1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * DWARF to tdata conversion
28 *
29 * For the most part, conversion is straightforward, proceeding in two passes.
30 * On the first pass, we iterate through every die, creating new type nodes as
31 * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32 * allowing type reference pointers to be filled in.  If the tdesc_t
33 * corresponding to a given die can be completely filled out (sizes and offsets
34 * calculated, and so forth) without using any referenced types, the tdesc_t is
35 * marked as resolved.  Consider an array type.  If the type corresponding to
36 * the array contents has not yet been processed, we will create a blank tdesc
37 * for the contents type (only the type ID will be filled in, relying upon the
38 * later portion of the first pass to encounter and complete the referenced
39 * type).  We will then attempt to determine the size of the array.  If the
40 * array has a byte size attribute, we will have completely characterized the
41 * array type, and will be able to mark it as resolved.  The lack of a byte
42 * size attribute, on the other hand, will prevent us from fully resolving the
43 * type, as the size will only be calculable with reference to the contents
44 * type, which has not, as yet, been encountered.  The array type will thus be
45 * left without the resolved flag, and the first pass will continue.
46 *
47 * When we begin the second pass, we will have created tdesc_t nodes for every
48 * type in the section.  We will traverse the tree, from the iidescs down,
49 * processing each unresolved node.  As the referenced nodes will have been
50 * populated, the array type used in our example above will be able to use the
51 * size of the referenced types (if available) to determine its own type.  The
52 * traversal will be repeated until all types have been resolved or we have
53 * failed to make progress.  When all tdescs have been resolved, the conversion
54 * is complete.
55 *
56 * There are, as always, a few special cases that are handled during the first
57 * and second passes:
58 *
59 *  1. Empty enums - GCC will occasionally emit an enum without any members.
60 *     Later on in the file, it will emit the same enum type, though this time
61 *     with the full complement of members.  All references to the memberless
62 *     enum need to be redirected to the full definition.  During the first
63 *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64 *     corresponding tdesc_t.  If, during the second pass, we encounter a
65 *     memberless enum, we use the hash to locate the full definition.  All
66 *     tdescs referencing the empty enum are then redirected.
67 *
68 *  2. Forward declarations - If the compiler sees a forward declaration for
69 *     a structure, followed by the definition of that structure, it will emit
70 *     DWARF data for both the forward declaration and the definition.  We need
71 *     to resolve the forward declarations when possible, by redirecting
72 *     forward-referencing tdescs to the actual struct/union definitions.  This
73 *     redirection is done completely within the first pass.  We begin by
74 *     recording all forward declarations in dw_fwdhash.  When we define a
75 *     structure, we check to see if there have been any corresponding forward
76 *     declarations.  If so, we redirect the tdescs which referenced the forward
77 *     declarations to the structure or union definition.
78 *
79 * XXX see if a post traverser will allow the elimination of repeated pass 2
80 * traversals.
81 */
82
83#include <stdio.h>
84#include <stdlib.h>
85#include <string.h>
86#include <strings.h>
87#include <errno.h>
88#include <libelf.h>
89#include <libdwarf.h>
90#include <libgen.h>
91#include <dwarf.h>
92
93#include "ctf_headers.h"
94#include "ctftools.h"
95#include "memory.h"
96#include "list.h"
97#include "traverse.h"
98
99/*
100 * We need to define a couple of our own intrinsics, to smooth out some of the
101 * differences between the GCC and DevPro DWARF emitters.  See the referenced
102 * routines and the special cases in the file comment for more details.
103 *
104 * Type IDs are 32 bits wide.  We're going to use the top of that field to
105 * indicate types that we've created ourselves.
106 */
107#define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
108#define	TID_VOID		0x40000001	/* see die_void() */
109#define	TID_LONG		0x40000002	/* see die_array() */
110
111#define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
112
113/*
114 * To reduce the staggering amount of error-handling code that would otherwise
115 * be required, the attribute-retrieval routines handle most of their own
116 * errors.  If the following flag is supplied as the value of the `req'
117 * argument, they will also handle the absence of a requested attribute by
118 * terminating the program.
119 */
120#define	DW_ATTR_REQ	1
121
122#define	TDESC_HASH_BUCKETS	511
123
124typedef struct dwarf {
125	Dwarf_Debug dw_dw;		/* for libdwarf */
126	Dwarf_Error dw_err;		/* for libdwarf */
127	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
128	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
129	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
130	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
131	hash_t *dw_enumhash;		/* hash of memberless enums by name */
132	tdesc_t *dw_void;		/* manufactured void type */
133	tdesc_t *dw_long;		/* manufactured long type for arrays */
134	size_t dw_ptrsz;		/* size of a pointer in this file */
135	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
136	uint_t dw_nunres;		/* count of unresolved types */
137	char *dw_cuname;		/* name of compilation unit */
138} dwarf_t;
139
140static void die_create_one(dwarf_t *, Dwarf_Die);
141static void die_create(dwarf_t *, Dwarf_Die);
142
143static tid_t
144mfgtid_next(dwarf_t *dw)
145{
146	return (++dw->dw_mfgtid_last);
147}
148
149static void
150tdesc_add(dwarf_t *dw, tdesc_t *tdp)
151{
152	hash_add(dw->dw_tidhash, tdp);
153}
154
155static tdesc_t *
156tdesc_lookup(dwarf_t *dw, int tid)
157{
158	tdesc_t tmpl;
159	void *tdp;
160
161	tmpl.t_id = tid;
162
163	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
164		return (tdp);
165	else
166		return (NULL);
167}
168
169/*
170 * Resolve a tdesc down to a node which should have a size.  Returns the size,
171 * zero if the size hasn't yet been determined.
