1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23/*
24 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25 * Use is subject to license terms.
26 */
27/*
28 * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
29 */
30
31#include <ctf_impl.h>
32#include <sys/mman.h>
33#include <sys/zmod.h>
34
35static const ctf_dmodel_t _libctf_models[] = {
36	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38	{ NULL, 0, 0, 0, 0, 0, 0 }
39};
40
41const char _CTF_SECTION[] = ".SUNW_ctf";
42const char _CTF_NULLSTR[] = "";
43
44int _libctf_version = CTF_VERSION;	/* library client version */
45int _libctf_debug = 0;			/* debugging messages enabled */
46
47static uint_t
48get_kind_v2(uint_t info)
49{
50	return (CTF_V2_INFO_KIND((ushort_t)info));
51}
52
53static uint_t
54get_root_v2(uint_t info)
55{
56	return (CTF_V2_INFO_ISROOT((ushort_t)info));
57}
58
59static uint_t
60get_vlen_v2(uint_t info)
61{
62	return (CTF_V2_INFO_VLEN((ushort_t)info));
63}
64
65static uint_t
66get_max_vlen_v2(void)
67{
68	return (CTF_V2_MAX_VLEN);
69}
70
71static uint_t
72get_max_size_v2(void)
73{
74	return (CTF_V2_MAX_SIZE);
75}
76
77static uint_t
78get_max_type_v2(void)
79{
80	return (CTF_V2_MAX_TYPE);
81}
82
83static uint_t
84get_lsize_sent_v2(void)
85{
86	return (CTF_V2_LSIZE_SENT);
87}
88
89static uint_t
90get_lstruct_thresh_v2(void)
91{
92	return (CTF_V2_LSTRUCT_THRESH);
93}
94
95static uint_t
96type_info_v2(uint_t kind, uint_t isroot, uint_t len)
97{
98	return (CTF_V2_TYPE_INFO(kind, isroot, len));
99}
100
101static int
102type_isparent_v2(uint_t id)
103{
104	return (CTF_V2_TYPE_ISPARENT(id));
105}
106
107static int
108type_ischild_v2(uint_t id)
109{
110	return (CTF_V2_TYPE_ISCHILD(id));
111}
112
113static uint_t
114type_to_index_v2(uint_t t)
115{
116	return (CTF_V2_TYPE_TO_INDEX(t));
117}
118
119static uint_t
120index_to_type_v2(uint_t id, uint_t child)
121{
122	return (CTF_V2_INDEX_TO_TYPE(id, child));
123}
124
125static uint_t
126get_kind_v3(uint_t info)
127{
128	return (CTF_V3_INFO_KIND(info));
129}
130
131static uint_t
132get_root_v3(uint_t info)
133{
134	return (CTF_V3_INFO_ISROOT(info));
135}
136
137static uint_t
138get_vlen_v3(uint_t info)
139{
140	return (CTF_V3_INFO_VLEN(info));
141}
142
143static uint_t
144get_max_vlen_v3(void)
145{
146	return (CTF_V3_MAX_VLEN);
147}
148
149static uint_t
150get_max_size_v3(void)
151{
152	return (CTF_V3_MAX_SIZE);
153}
154
155static uint_t
156get_max_type_v3(void)
157{
158	return (CTF_V3_MAX_TYPE);
159}
160
161static uint_t
162get_lsize_sent_v3(void)
163{
164	return (CTF_V3_LSIZE_SENT);
165}
166
167static uint_t
168get_lstruct_thresh_v3(void)
169{
170	return (CTF_V3_LSTRUCT_THRESH);
171}
172
173static uint_t
174type_info_v3(uint_t kind, uint_t isroot, uint_t len)
175{
176	return (CTF_V3_TYPE_INFO(kind, isroot, len));
177}
178
179static int
180type_isparent_v3(uint_t id)
181{
182	return (CTF_V3_TYPE_ISPARENT(id));
183}
184
185static int
186type_ischild_v3(uint_t id)
187{
188	return (CTF_V3_TYPE_ISCHILD(id));
189}
190
191static uint_t
192type_to_index_v3(uint_t t)
193{
194	return (CTF_V3_TYPE_TO_INDEX(t));
195}
196
197static uint_t
198index_to_type_v3(uint_t id, uint_t child)
199{
200	return (CTF_V3_INDEX_TO_TYPE(id, child));
201}
202
203#define	CTF_FILEOPS_ENTRY(v)				\
204	{ 						\
205	  .ctfo_get_kind = get_kind_v ## v,		\
206	  .ctfo_get_root = get_root_v ## v,		\
207	  .ctfo_get_vlen = get_vlen_v ## v,		\
208	  .ctfo_get_max_vlen = get_max_vlen_v ## v,	\
209	  .ctfo_get_max_size = get_max_size_v ## v,	\
210	  .ctfo_get_max_type = get_max_type_v ## v,	\
211	  .ctfo_get_lsize_sent = get_lsize_sent_v ## v,	\
