1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent.  Note that these names are used mainly for
31 * convenience and to represent the direction of the merge.  They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent.  For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established.  For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent.  If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72 * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured.  Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet.  As such, we can't establish the links from these new nodes into the
79 * parent graph.  We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent.  Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created.  As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly.  We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established.  As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph.  We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114#include <stdio.h>
115#include <strings.h>
116#include <assert.h>
117#include <pthread.h>
118
119#include "ctf_headers.h"
120#include "ctftools.h"
121#include "list.h"
122#include "alist.h"
123#include "memory.h"
124#include "traverse.h"
125
126typedef struct equiv_data equiv_data_t;
127typedef struct merge_cb_data merge_cb_data_t;
128
129/*
130 * There are two traversals in this file, for equivalency and for tdesc_t
131 * re-creation, that do not fit into the tdtraverse() framework.  We have our
132 * own traversal mechanism and ops vector here for those two cases.
133 */
134typedef struct tdesc_ops {
135	const char *name;
136	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138} tdesc_ops_t;
139extern tdesc_ops_t tdesc_ops[];
140
141/*
142 * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
143 * processed during various phases of the merge algorithm.
144 */
145struct merge_cb_data {
146	tdata_t *md_parent;
147	tdata_t *md_tgt;
148	alist_t *md_ta;		/* Type Association */
149	alist_t *md_fdida;	/* Forward -> Definition ID Association */
150	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
151	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
152	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
153	int md_flags;
154}; /* merge_cb_data_t */
155
156/*
157 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158 * Normal merges, however, assume that the child tdata_t is already self-unique,
159 * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
160 * the merge algorithm will self-uniquify by avoiding the insertion of
161 * duplicates in the md_tdtdba list.
162 */
163#define	MCD_F_SELFUNIQUIFY	0x1
164
165/*
166 * When we merge the CTF data for the modules, we don't want it to contain any
167 * data that can be found in the reference module (usually genunix).  If this
168 * flag is set, we're doing a merge between the fully merged tdata_t for this
169 * module and the tdata_t for the reference module, with the data unique to this
170 * module ending up in a third tdata_t.  It is this third tdata_t that will end
171 * up in the .SUNW_ctf section for the module.
172 */
173#define	MCD_F_REFMERGE	0x2
174
175/*
176 * Mapping of child type IDs to parent type IDs
177 */
178
179static void
180add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181{
182	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183
184	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185	assert(srcid != 0 && tgtid != 0);
186
187	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188}
189
190static tid_t
191get_mapping(alist_t *ta, int srcid)
192{
193	void *ltgtid;
194
195	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
196		return ((uintptr_t)ltgtid);
197	else
198		return (0);
199}
200
201/*
202 * Determining equivalence of tdesc_t subgraphs
203 */
204
205struct equiv_data {
206	alist_t *ed_ta;
207	tdesc_t *ed_node;
208	tdesc_t *ed_tgt;
209
210	int ed_clear_mark;
211	int ed_cur_mark;
212	int ed_selfuniquify;
213}; /* equiv_data_t */
214
215static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216
217/*ARGSUSED2*/
218static int
219equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220{
221	intr_t *si = stdp->t_intr;
222	intr_t *ti = ttdp->t_intr;
223
224	if (si->intr_type != ti->intr_type ||
225	    si->intr_signed != ti->intr_signed ||
226	    si->intr_offset != ti->intr_offset ||
227	    si->intr_nbits != ti->intr_nbits)
228		return (0);
229
230	if (si->intr_type == INTR_INT &&
231	    si->intr_iformat != ti->intr_iformat)
232		return (0);
233	else if (si->intr_type == INTR_REAL &&
234	    si->intr_fformat != ti->intr_fformat)
235		return (0);
236