172 */
173static size_t
174tdesc_size(tdesc_t *tdp)
175{
176	for (;;) {
177		switch (tdp->t_type) {
178		case INTRINSIC:
179		case POINTER:
180		case ARRAY:
181		case FUNCTION:
182		case STRUCT:
183		case UNION:
184		case ENUM:
185			return (tdp->t_size);
186
187		case FORWARD:
188			return (0);
189
190		case TYPEDEF:
191		case VOLATILE:
192		case CONST:
193		case RESTRICT:
194			tdp = tdp->t_tdesc;
195			continue;
196
197		case 0: /* not yet defined */
198			return (0);
199
200		default:
201			terminate("tdp %u: tdesc_size on unknown type %d\n",
202			    tdp->t_id, tdp->t_type);
203		}
204	}
205}
206
207static size_t
208tdesc_bitsize(tdesc_t *tdp)
209{
210	for (;;) {
211		switch (tdp->t_type) {
212		case INTRINSIC:
213			return (tdp->t_intr->intr_nbits);
214
215		case ARRAY:
216		case FUNCTION:
217		case STRUCT:
218		case UNION:
219		case ENUM:
220		case POINTER:
221			return (tdp->t_size * NBBY);
222
223		case FORWARD:
224			return (0);
225
226		case TYPEDEF:
227		case VOLATILE:
228		case RESTRICT:
229		case CONST:
230			tdp = tdp->t_tdesc;
231			continue;
232
233		case 0: /* not yet defined */
234			return (0);
235
236		default:
237			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
238			    tdp->t_id, tdp->t_type);
239		}
240	}
241}
242
243static tdesc_t *
244tdesc_basetype(tdesc_t *tdp)
245{
246	for (;;) {
247		switch (tdp->t_type) {
248		case TYPEDEF:
249		case VOLATILE:
250		case RESTRICT:
251		case CONST:
252			tdp = tdp->t_tdesc;
253			break;
254		case 0: /* not yet defined */
255			return (NULL);
256		default:
257			return (tdp);
258		}
259	}
260}
261
262static Dwarf_Off
263die_off(dwarf_t *dw, Dwarf_Die die)
264{
265	Dwarf_Off off;
266
267	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
268		return (off);
269
270	terminate("failed to get offset for die: %s\n",
271	    dwarf_errmsg(dw->dw_err));
272	/*NOTREACHED*/
273	return (0);
274}
275
276static Dwarf_Die
277die_sibling(dwarf_t *dw, Dwarf_Die die)
278{
279	Dwarf_Die sib;
280	int rc;
281
282	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
283	    DW_DLV_OK)
284		return (sib);
285	else if (rc == DW_DLV_NO_ENTRY)
286		return (NULL);
287
288	terminate("die %llu: failed to find type sibling: %s\n",
289	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
290	/*NOTREACHED*/
291	return (NULL);
292}
293
294static Dwarf_Die
295die_child(dwarf_t *dw, Dwarf_Die die)
296{
297	Dwarf_Die child;
298	int rc;
299
300	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
301		return (child);
302	else if (rc == DW_DLV_NO_ENTRY)
303		return (NULL);
304
305	terminate("die %llu: failed to find type child: %s\n",
306	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
307	/*NOTREACHED*/
308	return (NULL);
309}
310
311static Dwarf_Half
312die_tag(dwarf_t *dw, Dwarf_Die die)
313{
314	Dwarf_Half tag;
315
316	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
317		return (tag);
318
319	terminate("die %llu: failed to get tag for type: %s\n",
320	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
321	/*NOTREACHED*/
322	return (0);
323}
324
325static Dwarf_Attribute
326die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
327{
328	Dwarf_Attribute attr;
329	int rc;
330
331	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
332		return (attr);
333	} else if (rc == DW_DLV_NO_ENTRY) {
334		if (req) {
335			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
336			    name);
337		} else {
338			return (NULL);
339		}
340	}
341
342	terminate("die %llu: failed to get attribute for type: %s\n",
343	    die_off(dw, die), dwarf_errmsg(dw->dw_err));
344	/*NOTREACHED*/
345	return (NULL);
346}
347
348static int
349die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
350    int req)
351{
352	*valp = 0;
353	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
354		if (req)
355			terminate("die %llu: failed to get signed: %s\n",
356			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
357		return (0);
358	}
359
360	return (1);
361}
362
363static int
364die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
365    int req)
366{
367	*valp = 0;
368	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
369		if (req)
370			terminate("die %llu: failed to get unsigned: %s\n",
371			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
372		return (0);
373	}
374
375	return (1);
376}
377
378static int
379die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
380{
381	*valp = 0;
382
383	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
384		if (req)
385			terminate("die %llu: failed to get flag: %s\n",
386			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
387		return (0);
388	}
389
390	return (1);
391}
392
393static int
394die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
395{
396	const char *str = NULL;
397
398	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK ||
399	    str == NULL) {
400		if (req)
401			terminate("die %llu: failed to get string: %s\n",
402			    die_off(dw, die), dwarf_errmsg(dw->dw_err));
403		else
404			*strp = NULL;
405		return (0);
406	} else
407		*strp = xstrdup(str);
408
409	return (1);
410}
411
412static Dwarf_Off
413die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
414{
415	Dwarf_Off off;
416
417	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) {
418		terminate("die %llu: failed to get ref: %s\n",
419		    die_off(dw, die), dwarf_errmsg(dw->dw_err));
420	}
421
422	return (off);
423}
424
425static char *
426die_name(dwarf_t *dw, Dwarf_Die die)
427{
428	char *str = NULL;
429
430	(void) die_string(dw, die, DW_AT_name, &str, 0);
431	if (str == NULL)
432		str = xstrdup("");
433
434	return (str);
435}
436
437static int
438die_isdecl(dwarf_t *dw, Dwarf_Die die)
439{
440	Dwarf_Bool val;
441
442	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
443}
444
445static int
446die_isglobal(dwarf_t *dw, Dwarf_Die die)
447{
448	Dwarf_Signed vis;
449	Dwarf_Bool ext;
450
451	/*
452	 * Some compilers (gcc) use DW_AT_external to indicate function
453	 * visibility.  Others (Sun) use DW_AT_visibility.
454	 */
455	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
456		return (vis == DW_VIS_exported);
457	else
458		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
459}
460
461static tdesc_t *
462die_add(dwarf_t *dw, Dwarf_Off off)
463{
464	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
465
466	tdp->t_id = off;
467
468	tdesc_add(dw, tdp);
469
470	return (tdp);
471}
472
473static tdesc_t *
474die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
475{
476	Dwarf_Off ref = die_attr_ref(dw, die, name);
477	tdesc_t *tdp;
478
479	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
480		return (tdp);
481
482	return (die_add(dw, ref));
483}
484
485static int
486die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
487    Dwarf_Unsigned *valp, int req __unused)
488{
489	Dwarf_Locdesc *loc = NULL;
490	Dwarf_Signed locnum = 0;
491	Dwarf_Attribute at;
492	Dwarf_Half form;
493
494	if (name != DW_AT_data_member_location)
495		terminate("die %llu: can only process attribute "
496		    "DW_AT_data_member_location\n", die_off(dw, die));
497
498	if ((at = die_attr(dw, die, name, 0)) == NULL)
499		return (0);
500
501	if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
502		return (0);
503
504	switch (form) {
505	case DW_FORM_sec_offset:
506	case DW_FORM_block:
507	case DW_FORM_block1:
508	case DW_FORM_block2:
509	case DW_FORM_block4:
510		/*
511		 * GCC in base and Clang (3.3 or below) generates
512		 * DW_AT_data_member_location attribute with DW_FORM_block*
513		 * form. The attribute contains one DW_OP_plus_uconst
514		 * operator. The member offset stores in the operand.
515		 */
516		if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
517			return (0);
518		if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
519			terminate("die %llu: cannot parse member offset with "
520			    "operator other than DW_OP_plus_uconst\n",
521			    die_off(dw, die));
522		}
523		*valp = loc->ld_s->lr_number;
524		if (loc != NULL) {
525			dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
526			dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
527		}
528		break;
529
530	case DW_FORM_data1:
531	case DW_FORM_data2:
532	case DW_FORM_data4:
533	case DW_FORM_data8:
534	case DW_FORM_udata:
535		/*
536		 * Clang 3.4 generates DW_AT_data_member_location attribute
537		 * with DW_FORM_data* form (constant class). The attribute
538		 * stores a contant value which is the member offset.
539		 *
540		 * However, note that DW_FORM_data[48] in DWARF version 2 or 3
541		 * could be used as a section offset (offset into .debug_loc in
542		 * this case). Here we assume the attribute always stores a
543		 * constant because we know Clang 3.4 does this and GCC in
544		 * base won't emit DW_FORM_data[48] for this attribute. This
545		 * code will remain correct if future vesrions of Clang and
546		 * GCC conform to DWARF4 standard and only use the form
547		 * DW_FORM_sec_offset for section offset.
