1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD$");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/racct.h>
73#include <sys/resourcevar.h>
74#include <sys/sched.h>
75#include <sys/sf_buf.h>
76#include <sys/shm.h>
77#include <sys/vmmeter.h>
78#include <sys/sx.h>
79#include <sys/sysctl.h>
80#include <sys/_kstack_cache.h>
81#include <sys/eventhandler.h>
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#ifndef NO_SWAPPING
99static int swapout(struct proc *);
100static void swapclear(struct proc *);
101static void vm_thread_swapin(struct thread *td);
102static void vm_thread_swapout(struct thread *td);
103#endif
104
105/*
106 * MPSAFE
107 *
108 * WARNING!  This code calls vm_map_check_protection() which only checks
109 * the associated vm_map_entry range.  It does not determine whether the
110 * contents of the memory is actually readable or writable.  In most cases
111 * just checking the vm_map_entry is sufficient within the kernel's address
112 * space.
113 */
114int
115kernacc(addr, len, rw)
116	void *addr;
117	int len, rw;
118{
119	boolean_t rv;
120	vm_offset_t saddr, eaddr;
121	vm_prot_t prot;
122
123	KASSERT((rw & ~VM_PROT_ALL) == 0,
124	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
125
126	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
127	    (vm_offset_t)addr + len < (vm_offset_t)addr)
128		return (FALSE);
129
130	prot = rw;
131	saddr = trunc_page((vm_offset_t)addr);
132	eaddr = round_page((vm_offset_t)addr + len);
133	vm_map_lock_read(kernel_map);
134	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
135	vm_map_unlock_read(kernel_map);
136	return (rv == TRUE);
137}
138
139/*
140 * MPSAFE
141 *
142 * WARNING!  This code calls vm_map_check_protection() which only checks
143 * the associated vm_map_entry range.  It does not determine whether the
144 * contents of the memory is actually readable or writable.  vmapbuf(),
145 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
146 * used in conjuction with this call.
147 */
148int
149useracc(addr, len, rw)
150	void *addr;
151	int len, rw;
152{
153	boolean_t rv;
154	vm_prot_t prot;
155	vm_map_t map;
156
157	KASSERT((rw & ~VM_PROT_ALL) == 0,
158	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
159	prot = rw;
160	map = &curproc->p_vmspace->vm_map;
161	if ((vm_offset_t)addr + len > vm_map_max(map) ||
162	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
163		return (FALSE);
164	}
165	vm_map_lock_read(map);
166	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
167	    round_page((vm_offset_t)addr + len), prot);
168	vm_map_unlock_read(map);
169	return (rv == TRUE);
170}
171
172int
173vslock(void *addr, size_t len)
174{
175	vm_offset_t end, last, start;
176	vm_size_t npages;
177	int error;
178
179	last = (vm_offset_t)addr + len;
180	start = trunc_page((vm_offset_t)addr);
181	end = round_page(last);
182	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
183		return (EINVAL);
184	npages = atop(end - start);
185	if (npages > vm_page_max_wired)
186		return (ENOMEM);
187#if 0
188	/*
189	 * XXX - not yet
190	 *
191	 * The limit for transient usage of wired pages should be
192	 * larger than for "permanent" wired pages (mlock()).
193	 *
194	 * Also, the sysctl code, which is the only present user
195	 * of vslock(), does a hard loop on EAGAIN.
196	 */
197	if (npages + cnt.v_wire_count > vm_page_max_wired)
198		return (EAGAIN);
199#endif
200	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
201	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
202	/*
203	 * Return EFAULT on error to match copy{in,out}() behaviour
204	 * rather than returning ENOMEM like mlock() would.
205	 */
206	return (error == KERN_SUCCESS ? 0 : EFAULT);
207}
208
209void
210vsunlock(void *addr, size_t len)
211{
212
213	/* Rely on the parameter sanity checks performed by vslock(). */
214	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
215	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
216	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
217}
218
219/*
220 * Pin the page contained within the given object at the given offset.  If the
221 * page is not resident, allocate and load it using the given object's pager.