212	  .ctfo_get_lstruct_thresh = get_lstruct_thresh_v ## v,	\
213	  .ctfo_type_info = type_info_v ## v,		\
214	  .ctfo_type_isparent = type_isparent_v ## v,	\
215	  .ctfo_type_ischild = type_ischild_v ## v,	\
216	  .ctfo_type_to_index = type_to_index_v ## v,	\
217	  .ctfo_index_to_type = index_to_type_v ## v	\
218	}
219
220static const ctf_fileops_t ctf_fileops[] = {
221	{ NULL, NULL },
222	{ NULL, NULL },
223	CTF_FILEOPS_ENTRY(2),
224	CTF_FILEOPS_ENTRY(3),
225};
226
227/*
228 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
229 */
230static Elf64_Sym *
231sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
232{
233	dst->st_name = src->st_name;
234	dst->st_value = src->st_value;
235	dst->st_size = src->st_size;
236	dst->st_info = src->st_info;
237	dst->st_other = src->st_other;
238	dst->st_shndx = src->st_shndx;
239
240	return (dst);
241}
242
243/*
244 * Initialize the symtab translation table by filling each entry with the
245 * offset of the CTF type or function data corresponding to each STT_FUNC or
246 * STT_OBJECT entry in the symbol table.
247 */
248static int
249init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
250    const ctf_sect_t *sp, const ctf_sect_t *strp)
251{
252	const uchar_t *symp = sp->cts_data;
253	uint_t *xp = fp->ctf_sxlate;
254	uint_t *xend = xp + fp->ctf_nsyms;
255
256	uint_t objtoff = hp->cth_objtoff;
257	uint_t funcoff = hp->cth_funcoff;
258
259	uint_t info, vlen;
260
261	Elf64_Sym sym, *gsp;
262	const char *name;
263
264	/*
265	 * The CTF data object and function type sections are ordered to match
266	 * the relative order of the respective symbol types in the symtab.
267	 * If no type information is available for a symbol table entry, a
268	 * pad is inserted in the CTF section.  As a further optimization,
269	 * anonymous or undefined symbols are omitted from the CTF data.
270	 */
271	for (; xp < xend; xp++, symp += sp->cts_entsize) {
272		if (sp->cts_entsize == sizeof (Elf32_Sym))
273			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
274		else
275			gsp = (Elf64_Sym *)(uintptr_t)symp;
276
277		if (gsp->st_name < strp->cts_size)
278			name = (const char *)strp->cts_data + gsp->st_name;
279		else
280			name = _CTF_NULLSTR;
281
282		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
283		    strcmp(name, "_START_") == 0 ||
284		    strcmp(name, "_END_") == 0) {
285			*xp = -1u;
286			continue;
287		}
288
289		switch (ELF64_ST_TYPE(gsp->st_info)) {
290		case STT_OBJECT:
291			if (objtoff >= hp->cth_funcoff ||
292			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
293				*xp = -1u;
294				break;
295			}
296
297			*xp = objtoff;
298			objtoff += fp->ctf_idwidth;
299			break;
300
301		case STT_FUNC:
302			if (funcoff >= hp->cth_typeoff) {
303				*xp = -1u;
304				break;
305			}
306
307			*xp = funcoff;
308
309			info = *(uint_t *)((uintptr_t)fp->ctf_buf + funcoff);
310			vlen = LCTF_INFO_VLEN(fp, info);
311
312			/*
313			 * If we encounter a zero pad at the end, just skip it.
314			 * Otherwise skip over the function and its return type
315			 * (+2) and the argument list (vlen).
316			 */
317			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
318			    vlen == 0)
319				funcoff += fp->ctf_idwidth;
320			else
321				funcoff +=
322				    roundup2(fp->ctf_idwidth * (vlen + 2), 4);
323			break;
324
325		default:
326			*xp = -1u;
327			break;
328		}
329	}
330
331	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
332	return (0);
333}
334
335/*
336 * Initialize the type ID translation table with the byte offset of each type,
337 * and initialize the hash tables of each named type.