237	return (1);
238}
239
240static int
241equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242{
243	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244}
245
246static int
247equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248{
249	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250	int i;
251
252	if (fn1->fn_nargs != fn2->fn_nargs ||
253	    fn1->fn_vargs != fn2->fn_vargs)
254		return (0);
255
256	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257		return (0);
258
259	for (i = 0; i < (int) fn1->fn_nargs; i++) {
260		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261			return (0);
262	}
263
264	return (1);
265}
266
267static int
268equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269{
270	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271
272	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274		return (0);
275
276	if (ar1->ad_nelems != ar2->ad_nelems)
277		return (0);
278
279	return (1);
280}
281
282static int
283equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284{
285	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286
287	while (ml1 && ml2) {
288		if (ml1->ml_offset != ml2->ml_offset ||
289		    strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
290		    ml1->ml_size != ml2->ml_size ||
291		    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
292			return (0);
293
294		ml1 = ml1->ml_next;
295		ml2 = ml2->ml_next;
296	}
297
298	if (ml1 || ml2)
299		return (0);
300
301	return (1);
302}
303
304/*ARGSUSED2*/
305static int
306equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
307{
308	elist_t *el1 = stdp->t_emem;
309	elist_t *el2 = ttdp->t_emem;
310
311	while (el1 && el2) {
312		if (el1->el_number != el2->el_number ||
313		    strcmp(el1->el_name, el2->el_name) != 0)
314			return (0);
315
316		el1 = el1->el_next;
317		el2 = el2->el_next;
318	}
319
320	if (el1 || el2)
321		return (0);
322
323	return (1);
324}
325
326/*ARGSUSED*/
327static int
328equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
329{
330	/* foul, evil, and very bad - this is a "shouldn't happen" */
331	assert(1 == 0);
332
333	return (0);
334}
335
336static int
337fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
338{
339	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
340
341	return (defn->t_type == STRUCT || defn->t_type == UNION ||
342	    defn->t_type == ENUM);
343}
344
345static int
346equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
347{
348	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
349	int mapping;
350
351	if (ctdp->t_emark > ed->ed_clear_mark &&
352	    mtdp->t_emark > ed->ed_clear_mark)
353		return (ctdp->t_emark == mtdp->t_emark);
354
355	/*
356	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
357	 * checking on a subgraph that has already been checked.  If a mapping
358	 * has already been established for a given child node, we can simply
359	 * compare the mapping for the child node with the ID of the parent
360	 * node.  If we are in self-uniquify mode, then we're comparing two
361	 * subgraphs within the child graph, and thus need to ignore any
362	 * type mappings that have been created, as they are only valid into the
363	 * parent.
364	 */
365	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
366	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
367		return (1);
368
369	if (!streq(ctdp->t_name, mtdp->t_name))
370		return (0);
371
372	if (ctdp->t_type != mtdp->t_type) {
373		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
374			return (fwd_equiv(ctdp, mtdp));
375		else
376			return (0);
377	}
378
379	ctdp->t_emark = ed->ed_cur_mark;
380	mtdp->t_emark = ed->ed_cur_mark;
381	ed->ed_cur_mark++;
382
383	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
384		return (equiv(ctdp, mtdp, ed));
385
386	return (1);
387}
388
389/*
390 * We perform an equivalency check on two subgraphs by traversing through them
391 * in lockstep.  If a given node is equivalent in both the parent and the child,
392 * we mark it in both subgraphs, using the t_emark field, with a monotonically
393 * increasing number.  If, in the course of the traversal, we reach a node that
394 * we have visited and numbered during this equivalency check, we have a cycle.
395 * If the previously-visited nodes don't have the same emark, then the edges
396 * that brought us to these nodes are not equivalent, and so the check ends.
397 * If the emarks are the same, the edges are equivalent.  We then backtrack and
398 * continue the traversal.  If we have exhausted all edges in the subgraph, and
399 * have not found any inequivalent nodes, then the subgraphs are equivalent.
