 17; };
1456
1457  MockFunction<int()> mock;
1458  EXPECT_CALL(mock, Call)
1459      .WillOnce(DoAll(initial_action, initial_action, final_action))
1460      .WillRepeatedly(DoAll(initial_action, initial_action, final_action));
1461
1462  EXPECT_EQ(17, mock.AsStdFunction()());
1463
1464  // With &&-qualified and move-only final action.
1465  {
1466    struct FinalAction {
1467      FinalAction() = default;
1468      FinalAction(FinalAction&&) = default;
1469
1470      int operator()() && { return 17; }
1471    };
1472
1473    EXPECT_CALL(mock, Call)
1474        .WillOnce(DoAll(initial_action, initial_action, FinalAction{}));
1475
1476    EXPECT_EQ(17, mock.AsStdFunction()());
1477  }
1478}
1479
1480// Tests using WithArgs and with an action that takes 1 argument.
1481TEST(WithArgsTest, OneArg) {
1482  Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary));  // NOLINT
1483  EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
1484  EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
1485}
1486
1487// Tests using WithArgs with an action that takes 2 arguments.
1488TEST(WithArgsTest, TwoArgs) {
1489  Action<const char*(const char* s, double x, short n)> a =  // NOLINT
1490      WithArgs<0, 2>(Invoke(Binary));
1491  const char s[] = "Hello";
1492  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
1493}
1494
1495struct ConcatAll {
1496  std::string operator()() const { return {}; }
1497  template <typename... I>
1498  std::string operator()(const char* a, I... i) const {
1499    return a + ConcatAll()(i...);
1500  }
1501};
1502
1503// Tests using WithArgs with an action that takes 10 arguments.
1504TEST(WithArgsTest, TenArgs) {
1505  Action<std::string(const char*, const char*, const char*, const char*)> a =
1506      WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
1507  EXPECT_EQ("0123210123",
1508            a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
1509                                      CharPtr("3"))));
1510}
1511
1512// Tests using WithArgs with an action that is not Invoke().
1513class SubtractAction : public ActionInterface<int(int, int)> {
1514 public:
1515  int Perform(const std::tuple<int, int>& args) override {
1516    return std::get<0>(args) - std::get<1>(args);
1517  }
1518};
1519
1520TEST(WithArgsTest, NonInvokeAction) {
1521  Action<int(const std::string&, int, int)> a =
1522      WithArgs<2, 1>(MakeAction(new SubtractAction));
1523  std::tuple<std::string, int, int> dummy =
1524      std::make_tuple(std::string("hi"), 2, 10);
1525  EXPECT_EQ(8, a.Perform(dummy));
1526}
1527
1528// Tests using WithArgs to pass all original arguments in the original order.
1529TEST(WithArgsTest, Identity) {
1530  Action<int(int x, char y, short z)> a =  // NOLINT
1531      WithArgs<0, 1, 2>(Invoke(Ternary));
1532  EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
1533}
1534
1535// Tests using WithArgs with repeated arguments.
1536TEST(WithArgsTest, RepeatedArguments) {
1537  Action<int(bool, int m, int n)> a =  // NOLINT
1538      WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
1539  EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
1540}
1541
1542// Tests using WithArgs with reversed argument order.
1543TEST(WithArgsTest, ReversedArgumentOrder) {
1544  Action<const char*(short n, const char* input)> a =  // NOLINT
1545      WithArgs<1, 0>(Invoke(Binary));
1546  const char s[] = "Hello";
1547  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
1548}
1549
1550// Tests using WithArgs with compatible, but not identical, argument types.
1551TEST(WithArgsTest, ArgsOfCompatibleTypes) {
1552  Action<long(short x, char y, double z, char c)> a =  // NOLINT
1553      WithArgs<0, 1, 3>(Invoke(Ternary));
1554  EXPECT_EQ(123,
1555            a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
1556}
1557
1558// Tests using WithArgs with an action that returns void.