338 */
339static int
340init_types(ctf_file_t *fp, const ctf_header_t *cth)
341{
342	const void *tbuf = (const void *)(fp->ctf_buf + cth->cth_typeoff);
343	const void *tend = (const void *)(fp->ctf_buf + cth->cth_stroff);
344
345	ulong_t pop[CTF_K_MAX + 1] = { 0 };
346	const void *tp;
347	ctf_hash_t *hp;
348	uint_t id, dst;
349	uint_t *xp;
350
351	/*
352	 * We initially determine whether the container is a child or a parent
353	 * based on the value of cth_parname.  To support containers that pre-
354	 * date cth_parname, we also scan the types themselves for references
355	 * to values in the range reserved for child types in our first pass.
356	 */
357	int child = cth->cth_parname != 0;
358	int nlstructs = 0, nlunions = 0;
359	int err;
360
361	/*
362	 * We make two passes through the entire type section.  In this first
363	 * pass, we count the number of each type and the total number of types.
364	 */
365	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
366		ssize_t size, increment;
367
368		size_t vbytes;
369		uint_t kind, n, type, vlen;
370
371		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
372		ctf_get_ctt_info(fp, tp, &kind, &vlen, NULL);
373		ctf_get_ctt_index(fp, tp, NULL, &type, NULL);
374
375		switch (kind) {
376		case CTF_K_INTEGER:
377		case CTF_K_FLOAT:
378			vbytes = sizeof (uint_t);
379			break;
380		case CTF_K_ARRAY:
381			if (fp->ctf_version == CTF_VERSION_2)
382				vbytes = sizeof (struct ctf_array_v2);
383			else
384				vbytes = sizeof (struct ctf_array_v3);
385			break;
386		case CTF_K_FUNCTION:
387			vbytes = roundup2(fp->ctf_idwidth * vlen, 4);
388			break;
389		case CTF_K_STRUCT:
390		case CTF_K_UNION: {
391			size_t increment1;
392			uint_t type;
393			const void *mp =
394			    (const void *)((uintptr_t)tp + increment);
395
396			vbytes = 0;
397			for (n = vlen; n != 0; n--, mp += increment1) {
398				ctf_get_ctm_info(fp, mp, size, &increment1, &type,
399				    NULL, NULL);
400				child |= LCTF_TYPE_ISCHILD(fp, type);
401				vbytes += increment1;
402			}
403			break;
404		}
405		case CTF_K_ENUM:
406			vbytes = sizeof (ctf_enum_t) * vlen;
407			break;
408		case CTF_K_FORWARD:
409			/*
410			 * For forward declarations, ctt_type is the CTF_K_*
411			 * kind for the tag, so bump that population count too.
412			 * If ctt_type is unknown, treat the tag as a struct.
413			 */
414			if (type == CTF_K_UNKNOWN || type >= CTF_K_MAX)
415				pop[CTF_K_STRUCT]++;
416			else
417				pop[type]++;
418			/*FALLTHRU*/
419		case CTF_K_UNKNOWN:
420			vbytes = 0;
421			break;
422		case CTF_K_POINTER:
423		case CTF_K_TYPEDEF:
424		case CTF_K_VOLATILE:
425		case CTF_K_CONST:
426		case CTF_K_RESTRICT:
427			child |= LCTF_TYPE_ISCHILD(fp, type);
428			vbytes = 0;
429			break;
430		default:
431			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
432			return (ECTF_CORRUPT);
433		}
434		tp = (const void *)((uintptr_t)tp + increment + vbytes);
435		pop[kind]++;
436	}
437
438	/*
439	 * If we detected a reference to a child type ID, then we know this
440	 * container is a child and may have a parent's types imported later.
441	 */
442	if (child) {
443		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
444		fp->ctf_flags |= LCTF_CHILD;
445	} else
446		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
447
448	/*
449	 * Now that we've counted up the number of each type, we can allocate
450	 * the hash tables, type translation table, and pointer table.
451	 */
452	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
453		return (err);
454
455	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
456		return (err);
457
458	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
459		return (err);
460
461	if ((err = ctf_hash_create(&fp->ctf_names,
462	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
463	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
464	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
465		return (err);
466
467	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
468	fp->ctf_ptrtab = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
469
470	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
471		return (EAGAIN); /* memory allocation failed */
472
473	xp = fp->ctf_txlate;
474	*xp++ = 0; /* type id 0 is used as a sentinel value */
475
476	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
477	bzero(fp->ctf_ptrtab, sizeof (uint_t) * (fp->ctf_typemax + 1));
478
479	/*
480	 * In the second pass through the types, we fill in each entry of the
481	 * type and pointer tables and add names to the appropriate hashes.