222 * Return the pinned page if successful; otherwise, return NULL.
223 */
224static vm_page_t
225vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
226{
227	vm_page_t m, ma[1];
228	vm_pindex_t pindex;
229	int rv;
230
231	VM_OBJECT_LOCK(object);
232	pindex = OFF_TO_IDX(offset);
233	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
234	if (m->valid != VM_PAGE_BITS_ALL) {
235		ma[0] = m;
236		rv = vm_pager_get_pages(object, ma, 1, 0);
237		m = vm_page_lookup(object, pindex);
238		if (m == NULL)
239			goto out;
240		if (rv != VM_PAGER_OK) {
241			vm_page_lock(m);
242			vm_page_free(m);
243			vm_page_unlock(m);
244			m = NULL;
245			goto out;
246		}
247	}
248	vm_page_lock(m);
249	vm_page_hold(m);
250	vm_page_unlock(m);
251	vm_page_wakeup(m);
252out:
253	VM_OBJECT_UNLOCK(object);
254	return (m);
255}
256
257/*
258 * Return a CPU private mapping to the page at the given offset within the
259 * given object.  The page is pinned before it is mapped.
260 */
261struct sf_buf *
262vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
263{
264	vm_page_t m;
265
266	m = vm_imgact_hold_page(object, offset);
267	if (m == NULL)
268		return (NULL);
269	sched_pin();
270	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
271}
272
273/*
274 * Destroy the given CPU private mapping and unpin the page that it mapped.
275 */
276void
277vm_imgact_unmap_page(struct sf_buf *sf)
278{
279	vm_page_t m;
280
281	m = sf_buf_page(sf);
282	sf_buf_free(sf);
283	sched_unpin();
284	vm_page_lock(m);
285	vm_page_unhold(m);
286	vm_page_unlock(m);
287}
288
289void
290vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
291{
292
293	pmap_sync_icache(map->pmap, va, sz);
294}
295
296struct kstack_cache_entry *kstack_cache;
297static int kstack_cache_size = 128;
298static int kstacks;
299static struct mtx kstack_cache_mtx;
300SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
301    "");
302SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
303    "");
304
305#ifndef KSTACK_MAX_PAGES
306#define KSTACK_MAX_PAGES 32
307#endif
308
309/*
310 * Create the kernel stack (including pcb for i386) for a new thread.
311 * This routine directly affects the fork perf for a process and
312 * create performance for a thread.
313 */
314int
315vm_thread_new(struct thread *td, int pages)
316{
317	vm_object_t ksobj;
318	vm_offset_t ks;
319	vm_page_t m, ma[KSTACK_MAX_PAGES];
320	struct kstack_cache_entry *ks_ce;
321	int i;
322
323	/* Bounds check */
324	if (pages <= 1)
325		pages = KSTACK_PAGES;
326	else if (pages > KSTACK_MAX_PAGES)
327		pages = KSTACK_MAX_PAGES;
328
329	if (pages == KSTACK_PAGES) {
330		mtx_lock(&kstack_cache_mtx);
331		if (kstack_cache != NULL) {
332			ks_ce = kstack_cache;
333			kstack_cache = ks_ce->next_ks_entry;
334			mtx_unlock(&kstack_cache_mtx);
335
336			td->td_kstack_obj = ks_ce->ksobj;
337			td->td_kstack = (vm_offset_t)ks_ce;
338			td->td_kstack_pages = KSTACK_PAGES;
339			return (1);
340		}
341		mtx_unlock(&kstack_cache_mtx);
342	}
343
344	/*
345	 * Allocate an object for the kstack.
346	 */
347	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
348
349	/*
350	 * Get a kernel virtual address for this thread's kstack.
351	 */
352#if defined(__mips__)
353	/*
354	 * We need to align the kstack's mapped address to fit within
355	 * a single TLB entry.