1559TEST(WithArgsTest, VoidAction) {
1560  Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
1561  g_done = false;
1562  a.Perform(std::make_tuple(1.5, 'a', 3));
1563  EXPECT_TRUE(g_done);
1564}
1565
1566TEST(WithArgsTest, ReturnReference) {
1567  Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
1568  int i = 0;
1569  const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
1570  EXPECT_EQ(&i, &res);
1571}
1572
1573TEST(WithArgsTest, InnerActionWithConversion) {
1574  Action<Derived*()> inner = [] { return nullptr; };
1575
1576  MockFunction<Base*(double)> mock;
1577  EXPECT_CALL(mock, Call)
1578      .WillOnce(WithoutArgs(inner))
1579      .WillRepeatedly(WithoutArgs(inner));
1580
1581  EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1582  EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
1583}
1584
1585// It should be possible to use an &&-qualified inner action as long as the
1586// whole shebang is used as an rvalue with WillOnce.
1587TEST(WithArgsTest, RefQualifiedInnerAction) {
1588  struct SomeAction {
1589    int operator()(const int arg) && {
1590      EXPECT_EQ(17, arg);
1591      return 19;
1592    }
1593  };
1594
1595  MockFunction<int(int, int)> mock;
1596  EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
1597  EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
1598}
1599
1600#ifndef GTEST_OS_WINDOWS_MOBILE
1601
1602class SetErrnoAndReturnTest : public testing::Test {
1603 protected:
1604  void SetUp() override { errno = 0; }
1605  void TearDown() override { errno = 0; }
1606};
1607
1608TEST_F(SetErrnoAndReturnTest, Int) {
1609  Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
1610  EXPECT_EQ(-5, a.Perform(std::make_tuple()));
1611  EXPECT_EQ(ENOTTY, errno);
1612}
1613
1614TEST_F(SetErrnoAndReturnTest, Ptr) {
1615  int x;
1616  Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
1617  EXPECT_EQ(&x, a.Perform(std::make_tuple()));
1618  EXPECT_EQ(ENOTTY, errno);
1619}
1620
1621TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
1622  Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
1623  EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
1624  EXPECT_EQ(EINVAL, errno);
1625}
1626
1627#endif  // !GTEST_OS_WINDOWS_MOBILE
1628
1629// Tests ByRef().
1630
1631// Tests that the result of ByRef() is copyable.
1632TEST(ByRefTest, IsCopyable) {
1633  const std::string s1 = "Hi";
1634  const std::string s2 = "Hello";
1635
1636  auto ref_wrapper = ByRef(s1);
1637  const std::string& r1 = ref_wrapper;
1638  EXPECT_EQ(&s1, &r1);
1639
1640  // Assigns a new value to ref_wrapper.
1641  ref_wrapper = ByRef(s2);
1642  const std::string& r2 = ref_wrapper;
1643  EXPECT_EQ(&s2, &r2);
1644
1645  auto ref_wrapper1 = ByRef(s1);
1646  // Copies ref_wrapper1 to ref_wrapper.
1647  ref_wrapper = ref_wrapper1;
1648  const std::string& r3 = ref_wrapper;
1649  EXPECT_EQ(&s1, &r3);
1650}
1651
1652// Tests using ByRef() on a const value.
1653TEST(ByRefTest, ConstValue) {
1654  const int n = 0;
1655  // int& ref = ByRef(n);  // This shouldn't compile - we have a
1656  // negative compilation test to catch it.
1657  const int& const_ref = ByRef(n);
1658  EXPECT_EQ(&n, &const_ref);
1659}
1660
1661// Tests using ByRef() on a non-const value.
1662TEST(ByRefTest, NonConstValue) {
1663  int n = 0;
1664
1665  // ByRef(n) can be used as either an int&,
1666  int& ref = ByRef(n);
1667  EXPECT_EQ(&n, &ref);
1668
1669  // or a const int&.
1670  const int& const_ref = ByRef(n);
1671  EXPECT_EQ(&n, &const_ref);
1672}
1673
1674// Tests explicitly specifying the type when using ByRef().
1675TEST(ByRefTest, ExplicitType) {
1676  int n = 0;
1677  const int& r1 = ByRef<const int>(n);
1678  EXPECT_EQ(&n, &r1);
1679
1680  // ByRef<char>(n);  // This shouldn't compile - we have a negative
1681  // compilation test to catch it.