482	 */
483	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
484		const struct ctf_type_v3 *ctt = tp;
485		uint_t kind, type, vlen;
486		ssize_t size, increment;
487
488		const char *name;
489		size_t vbytes;
490		ctf_helem_t *hep;
491		ctf_encoding_t cte;
492
493		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
494		ctf_get_ctt_info(fp, tp, &kind, &vlen, NULL);
495		ctf_get_ctt_index(fp, tp, NULL, &type, NULL);
496		name = ctf_type_rname(fp, tp);
497
498		switch (kind) {
499		case CTF_K_INTEGER:
500		case CTF_K_FLOAT:
501			/*
502			 * Only insert a new integer base type definition if
503			 * this type name has not been defined yet.  We re-use
504			 * the names with different encodings for bit-fields.
505			 */
506			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
507			    name, strlen(name))) == NULL) {
508				err = ctf_hash_insert(&fp->ctf_names, fp,
509				    LCTF_INDEX_TO_TYPE(fp, id, child),
510				    ctt->ctt_name);
511				if (err != 0 && err != ECTF_STRTAB)
512					return (err);
513			} else if (ctf_type_encoding(fp, hep->h_type,
514			    &cte) == 0 && cte.cte_bits == 0) {
515				/*
516				 * Work-around SOS8 stabs bug: replace existing
517				 * intrinsic w/ same name if it was zero bits.
518				 */
519				hep->h_type = LCTF_INDEX_TO_TYPE(fp, id, child);
520			}
521			vbytes = sizeof (uint_t);
522			break;
523
524		case CTF_K_ARRAY:
525			if (fp->ctf_version == CTF_VERSION_2)
526				vbytes = sizeof (struct ctf_array_v2);
527			else
528				vbytes = sizeof (struct ctf_array_v3);
529			break;
530
531		case CTF_K_FUNCTION:
532			err = ctf_hash_insert(&fp->ctf_names, fp,
533			    LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
534			if (err != 0 && err != ECTF_STRTAB)
535				return (err);
536			vbytes = roundup2(fp->ctf_idwidth * vlen, 4);
537			break;
538
539		case CTF_K_STRUCT:
540			err = ctf_hash_define(&fp->ctf_structs, fp,
541			    LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
542
543			if (err != 0 && err != ECTF_STRTAB)
544				return (err);
545
546			if (fp->ctf_version == CTF_VERSION_2) {
547				if (size < LCTF_LSTRUCT_THRESH(fp))
548					vbytes = sizeof (struct ctf_member_v2) *
549					    vlen;
550				else {
551					vbytes =
552					    sizeof (struct ctf_lmember_v2) *
553					    vlen;
554					nlstructs++;
555				}
556			} else {
557				if (size < LCTF_LSTRUCT_THRESH(fp))
558					vbytes = sizeof (struct ctf_member_v3) *
559					    vlen;
560				else {
561					vbytes =
562					    sizeof (struct ctf_lmember_v3) *
563					    vlen;
564					nlstructs++;
565				}
566			}
567			break;
568
569		case CTF_K_UNION:
570			err = ctf_hash_define(&fp->ctf_unions, fp,
571			    LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
572
573			if (err != 0 && err != ECTF_STRTAB)
574				return (err);
575
576			if (fp->ctf_version == CTF_VERSION_2) {
577				if (size < LCTF_LSTRUCT_THRESH(fp))
578					vbytes = sizeof (struct ctf_member_v2) *
579					    vlen;
580				else {
581					vbytes =
582					    sizeof (struct ctf_lmember_v2) *
583					    vlen;
584					nlunions++;
585				}
586			} else {
587				if (size < LCTF_LSTRUCT_THRESH(fp))
588					vbytes = sizeof (struct ctf_member_v3) *
589					    vlen;
590				else {
591					vbytes =
592					    sizeof (struct ctf_lmember_v3) *
593					    vlen;
594					nlunions++;
595				}
596			}
597			break;
598
599		case CTF_K_ENUM:
600			err = ctf_hash_define(&fp->ctf_enums, fp,
601			    LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
602
603			if (err != 0 && err != ECTF_STRTAB)
604				return (err);
605
606			vbytes = sizeof (ctf_enum_t) * vlen;
607			break;
608
609		case CTF_K_TYPEDEF:
610			err = ctf_hash_insert(&fp->ctf_names, fp,
611			    LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
612			if (err != 0 && err != ECTF_STRTAB)
613				return (err);
614			vbytes = 0;
615			break;
616
617		case CTF_K_FORWARD:
618			/*
619			 * Only insert forward tags into the given hash if the
620			 * type or tag name is not already present.