400 */
401static int
402equiv_cb(void *bucket, void *arg)
403{
404	equiv_data_t *ed = arg;
405	tdesc_t *mtdp = bucket;
406	tdesc_t *ctdp = ed->ed_node;
407
408	ed->ed_clear_mark = ed->ed_cur_mark + 1;
409	ed->ed_cur_mark = ed->ed_clear_mark + 1;
410
411	if (equiv_node(ctdp, mtdp, ed)) {
412		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
413		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
414		ed->ed_tgt = mtdp;
415		/* matched.  stop looking */
416		return (-1);
417	}
418
419	return (0);
420}
421
422/*ARGSUSED1*/
423static int
424map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
425{
426	merge_cb_data_t *mcd = private;
427
428	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
429		return (0);
430
431	return (1);
432}
433
434/*ARGSUSED1*/
435static int
436map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
437{
438	merge_cb_data_t *mcd = private;
439	equiv_data_t ed;
440
441	ed.ed_ta = mcd->md_ta;
442	ed.ed_clear_mark = mcd->md_parent->td_curemark;
443	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
444	ed.ed_node = ctdp;
445	ed.ed_selfuniquify = 0;
446
447	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
448
449	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
450	    equiv_cb, &ed) < 0) {
451		/* We found an equivalent node */
452		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
453			int id = mcd->md_tgt->td_nextid++;
454
455			debug(3, "Creating new defn type %d <%x>\n", id, id);
456			add_mapping(mcd->md_ta, ctdp->t_id, id);
457			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
458			    (void *)(ulong_t)id);
459			hash_add(mcd->md_tdtba, ctdp);
460		} else
461			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
462
463	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
464	    equiv_cb, &ed) < 0) {
465		/*
466		 * We didn't find an equivalent node by looking through the
467		 * layout hash, but we somehow found it by performing an
468		 * exhaustive search through the entire graph.  This usually
469		 * means that the "name" hash function is broken.
470		 */
471		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
472		    tdesc_name(ctdp), ed.ed_tgt->t_id);
473	} else {
474		int id = mcd->md_tgt->td_nextid++;
475
476		debug(3, "Creating new type %d <%x>\n", id, id);
477		add_mapping(mcd->md_ta, ctdp->t_id, id);
478		hash_add(mcd->md_tdtba, ctdp);
479	}
480
481	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
482
483	return (1);
484}
485
486/*ARGSUSED1*/
487static int
488map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
489{
490	merge_cb_data_t *mcd = private;
491	equiv_data_t ed;
492
493	ed.ed_ta = mcd->md_ta;
494	ed.ed_clear_mark = mcd->md_parent->td_curemark;
495	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
496	ed.ed_node = ctdp;
497	ed.ed_selfuniquify = 1;
498	ed.ed_tgt = NULL;
499
500	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
501		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
502		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
503		add_mapping(mcd->md_ta, ctdp->t_id,
504		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
505	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
506	    equiv_cb, &ed) < 0) {
507		/*
508		 * We didn't find an equivalent node using the quick way (going
509		 * through the hash normally), but we did find it by iterating
510		 * through the entire hash.  This usually means that the hash
511		 * function is broken.
512		 */
513		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
