1/*-
2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD$
28 *
29 */
30
31/*
32 * This file includes definitions, structures, prototypes, and inlines that
33 * should not be used outside of the actual implementation of UMA.
34 */
35
36/*
37 * Here's a quick description of the relationship between the objects:
38 *
39 * Kegs contain lists of slabs which are stored in either the full bin, empty
40 * bin, or partially allocated bin, to reduce fragmentation.  They also contain
41 * the user supplied value for size, which is adjusted for alignment purposes
42 * and rsize is the result of that.  The Keg also stores information for
43 * managing a hash of page addresses that maps pages to uma_slab_t structures
44 * for pages that don't have embedded uma_slab_t's.
45 *
46 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
47 * be allocated off the page from a special slab zone.  The free list within a
48 * slab is managed with a linked list of indices, which are 8 bit values.  If
49 * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
50 * values.  Currently on alpha you can get 250 or so 32 byte items and on x86
51 * you can get 250 or so 16byte items.  For item sizes that would yield more
52 * than 10% memory waste we potentially allocate a separate uma_slab_t if this
53 * will improve the number of items per slab that will fit.
54 *
55 * Other potential space optimizations are storing the 8bit of linkage in space
56 * wasted between items due to alignment problems.  This may yield a much better
57 * memory footprint for certain sizes of objects.  Another alternative is to
58 * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes.  I prefer
59 * dynamic slab sizes because we could stick with 8 bit indices and only use
60 * large slab sizes for zones with a lot of waste per slab.  This may create
61 * inefficiencies in the vm subsystem due to fragmentation in the address space.
62 *
63 * The only really gross cases, with regards to memory waste, are for those
64 * items that are just over half the page size.   You can get nearly 50% waste,
65 * so you fall back to the memory footprint of the power of two allocator. I
66 * have looked at memory allocation sizes on many of the machines available to
67 * me, and there does not seem to be an abundance of allocations at this range
68 * so at this time it may not make sense to optimize for it.  This can, of
69 * course, be solved with dynamic slab sizes.
70 *
71 * Kegs may serve multiple Zones but by far most of the time they only serve
72 * one.  When a Zone is created, a Keg is allocated and setup for it.  While
73 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
74 * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
75 * pair, as well as with its own set of small per-CPU caches, layered above
76 * the Zone's general Bucket cache.
77 *
78 * The PCPU caches are protected by critical sections, and may be accessed
79 * safely only from their associated CPU, while the Zones backed by the same
80 * Keg all share a common Keg lock (to coalesce contention on the backing
81 * slabs).  The backing Keg typically only serves one Zone but in the case of
82 * multiple Zones, one of the Zones is considered the Master Zone and all
83 * Zone-related stats from the Keg are done in the Master Zone.  For an
84 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
85 */
86
87/*
88 *	This is the representation for normal (Non OFFPAGE slab)
89 *
90 *	i == item
91 *	s == slab pointer
92 *
93 *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
94 *	___________________________________________________________
95 *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
96 *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
97 *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
98 *     |___________________________________________________________|
99 *
100 *
101 *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
102 *
103 *	___________________________________________________________
104 *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
105 *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
106 *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
107 *     |___________________________________________________________|
108 *       ___________    ^
109 *	|slab header|   |
110 *	|___________|---*
111 *
112 */
113
114#ifndef VM_UMA_INT_H
115#define VM_UMA_INT_H
116
117#define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
118#define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
119#define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
120
121#define UMA_BOOT_PAGES		64	/* Pages allocated for startup */
122
123/* Max waste before going to off page slab management */
124#define UMA_MAX_WASTE	(UMA_SLAB_SIZE / 10)
125
126/*
127 * I doubt there will be many cases where this is exceeded. This is the initial
128 * size of the hash table for uma_slabs that are managed off page. This hash
129 * does expand by powers of two.  Currently it doesn't get smaller.
130 */
131#define UMA_HASH_SIZE_INIT	32
132
133/*
134 * I should investigate other hashing algorithms.  This should yield a low
135 * number of collisions if the pages are relatively contiguous.
136 *
137 * This is the same algorithm that most processor caches use.
138 *
139 * I'm shifting and masking instead of % because it should be faster.
140 */
141
142#define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) &	\
143    (h)->uh_hashmask)
144
145#define UMA_HASH_INSERT(h, s, mem)					\
146		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
147		    (mem))], (s), us_hlink)
148#define UMA_HASH_REMOVE(h, s, mem)					\
149		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
150		    (mem))], (s), uma_slab, us_hlink)
151
152/* Hash table for freed address -> slab translation */
153
154SLIST_HEAD(slabhead, uma_slab);
155
156struct uma_hash {
157	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
158	int		uh_hashsize;	/* Current size of the hash table */
159	int		uh_hashmask;	/* Mask used during hashing */
160};
161
162/*
163 * align field or structure to cache line
164 */
165#if defined(__amd64__)
166#define UMA_ALIGN	__aligned(CACHE_LINE_SIZE)
167#else
168#define UMA_ALIGN
169#endif
170
171/*
172 * Structures for per cpu queues.