621			 */
622			switch (type) {
623			case CTF_K_STRUCT:
624				hp = &fp->ctf_structs;
625				break;
626			case CTF_K_UNION:
627				hp = &fp->ctf_unions;
628				break;
629			case CTF_K_ENUM:
630				hp = &fp->ctf_enums;
631				break;
632			default:
633				hp = &fp->ctf_structs;
634			}
635
636			if (ctf_hash_lookup(hp, fp,
637			    name, strlen(name)) == NULL) {
638				err = ctf_hash_insert(hp, fp,
639				    LCTF_INDEX_TO_TYPE(fp, id, child),
640				    ctt->ctt_name);
641				if (err != 0 && err != ECTF_STRTAB)
642					return (err);
643			}
644			vbytes = 0;
645			break;
646
647		case CTF_K_POINTER:
648			/*
649			 * If the type referenced by the pointer is in this CTF
650			 * container, then store the index of the pointer type
651			 * in fp->ctf_ptrtab[ index of referenced type ].
652			 */
653			if (LCTF_TYPE_ISCHILD(fp, type) == child &&
654			    LCTF_TYPE_TO_INDEX(fp, type) <= fp->ctf_typemax)
655				fp->ctf_ptrtab[
656				    LCTF_TYPE_TO_INDEX(fp, type)] = id;
657			/*FALLTHRU*/
658
659		case CTF_K_VOLATILE:
660		case CTF_K_CONST:
661		case CTF_K_RESTRICT:
662			err = ctf_hash_insert(&fp->ctf_names, fp,
663			    LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
664			if (err != 0 && err != ECTF_STRTAB)
665				return (err);
666			/*FALLTHRU*/
667
668		default:
669			vbytes = 0;
670			break;
671		}
672
673		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
674		tp = (const void *)((uintptr_t)tp + increment + vbytes);
675	}
676
677	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
678	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
679	ctf_dprintf("%u struct names hashed (%d long)\n",
680	    ctf_hash_size(&fp->ctf_structs), nlstructs);
681	ctf_dprintf("%u union names hashed (%d long)\n",
682	    ctf_hash_size(&fp->ctf_unions), nlunions);
683	ctf_dprintf("%u base type names hashed\n",
684	    ctf_hash_size(&fp->ctf_names));
685
686	/*
687	 * Make an additional pass through the pointer table to find pointers
688	 * that point to anonymous typedef nodes.  If we find one, modify the
689	 * pointer table so that the pointer is also known to point to the
690	 * node that is referenced by the anonymous typedef node.
691	 */
692	for (id = 1; id <= fp->ctf_typemax; id++) {
693		if ((dst = fp->ctf_ptrtab[id]) != 0) {
694			uint_t index, kind;
695			int ischild;
696
697			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
698			ctf_get_ctt_info(fp, tp, &kind, NULL, NULL);
699			ctf_get_ctt_index(fp, tp, &index, NULL, &ischild);
700
701			if (kind == CTF_K_TYPEDEF &&
702			    strcmp(ctf_type_rname(fp, tp), "") == 0 &&
703			    ischild == child && index <= fp->ctf_typemax)
704				fp->ctf_ptrtab[index] = dst;
705		}
706	}
707
708	return (0);
709}
710
711/*
712 * Decode the specified CTF buffer and optional symbol table and create a new
713 * CTF container representing the symbolic debugging information.  This code
714 * can be used directly by the debugger, or it can be used as the engine for
715 * ctf_fdopen() or ctf_open(), below.
716 */
717ctf_file_t *
718ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
719    const ctf_sect_t *strsect, int *errp)
720{
721	const ctf_preamble_t *pp;
722	ctf_header_t hp;
723	ctf_file_t *fp;
724	void *buf, *base;
725	size_t size, hdrsz;
726	int err;
727
728	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
729		return (ctf_set_open_errno(errp, EINVAL));
730
731	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
732	    symsect->cts_entsize != sizeof (Elf64_Sym))
733		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
734
735	if (symsect != NULL && symsect->cts_data == NULL)
736		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
737
738	if (strsect != NULL && strsect->cts_data == NULL)
739		return (ctf_set_open_errno(errp, ECTF_STRBAD));
740
741	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
742		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
743
744	pp = (const ctf_preamble_t *)ctfsect->cts_data;
745
746	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
747	    pp->ctp_magic, pp->ctp_version);
748
749	/*
750	 * Validate each part of the CTF header (either V1 or V2).
751	 * First, we validate the preamble (common to all versions).  At that
752	 * point, we know specific header version, and can validate the
753	 * version-specific parts including section offsets and alignments.