514		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
515		    ed.ed_tgt->t_id);
516	} else {
517		int id = mcd->md_tgt->td_nextid++;
518
519		debug(3, "Creating new type %d <%x>\n", id, id);
520		add_mapping(mcd->md_ta, ctdp->t_id, id);
521		hash_add(mcd->md_tdtba, ctdp);
522	}
523
524	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
525
526	return (1);
527}
528
529static tdtrav_cb_f map_pre[] = {
530	NULL,
531	map_td_tree_pre,	/* intrinsic */
532	map_td_tree_pre,	/* pointer */
533	map_td_tree_pre,	/* array */
534	map_td_tree_pre,	/* function */
535	map_td_tree_pre,	/* struct */
536	map_td_tree_pre,	/* union */
537	map_td_tree_pre,	/* enum */
538	map_td_tree_pre,	/* forward */
539	map_td_tree_pre,	/* typedef */
540	tdtrav_assert,		/* typedef_unres */
541	map_td_tree_pre,	/* volatile */
542	map_td_tree_pre,	/* const */
543	map_td_tree_pre		/* restrict */
544};
545
546static tdtrav_cb_f map_post[] = {
547	NULL,
548	map_td_tree_post,	/* intrinsic */
549	map_td_tree_post,	/* pointer */
550	map_td_tree_post,	/* array */
551	map_td_tree_post,	/* function */
552	map_td_tree_post,	/* struct */
553	map_td_tree_post,	/* union */
554	map_td_tree_post,	/* enum */
555	map_td_tree_post,	/* forward */
556	map_td_tree_post,	/* typedef */
557	tdtrav_assert,		/* typedef_unres */
558	map_td_tree_post,	/* volatile */
559	map_td_tree_post,	/* const */
560	map_td_tree_post	/* restrict */
561};
562
563static tdtrav_cb_f map_self_post[] = {
564	NULL,
565	map_td_tree_self_post,	/* intrinsic */
566	map_td_tree_self_post,	/* pointer */
567	map_td_tree_self_post,	/* array */
568	map_td_tree_self_post,	/* function */
569	map_td_tree_self_post,	/* struct */
570	map_td_tree_self_post,	/* union */
571	map_td_tree_self_post,	/* enum */
572	map_td_tree_self_post,	/* forward */
573	map_td_tree_self_post,	/* typedef */
574	tdtrav_assert,		/* typedef_unres */
575	map_td_tree_self_post,	/* volatile */
576	map_td_tree_self_post,	/* const */
577	map_td_tree_self_post	/* restrict */
578};
579
580/*
581 * Determining equivalence of iidesc_t nodes
582 */
583
584typedef struct iifind_data {
585	iidesc_t *iif_template;
586	alist_t *iif_ta;
587	int iif_newidx;
588	int iif_refmerge;
589} iifind_data_t;
590
591/*
592 * Check to see if this iidesc_t (node) - the current one on the list we're
593 * iterating through - matches the target one (iif->iif_template).  Return -1
594 * if it matches, to stop the iteration.
595 */
596static int
597iidesc_match(void *data, void *arg)
598{
599	iidesc_t *node = data;
600	iifind_data_t *iif = arg;
601	int i;
602
603	if (node->ii_type != iif->iif_template->ii_type ||
604	    !streq(node->ii_name, iif->iif_template->ii_name) ||
605	    node->ii_dtype->t_id != iif->iif_newidx)
606		return (0);
607
608	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
609	    !streq(node->ii_owner, iif->iif_template->ii_owner))
610		return (0);
611
612	if (node->ii_nargs != iif->iif_template->ii_nargs)
613		return (0);
614
615	for (i = 0; i < node->ii_nargs; i++) {
616		if (get_mapping(iif->iif_ta,
617		    iif->iif_template->ii_args[i]->t_id) !=
618		    node->ii_args[i]->t_id)
619			return (0);
620	}
621
622	if (iif->iif_refmerge) {
623		switch (iif->iif_template->ii_type) {
624		case II_GFUN:
625		case II_SFUN:
626		case II_GVAR:
627		case II_SVAR:
628			debug(3, "suppressing duping of %d %s from %s\n",
629			    iif->iif_template->ii_type,
630			    iif->iif_template->ii_name,
631			    (iif->iif_template->ii_owner ?