548		 */
549		if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
550		    DW_DLV_OK)
551			return (0);
552		break;
553
554	default:
555		terminate("die %llu: cannot parse member offset with form "
556		    "%u\n", die_off(dw, die), form);
557	}
558
559	return (1);
560}
561
562static tdesc_t *
563tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
564{
565	tdesc_t *tdp;
566	intr_t *intr;
567
568	intr = xcalloc(sizeof (intr_t));
569	intr->intr_type = INTR_INT;
570	intr->intr_signed = 1;
571	intr->intr_nbits = sz * NBBY;
572
573	tdp = xcalloc(sizeof (tdesc_t));
574	tdp->t_name = xstrdup(name);
575	tdp->t_size = sz;
576	tdp->t_id = tid;
577	tdp->t_type = INTRINSIC;
578	tdp->t_intr = intr;
579	tdp->t_flags = TDESC_F_RESOLVED;
580
581	tdesc_add(dw, tdp);
582
583	return (tdp);
584}
585
586/*
587 * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
588 * type reference implies a reference to a void type.  A void *, for example
589 * will be represented by a pointer die without a DW_AT_type.  CTF requires
590 * that pointer nodes point to something, so we'll create a void for use as
591 * the target.  Note that the DWARF data may already create a void type.  Ours
592 * would then be a duplicate, but it'll be removed in the self-uniquification
593 * merge performed at the completion of DWARF->tdesc conversion.
594 */
595static tdesc_t *
596tdesc_intr_void(dwarf_t *dw)
597{
598	if (dw->dw_void == NULL)
599		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
600
601	return (dw->dw_void);
602}
603
604static tdesc_t *
605tdesc_intr_long(dwarf_t *dw)
606{
607	if (dw->dw_long == NULL) {
608		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
609		    dw->dw_ptrsz);
610	}
611
612	return (dw->dw_long);
613}
614
615/*
616 * Used for creating bitfield types.  We create a copy of an existing intrinsic,
617 * adjusting the size of the copy to match what the caller requested.  The
618 * caller can then use the copy as the type for a bitfield structure member.
619 */
620static tdesc_t *
621tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz, const char *suffix)
622{
623	tdesc_t *new = xcalloc(sizeof (tdesc_t));
624
625	if (!(old->t_flags & TDESC_F_RESOLVED)) {
626		terminate("tdp %u: attempt to make a bit field from an "
627		    "unresolved type\n", old->t_id);
628	}
629
630	xasprintf(&new->t_name, "%s %s", old->t_name, suffix);
631	new->t_size = old->t_size;
632	new->t_id = mfgtid_next(dw);
633	new->t_type = INTRINSIC;
634	new->t_flags = TDESC_F_RESOLVED;
635
636	new->t_intr = xcalloc(sizeof (intr_t));
637	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
638	new->t_intr->intr_nbits = bitsz;
639
640	tdesc_add(dw, new);
641
642	return (new);
643}
644
645static void
646tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
647    tdesc_t *dimtdp)
648{
649	Dwarf_Unsigned uval;
650	Dwarf_Signed sval;
651	tdesc_t *ctdp = NULL;
652	Dwarf_Die dim2;
653	ardef_t *ar;
654
655	if ((dim2 = die_sibling(dw, dim)) == NULL) {
656		ctdp = arrtdp;
657	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
658		ctdp = xcalloc(sizeof (tdesc_t));
659		ctdp->t_id = mfgtid_next(dw);
660		debug(3, "die %llu: creating new type %u for sub-dimension\n",
661		    die_off(dw, dim2), ctdp->t_id);
662		tdesc_array_create(dw, dim2, arrtdp, ctdp);
663	} else {
664		terminate("die %llu: unexpected non-subrange node in array\n",
665		    die_off(dw, dim2));
666	}
667
668	dimtdp->t_type = ARRAY;
669	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
670
671	/*
672	 * Array bounds can be signed or unsigned, but there are several kinds
673	 * of signless forms (data1, data2, etc) that take their sign from the
674	 * routine that is trying to interpret them.  That is, data1 can be
675	 * either signed or unsigned, depending on whether you use the signed or
676	 * unsigned accessor function.  GCC will use the signless forms to store
677	 * unsigned values which have their high bit set, so we need to try to
678	 * read them first as unsigned to get positive values.  We could also
679	 * try signed first, falling back to unsigned if we got a negative
680	 * value.
681	 */
682	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
683		ar->ad_nelems = uval + 1;
684	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
685		ar->ad_nelems = sval + 1;
686	else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0))
687		ar->ad_nelems = uval;
688	else if (die_signed(dw, dim, DW_AT_count, &sval, 0))
689		ar->ad_nelems = sval;
690	else
691		ar->ad_nelems = 0;
692
693	/*
694	 * Different compilers use different index types.  Force the type to be
695	 * a common, known value (long).
696	 */
697	ar->ad_idxtype = tdesc_intr_long(dw);
698	ar->ad_contents = ctdp;
699
700	if (ar->ad_contents->t_size != 0) {
701		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
702		dimtdp->t_flags |= TDESC_F_RESOLVED;
703	}
704}
705
706/*
707 * Create a tdesc from an array node.  Some arrays will come with byte size
708 * attributes, and thus can be resolved immediately.  Others don't, and will
709 * need to wait until the second pass for resolution.
710 */
711static void
712die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
713{
714	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
715	Dwarf_Unsigned uval;
716	Dwarf_Die dim;
717
718	debug(3, "die %llu <%llx>: creating array\n", off, off);
719
720	if ((dim = die_child(dw, arr)) == NULL ||
721	    die_tag(dw, dim) != DW_TAG_subrange_type)
722		terminate("die %llu: failed to retrieve array bounds\n", off);
723
724	tdesc_array_create(dw, dim, arrtdp, tdp);
725
726	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
727		tdesc_t *dimtdp;
728		int flags;
729
730		tdp->t_size = uval;
731
732		/*
733		 * Ensure that sub-dimensions have sizes too before marking
734		 * as resolved.
735		 */
736		flags = TDESC_F_RESOLVED;
737		for (dimtdp = tdp->t_ardef->ad_contents;
738		    dimtdp->t_type == ARRAY;
739		    dimtdp = dimtdp->t_ardef->ad_contents) {
740			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
741				flags = 0;
742				break;
743			}
744		}
745
746		tdp->t_flags |= flags;
747	}
748
749	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
750	    tdp->t_ardef->ad_nelems, tdp->t_size);
751}
752
753/*ARGSUSED1*/
754static int
755die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
756{
757	dwarf_t *dw = private;
758	size_t sz;
759
760	if (tdp->t_flags & TDESC_F_RESOLVED)
761		return (1);
762
763	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
764	    tdp->t_ardef->ad_contents->t_id);
765
766	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 &&
767	    (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) {
768		debug(3, "unable to resolve array %s (%d) contents %d\n",
769		    tdesc_name(tdp), tdp->t_id,
770		    tdp->t_ardef->ad_contents->t_id);
771
772		dw->dw_nunres++;
773		return (1);
774	}
775
776	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
777	tdp->t_flags |= TDESC_F_RESOLVED;
778
779	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
780
781	return (1);
782}
783
784/*ARGSUSED1*/
785static int
786die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
787{
788	tdesc_t *cont = tdp->t_ardef->ad_contents;
789
790	if (tdp->t_flags & TDESC_F_RESOLVED)
791		return (1);
792
793	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
794	    tdp->t_id, tdesc_name(cont), cont->t_id);
795
796	return (1);
797}
798
799/*
800 * Most enums (those with members) will be resolved during this first pass.