754	 */
755	if (pp->ctp_magic != CTF_MAGIC)
756		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
757
758	if (pp->ctp_version == CTF_VERSION_2 ||
759	    pp->ctp_version == CTF_VERSION_3) {
760		if (ctfsect->cts_size < sizeof (ctf_header_t))
761			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
762
763		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
764		hdrsz = sizeof (ctf_header_t);
765
766	} else
767		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
768
769	size = hp.cth_stroff + hp.cth_strlen;
770
771	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
772
773	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
774	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
775	    hp.cth_stroff > size)
776		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
777
778	if (hp.cth_lbloff > hp.cth_objtoff ||
779	    hp.cth_objtoff > hp.cth_funcoff ||
780	    hp.cth_funcoff > hp.cth_typeoff ||
781	    hp.cth_typeoff > hp.cth_stroff)
782		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
783
784	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
785	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
786		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
787
788	/*
789	 * Once everything is determined to be valid, attempt to decompress
790	 * the CTF data buffer if it is compressed.  Otherwise we just put
791	 * the data section's buffer pointer into ctf_buf, below.
792	 */
793	if (hp.cth_flags & CTF_F_COMPRESS) {
794		size_t srclen, dstlen;
795		const void *src;
796		int rc = Z_OK;
797
798		if (ctf_zopen(errp) == NULL)
799			return (NULL); /* errp is set for us */
800
801		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
802			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
803
804		bcopy(ctfsect->cts_data, base, hdrsz);
805		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
806		buf = (uchar_t *)base + hdrsz;
807
808		src = (uchar_t *)ctfsect->cts_data + hdrsz;
809		srclen = ctfsect->cts_size - hdrsz;
810		dstlen = size;
811
812		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
813			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
814			ctf_data_free(base, size + hdrsz);
815			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
816		}
817
818		if (dstlen != size) {
819			ctf_dprintf("zlib inflate short -- got %lu of %lu "
820			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
821			ctf_data_free(base, size + hdrsz);
822			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
823		}
824
825		ctf_data_protect(base, size + hdrsz);
826
827	} else {
828		base = (void *)ctfsect->cts_data;
829		buf = (uchar_t *)base + hdrsz;
830	}
831
832	/*
833	 * Once we have uncompressed and validated the CTF data buffer, we can
834	 * proceed with allocating a ctf_file_t and initializing it.
835	 */
836	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
837		return (ctf_set_open_errno(errp, EAGAIN));
838
839	bzero(fp, sizeof (ctf_file_t));
840	fp->ctf_version = hp.cth_version;
841	fp->ctf_idwidth = fp->ctf_version == CTF_VERSION_2 ? 2 : 4;
842	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
843	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
844
845	if (symsect != NULL) {
846		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
847		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
848	}
849
850	if (fp->ctf_data.cts_name != NULL)
851		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
852	if (fp->ctf_symtab.cts_name != NULL)
853		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
854	if (fp->ctf_strtab.cts_name != NULL)
855		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
856
857	if (fp->ctf_data.cts_name == NULL)
858		fp->ctf_data.cts_name = _CTF_NULLSTR;
859	if (fp->ctf_symtab.cts_name == NULL)
860		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
861	if (fp->ctf_strtab.cts_name == NULL)
862		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
863
864	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
865	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
866
867	if (strsect != NULL) {
868		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
869		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
870	}
871
872	fp->ctf_base = base;
873	fp->ctf_buf = buf;
874	fp->ctf_size = size + hdrsz;
875
876	/*
877	 * If we have a parent container name and label, store the relocated
878	 * string pointers in the CTF container for easy access later.
879	 */
880	if (hp.cth_parlabel != 0)
881		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
882	if (hp.cth_parname != 0)
883		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
884
885	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
886	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
887	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
888
889	/*
890	 * If we have a symbol table section, allocate and initialize
891	 * the symtab translation table, pointed to by ctf_sxlate.
892	 */
893	if (symsect != NULL) {
894		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
895		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
896
897		if (fp->ctf_sxlate == NULL) {
898			(void) ctf_set_open_errno(errp, EAGAIN);
899			goto bad;
900		}
901
902		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
903			(void) ctf_set_open_errno(errp, err);
904			goto bad;
905		}
906	}
907
908	if ((err = init_types(fp, &hp)) != 0) {
909		(void) ctf_set_open_errno(errp, err);
910		goto bad;
911	}
912
913	/*
914	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
915	 * array of type name prefixes and the corresponding ctf_hash to use.
916	 * NOTE: This code must be kept in sync with the code in ctf_update().