1682
1683  Derived d;
1684  Derived& r2 = ByRef<Derived>(d);
1685  EXPECT_EQ(&d, &r2);
1686
1687  const Derived& r3 = ByRef<const Derived>(d);
1688  EXPECT_EQ(&d, &r3);
1689
1690  Base& r4 = ByRef<Base>(d);
1691  EXPECT_EQ(&d, &r4);
1692
1693  const Base& r5 = ByRef<const Base>(d);
1694  EXPECT_EQ(&d, &r5);
1695
1696  // The following shouldn't compile - we have a negative compilation
1697  // test for it.
1698  //
1699  // Base b;
1700  // ByRef<Derived>(b);
1701}
1702
1703// Tests that Google Mock prints expression ByRef(x) as a reference to x.
1704TEST(ByRefTest, PrintsCorrectly) {
1705  int n = 42;
1706  ::std::stringstream expected, actual;
1707  testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
1708  testing::internal::UniversalPrint(ByRef(n), &actual);
1709  EXPECT_EQ(expected.str(), actual.str());
1710}
1711
1712struct UnaryConstructorClass {
1713  explicit UnaryConstructorClass(int v) : value(v) {}
1714  int value;
1715};
1716
1717// Tests using ReturnNew() with a unary constructor.
1718TEST(ReturnNewTest, Unary) {
1719  Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
1720  UnaryConstructorClass* c = a.Perform(std::make_tuple());
1721  EXPECT_EQ(4000, c->value);
1722  delete c;
1723}
1724
1725TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
1726  Action<UnaryConstructorClass*(bool, int)> a =
1727      ReturnNew<UnaryConstructorClass>(4000);
1728  UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
1729  EXPECT_EQ(4000, c->value);
1730  delete c;
1731}
1732
1733TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
1734  Action<const UnaryConstructorClass*()> a =
1735      ReturnNew<UnaryConstructorClass>(4000);
1736  const UnaryConstructorClass* c = a.Perform(std::make_tuple());
1737  EXPECT_EQ(4000, c->value);
1738  delete c;
1739}
1740
1741class TenArgConstructorClass {
1742 public:
1743  TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
1744                         int a8, int a9, int a10)
1745      : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
1746  int value_;
1747};
1748
1749// Tests using ReturnNew() with a 10-argument constructor.
1750TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
1751  Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1752      1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
1753      0);
1754  TenArgConstructorClass* c = a.Perform(std::make_tuple());
1755  EXPECT_EQ(1234567890, c->value_);
1756  delete c;
1757}
1758
1759std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); }
1760
1761std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
1762  std::vector<std::unique_ptr<int>> out;
1763  out.emplace_back(new int(7));
1764  return out;
1765}
1766
1767TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
1768  MockClass mock;
1769  std::unique_ptr<int> i(new int(19));
1770  EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
1771  EXPECT_CALL(mock, MakeVectorUnique())
1772      .WillOnce(Return(ByMove(VectorUniquePtrSource())));
1773  Derived* d = new Derived;
1774  EXPECT_CALL(mock, MakeUniqueBase())
1775      .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
1776
1777  std::unique_ptr<int> result1 = mock.MakeUnique();
1778  EXPECT_EQ(19, *result1);
1779
1780  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1781  EXPECT_EQ(1u, vresult.size());
1782  EXPECT_NE(nullptr, vresult[0]);
1783  EXPECT_EQ(7, *vresult[0]);
1784
1785  std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
1786  EXPECT_EQ(d, result2.get());
1787}
1788
1789TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
1790  testing::MockFunction<void()> mock_function;
1791  MockClass mock;
1792  std::unique_ptr<int> i(new int(19));
1793  EXPECT_CALL(mock_function, Call());
1794  EXPECT_CALL(mock, MakeUnique())
1795      .WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
1796                                        &testing::MockFunction<void()>::Call),
1797                      Return(ByMove(std::move(i)))));
1798
1799  std::unique_ptr<int> result1 = mock.MakeUnique();
1800  EXPECT_EQ(19, *result1);
1801}
1802
1803TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
1804  MockClass mock;
1805
1806  // Check default value
1807  DefaultValue<std::unique_ptr<int>>::SetFactory(
1808      [] { return std::make_unique<int>(42); });
1809  EXPECT_EQ(42, *mock.MakeUnique());
1810
1811  EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
1812  EXPECT_CALL(mock, MakeVectorUnique())
1813      .WillRepeatedly(Invoke(VectorUniquePtrSource));
1814  std::unique_ptr<int> result1 = mock.MakeUnique();
1815  EXPECT_EQ(19, *result1);
1816  std::unique_ptr<int> result2 = mock.MakeUnique();
1817  EXPECT_EQ(19, *result2);
1818  EXPECT_NE(result1, result2);
1819
1820  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1821  EXPECT_EQ(1u, vresult.size());
1822  EXPECT_NE(nullptr, vresult[0]);
1823  EXPECT_EQ(7, *vresult[0]);
1824}
1825
1826TEST(MockMethodTest, CanTakeMoveOnlyValue) {
1827  MockClass mock;
1828  auto make = [](int i) { return std::make_unique<int>(i); };
1829
1830  EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
1831    return *i;
1832  });
1833  // DoAll() does not compile, since it would move from its arguments twice.