632			    iif->iif_template->ii_owner : "NULL"));
633			return (0);
634		case II_NOT:
635		case II_PSYM:
636		case II_SOU:
637		case II_TYPE:
638			break;
639		}
640	}
641
642	return (-1);
643}
644
645static int
646merge_type_cb(void *data, void *arg)
647{
648	iidesc_t *sii = data;
649	merge_cb_data_t *mcd = arg;
650	iifind_data_t iif;
651	tdtrav_cb_f *post;
652
653	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
654
655	/* Map the tdesc nodes */
656	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
657	    mcd);
658
659	/* Map the iidesc nodes */
660	iif.iif_template = sii;
661	iif.iif_ta = mcd->md_ta;
662	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
663	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
664
665	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
666	    &iif) == 1)
667		/* successfully mapped */
668		return (1);
669
670	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
671	    sii->ii_type);
672
673	list_add(mcd->md_iitba, sii);
674
675	return (0);
676}
677
678static int
679remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
680    merge_cb_data_t *mcd)
681{
682	tdesc_t *tgt = NULL;
683	tdesc_t template;
684	int oldid = oldtgt->t_id;
685
686	if (oldid == selftid) {
687		*tgtp = newself;
688		return (1);
689	}
690
691	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
692		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
693
694	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
695	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
696	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
697	    (void *)&tgt))) {
698		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
699		    template.t_id, oldid, oldid);
700		*tgtp = oldtgt;
701		list_add(mcd->md_tdtbr, tgtp);
702		return (0);
703	}
704
705	*tgtp = tgt;
706	return (1);
707}
708
709static tdesc_t *
710conjure_template(tdesc_t *old, int newselfid)
711{
712	tdesc_t *new = xcalloc(sizeof (tdesc_t));
713
714	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
715	new->t_type = old->t_type;
716	new->t_size = old->t_size;
717	new->t_id = newselfid;
718	new->t_flags = old->t_flags;
719
720	return (new);
721}
722
723/*ARGSUSED2*/
724static tdesc_t *
725conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
726{
727	tdesc_t *new = conjure_template(old, newselfid);
728
729	new->t_intr = xmalloc(sizeof (intr_t));
730	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
731
732	return (new);
733}
734
735static tdesc_t *
736conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
737{
738	tdesc_t *new = conjure_template(old, newselfid);
739
740	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
741
742	return (new);
743}
744
745static tdesc_t *
746conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
747{
748	tdesc_t *new = conjure_template(old, newselfid);
749	fndef_t *nfn = xmalloc(sizeof (fndef_t));
750	fndef_t *ofn = old->t_fndef;
751	int i;
752
753	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
754
755	nfn->fn_nargs = ofn->fn_nargs;
756	nfn->fn_vargs = ofn->fn_vargs;
757
758	if (nfn->fn_nargs > 0)
759		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
760
761	for (i = 0; i < (int) ofn->fn_nargs; i++) {
762		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
763		    new, mcd);
764	}
765
766	new->t_fndef = nfn;
767
768	return (new);
769}
770
771static tdesc_t *
772conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
773{
774	tdesc_t *new = conjure_template(old, newselfid);
775	ardef_t *nar = xmalloc(sizeof (ardef_t));
776	ardef_t *oar = old->t_ardef;
777
778	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
779	    mcd);
780	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
781	    mcd);
782
783	nar->ad_nelems = oar->ad_nelems;
784
785	new->t_ardef = nar;
786
787	return (new);
788}
789
790static tdesc_t *
791conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
792{
793	tdesc_t *new = conjure_template(old, newselfid);
794	mlist_t *omem, **nmemp;
795
796	for (omem = old->t_members, nmemp = &new->t_members;
797	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
798		*nmemp = xmalloc(sizeof (mlist_t));
799		(*nmemp)->ml_offset = omem->ml_offset;
800		(*nmemp)->ml_size = omem->ml_size;
801		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
802		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