356	 */
357	ks = kmem_alloc_nofault_space(kernel_map,
358	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
359#else
360	ks = kmem_alloc_nofault(kernel_map,
361	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
362#endif
363	if (ks == 0) {
364		printf("vm_thread_new: kstack allocation failed\n");
365		vm_object_deallocate(ksobj);
366		return (0);
367	}
368
369	atomic_add_int(&kstacks, 1);
370	if (KSTACK_GUARD_PAGES != 0) {
371		pmap_qremove(ks, KSTACK_GUARD_PAGES);
372		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
373	}
374	td->td_kstack_obj = ksobj;
375	td->td_kstack = ks;
376	/*
377	 * Knowing the number of pages allocated is useful when you
378	 * want to deallocate them.
379	 */
380	td->td_kstack_pages = pages;
381	/*
382	 * For the length of the stack, link in a real page of ram for each
383	 * page of stack.
384	 */
385	VM_OBJECT_LOCK(ksobj);
386	for (i = 0; i < pages; i++) {
387		/*
388		 * Get a kernel stack page.
389		 */
390		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
391		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
392		ma[i] = m;
393		m->valid = VM_PAGE_BITS_ALL;
394	}
395	VM_OBJECT_UNLOCK(ksobj);
396	pmap_qenter(ks, ma, pages);
397	return (1);
398}
399
400static void
401vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
402{
403	vm_page_t m;
404	int i;
405
406	atomic_add_int(&kstacks, -1);
407	pmap_qremove(ks, pages);
408	VM_OBJECT_LOCK(ksobj);
409	for (i = 0; i < pages; i++) {
410		m = vm_page_lookup(ksobj, i);
411		if (m == NULL)
412			panic("vm_thread_dispose: kstack already missing?");
413		vm_page_lock(m);
414		vm_page_unwire(m, 0);
415		vm_page_free(m);
416		vm_page_unlock(m);
417	}
418	VM_OBJECT_UNLOCK(ksobj);
419	vm_object_deallocate(ksobj);
420	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
421	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
422}
423
424/*
425 * Dispose of a thread's kernel stack.
426 */
427void
428vm_thread_dispose(struct thread *td)
429{
430	vm_object_t ksobj;
431	vm_offset_t ks;
432	struct kstack_cache_entry *ks_ce;
433	int pages;
434
435	pages = td->td_kstack_pages;
436	ksobj = td->td_kstack_obj;
437	ks = td->td_kstack;
438	td->td_kstack = 0;
439	td->td_kstack_pages = 0;
440	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
441		ks_ce = (struct kstack_cache_entry *)ks;
442		ks_ce->ksobj = ksobj;
443		mtx_lock(&kstack_cache_mtx);
444		ks_ce->next_ks_entry = kstack_cache;
445		kstack_cache = ks_ce;
446		mtx_unlock(&kstack_cache_mtx);
447		return;
448	}
449	vm_thread_stack_dispose(ksobj, ks, pages);
450}
451
452static void
453vm_thread_stack_lowmem(void *nulll)
454{
455	struct kstack_cache_entry *ks_ce, *ks_ce1;
456
457	mtx_lock(&kstack_cache_mtx);
458	ks_ce = kstack_cache;
459	kstack_cache = NULL;
460	mtx_unlock(&kstack_cache_mtx);
461
462	while (ks_ce != NULL) {
463		ks_ce1 = ks_ce;
464		ks_ce = ks_ce->next_ks_entry;
465
466		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
467		    KSTACK_PAGES);
468	}
469}
470
471static void
472kstack_cache_init(void *nulll)
473{
474
475	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
476	    EVENTHANDLER_PRI_ANY);
477}
478
479MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
480SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
481
482#ifndef NO_SWAPPING
483/*
484 * Allow a thread's kernel stack to be paged out.
485 */
486static void
487vm_thread_swapout(struct thread *td)
488{
489	vm_object_t ksobj;
490	vm_page_t m;
491	int i, pages;
492
493	cpu_thread_swapout(td);
494	pages = td->td_kstack_pages;
495	ksobj = td->td_kstack_obj;
496	pmap_qremove(td->td_kstack, pages);
497	VM_OBJECT_LOCK(ksobj);
498	for (i = 0; i < pages; i++) {
499		m = vm_page_lookup(ksobj, i);
500		if (m == NULL)
501			panic("vm_thread_swapout: kstack already missing?");
502		vm_page_dirty(m);
503		vm_page_lock(m);
504		vm_page_unwire(m, 0);
505		vm_page_unlock(m);
506	}
507	VM_OBJECT_UNLOCK(ksobj);
508}
509
510/*
511 * Bring the kernel stack for a specified thread back in.