173 */
174
175struct uma_bucket {
176	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
177	int16_t	ub_cnt;				/* Count of free items. */
178	int16_t	ub_entries;			/* Max items. */
179	void	*ub_bucket[];			/* actual allocation storage */
180};
181
182typedef struct uma_bucket * uma_bucket_t;
183
184struct uma_cache {
185	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
186	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
187	u_int64_t	uc_allocs;	/* Count of allocations */
188	u_int64_t	uc_frees;	/* Count of frees */
189} UMA_ALIGN;
190
191typedef struct uma_cache * uma_cache_t;
192
193/*
194 * Keg management structure
195 *
196 * TODO: Optimize for cache line size
197 *
198 */
199struct uma_keg {
200	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
201
202	struct mtx	uk_lock;	/* Lock for the keg */
203	struct uma_hash	uk_hash;
204
205	const char	*uk_name;		/* Name of creating zone. */
206	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
207	LIST_HEAD(,uma_slab)	uk_part_slab;	/* partially allocated slabs */
208	LIST_HEAD(,uma_slab)	uk_free_slab;	/* empty slab list */
209	LIST_HEAD(,uma_slab)	uk_full_slab;	/* full slabs */
210
211	u_int32_t	uk_recurse;	/* Allocation recursion count */
212	u_int32_t	uk_align;	/* Alignment mask */
213	u_int32_t	uk_pages;	/* Total page count */
214	u_int32_t	uk_free;	/* Count of items free in slabs */
215	u_int32_t	uk_size;	/* Requested size of each item */
216	u_int32_t	uk_rsize;	/* Real size of each item */
217	u_int32_t	uk_maxpages;	/* Maximum number of pages to alloc */
218
219	uma_init	uk_init;	/* Keg's init routine */
220	uma_fini	uk_fini;	/* Keg's fini routine */
221	uma_alloc	uk_allocf;	/* Allocation function */
222	uma_free	uk_freef;	/* Free routine */
223
224	struct vm_object	*uk_obj;	/* Zone specific object */
225	vm_offset_t	uk_kva;		/* Base kva for zones with objs */
226	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
227
228	u_int16_t	uk_pgoff;	/* Offset to uma_slab struct */
229	u_int16_t	uk_ppera;	/* pages per allocation from backend */
230	u_int16_t	uk_ipers;	/* Items per slab */
231	u_int32_t	uk_flags;	/* Internal flags */
232};
233typedef struct uma_keg	* uma_keg_t;
234
235/* Page management structure */
236
237/* Sorry for the union, but space efficiency is important */
238struct uma_slab_head {
239	uma_keg_t	us_keg;			/* Keg we live in */
240	union {
241		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
242		unsigned long	_us_size;	/* Size of allocation */
243	} us_type;
244	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
245	u_int8_t	*us_data;		/* First item */
246	u_int8_t	us_flags;		/* Page flags see uma.h */
247	u_int8_t	us_freecount;	/* How many are free? */
248	u_int8_t	us_firstfree;	/* First free item index */
249};
250
251/* The standard slab structure */
252struct uma_slab {
253	struct uma_slab_head	us_head;	/* slab header data */
254	struct {
255		u_int8_t	us_item;
256	} us_freelist[1];			/* actual number bigger */
257};
258
259/*
260 * The slab structure for UMA_ZONE_REFCNT zones for whose items we
261 * maintain reference counters in the slab for.
262 */
263struct uma_slab_refcnt {
264	struct uma_slab_head	us_head;	/* slab header data */
265	struct {
266		u_int8_t	us_item;
267		u_int32_t	us_refcnt;
268	} us_freelist[1];			/* actual number bigger */
269};
270
271#define	us_keg		us_head.us_keg
272#define	us_link		us_head.us_type._us_link
273#define	us_size		us_head.us_type._us_size
274#define	us_hlink	us_head.us_hlink
275#define	us_data		us_head.us_data
276#define	us_flags	us_head.us_flags
277#define	us_freecount	us_head.us_freecount
278#define	us_firstfree	us_head.us_firstfree
279
280typedef struct uma_slab * uma_slab_t;
281typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
282typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
283
284
285/*
286 * These give us the size of one free item reference within our corresponding
287 * uma_slab structures, so that our calculations during zone setup are correct
288 * regardless of what the compiler decides to do with padding the structure
289 * arrays within uma_slab.