801 * Others - those without members (see the file comment) - won't be, and will
802 * need to wait until the second pass when they can be matched with their full
803 * definitions.
804 */
805static void
806die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
807{
808	Dwarf_Die mem;
809	Dwarf_Unsigned uval;
810	Dwarf_Signed sval;
811
812	if (die_isdecl(dw, die)) {
813		tdp->t_type = FORWARD;
814		return;
815	}
816
817	debug(3, "die %llu: creating enum\n", off);
818
819	tdp->t_type = ENUM;
820
821	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
822	tdp->t_size = uval;
823
824	if ((mem = die_child(dw, die)) != NULL) {
825		elist_t **elastp = &tdp->t_emem;
826
827		do {
828			elist_t *el;
829
830			if (die_tag(dw, mem) != DW_TAG_enumerator) {
831				/* Nested type declaration */
832				die_create_one(dw, mem);
833				continue;
834			}
835
836			el = xcalloc(sizeof (elist_t));
837			el->el_name = die_name(dw, mem);
838
839			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
840				el->el_number = sval;
841			} else if (die_unsigned(dw, mem, DW_AT_const_value,
842			    &uval, 0)) {
843				el->el_number = uval;
844			} else {
845				terminate("die %llu: enum %llu: member without "
846				    "value\n", off, die_off(dw, mem));
847			}
848
849			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
850			    die_off(dw, mem), el->el_name, el->el_number);
851
852			*elastp = el;
853			elastp = &el->el_next;
854
855		} while ((mem = die_sibling(dw, mem)) != NULL);
856
857		hash_add(dw->dw_enumhash, tdp);
858
859		tdp->t_flags |= TDESC_F_RESOLVED;
860
861		if (tdp->t_name != NULL) {
862			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
863			ii->ii_type = II_SOU;
864			ii->ii_name = xstrdup(tdp->t_name);
865			ii->ii_dtype = tdp;
866
867			iidesc_add(dw->dw_td->td_iihash, ii);
868		}
869	}
870}
871
872static int
873die_enum_match(void *arg1, void *arg2)
874{
875	tdesc_t *tdp = arg1, **fullp = arg2;
876
877	if (tdp->t_emem != NULL) {
878		*fullp = tdp;
879		return (-1); /* stop the iteration */
880	}
881
882	return (0);
883}
884
885/*ARGSUSED1*/
886static int
887die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
888{
889	dwarf_t *dw = private;
890	tdesc_t *full = NULL;
891
892	if (tdp->t_flags & TDESC_F_RESOLVED)
893		return (1);
894
895	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
896
897	/*
898	 * The answer to this one won't change from iteration to iteration,
899	 * so don't even try.
900	 */
901	if (full == NULL) {
902		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
903		    tdesc_name(tdp));
904	}
905
906	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
907	    tdesc_name(tdp), full->t_id);
908
909	tdp->t_flags |= TDESC_F_RESOLVED;
910
911	return (1);
912}
913
914static int
915die_fwd_map(void *arg1, void *arg2)
916{
917	tdesc_t *fwd = arg1, *sou = arg2;
918
919	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
920	    tdesc_name(fwd), sou->t_id);
921	fwd->t_tdesc = sou;
922
923	return (0);
924}
925
926/*
927 * Structures and unions will never be resolved during the first pass, as we
928 * won't be able to fully determine the member sizes.  The second pass, which
929 * have access to sizing information, will be able to complete the resolution.
930 */
931static void
932die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
933    int type, const char *typename)
934{
935	Dwarf_Unsigned sz, bitsz, bitoff;
936#if BYTE_ORDER == _LITTLE_ENDIAN
937	Dwarf_Unsigned bysz;
938#endif
939	Dwarf_Die mem;
940	mlist_t *ml, **mlastp;
941	iidesc_t *ii;
942
943	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
944
945	debug(3, "die %llu: creating %s %s\n", off,
946	    (tdp->t_type == FORWARD ? "forward decl" : typename),
947	    tdesc_name(tdp));
948
949	if (tdp->t_type == FORWARD) {
950		hash_add(dw->dw_fwdhash, tdp);
951		return;
952	}
953
954	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
955
956	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
957	tdp->t_size = sz;
958
959	/*
960	 * GCC allows empty SOUs as an extension.
961	 */
962	if ((mem = die_child(dw, str)) == NULL) {
963		goto out;
964	}
965
966	mlastp = &tdp->t_members;
967
968	do {
969		Dwarf_Off memoff = die_off(dw, mem);
970		Dwarf_Half tag = die_tag(dw, mem);
971		Dwarf_Unsigned mloff;
972
973		if (tag != DW_TAG_member) {
974			/* Nested type declaration */
975			die_create_one(dw, mem);
976			continue;
977		}
978
979		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
980
981		ml = xcalloc(sizeof (mlist_t));
982
983		/*
984		 * This could be a GCC anon struct/union member, so we'll allow
985		 * an empty name, even though nothing can really handle them
986		 * properly.  Note that some versions of GCC miss out debug
987		 * info for anon structs, though recent versions are fixed (gcc
988		 * bug 11816).
989		 */
990		if ((ml->ml_name = die_name(dw, mem)) == NULL)
991			ml->ml_name = NULL;
992
993		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
994
995		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
996		    &mloff, 0)) {
997			debug(3, "die %llu: got mloff %llx\n", off,
998			    (u_longlong_t)mloff);
999			ml->ml_offset = mloff * 8;
1000		}
1001
1002		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1003			ml->ml_size = bitsz;
1004		else
1005			ml->ml_size = tdesc_bitsize(ml->ml_type);
1006
1007		if (die_unsigned(dw, mem, DW_AT_data_bit_offset, &bitoff, 0)) {
1008			ml->ml_offset += bitoff;
1009		} else if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1010#if BYTE_ORDER == _BIG_ENDIAN
1011			ml->ml_offset += bitoff;
1012#else
1013			/*
1014			 * Note that Clang 3.4 will sometimes generate
1015			 * member DIE before generating the DIE for the
1016			 * member's type. The code can not handle this
1017			 * properly so that tdesc_bitsize(ml->ml_type) will
1018			 * return 0 because ml->ml_type is unknown. As a
1019			 * result, a wrong member offset will be calculated.