512 */
513static void
514vm_thread_swapin(struct thread *td)
515{
516	vm_object_t ksobj;
517	vm_page_t ma[KSTACK_MAX_PAGES];
518	int i, j, k, pages, rv;
519
520	pages = td->td_kstack_pages;
521	ksobj = td->td_kstack_obj;
522	VM_OBJECT_LOCK(ksobj);
523	for (i = 0; i < pages; i++)
524		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
525		    VM_ALLOC_WIRED);
526	for (i = 0; i < pages; i++) {
527		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
528			KASSERT(ma[i]->oflags & VPO_BUSY,
529			    ("lost busy 1"));
530			vm_object_pip_add(ksobj, 1);
531			for (j = i + 1; j < pages; j++) {
532				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
533				    (ma[j]->oflags & VPO_BUSY),
534				    ("lost busy 2"));
535				if (ma[j]->valid == VM_PAGE_BITS_ALL)
536					break;
537			}
538			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
539			if (rv != VM_PAGER_OK)
540	panic("vm_thread_swapin: cannot get kstack for proc: %d",
541				    td->td_proc->p_pid);
542			vm_object_pip_wakeup(ksobj);
543			for (k = i; k < j; k++)
544				ma[k] = vm_page_lookup(ksobj, k);
545			vm_page_wakeup(ma[i]);
546		} else if (ma[i]->oflags & VPO_BUSY)
547			vm_page_wakeup(ma[i]);
548	}
549	VM_OBJECT_UNLOCK(ksobj);
550	pmap_qenter(td->td_kstack, ma, pages);
551	cpu_thread_swapin(td);
552}
553#endif /* !NO_SWAPPING */
554
555/*
556 * Implement fork's actions on an address space.
557 * Here we arrange for the address space to be copied or referenced,
558 * allocate a user struct (pcb and kernel stack), then call the
559 * machine-dependent layer to fill those in and make the new process
560 * ready to run.  The new process is set up so that it returns directly
561 * to user mode to avoid stack copying and relocation problems.
562 */
563int
564vm_forkproc(td, p2, td2, vm2, flags)
565	struct thread *td;
566	struct proc *p2;
567	struct thread *td2;
568	struct vmspace *vm2;
569	int flags;
570{
571	struct proc *p1 = td->td_proc;
572	int error;
573
574	if ((flags & RFPROC) == 0) {
575		/*
576		 * Divorce the memory, if it is shared, essentially
577		 * this changes shared memory amongst threads, into
578		 * COW locally.
579		 */
580		if ((flags & RFMEM) == 0) {
581			if (p1->p_vmspace->vm_refcnt > 1) {
582				error = vmspace_unshare(p1);
583				if (error)
584					return (error);
585			}
586		}
587		cpu_fork(td, p2, td2, flags);
588		return (0);
589	}
590
591	if (flags & RFMEM) {
592		p2->p_vmspace = p1->p_vmspace;
593		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
594	}
595
596	while (vm_page_count_severe()) {
597		VM_WAIT;
598	}
599
600	if ((flags & RFMEM) == 0) {
601		p2->p_vmspace = vm2;
602		if (p1->p_vmspace->vm_shm)
603			shmfork(p1, p2);
604	}
605
606	/*
607	 * cpu_fork will copy and update the pcb, set up the kernel stack,
608	 * and make the child ready to run.
609	 */
610	cpu_fork(td, p2, td2, flags);
611	return (0);
612}
613
614/*
615 * Called after process has been wait(2)'ed apon and is being reaped.
616 * The idea is to reclaim resources that we could not reclaim while
617 * the process was still executing.