1834  // EXPECT_CALL(mock, TakeUnique(_, _))
1835  //     .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
1836  //     Return(1)));
1837  EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
1838      .WillOnce(Return(-7))
1839      .RetiresOnSaturation();
1840  EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
1841      .WillOnce(Return(-1))
1842      .RetiresOnSaturation();
1843
1844  EXPECT_EQ(5, mock.TakeUnique(make(5)));
1845  EXPECT_EQ(-7, mock.TakeUnique(make(7)));
1846  EXPECT_EQ(7, mock.TakeUnique(make(7)));
1847  EXPECT_EQ(7, mock.TakeUnique(make(7)));
1848  EXPECT_EQ(-1, mock.TakeUnique({}));
1849
1850  // Some arguments are moved, some passed by reference.
1851  auto lvalue = make(6);
1852  EXPECT_CALL(mock, TakeUnique(_, _))
1853      .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
1854        return *i * *j;
1855      });
1856  EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
1857
1858  // The unique_ptr can be saved by the action.
1859  std::unique_ptr<int> saved;
1860  EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
1861    saved = std::move(i);
1862    return 0;
1863  });
1864  EXPECT_EQ(0, mock.TakeUnique(make(42)));
1865  EXPECT_EQ(42, *saved);
1866}
1867
1868// It should be possible to use callables with an &&-qualified call operator
1869// with WillOnce, since they will be called only once. This allows actions to
1870// contain and manipulate move-only types.
1871TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
1872  struct Return17 {
1873    int operator()() && { return 17; }
1874  };
1875
1876  // Action is directly compatible with mocked function type.
1877  {
1878    MockFunction<int()> mock;
1879    EXPECT_CALL(mock, Call).WillOnce(Return17());
1880
1881    EXPECT_EQ(17, mock.AsStdFunction()());
1882  }
1883
1884  // Action doesn't want mocked function arguments.
1885  {
1886    MockFunction<int(int)> mock;
1887    EXPECT_CALL(mock, Call).WillOnce(Return17());
1888
1889    EXPECT_EQ(17, mock.AsStdFunction()(0));
1890  }
1891}
1892
1893// Edge case: if an action has both a const-qualified and an &&-qualified call
1894// operator, there should be no "ambiguous call" errors. The &&-qualified
1895// operator should be used by WillOnce (since it doesn't need to retain the
1896// action beyond one call), and the const-qualified one by WillRepeatedly.
1897TEST(MockMethodTest, ActionHasMultipleCallOperators) {
1898  struct ReturnInt {
1899    int operator()() && { return 17; }
1900    int operator()() const& { return 19; }
1901  };
1902
1903  // Directly compatible with mocked function type.
1904  {
1905    MockFunction<int()> mock;
1906    EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1907
1908    EXPECT_EQ(17, mock.AsStdFunction()());
1909    EXPECT_EQ(19, mock.AsStdFunction()());
1910    EXPECT_EQ(19, mock.AsStdFunction()());
1911  }
1912
1913  // Ignores function arguments.