1020			 * To workaround this, we can instead try to
1021			 * retrieve the value of DW_AT_byte_size attribute
1022			 * which stores the byte size of the space occupied
1023			 * by the type. If this attribute exists, its value
1024			 * should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1025			 */
1026			if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1027			    bysz > 0)
1028				ml->ml_offset += bysz * NBBY - bitoff -
1029				    ml->ml_size;
1030			else
1031				ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1032				    bitoff - ml->ml_size;
1033#endif
1034		}
1035
1036		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1037		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1038
1039		*mlastp = ml;
1040		mlastp = &ml->ml_next;
1041	} while ((mem = die_sibling(dw, mem)) != NULL);
1042
1043	/*
1044	 * GCC will attempt to eliminate unused types, thus decreasing the
1045	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
1046	 * header, include said header in your source file, and neglect to
1047	 * actually use (directly or indirectly) the foo_t in the source file,
1048	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1049	 * the theory.
1050	 *
1051	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1052	 * and then neglect to emit the members.  Strangely, the loner struct
1053	 * tag will always be followed by a proper nested declaration of
1054	 * something else.  This is clearly a bug, but we're not going to have
1055	 * time to get it fixed before this goo goes back, so we'll have to work
1056	 * around it.  If we see a no-membered struct with a nested declaration
1057	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1058	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1059	 * we'll decline to create an iidesc for it, thus ensuring that this
1060	 * type won't make it into the output file.  To be safe, we'll also
1061	 * change the name.
1062	 */
1063	if (tdp->t_members == NULL) {
1064		const char *old = tdesc_name(tdp);
1065		size_t newsz = 7 + strlen(old) + 1;
1066		char *new = xmalloc(newsz);
1067		(void) snprintf(new, newsz, "orphan %s", old);
1068
1069		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1070
1071		if (tdp->t_name != NULL)
1072			free(tdp->t_name);
1073		tdp->t_name = new;
1074		return;
1075	}
1076
1077out:
1078	if (tdp->t_name != NULL) {
1079		ii = xcalloc(sizeof (iidesc_t));
1080		ii->ii_type = II_SOU;
1081		ii->ii_name = xstrdup(tdp->t_name);
1082		ii->ii_dtype = tdp;
1083
1084		iidesc_add(dw->dw_td->td_iihash, ii);
1085	}
1086}
1087
1088static void
1089die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1090{
1091	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1092}
1093
1094static void
1095die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1096{
1097	die_sou_create(dw, die, off, tdp, UNION, "union");
1098}
1099
1100/*ARGSUSED1*/
1101static int
1102die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1103{
1104	dwarf_t *dw = private;
1105	mlist_t *ml;
1106	tdesc_t *mt;
1107
1108	if (tdp->t_flags & TDESC_F_RESOLVED)
1109		return (1);
1110
1111	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1112
1113	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1114		if (ml->ml_size == 0) {
1115			mt = tdesc_basetype(ml->ml_type);
1116
1117			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1118				continue;
1119
1120			/*
1121			 * For empty members, or GCC/C99 flexible array
1122			 * members, a size of 0 is correct. Structs and unions
1123			 * consisting of flexible array members will also have
1124			 * size 0.
1125			 */
1126			if (mt->t_members == NULL)
1127				continue;
1128			if (mt->t_type == ARRAY) {
1129				if (mt->t_ardef->ad_nelems == 0)
1130					continue;
1131				mt = tdesc_basetype(mt->t_ardef->ad_contents);
1132				if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1133				    (mt->t_type == STRUCT ||
1134				    mt->t_type == UNION) &&
1135				    mt->t_members == NULL)
1136					continue;
1137			}
1138			if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1139			    (mt->t_type == STRUCT || mt->t_type == UNION))
1140				continue;
1141
1142			dw->dw_nunres++;
1143			return (1);
1144		}
1145
1146		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1147			dw->dw_nunres++;
1148			return (1);
1149		}
1150
1151		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1152		    mt->t_intr->intr_nbits != ml->ml_size) {
1153			/*
1154			 * This member is a bitfield, and needs to reference
1155			 * an intrinsic type with the same width.  If the
1156			 * currently-referenced type isn't of the same width,
1157			 * we'll copy it, adjusting the width of the copy to
1158			 * the size we'd like.
1159			 */
1160			debug(3, "tdp %u: creating bitfield for %d bits\n",
1161			    tdp->t_id, ml->ml_size);
1162
1163			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size,
1164			    "bitfield");
1165		}
1166	}
1167
1168	tdp->t_flags |= TDESC_F_RESOLVED;
1169
1170	return (1);
1171}
1172
1173/*ARGSUSED1*/
1174static int
1175die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1176{
1177	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1178	mlist_t *ml;
1179
1180	if (tdp->t_flags & TDESC_F_RESOLVED)
1181		return (1);
1182
1183	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1184		if (ml->ml_size == 0) {
1185			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1186			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1187			    tdp->t_id,
1188			    ml->ml_name, tdesc_name(ml->ml_type),
1189			    ml->ml_type->t_id, ml->ml_type->t_id);
1190		}
1191	}
1192
1193	return (1);
1194}
1195
1196static void
1197die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1198{
1199	Dwarf_Attribute attr;
1200	Dwarf_Half tag;
1201	Dwarf_Die arg;
1202	fndef_t *fn;
1203	int i;
1204
1205	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1206
1207	/*
1208	 * We'll begin by processing any type definition nodes that may be
1209	 * lurking underneath this one.
1210	 */
1211	for (arg = die_child(dw, die); arg != NULL;
1212	    arg = die_sibling(dw, arg)) {
1213		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1214		    tag != DW_TAG_unspecified_parameters) {
1215			/* Nested type declaration */
1216			die_create_one(dw, arg);
1217		}
1218	}
1219
1220	if (die_isdecl(dw, die)) {
1221		/*
1222		 * This is a prototype.  We don't add prototypes to the
1223		 * tree, so we're going to drop the tdesc.  Unfortunately,
1224		 * it has already been added to the tree.  Nobody will reference
1225		 * it, though, and it will be leaked.
1226		 */
1227		return;
1228	}
1229
1230	fn = xcalloc(sizeof (fndef_t));
1231
1232	tdp->t_type = FUNCTION;
1233
1234	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1235		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1236	} else {
1237		fn->fn_ret = tdesc_intr_void(dw);
1238	}
1239
1240	/*
1241	 * Count the arguments to the function, then read them in.
1242	 */
1243	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1244	    arg = die_sibling(dw, arg)) {
1245		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1246			fn->fn_nargs++;
1247		else if (tag == DW_TAG_unspecified_parameters &&
1248		    fn->fn_nargs > 0)
1249			fn->fn_vargs = 1;
1250	}
1251
1252	if (fn->fn_nargs != 0) {
1253		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1254		    (fn->fn_nargs > 1 ? "s" : ""));
1255
1256		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1257		for (i = 0, arg = die_child(dw, die);
1258		    arg != NULL && i < (int) fn->fn_nargs;
1259		    arg = die_sibling(dw, arg)) {
1260			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1261				continue;
1262
1263			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1264			    DW_AT_type);
1265		}
1266	}
1267
1268	tdp->t_fndef = fn;
1269	tdp->t_flags |= TDESC_F_RESOLVED;
1270}
1271
1272/*
1273 * GCC and DevPro use different names for the base types.  While the terms are
1274 * the same, they are arranged in a different order.  Some terms, such as int,
1275 * are implied in one, and explicitly named in the other.  Given a base type
1276 * as input, this routine will return a common name, along with an intr_t
1277 * that reflects said name.