290 */
291#define	UMA_FRITM_SZ	(sizeof(struct uma_slab) - sizeof(struct uma_slab_head))
292#define	UMA_FRITMREF_SZ	(sizeof(struct uma_slab_refcnt) -	\
293    sizeof(struct uma_slab_head))
294
295struct uma_klink {
296	LIST_ENTRY(uma_klink)	kl_link;
297	uma_keg_t		kl_keg;
298};
299typedef struct uma_klink *uma_klink_t;
300
301/*
302 * Zone management structure
303 *
304 * TODO: Optimize for cache line size
305 *
306 */
307struct uma_zone {
308	const char	*uz_name;	/* Text name of the zone */
309	struct mtx	*uz_lock;	/* Lock for the zone (keg's lock) */
310
311	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
312	LIST_HEAD(,uma_bucket)	uz_full_bucket;	/* full buckets */
313	LIST_HEAD(,uma_bucket)	uz_free_bucket;	/* Buckets for frees */
314
315	LIST_HEAD(,uma_klink)	uz_kegs;	/* List of kegs. */
316	struct uma_klink	uz_klink;	/* klink for first keg. */
317
318	uma_slaballoc	uz_slab;	/* Allocate a slab from the backend. */
319	uma_ctor	uz_ctor;	/* Constructor for each allocation */
320	uma_dtor	uz_dtor;	/* Destructor */
321	uma_init	uz_init;	/* Initializer for each item */
322	uma_fini	uz_fini;	/* Discards memory */
323
324	u_int32_t	uz_flags;	/* Flags inherited from kegs */
325	u_int32_t	uz_size;	/* Size inherited from kegs */
326
327	u_int64_t	uz_allocs UMA_ALIGN; /* Total number of allocations */
328	u_int64_t	uz_frees;	/* Total number of frees */
329	u_int64_t	uz_fails;	/* Total number of alloc failures */
330	u_int64_t	uz_sleeps;	/* Total number of alloc sleeps */
331	uint16_t	uz_fills;	/* Outstanding bucket fills */
332	uint16_t	uz_count;	/* Highest value ub_ptr can have */
333
334	/*
335	 * This HAS to be the last item because we adjust the zone size
336	 * based on NCPU and then allocate the space for the zones.
337	 */
338	struct uma_cache	uz_cpu[1]; /* Per cpu caches */
339};
340
341/*
342 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
343 */
344#define	UMA_ZFLAG_BUCKET	0x02000000	/* Bucket zone. */
345#define	UMA_ZFLAG_MULTI		0x04000000	/* Multiple kegs in the zone. */
346#define	UMA_ZFLAG_DRAINING	0x08000000	/* Running zone_drain. */
347#define UMA_ZFLAG_PRIVALLOC	0x10000000	/* Use uz_allocf. */
348#define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
349#define UMA_ZFLAG_FULL		0x40000000	/* Reached uz_maxpages */
350#define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
351
352#define	UMA_ZFLAG_INHERIT	(UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | \
353				    UMA_ZFLAG_BUCKET)
354
355#undef UMA_ALIGN
356
357#ifdef _KERNEL
358/* Internal prototypes */
359static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
360void *uma_large_malloc(int size, int wait);
361void uma_large_free(uma_slab_t slab);
362
363/* Lock Macros */
364
365#define	KEG_LOCK_INIT(k, lc)					\
366	do {							\
367		if ((lc))					\
368			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
369			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
370		else						\
371			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
372			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
373	} while (0)
374
375#define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
376#define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
377#define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
378#define	ZONE_LOCK(z)	mtx_lock((z)->uz_lock)
379#define ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lock)
380
381/*
382 * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
383 * the slab structure.
384 *
385 * Arguments:
386 *	hash  The hash table to search.
387 *	data  The base page of the item.
388 *
389 * Returns:
390 *	A pointer to a slab if successful, else NULL.
391 */
392static __inline uma_slab_t
393hash_sfind(struct uma_hash *hash, u_int8_t *data)
394{
395        uma_slab_t slab;
396        int hval;
397
398        hval = UMA_HASH(hash, data);
399
400        SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
401                if ((u_int8_t *)slab->us_data == data)
402                        return (slab);
403        }
404        return (NULL);
405}
406
407static __inline uma_slab_t
408vtoslab(vm_offset_t va)
409{
410	vm_page_t p;
411	uma_slab_t slab;
412
413	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
414	slab = (uma_slab_t )p->object;
415
416	if (p->flags & PG_SLAB)
417		return (slab);
418	else
419		return (NULL);
420}
421
422static __inline void
423vsetslab(vm_offset_t va, uma_slab_t slab)
424{
425	vm_page_t p;
426
427	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
428	p->object = (vm_object_t)slab;
429	p->flags |= PG_SLAB;
430}
431
432static __inline void
433vsetobj(vm_offset_t va, vm_object_t obj)
434{
435	vm_page_t p;
436
437	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
438	p->object = obj;
439	p->flags &= ~PG_SLAB;
440}
441
442/*
443 * The following two functions may be defined by architecture specific code
444 * if they can provide more effecient allocation functions.  This is useful
445 * for using direct mapped addresses.
446 */
447void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait);
448void uma_small_free(void *mem, int size, u_int8_t flags);
449#endif /* _KERNEL */
450
451#endif /* VM_UMA_INT_H */
452