1914  {
1915    MockFunction<int(int)> mock;
1916    EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1917
1918    EXPECT_EQ(17, mock.AsStdFunction()(0));
1919    EXPECT_EQ(19, mock.AsStdFunction()(0));
1920    EXPECT_EQ(19, mock.AsStdFunction()(0));
1921  }
1922}
1923
1924// WillOnce should have no problem coping with a move-only action, whether it is
1925// &&-qualified or not.
1926TEST(MockMethodTest, MoveOnlyAction) {
1927  // &&-qualified
1928  {
1929    struct Return17 {
1930      Return17() = default;
1931      Return17(Return17&&) = default;
1932
1933      Return17(const Return17&) = delete;
1934      Return17 operator=(const Return17&) = delete;
1935
1936      int operator()() && { return 17; }
1937    };
1938
1939    MockFunction<int()> mock;
1940    EXPECT_CALL(mock, Call).WillOnce(Return17());
1941    EXPECT_EQ(17, mock.AsStdFunction()());
1942  }
1943
1944  // Not &&-qualified
1945  {
1946    struct Return17 {
1947      Return17() = default;
1948      Return17(Return17&&) = default;
1949
1950      Return17(const Return17&) = delete;
1951      Return17 operator=(const Return17&) = delete;
1952
1953      int operator()() const { return 17; }
1954    };
1955
1956    MockFunction<int()> mock;
1957    EXPECT_CALL(mock, Call).WillOnce(Return17());
1958    EXPECT_EQ(17, mock.AsStdFunction()());
1959  }
1960}
1961
1962// It should be possible to use an action that returns a value with a mock
1963// function that doesn't, both through WillOnce and WillRepeatedly.
1964TEST(MockMethodTest, ActionReturnsIgnoredValue) {
1965  struct ReturnInt {
1966    int operator()() const { return 0; }
1967  };
1968
1969  MockFunction<void()> mock;
1970  EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
1971
1972  mock.AsStdFunction()();
1973  mock.AsStdFunction()();
1974}
1975
1976// Despite the fanciness around move-only actions and so on, it should still be
1977// possible to hand an lvalue reference to a copyable action to WillOnce.
1978TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
1979  MockFunction<int()> mock;
1980
1981  const auto action = [] { return 17; };
1982  EXPECT_CALL(mock, Call).WillOnce(action);
1983
1984  EXPECT_EQ(17, mock.AsStdFunction()());
1985}
1986
1987// A callable that doesn't use SFINAE to restrict its call operator's overload
1988// set, but is still picky about which arguments it will accept.
1989struct StaticAssertSingleArgument {
1990  template <typename... Args>
1991  static constexpr bool CheckArgs() {
1992    static_assert(sizeof...(Args) == 1, "");
1993    return true;
1994  }
1995
1996  template <typename... Args, bool = CheckArgs<Args...>()>
1997  int operator()(Args...) const {
1998    return 17;
1999  }
2000};
2001
2002// WillOnce and WillRepeatedly should both work fine with na��ve implementations
2003// of actions that don't use SFINAE to limit the overload set for their call
2004// operator. If they are compatible with the actual mocked signature, we
2005// shouldn't probe them with no arguments and trip a static_assert.
2006TEST(MockMethodTest, ActionSwallowsAllArguments) {
2007  MockFunction<int(int)> mock;
2008  EXPECT_CALL(mock, Call)
2009      .WillOnce(StaticAssertSingleArgument{})
2010      .WillRepeatedly(StaticAssertSingleArgument{});
2011
2012  EXPECT_EQ(17, mock.AsStdFunction()(0));
2013  EXPECT_EQ(17, mock.AsStdFunction()(0));
2014}
2015
2016struct ActionWithTemplatedConversionOperators {
2017  template <typename... Args>
2018  operator OnceAction<int(Args...)>() && {  // NOLINT
2019    return [] { return 17; };
2020  }
2021
2022  template <typename... Args>
2023  operator Action<int(Args...)>() const {  // NOLINT
2024    return [] { return 19; };
2025  }
2026};
2027
2028// It should be fine to hand both WillOnce and WillRepeatedly a function that
2029// defines templated conversion operators to OnceAction and Action. WillOnce
2030// should prefer the OnceAction version.