1278 */
1279static intr_t *
1280die_base_name_parse(const char *name, char **newp)
1281{
1282	char buf[256];
1283	char const *base;
1284	char *c;
1285	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1286	int sign = 1;
1287	char fmt = '\0';
1288	intr_t *intr;
1289
1290	if (strlen(name) > sizeof (buf) - 1)
1291		terminate("base type name \"%s\" is too long\n", name);
1292
1293	strncpy(buf, name, sizeof (buf));
1294
1295	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1296		if (strcmp(c, "signed") == 0)
1297			sign = 1;
1298		else if (strcmp(c, "unsigned") == 0)
1299			sign = 0;
1300		else if (strcmp(c, "long") == 0)
1301			nlong++;
1302		else if (strcmp(c, "char") == 0) {
1303			nchar++;
1304			fmt = 'c';
1305		} else if (strcmp(c, "short") == 0)
1306			nshort++;
1307		else if (strcmp(c, "int") == 0)
1308			nint++;
1309		else {
1310			/*
1311			 * If we don't recognize any of the tokens, we'll tell
1312			 * the caller to fall back to the dwarf-provided
1313			 * encoding information.
1314			 */
1315			return (NULL);
1316		}
1317	}
1318
1319	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1320		return (NULL);
1321
1322	if (nchar > 0) {
1323		if (nlong > 0 || nshort > 0 || nint > 0)
1324			return (NULL);
1325
1326		base = "char";
1327
1328	} else if (nshort > 0) {
1329		if (nlong > 0)
1330			return (NULL);
1331
1332		base = "short";
1333
1334	} else if (nlong > 0) {
1335		base = "long";
1336
1337	} else {
1338		base = "int";
1339	}
1340
1341	intr = xcalloc(sizeof (intr_t));
1342	intr->intr_type = INTR_INT;
1343	intr->intr_signed = sign;
1344	intr->intr_iformat = fmt;
1345
1346	snprintf(buf, sizeof (buf), "%s%s%s",
1347	    (sign ? "" : "unsigned "),
1348	    (nlong > 1 ? "long " : ""),
1349	    base);
1350
1351	*newp = xstrdup(buf);
1352	return (intr);
1353}
1354
1355typedef struct fp_size_map {
1356	size_t fsm_typesz[2];	/* size of {32,64} type */
1357	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1358} fp_size_map_t;
1359
1360static const fp_size_map_t fp_encodings[] = {
1361	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1362	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1363#ifdef __sparc
1364	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1365#else
1366	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1367#endif
1368	{ { 0, 0 }, { 0, 0, 0 } }
1369};
1370
1371static uint_t
1372die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Unsigned enc, size_t sz)
1373{
1374	const fp_size_map_t *map = fp_encodings;
1375	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1376	uint_t mult = 1, col = 0;
1377
1378	if (enc == DW_ATE_complex_float) {
1379		mult = 2;
1380		col = 1;
1381	} else if (enc == DW_ATE_imaginary_float
1382#ifdef illumos
1383	    || enc == DW_ATE_SUN_imaginary_float
1384#endif
1385	    )
1386		col = 2;
1387
1388	while (map->fsm_typesz[szidx] != 0) {
1389		if (map->fsm_typesz[szidx] * mult == sz)
1390			return (map->fsm_enc[col]);
1391		map++;
1392	}
1393
1394	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1395	/*NOTREACHED*/
1396	return (0);
1397}
1398
1399static intr_t *
1400die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1401{
1402	intr_t *intr = xcalloc(sizeof (intr_t));
1403	Dwarf_Unsigned enc;
1404
1405	(void) die_unsigned(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1406
1407	switch (enc) {
1408	case DW_ATE_unsigned:
1409	case DW_ATE_address:
1410		intr->intr_type = INTR_INT;
1411		break;
1412	case DW_ATE_unsigned_char:
1413		intr->intr_type = INTR_INT;
1414		intr->intr_iformat = 'c';
1415		break;
1416	case DW_ATE_signed:
1417		intr->intr_type = INTR_INT;
1418		intr->intr_signed = 1;
1419		break;
1420	case DW_ATE_signed_char:
1421		intr->intr_type = INTR_INT;
1422		intr->intr_signed = 1;
1423		intr->intr_iformat = 'c';
1424		break;
1425	case DW_ATE_boolean:
1426		intr->intr_type = INTR_INT;
1427		intr->intr_signed = 1;
1428		intr->intr_iformat = 'b';
1429		break;
1430	case DW_ATE_float:
1431	case DW_ATE_complex_float:
1432	case DW_ATE_imaginary_float:
1433#ifdef illumos
1434	case DW_ATE_SUN_imaginary_float:
1435	case DW_ATE_SUN_interval_float:
1436#endif
1437		intr->intr_type = INTR_REAL;
1438		intr->intr_signed = 1;
1439		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1440		break;
1441	default:
1442		terminate("die %llu: unknown base type encoding 0x%llx\n",
1443		    off, enc);
1444	}
1445
1446	return (intr);
1447}
1448
1449static void
1450die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1451{
1452	Dwarf_Unsigned sz;
1453	intr_t *intr;
1454	char *new;
1455
1456	debug(3, "die %llu: creating base type\n", off);
1457
1458	/*
1459	 * The compilers have their own clever (internally inconsistent) ideas
1460	 * as to what base types should look like.  Some times gcc will, for
1461	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1462	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1463	 * down the road, particularly with merging.  We do, however, use the
1464	 * DWARF idea of type sizes, as this allows us to avoid caring about
1465	 * the data model.
1466	 */
1467	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1468
1469	if (tdp->t_name == NULL)
1470		terminate("die %llu: base type without name\n", off);
1471
1472	/* XXX make a name parser for float too */
1473	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1474		/* Found it.  We'll use the parsed version */
1475		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1476		    tdesc_name(tdp), new);
1477
1478		free(tdp->t_name);
1479		tdp->t_name = new;
1480	} else {
1481		/*
1482		 * We didn't recognize the type, so we'll create an intr_t
1483		 * based on the DWARF data.
1484		 */
1485		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1486		    tdesc_name(tdp));
1487
1488		intr = die_base_from_dwarf(dw, base, off, sz);
1489	}
1490
1491	intr->intr_nbits = sz * 8;
1492
1493	tdp->t_type = INTRINSIC;
1494	tdp->t_intr = intr;
1495	tdp->t_size = sz;
1496
1497	tdp->t_flags |= TDESC_F_RESOLVED;
1498}
1499
1500static void
1501die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1502    int type, const char *typename)
1503{
1504	Dwarf_Attribute attr;
1505
1506	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1507
1508	tdp->t_type = type;
1509
1510	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1511		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1512	} else {
1513		tdp->t_tdesc = tdesc_intr_void(dw);
1514	}
1515
1516	if (type == POINTER)
1517		tdp->t_size = dw->dw_ptrsz;
1518
1519	tdp->t_flags |= TDESC_F_RESOLVED;
1520
1521	if (type == TYPEDEF) {
1522		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1523		ii->ii_type = II_TYPE;
1524		ii->ii_name = xstrdup(tdp->t_name);
1525		ii->ii_dtype = tdp;
1526
1527		iidesc_add(dw->dw_td->td_iihash, ii);
1528	}
1529}
1530
1531static void
1532die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1533{
1534	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1535}
1536
1537static void
1538die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1539{
1540	die_through_create(dw, die, off, tdp, CONST, "const");
1541}
1542
1543static void
1544die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1545{
1546	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1547}
1548
1549static void
1550die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1551{
1552	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1553}
1554
1555static void
1556die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1557{
1558	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1559}
1560
1561/*ARGSUSED3*/
1562static void
1563die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1564{
1565	Dwarf_Die arg;
1566	Dwarf_Half tag;
1567	iidesc_t *ii;
1568	char *name;
1569
1570	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1571
1572	/*
1573	 * We'll begin by processing any type definition nodes that may be
1574	 * lurking underneath this one.