917	 */
918	fp->ctf_lookups[0].ctl_prefix = "struct";
919	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
920	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
921	fp->ctf_lookups[1].ctl_prefix = "union";
922	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
923	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
924	fp->ctf_lookups[2].ctl_prefix = "enum";
925	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
926	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
927	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
928	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
929	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
930	fp->ctf_lookups[4].ctl_prefix = NULL;
931	fp->ctf_lookups[4].ctl_len = 0;
932	fp->ctf_lookups[4].ctl_hash = NULL;
933
934	if (symsect != NULL) {
935		if (symsect->cts_entsize == sizeof (Elf64_Sym))
936			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
937		else
938			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
939	} else
940		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
941
942	fp->ctf_refcnt = 1;
943	return (fp);
944
945bad:
946	ctf_close(fp);
947	return (NULL);
948}
949
950/*
951 * Dupliate a ctf_file_t and its underlying section information into a new
952 * container. This works by copying the three ctf_sect_t's of the original
953 * container if they exist and passing those into ctf_bufopen. To copy those, we
954 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
955 * the cheapest thing, but it's what we've got.
956 */
957ctf_file_t *
958ctf_dup(ctf_file_t *ofp)
959{
960	ctf_file_t *fp;
961	ctf_sect_t ctfsect, symsect, strsect;
962	ctf_sect_t *ctp, *symp, *strp;
963	void *cbuf, *symbuf, *strbuf;
964	int err;
965
966	cbuf = symbuf = strbuf = NULL;
967	/*
968	 * The ctfsect isn't allowed to not exist, but the symbol and string
969	 * section might not. We only need to copy the data of the section, not
970	 * the name, as ctf_bufopen will take care of that.
971	 */
972	bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
973	cbuf = ctf_data_alloc(ctfsect.cts_size);
974	if (cbuf == NULL) {
975		(void) ctf_set_errno(ofp, ECTF_MMAP);
976		return (NULL);
977	}
978
979	bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
980	ctf_data_protect(cbuf, ctfsect.cts_size);
981	ctfsect.cts_data = cbuf;
982	ctfsect.cts_offset = 0;
983	ctp = &ctfsect;
984
985	if (ofp->ctf_symtab.cts_data != NULL) {
986		bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
987		symbuf = ctf_data_alloc(symsect.cts_size);
988		if (symbuf == NULL) {
989			(void) ctf_set_errno(ofp, ECTF_MMAP);
990			goto err;
991		}
992		bcopy(symsect.cts_data, symbuf, symsect.cts_size);
993		ctf_data_protect(symbuf, symsect.cts_size);
994		symsect.cts_data = symbuf;
995		symsect.cts_offset = 0;
996		symp = &symsect;
997	} else {
998		symp = NULL;
999	}
1000
1001	if (ofp->ctf_strtab.cts_data != NULL) {
1002		bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
1003		strbuf = ctf_data_alloc(strsect.cts_size);
1004		if (strbuf == NULL) {
1005			(void) ctf_set_errno(ofp, ECTF_MMAP);
1006			goto err;
1007		}
1008		bcopy(strsect.cts_data, strbuf, strsect.cts_size);
1009		ctf_data_protect(strbuf, strsect.cts_size);
1010		strsect.cts_data = strbuf;
1011		strsect.cts_offset = 0;
1012		strp = &strsect;
1013	} else {
1014		strp = NULL;
1015	}
1016
1017	fp = ctf_bufopen(ctp, symp, strp, &err);
1018	if (fp == NULL) {
1019		(void) ctf_set_errno(ofp, err);
1020		goto err;
1021	}
1022
1023	fp->ctf_flags |= LCTF_MMAP;
1024
1025	return (fp);
1026
1027err:
1028	ctf_data_free(cbuf, ctfsect.cts_size);
1029	if (symbuf != NULL)
1030		ctf_data_free(symbuf, symsect.cts_size);
1031	if (strbuf != NULL)
1032		ctf_data_free(strbuf, strsect.cts_size);
1033	return (NULL);
1034}
1035
1036/*
1037 * Close the specified CTF container and free associated data structures.  Note
1038 * that ctf_close() is a reference counted operation: if the specified file is
1039 * the parent of other active containers, its reference count will be greater
1040 * than one and it will be freed later when no active children exist.
1041 */
1042void
1043ctf_close(ctf_file_t *fp)
1044{
1045	ctf_dtdef_t *dtd, *ntd;
1046
1047	if (fp == NULL)
1048		return; /* allow ctf_close(NULL) to simplify caller code */
1049
1050	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
1051
1052	if (fp->ctf_refcnt > 1) {
1053		fp->ctf_refcnt--;
1054		return;
1055	}
1056
1057	if (fp->ctf_parent != NULL)
1058		ctf_close(fp->ctf_parent);
1059
1060	/*
1061	 * Note, to work properly with reference counting on the dynamic
1062	 * section, we must delete the list in reverse.