618 */
619void
620vm_waitproc(p)
621	struct proc *p;
622{
623
624	vmspace_exitfree(p);		/* and clean-out the vmspace */
625}
626
627void
628faultin(p)
629	struct proc *p;
630{
631#ifdef NO_SWAPPING
632
633	PROC_LOCK_ASSERT(p, MA_OWNED);
634	if ((p->p_flag & P_INMEM) == 0)
635		panic("faultin: proc swapped out with NO_SWAPPING!");
636#else /* !NO_SWAPPING */
637	struct thread *td;
638
639	PROC_LOCK_ASSERT(p, MA_OWNED);
640	/*
641	 * If another process is swapping in this process,
642	 * just wait until it finishes.
643	 */
644	if (p->p_flag & P_SWAPPINGIN) {
645		while (p->p_flag & P_SWAPPINGIN)
646			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
647		return;
648	}
649	if ((p->p_flag & P_INMEM) == 0) {
650		/*
651		 * Don't let another thread swap process p out while we are
652		 * busy swapping it in.
653		 */
654		++p->p_lock;
655		p->p_flag |= P_SWAPPINGIN;
656		PROC_UNLOCK(p);
657
658		/*
659		 * We hold no lock here because the list of threads
660		 * can not change while all threads in the process are
661		 * swapped out.
662		 */
663		FOREACH_THREAD_IN_PROC(p, td)
664			vm_thread_swapin(td);
665		PROC_LOCK(p);
666		swapclear(p);
667		p->p_swtick = ticks;
668
669		wakeup(&p->p_flag);
670
671		/* Allow other threads to swap p out now. */
672		--p->p_lock;
673	}
674#endif /* NO_SWAPPING */
675}
676
677/*
678 * This swapin algorithm attempts to swap-in processes only if there
679 * is enough space for them.  Of course, if a process waits for a long
680 * time, it will be swapped in anyway.
681 *
682 * Giant is held on entry.
683 */
684void
685swapper(void)
686{
687	struct proc *p;
688	struct thread *td;
689	struct proc *pp;
690	int slptime;
691	int swtime;
692	int ppri;
693	int pri;
694
695loop:
696	if (vm_page_count_min()) {
697		VM_WAIT;
698		goto loop;
699	}
700
701	pp = NULL;
702	ppri = INT_MIN;
703	sx_slock(&allproc_lock);
704	FOREACH_PROC_IN_SYSTEM(p) {
705		PROC_LOCK(p);
706		if (p->p_state == PRS_NEW ||
707		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
708			PROC_UNLOCK(p);
709			continue;
710		}
711		swtime = (ticks - p->p_swtick) / hz;
712		FOREACH_THREAD_IN_PROC(p, td) {
713			/*
714			 * An otherwise runnable thread of a process
715			 * swapped out has only the TDI_SWAPPED bit set.
716			 *
717			 */
718			thread_lock(td);
719			if (td->td_inhibitors == TDI_SWAPPED) {
720				slptime = (ticks - td->td_slptick) / hz;
721				pri = swtime + slptime;
722				if ((td->td_flags & TDF_SWAPINREQ) == 0)
723					pri -= p->p_nice * 8;
724				/*
725				 * if this thread is higher priority
726				 * and there is enough space, then select
727				 * this process instead of the previous
728				 * selection.
729				 */
730				if (pri > ppri) {
731					pp = p;
732					ppri = pri;
733				}
734			}
735			thread_unlock(td);
736		}
737		PROC_UNLOCK(p);
738	}
739	sx_sunlock(&allproc_lock);
740
741	/*
742	 * Nothing to do, back to sleep.
743	 */
744	if ((p = pp) == NULL) {
745		tsleep(&proc0, PVM, "swapin", MAXSLP * hz / 2);
746		goto loop;
747	}
748	PROC_LOCK(p);
749
750	/*
751	 * Another process may be bringing or may have already
752	 * brought this process in while we traverse all threads.
753	 * Or, this process may even be being swapped out again.
754	 */
755	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
756		PROC_UNLOCK(p);
757		goto loop;
758	}
759
760	/*
761	 * We would like to bring someone in. (only if there is space).