1575	 */
1576	for (arg = die_child(dw, die); arg != NULL;
1577	    arg = die_sibling(dw, arg)) {
1578		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1579		    tag != DW_TAG_variable) {
1580			/* Nested type declaration */
1581			die_create_one(dw, arg);
1582		}
1583	}
1584
1585	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1586		/*
1587		 * We process neither prototypes nor subprograms without
1588		 * names.
1589		 */
1590		return;
1591	}
1592
1593	ii = xcalloc(sizeof (iidesc_t));
1594	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1595	ii->ii_name = name;
1596	if (ii->ii_type == II_SFUN)
1597		ii->ii_owner = xstrdup(dw->dw_cuname);
1598
1599	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1600	    (ii->ii_type == II_GFUN ? "global" : "static"));
1601
1602	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1603		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1604	else
1605		ii->ii_dtype = tdesc_intr_void(dw);
1606
1607	for (arg = die_child(dw, die); arg != NULL;
1608	    arg = die_sibling(dw, arg)) {
1609		char *name1;
1610
1611		debug(3, "die %llu: looking at sub member at %llu\n",
1612		    off, die_off(dw, die));
1613
1614		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1615			continue;
1616
1617		if ((name1 = die_name(dw, arg)) == NULL) {
1618			terminate("die %llu: func arg %d has no name\n",
1619			    off, ii->ii_nargs + 1);
1620		}
1621
1622		if (strcmp(name1, "...") == 0) {
1623			free(name1);
1624			ii->ii_vargs = 1;
1625			continue;
1626		}
1627		free(name1);
1628
1629		ii->ii_nargs++;
1630	}
1631
1632	if (ii->ii_nargs > 0) {
1633		int i;
1634
1635		debug(3, "die %llu: function has %d argument%s\n", off,
1636		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1637
1638		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1639
1640		for (arg = die_child(dw, die), i = 0;
1641		    arg != NULL && i < ii->ii_nargs;
1642		    arg = die_sibling(dw, arg)) {
1643			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1644				continue;
1645
1646			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1647			    DW_AT_type);
1648		}
1649	}
1650
1651	iidesc_add(dw->dw_td->td_iihash, ii);
1652}
1653
1654/*ARGSUSED3*/
1655static void
1656die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1657{
1658	iidesc_t *ii;
1659	char *name;
1660
1661	debug(3, "die %llu: creating object definition\n", off);
1662
1663	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1664		return; /* skip prototypes and nameless objects */
1665
1666	ii = xcalloc(sizeof (iidesc_t));
1667	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1668	ii->ii_name = name;
1669	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1670	if (ii->ii_type == II_SVAR)
1671		ii->ii_owner = xstrdup(dw->dw_cuname);
1672
1673	iidesc_add(dw->dw_td->td_iihash, ii);
1674}
1675
1676/*ARGSUSED2*/
1677static int
1678die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1679{
1680	if (fwd->t_flags & TDESC_F_RESOLVED)
1681		return (1);
1682
1683	if (fwd->t_tdesc != NULL) {
1684		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1685		    tdesc_name(fwd));
1686		*fwdp = fwd->t_tdesc;
1687	}
1688
1689	fwd->t_flags |= TDESC_F_RESOLVED;
1690
1691	return (1);
1692}
1693
1694/*ARGSUSED*/
1695static void
1696die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1697{
1698	Dwarf_Die child = die_child(dw, die);
1699
1700	if (child != NULL)
1701		die_create(dw, child);
1702}
1703
1704/*
1705 * Used to map the die to a routine which can parse it, using the tag to do the
1706 * mapping.  While the processing of most tags entails the creation of a tdesc,
1707 * there are a few which don't - primarily those which result in the creation of
1708 * iidescs which refer to existing tdescs.
1709 */
1710
1711#define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1712
1713typedef struct die_creator {
1714	Dwarf_Half dc_tag;
1715	uint16_t dc_flags;
1716	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1717} die_creator_t;
1718
1719static const die_creator_t die_creators[] = {
1720	{ DW_TAG_array_type,		0,		die_array_create },
1721	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1722	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1723	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1724	{ DW_TAG_structure_type,	0,		die_struct_create },
1725	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1726	{ DW_TAG_typedef,		0,		die_typedef_create },
1727	{ DW_TAG_union_type,		0,		die_union_create },
1728	{ DW_TAG_base_type,		0,		die_base_create },
1729	{ DW_TAG_const_type,		0,		die_const_create },
1730	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1731	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1732	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1733	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1734	{ 0, 0, NULL }
1735};
1736
1737static const die_creator_t *
1738die_tag2ctor(Dwarf_Half tag)
1739{
1740	const die_creator_t *dc;
1741
1742	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1743		if (dc->dc_tag == tag)
1744			return (dc);
1745	}
1746
1747	return (NULL);
1748}
1749
1750static void
1751die_create_one(dwarf_t *dw, Dwarf_Die die)
1752{
1753	Dwarf_Off off = die_off(dw, die);
1754	const die_creator_t *dc;
1755	Dwarf_Half tag;
1756	tdesc_t *tdp;
1757
1758	debug(3, "die %llu <%llx>: create_one\n", off, off);
1759
1760	if (off > dw->dw_maxoff) {
1761		terminate("illegal die offset %llu (max %llu)\n", off,
1762		    dw->dw_maxoff);
1763	}
1764
1765	tag = die_tag(dw, die);
1766
1767	if ((dc = die_tag2ctor(tag)) == NULL) {
1768		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1769		return;
1770	}
1771
1772	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1773	    !(dc->dc_flags & DW_F_NOTDP)) {
1774		tdp = xcalloc(sizeof (tdesc_t));
1775		tdp->t_id = off;
1776		tdesc_add(dw, tdp);
1777	}
1778
1779	if (tdp != NULL)
1780		tdp->t_name = die_name(dw, die);
1781
1782	dc->dc_create(dw, die, off, tdp);
1783}
1784
1785static void
1786die_create(dwarf_t *dw, Dwarf_Die die)
1787{
1788	do {
1789		die_create_one(dw, die);
1790	} while ((die = die_sibling(dw, die)) != NULL);
1791}
1792
1793static tdtrav_cb_f die_resolvers[] = {
1794	NULL,
1795	NULL,			/* intrinsic */
1796	NULL,			/* pointer */
1797	die_array_resolve,	/* array */
1798	NULL,			/* function */
1799	die_sou_resolve,	/* struct */
1800	die_sou_resolve,	/* union */
1801	die_enum_resolve,	/* enum */
1802	die_fwd_resolve,	/* forward */
1803	NULL,			/* typedef */
1804	NULL,			/* typedef unres */
1805	NULL,			/* volatile */
1806	NULL,			/* const */
1807	NULL,			/* restrict */
1808};
1809
1810static tdtrav_cb_f die_fail_reporters[] = {
1811	NULL,
1812	NULL,			/* intrinsic */
1813	NULL,			/* pointer */
1814	die_array_failed,	/* array */
1815	NULL,			/* function */
1816	die_sou_failed,		/* struct */
1817	die_sou_failed,		/* union */
1818	NULL,			/* enum */
1819	NULL,			/* forward */
1820	NULL,			/* typedef */
1821	NULL,			/* typedef unres */
1822	NULL,			/* volatile */
1823	NULL,			/* const */
1824	NULL,			/* restrict */
1825};
1826
1827static void
1828die_resolve(dwarf_t *dw)
1829{
1830	int last = -1;
1831	int pass = 0;
1832
1833	do {
1834		pass++;
1835		dw->dw_nunres = 0;
1836
1837		(void) iitraverse_hash(dw->dw_td->td_iihash,
1838		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1839
1840		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1841
1842		if ((int) dw->dw_nunres == last) {
1843			fprintf(stderr, "%s: failed to resolve the following "
1844			    "types:\n", progname);
1845
1846			(void) iitraverse_hash(dw->dw_td->td_iihash,
1847			    &dw->dw_td->td_curvgen, NULL, NULL,
1848			    die_fail_reporters, dw);
1849
1850			terminate("failed to resolve types\n");
1851		}
1852
1853		last = dw->dw_nunres;
1854
1855	} while (dw->dw_nunres != 0);
1856}
1857
1858/*
1859 * Any object containing a function or object symbol at any scope should also
1860 * contain DWARF data.