803		    old->t_id, new, mcd);
804	}
805	*nmemp = NULL;
806
807	return (new);
808}
809
810/*ARGSUSED2*/
811static tdesc_t *
812conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
813{
814	tdesc_t *new = conjure_template(old, newselfid);
815	elist_t *oel, **nelp;
816
817	for (oel = old->t_emem, nelp = &new->t_emem;
818	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
819		*nelp = xmalloc(sizeof (elist_t));
820		(*nelp)->el_name = xstrdup(oel->el_name);
821		(*nelp)->el_number = oel->el_number;
822	}
823	*nelp = NULL;
824
825	return (new);
826}
827
828/*ARGSUSED2*/
829static tdesc_t *
830conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
831{
832	tdesc_t *new = conjure_template(old, newselfid);
833
834	list_add(&mcd->md_tgt->td_fwdlist, new);
835
836	return (new);
837}
838
839/*ARGSUSED*/
840static tdesc_t *
841conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
842{
843	assert(1 == 0);
844	return (NULL);
845}
846
847static iidesc_t *
848conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
849{
850	iidesc_t *new = iidesc_dup(old);
851	int i;
852
853	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
854	for (i = 0; i < new->ii_nargs; i++) {
855		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
856		    mcd);
857	}
858
859	return (new);
860}
861
862static int
863fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
864{
865	alist_t *map = private;
866	void *defn;
867
868	if (!alist_find(map, (void *)fwd, (void **)&defn))
869		return (0);
870
871	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
872
873	*fwdp = defn;
874
875	return (1);
876}
877
878static tdtrav_cb_f fwd_redir_cbs[] = {
879	NULL,
880	NULL,			/* intrinsic */
881	NULL,			/* pointer */
882	NULL,			/* array */
883	NULL,			/* function */
884	NULL,			/* struct */
885	NULL,			/* union */
886	NULL,			/* enum */
887	fwd_redir,		/* forward */
888	NULL,			/* typedef */
889	tdtrav_assert,		/* typedef_unres */
890	NULL,			/* volatile */
891	NULL,			/* const */
892	NULL			/* restrict */
893};
894
895typedef struct redir_mstr_data {
896	tdata_t *rmd_tgt;
897	alist_t *rmd_map;
898} redir_mstr_data_t;
899
900static int
901redir_mstr_fwd_cb(void *name, void *value, void *arg)
902{
903	tdesc_t *fwd = name;
904	int defnid = (uintptr_t)value;
905	redir_mstr_data_t *rmd = arg;
906	tdesc_t template;
907	tdesc_t *defn;
908
909	template.t_id = defnid;
910
911	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
912	    (void *)&defn)) {
913		aborterr("Couldn't unforward %d (%s)\n", defnid,
914		    tdesc_name(defn));
915	}
916
917	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
918
919	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
920
921	return (1);
922}
923
924static void
925redir_mstr_fwds(merge_cb_data_t *mcd)
926{
927	redir_mstr_data_t rmd;
928	alist_t *map = alist_new(NULL, NULL);
929
930	rmd.rmd_tgt = mcd->md_tgt;
931	rmd.rmd_map = map;
932
933	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
934		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
935		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
936	}
937
938	alist_free(map);
939}
940
941static int
942add_iitba_cb(void *data, void *private)
943{
944	merge_cb_data_t *mcd = private;
945	iidesc_t *tba = data;
946	iidesc_t *new;
947	iifind_data_t iif;
948	int newidx;
949
950	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
951	assert(newidx != -1);
952
953	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
954
955	iif.iif_template = tba;
956	iif.iif_ta = mcd->md_ta;
957	iif.iif_newidx = newidx;
958	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
959
960	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
961	    &iif) == 1) {
962		debug(3, "iidesc_t %s already exists\n",
963		    (tba->ii_name ? tba->ii_name : "(anon)"));
964		return (1);
965	}
966
967	new = conjure_iidesc(tba, mcd);
968	hash_add(mcd->md_tgt->td_iihash, new);
969
970	return (1);
971}
972
973static int
974add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
975{
976	tdesc_t *newtdp;
977	tdesc_t template;
978
979	template.t_id = newid;
980	assert(hash_find(mcd->md_parent->td_idhash,
981	    (void *)&template, NULL) == 0);
982
983	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
984	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
985	    oldtdp->t_id, newid, newid);
986