762	 * [What checks the space? ]
763	 */
764	faultin(p);
765	PROC_UNLOCK(p);
766	goto loop;
767}
768
769void
770kick_proc0(void)
771{
772
773	wakeup(&proc0);
774}
775
776#ifndef NO_SWAPPING
777
778/*
779 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
780 */
781static int swap_idle_threshold1 = 2;
782SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
783    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
784
785/*
786 * Swap_idle_threshold2 is the time that a process can be idle before
787 * it will be swapped out, if idle swapping is enabled.
788 */
789static int swap_idle_threshold2 = 10;
790SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
791    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
792
793/*
794 * First, if any processes have been sleeping or stopped for at least
795 * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
796 * no such processes exist, then the longest-sleeping or stopped
797 * process is swapped out.  Finally, and only as a last resort, if
798 * there are no sleeping or stopped processes, the longest-resident
799 * process is swapped out.
800 */
801void
802swapout_procs(action)
803int action;
804{
805	struct proc *p;
806	struct thread *td;
807	int didswap = 0;
808
809retry:
810	sx_slock(&allproc_lock);
811	FOREACH_PROC_IN_SYSTEM(p) {
812		struct vmspace *vm;
813		int minslptime = 100000;
814		int slptime;
815
816		/*
817		 * Watch out for a process in
818		 * creation.  It may have no
819		 * address space or lock yet.
820		 */
821		if (p->p_state == PRS_NEW)
822			continue;
823		/*
824		 * An aio daemon switches its
825		 * address space while running.
826		 * Perform a quick check whether
827		 * a process has P_SYSTEM.
828		 */
829		if ((p->p_flag & P_SYSTEM) != 0)
830			continue;
831		/*
832		 * Do not swapout a process that
833		 * is waiting for VM data
834		 * structures as there is a possible
835		 * deadlock.  Test this first as
836		 * this may block.
837		 *
838		 * Lock the map until swapout
839		 * finishes, or a thread of this
840		 * process may attempt to alter
841		 * the map.
842		 */
843		vm = vmspace_acquire_ref(p);
844		if (vm == NULL)
845			continue;
846		if (!vm_map_trylock(&vm->vm_map))
847			goto nextproc1;
848
849		PROC_LOCK(p);
850		if (p->p_lock != 0 ||
851		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
852		    ) != 0) {
853			goto nextproc;
854		}
855		/*
856		 * only aiod changes vmspace, however it will be
857		 * skipped because of the if statement above checking
858		 * for P_SYSTEM
859		 */
860		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
861			goto nextproc;
862
863		switch (p->p_state) {
864		default:
865			/* Don't swap out processes in any sort
866			 * of 'special' state. */
867			break;
868
869		case PRS_NORMAL:
870			/*
871			 * do not swapout a realtime process
872			 * Check all the thread groups..
873			 */
874			FOREACH_THREAD_IN_PROC(p, td) {
875				thread_lock(td);
876				if (PRI_IS_REALTIME(td->td_pri_class)) {
877					thread_unlock(td);
878					goto nextproc;
879				}
880				slptime = (ticks - td->td_slptick) / hz;
881				/*
882				 * Guarantee swap_idle_threshold1
883				 * time in memory.
884				 */
885				if (slptime < swap_idle_threshold1) {
886					thread_unlock(td);
887					goto nextproc;
888				}
889
890				/*
891				 * Do not swapout a process if it is
892				 * waiting on a critical event of some
893				 * kind or there is a thread whose
894				 * pageable memory may be accessed.
895				 *
896				 * This could be refined to support
897				 * swapping out a thread.
898				 */
899				if (!thread_safetoswapout(td)) {
900					thread_unlock(td);
901					goto nextproc;
902				}
903				/*
904				 * If the system is under memory stress,
905				 * or if we are swapping
906				 * idle processes >= swap_idle_threshold2,
907				 * then swap the process out.