1861 */
1862static boolean_t
1863should_have_dwarf(Elf *elf)
1864{
1865	Elf_Scn *scn = NULL;
1866	Elf_Data *data = NULL;
1867	GElf_Shdr shdr;
1868	GElf_Sym sym;
1869	uint32_t symdx = 0;
1870	size_t nsyms = 0;
1871	boolean_t found = B_FALSE;
1872
1873	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1874		gelf_getshdr(scn, &shdr);
1875
1876		if (shdr.sh_type == SHT_SYMTAB) {
1877			found = B_TRUE;
1878			break;
1879		}
1880	}
1881
1882	if (!found)
1883		terminate("cannot convert stripped objects\n");
1884
1885	data = elf_getdata(scn, NULL);
1886	nsyms = shdr.sh_size / shdr.sh_entsize;
1887
1888	for (symdx = 0; symdx < nsyms; symdx++) {
1889		gelf_getsym(data, symdx, &sym);
1890
1891		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1892		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1893		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1894			char *name;
1895
1896			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1897
1898			/* Studio emits these local symbols regardless */
1899			if ((strcmp(name, "Bbss.bss") != 0) &&
1900			    (strcmp(name, "Ttbss.bss") != 0) &&
1901			    (strcmp(name, "Ddata.data") != 0) &&
1902			    (strcmp(name, "Ttdata.data") != 0) &&
1903			    (strcmp(name, "Drodata.rodata") != 0))
1904				return (B_TRUE);
1905		}
1906	}
1907
1908	return (B_FALSE);
1909}
1910
1911/*ARGSUSED*/
1912int
1913dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1914{
1915	Dwarf_Unsigned abboff, hdrlen, lang, nxthdr;
1916	Dwarf_Half vers, addrsz, offsz;
1917	Dwarf_Die cu = 0;
1918	Dwarf_Die child = 0;
1919	dwarf_t dw;
1920	char *prod = NULL;
1921	int rc;
1922
1923	bzero(&dw, sizeof (dwarf_t));
1924	dw.dw_td = td;
1925	dw.dw_ptrsz = elf_ptrsz(elf);
1926	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1927	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1928	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1929	    tdesc_namecmp);
1930	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1931	    tdesc_namecmp);
1932
1933	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
1934	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1935		if (should_have_dwarf(elf)) {
1936			errno = ENOENT;
1937			return (-1);
1938		} else {
1939			return (0);
1940		}
1941	} else if (rc != DW_DLV_OK) {
1942		if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1943			/*
1944			 * There's no type data in the DWARF section, but
1945			 * libdwarf is too clever to handle that properly.
1946			 */
1947			return (0);
1948		}
1949
1950		terminate("failed to initialize DWARF: %s\n",
1951		    dwarf_errmsg(dw.dw_err));
1952	}
1953
1954	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
1955	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) {
1956		if (dw.dw_err.err_error == DW_DLE_NO_ENTRY)
1957			exit(0);
1958		else
1959			terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err));
1960	}
1961	if ((cu = die_sibling(&dw, NULL)) == NULL ||
1962	    (((child = die_child(&dw, cu)) == NULL) &&
1963	    should_have_dwarf(elf))) {
1964		terminate("file does not contain dwarf type data "
1965		    "(try compiling with -g)\n");
1966	} else if (child == NULL) {
1967		return (0);
1968	}
1969
1970	dw.dw_maxoff = nxthdr - 1;
1971
1972	if (dw.dw_maxoff > TID_FILEMAX)
1973		terminate("file contains too many types\n");
1974
1975	debug(1, "DWARF version: %d\n", vers);
1976	if (vers < 2 || vers > 4) {
1977		terminate("file contains incompatible version %d DWARF code "
1978		    "(version 2, 3 or 4 required)\n", vers);
1979	}
1980
1981	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1982		debug(1, "DWARF emitter: %s\n", prod);
1983		free(prod);
1984	}
1985
1986	if (dwarf_attrval_unsigned(cu, DW_AT_language, &lang, &dw.dw_err) == 0)
1987		switch (lang) {
1988		case DW_LANG_C:
1989		case DW_LANG_C89:
1990		case DW_LANG_C99:
1991		case DW_LANG_C11:
1992		case DW_LANG_C_plus_plus:
1993		case DW_LANG_C_plus_plus_03:
1994		case DW_LANG_C_plus_plus_11:
1995		case DW_LANG_C_plus_plus_14:
1996		case DW_LANG_Mips_Assembler:
1997			break;
1998		default:
1999			terminate("file contains DWARF for unsupported "
2000			    "language %#x", lang);
2001		}
2002	else
2003		warning("die %llu: failed to get language attribute: %s\n",
2004		    die_off(&dw, cu), dwarf_errmsg(dw.dw_err));
2005
2006	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
2007		char *base = xstrdup(basename(dw.dw_cuname));
2008		free(dw.dw_cuname);
2009		dw.dw_cuname = base;
2010
2011		debug(1, "CU name: %s\n", dw.dw_cuname);
2012	}
2013
2014	if ((child = die_child(&dw, cu)) != NULL)
2015		die_create(&dw, child);
2016
2017	if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2018	    &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2019		terminate("multiple compilation units not supported\n");
2020
2021	(void) dwarf_finish(dw.dw_dw, &dw.dw_err);
2022
2023	die_resolve(&dw);
2024
2025	cvt_fixups(td, dw.dw_ptrsz);
2026
2027	/* leak the dwarf_t */
2028
2029	return (0);
2030}
2031