1063	 */
1064	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
1065		ntd = ctf_list_prev(dtd);
1066		ctf_dtd_delete(fp, dtd);
1067	}
1068
1069	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
1070
1071	if (fp->ctf_flags & LCTF_MMAP) {
1072		if (fp->ctf_data.cts_data != NULL)
1073			ctf_sect_munmap(&fp->ctf_data);
1074		if (fp->ctf_symtab.cts_data != NULL)
1075			ctf_sect_munmap(&fp->ctf_symtab);
1076		if (fp->ctf_strtab.cts_data != NULL)
1077			ctf_sect_munmap(&fp->ctf_strtab);
1078	}
1079
1080	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
1081	    fp->ctf_data.cts_name != NULL) {
1082		ctf_free((char *)fp->ctf_data.cts_name,
1083		    strlen(fp->ctf_data.cts_name) + 1);
1084	}
1085
1086	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
1087	    fp->ctf_symtab.cts_name != NULL) {
1088		ctf_free((char *)fp->ctf_symtab.cts_name,
1089		    strlen(fp->ctf_symtab.cts_name) + 1);
1090	}
1091
1092	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
1093	    fp->ctf_strtab.cts_name != NULL) {
1094		ctf_free((char *)fp->ctf_strtab.cts_name,
1095		    strlen(fp->ctf_strtab.cts_name) + 1);
1096	}
1097
1098	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
1099		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
1100
1101	if (fp->ctf_sxlate != NULL)
1102		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
1103
1104	if (fp->ctf_txlate != NULL) {
1105		ctf_free(fp->ctf_txlate,
1106		    sizeof (uint_t) * (fp->ctf_typemax + 1));
1107	}
1108
1109	if (fp->ctf_ptrtab != NULL) {
1110		ctf_free(fp->ctf_ptrtab,
1111		    sizeof (uint_t) * (fp->ctf_typemax + 1));
1112	}
1113
1114	ctf_hash_destroy(&fp->ctf_structs);
1115	ctf_hash_destroy(&fp->ctf_unions);
1116	ctf_hash_destroy(&fp->ctf_enums);
1117	ctf_hash_destroy(&fp->ctf_names);
1118
1119	ctf_free(fp, sizeof (ctf_file_t));
1120}
1121
1122/*
1123 * Return the CTF handle for the parent CTF container, if one exists.
1124 * Otherwise return NULL to indicate this container has no imported parent.
1125 */
1126ctf_file_t *
1127ctf_parent_file(ctf_file_t *fp)
1128{
1129	return (fp->ctf_parent);
1130}
1131
1132/*
1133 * Return the name of the parent CTF container, if one exists.  Otherwise
1134 * return NULL to indicate this container is a root container.
1135 */
1136const char *
1137ctf_parent_name(ctf_file_t *fp)
1138{
1139	return (fp->ctf_parname);
1140}
1141
1142/*
1143 * Import the types from the specified parent container by storing a pointer
1144 * to it in ctf_parent and incrementing its reference count.  Only one parent
1145 * is allowed: if a parent already exists, it is replaced by the new parent.
1146 */
1147int
1148ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
1149{
1150	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1151		return (ctf_set_errno(fp, EINVAL));
1152
1153	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1154		return (ctf_set_errno(fp, ECTF_DMODEL));
1155
1156	if (fp->ctf_parent != NULL)
1157		ctf_close(fp->ctf_parent);
1158
1159	if (pfp != NULL) {
1160		fp->ctf_flags |= LCTF_CHILD;
1161		pfp->ctf_refcnt++;
1162	}
1163
1164	fp->ctf_parent = pfp;
1165	return (0);
1166}
1167
1168/*
1169 * Set the data model constant for the CTF container.
1170 */
1171int
1172ctf_setmodel(ctf_file_t *fp, int model)
1173{
1174	const ctf_dmodel_t *dp;
1175
1176	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1177		if (dp->ctd_code == model) {
1178			fp->ctf_dmodel = dp;
1179			return (0);
1180		}
1181	}
1182
1183	return (ctf_set_errno(fp, EINVAL));
1184}
1185
1186/*
1187 * Return the data model constant for the CTF container.
1188 */
1189int
1190ctf_getmodel(ctf_file_t *fp)
1191{
1192	return (fp->ctf_dmodel->ctd_code);
1193}
1194
1195void
1196ctf_setspecific(ctf_file_t *fp, void *data)
1197{
1198	fp->ctf_specific = data;
1199}
1200
1201void *
1202ctf_getspecific(ctf_file_t *fp)
1203{
1204	return (fp->ctf_specific);
1205}
1206