908				 */
909				if (((action & VM_SWAP_NORMAL) == 0) &&
910				    (((action & VM_SWAP_IDLE) == 0) ||
911				    (slptime < swap_idle_threshold2))) {
912					thread_unlock(td);
913					goto nextproc;
914				}
915
916				if (minslptime > slptime)
917					minslptime = slptime;
918				thread_unlock(td);
919			}
920
921			/*
922			 * If the pageout daemon didn't free enough pages,
923			 * or if this process is idle and the system is
924			 * configured to swap proactively, swap it out.
925			 */
926			if ((action & VM_SWAP_NORMAL) ||
927				((action & VM_SWAP_IDLE) &&
928				 (minslptime > swap_idle_threshold2))) {
929				if (swapout(p) == 0)
930					didswap++;
931				PROC_UNLOCK(p);
932				vm_map_unlock(&vm->vm_map);
933				vmspace_free(vm);
934				sx_sunlock(&allproc_lock);
935				goto retry;
936			}
937		}
938nextproc:
939		PROC_UNLOCK(p);
940		vm_map_unlock(&vm->vm_map);
941nextproc1:
942		vmspace_free(vm);
943		continue;
944	}
945	sx_sunlock(&allproc_lock);
946	/*
947	 * If we swapped something out, and another process needed memory,
948	 * then wakeup the sched process.
949	 */
950	if (didswap)
951		wakeup(&proc0);
952}
953
954static void
955swapclear(p)
956	struct proc *p;
957{
958	struct thread *td;
959
960	PROC_LOCK_ASSERT(p, MA_OWNED);
961
962	FOREACH_THREAD_IN_PROC(p, td) {
963		thread_lock(td);
964		td->td_flags |= TDF_INMEM;
965		td->td_flags &= ~TDF_SWAPINREQ;
966		TD_CLR_SWAPPED(td);
967		if (TD_CAN_RUN(td))
968			if (setrunnable(td)) {
969#ifdef INVARIANTS
970				/*
971				 * XXX: We just cleared TDI_SWAPPED
972				 * above and set TDF_INMEM, so this
973				 * should never happen.
974				 */
975				panic("not waking up swapper");
976#endif
977			}
978		thread_unlock(td);
979	}
980	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
981	p->p_flag |= P_INMEM;
982}
983
984static int
985swapout(p)
986	struct proc *p;
987{
988	struct thread *td;
989
990	PROC_LOCK_ASSERT(p, MA_OWNED);
991#if defined(SWAP_DEBUG)
992	printf("swapping out %d\n", p->p_pid);
993#endif
994
995	/*
996	 * The states of this process and its threads may have changed
997	 * by now.  Assuming that there is only one pageout daemon thread,
998	 * this process should still be in memory.
999	 */
1000	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1001		("swapout: lost a swapout race?"));
1002
1003	/*
1004	 * remember the process resident count
1005	 */
1006	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1007	/*
1008	 * Check and mark all threads before we proceed.
1009	 */
1010	p->p_flag &= ~P_INMEM;
1011	p->p_flag |= P_SWAPPINGOUT;
1012	FOREACH_THREAD_IN_PROC(p, td) {
1013		thread_lock(td);
1014		if (!thread_safetoswapout(td)) {
1015			thread_unlock(td);
1016			swapclear(p);
1017			return (EBUSY);
1018		}
1019		td->td_flags &= ~TDF_INMEM;
1020		TD_SET_SWAPPED(td);
1021		thread_unlock(td);
1022	}
1023	td = FIRST_THREAD_IN_PROC(p);
1024	++td->td_ru.ru_nswap;
1025	PROC_UNLOCK(p);
1026
1027	/*
1028	 * This list is stable because all threads are now prevented from
1029	 * running.  The list is only modified in the context of a running
1030	 * thread in this process.
1031	 */
1032	FOREACH_THREAD_IN_PROC(p, td)
1033		vm_thread_swapout(td);
1034
1035	PROC_LOCK(p);
1036	p->p_flag &= ~P_SWAPPINGOUT;
1037	p->p_swtick = ticks;
1038	return (0);
1039}
1040#endif /* !NO_SWAPPING */
1041