987	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
988	    mcd)) == NULL)
989		/* couldn't map everything */
990		return (0);
991
992	debug(3, "succeeded\n");
993
994	hash_add(mcd->md_tgt->td_idhash, newtdp);
995	hash_add(mcd->md_tgt->td_layouthash, newtdp);
996
997	return (1);
998}
999
1000static int
1001add_tdtba_cb(void *data, void *arg)
1002{
1003	tdesc_t *tdp = data;
1004	merge_cb_data_t *mcd = arg;
1005	int newid;
1006	int rc;
1007
1008	newid = get_mapping(mcd->md_ta, tdp->t_id);
1009	assert(newid != -1);
1010
1011	if ((rc = add_tdesc(tdp, newid, mcd)))
1012		hash_remove(mcd->md_tdtba, (void *)tdp);
1013
1014	return (rc);
1015}
1016
1017static int
1018add_tdtbr_cb(void *data, void *arg)
1019{
1020	tdesc_t **tdpp = data;
1021	merge_cb_data_t *mcd = arg;
1022
1023	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1024
1025	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1026		return (0);
1027
1028	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1029	return (1);
1030}
1031
1032static void
1033merge_types(hash_t *src, merge_cb_data_t *mcd)
1034{
1035	list_t *iitba = NULL;
1036	list_t *tdtbr = NULL;
1037	int iirc, tdrc;
1038
1039	mcd->md_iitba = &iitba;
1040	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1041	    tdesc_layoutcmp);
1042	mcd->md_tdtbr = &tdtbr;
1043
1044	(void) hash_iter(src, merge_type_cb, mcd);
1045
1046	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1047	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1048
1049	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1050	debug(3, "add_iitba_cb added %d items\n", iirc);
1051
1052	assert(list_count(*mcd->md_iitba) == 0 &&
1053	    hash_count(mcd->md_tdtba) == 0);
1054
1055	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1056	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1057
1058	if (list_count(*mcd->md_tdtbr) != 0)
1059		aborterr("Couldn't remap all nodes\n");
1060
1061	/*
1062	 * We now have an alist of master forwards and the ids of the new master
1063	 * definitions for those forwards in mcd->md_fdida.  By this point,
1064	 * we're guaranteed that all of the master definitions referenced in
1065	 * fdida have been added to the master tree.  We now traverse through
1066	 * the master tree, redirecting all edges inbound to forwards that have
1067	 * definitions to those definitions.
1068	 */
1069	if (mcd->md_parent == mcd->md_tgt) {
1070		redir_mstr_fwds(mcd);
1071	}
1072}
1073
1074void
1075merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1076{
1077	merge_cb_data_t mcd;
1078
1079	cur->td_ref++;
1080	mstr->td_ref++;
1081	if (tgt)
1082		tgt->td_ref++;
1083
1084	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1085	    (tgt == NULL || tgt->td_ref == 1));
1086
1087	mcd.md_parent = mstr;
1088	mcd.md_tgt = (tgt ? tgt : mstr);
1089	mcd.md_ta = alist_new(NULL, NULL);
1090	mcd.md_fdida = alist_new(NULL, NULL);
1091	mcd.md_flags = 0;
1092
1093	if (selfuniquify)
1094		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1095	if (tgt)
1096		mcd.md_flags |= MCD_F_REFMERGE;
1097
1098	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1099	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1100
1101	merge_types(cur->td_iihash, &mcd);
1102
1103	if (debug_level >= 3) {
1104		debug(3, "Type association stats\n");
1105		alist_stats(mcd.md_ta, 0);
1106		debug(3, "Layout hash stats\n");
1107		hash_stats(mcd.md_tgt->td_layouthash, 1);
1108	}
1109
1110	alist_free(mcd.md_fdida);
1111	alist_free(mcd.md_ta);
1112
1113	cur->td_ref--;
1114	mstr->td_ref--;
1115	if (tgt)
1116		tgt->td_ref--;
1117}
1118
1119tdesc_ops_t tdesc_ops[] = {
1120	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1121	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1122	{ "pointer", 		equiv_plain,		conjure_plain },
1123	{ "array", 		equiv_array,		conjure_array },
1124	{ "function", 		equiv_function,		conjure_function },
1125	{ "struct",		equiv_su,		conjure_su },
1126	{ "union",		equiv_su,		conjure_su },
1127	{ "enum",		equiv_enum,		conjure_enum },
1128	{ "forward",		NULL,			conjure_forward },
1129	{ "typedef",		equiv_plain,		conjure_plain },
1130	{ "typedef_unres",	equiv_assert,		conjure_assert },
1131	{ "volatile",		equiv_plain,		conjure_plain },
1132	{ "const", 		equiv_plain,		conjure_plain },
1133	{ "restrict",		equiv_plain,		conjure_plain }
1134};
1135