2031TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
2032  MockFunction<int()> mock;
2033  EXPECT_CALL(mock, Call)
2034      .WillOnce(ActionWithTemplatedConversionOperators{})
2035      .WillRepeatedly(ActionWithTemplatedConversionOperators{});
2036
2037  EXPECT_EQ(17, mock.AsStdFunction()());
2038  EXPECT_EQ(19, mock.AsStdFunction()());
2039}
2040
2041// Tests for std::function based action.
2042
2043int Add(int val, int& ref, int* ptr) {  // NOLINT
2044  int result = val + ref + *ptr;
2045  ref = 42;
2046  *ptr = 43;
2047  return result;
2048}
2049
2050int Deref(std::unique_ptr<int> ptr) { return *ptr; }
2051
2052struct Double {
2053  template <typename T>
2054  T operator()(T t) {
2055    return 2 * t;
2056  }
2057};
2058
2059std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); }
2060
2061TEST(FunctorActionTest, ActionFromFunction) {
2062  Action<int(int, int&, int*)> a = &Add;
2063  int x = 1, y = 2, z = 3;
2064  EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
2065  EXPECT_EQ(42, y);
2066  EXPECT_EQ(43, z);
2067
2068  Action<int(std::unique_ptr<int>)> a1 = &Deref;
2069  EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
2070}
2071
2072TEST(FunctorActionTest, ActionFromLambda) {
2073  Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
2074  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
2075  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
2076
2077  std::unique_ptr<int> saved;
2078  Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
2079    saved = std::move(p);
2080  };
2081  a2.Perform(std::make_tuple(UniqueInt(5)));
2082  EXPECT_EQ(5, *saved);
2083}
2084
2085TEST(FunctorActionTest, PolymorphicFunctor) {
2086  Action<int(int)> ai = Double();
2087  EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
2088  Action<double(double)> ad = Double();  // Double? Double double!
2089  EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
2090}
2091
2092TEST(FunctorActionTest, TypeConversion) {
2093  // Numeric promotions are allowed.
2094  const Action<bool(int)> a1 = [](int i) { return i > 1; };
2095  const Action<int(bool)> a2 = Action<int(bool)>(a1);
2096  EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
2097  EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
2098
2099  // Implicit constructors are allowed.
2100  const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
2101  const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
2102  EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
2103  EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
2104
2105  // Also between the lambda and the action itself.
2106  const Action<bool(std::string)> x1 = [](Unused) { return 42; };
2107  const Action<bool(std::string)> x2 = [] { return 42; };
2108  EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
2109  EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
2110
2111  // Ensure decay occurs where required.
2112  std::function<int()> f = [] { return 7; };
2113  Action<int(int)> d = f;
2114  f = nullptr;
2115  EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
2116
2117  // Ensure creation of an empty action succeeds.
2118  Action<void(int)>(nullptr);
2119}
2120
2121TEST(FunctorActionTest, UnusedArguments) {
2122  // Verify that users can ignore uninteresting arguments.
2123  Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
2124    return 2 * i;
2125  };
2126  std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
2127  EXPECT_EQ(6, a.Perform(dummy));
2128}
2129
2130// Test that basic built-in actions work with move-only arguments.
2131TEST(MoveOnlyArgumentsTest, ReturningActions) {
2132  Action<int(std::unique_ptr<int>)> a = Return(1);
2133  EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
2134
2135  a = testing::WithoutArgs([]() { return 7; });
2136  EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
2137
2138  Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
2139  int x = 0;
2140  a2.Perform(std::make_tuple(nullptr, &x));
2141  EXPECT_EQ(x, 3);
2142}
2143
2144ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }
2145
2146TEST(ActionMacro, LargeArity) {
2147  EXPECT_EQ(
2148      1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
2149  EXPECT_EQ(
2150      10,
2151      testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
2152          ReturnArity())
2153          .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
2154  EXPECT_EQ(
2155      20,
2156      testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
2157                          int, int, int, int, int, int, int, int, int)>(
2158          ReturnArity())
2159          .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
2160                                   14, 15, 16, 17, 18, 19)));
2161}
2162
2163}  // namespace
2164}  // namespace testing
2165
2166#if defined(_MSC_VER) && (_MSC_VER == 1900)
2167GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4800
2168#endif
2169GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4100 4503
2170