1/*-
2 * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
3 * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * MemGuard is a simple replacement allocator for debugging only
33 * which provides ElectricFence-style memory barrier protection on
34 * objects being allocated, and is used to detect tampering-after-free
35 * scenarios.
36 *
37 * See the memguard(9) man page for more information on using MemGuard.
38 */
39
40#include "opt_vm.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/types.h>
46#include <sys/queue.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/malloc.h>
50#include <sys/sysctl.h>
51
52#include <vm/vm.h>
53#include <vm/uma.h>
54#include <vm/vm_param.h>
55#include <vm/vm_page.h>
56#include <vm/vm_map.h>
57#include <vm/vm_object.h>
58#include <vm/vm_extern.h>
59#include <vm/memguard.h>
60
61static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
62/*
63 * The vm_memguard_divisor variable controls how much of kmem_map should be
64 * reserved for MemGuard.
65 */
66static u_int vm_memguard_divisor;
67SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN,
68    &vm_memguard_divisor,
69    0, "(kmem_size/memguard_divisor) == memguard submap size");
70
71/*
72 * Short description (ks_shortdesc) of memory type to monitor.
73 */
74static char vm_memguard_desc[128] = "";
75static struct malloc_type *vm_memguard_mtype = NULL;
76TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
77static int
78memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
79{
80	char desc[sizeof(vm_memguard_desc)];
81	int error;
82
83	strlcpy(desc, vm_memguard_desc, sizeof(desc));
84	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
85	if (error != 0 || req->newptr == NULL)
86		return (error);
87
88	mtx_lock(&malloc_mtx);
89	/*
90	 * If mtp is NULL, it will be initialized in memguard_cmp().
91	 */
92	vm_memguard_mtype = malloc_desc2type(desc);
93	strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
94	mtx_unlock(&malloc_mtx);
95	return (error);
96}
97SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
98    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
99    memguard_sysctl_desc, "A", "Short description of memory type to monitor");
100
101static vm_map_t memguard_map = NULL;
102static vm_offset_t memguard_cursor;
103static vm_size_t memguard_mapsize;
104static vm_size_t memguard_physlimit;
105static u_long memguard_wasted;
106static u_long memguard_wrap;
107static u_long memguard_succ;
108static u_long memguard_fail_kva;
109static u_long memguard_fail_pgs;
110
111SYSCTL_ULONG(_vm_memguard, OID_AUTO, cursor, CTLFLAG_RD,
112    &memguard_cursor, 0, "MemGuard cursor");
113SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
114    &memguard_mapsize, 0, "MemGuard private vm_map size");
115SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
116    &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
117SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
118    &memguard_wasted, 0, "Excess memory used through page promotion");
119SYSCTL_ULONG(_vm_memguard, OID_AUTO, wrapcnt, CTLFLAG_RD,
120    &memguard_wrap, 0, "MemGuard cursor wrap count");
121SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
122    &memguard_succ, 0, "Count of successful MemGuard allocations");
123SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
124    &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
125SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
126    &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
127
128#define MG_GUARD	0x001
129#define MG_ALLLARGE	0x002
130static int memguard_options = MG_GUARD;
131TUNABLE_INT("vm.memguard.options", &memguard_options);
132SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RW,
133    &memguard_options, 0,
134    "MemGuard options:\n"
135    "\t0x001 - add guard pages around each allocation\n"
136    "\t0x002 - always use MemGuard for allocations over a page");
137
138static u_int memguard_minsize;
139static u_long memguard_minsize_reject;
140SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
141    &memguard_minsize, 0, "Minimum size for page promotion");
142SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
143    &memguard_minsize_reject, 0, "# times rejected for size");
144
145static u_int memguard_frequency;
146static u_long memguard_frequency_hits;
147TUNABLE_INT("vm.memguard.frequency", &memguard_frequency);
148SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RW,
149    &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
150SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
151    &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
152
153
154/*
155 * Return a fudged value to be used for vm_kmem_size for allocating
156 * the kmem_map.  The memguard memory will be a submap.
157 */
158unsigned long
159memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
160{
161	u_long mem_pgs, parent_size;
162
163	vm_memguard_divisor = 10;
164	TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
165
166	parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
167	    PAGE_SIZE;
168	/* Pick a conservative value if provided value sucks. */
169	if ((vm_memguard_divisor <= 0) ||
170	    ((parent_size / vm_memguard_divisor) == 0))
171		vm_memguard_divisor = 10;
172	/*
173	 * Limit consumption of physical pages to
174	 * 1/vm_memguard_divisor of system memory.  If the KVA is
175	 * smaller than this then the KVA limit comes into play first.
176	 * This prevents memguard's page promotions from completely
177	 * using up memory, since most malloc(9) calls are sub-page.
178	 */
179	mem_pgs = cnt.v_page_count;
180	memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
181	/*
182	 * We want as much KVA as we can take safely.  Use at most our
183	 * allotted fraction of the parent map's size.  Limit this to
184	 * twice the physical memory to avoid using too much memory as
185	 * pagetable pages (size must be multiple of PAGE_SIZE).
186	 */
187	memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
188	if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
189		memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
190	if (km_size + memguard_mapsize > parent_size)
191		memguard_mapsize = 0;
192	return (km_size + memguard_mapsize);
193}
194
195/*
196 * Initialize the MemGuard mock allocator.  All objects from MemGuard come
197 * out of a single VM map (contiguous chunk of address space).
198 */
199void
200memguard_init(vm_map_t parent_map)
201{
202	vm_offset_t base, limit;
203
204	memguard_map = kmem_suballoc(parent_map, &base, &limit,
205	    memguard_mapsize, FALSE);
206	memguard_map->system_map = 1;
207	KASSERT(memguard_mapsize == limit - base,
208	    ("Expected %lu, got %lu", (u_long)memguard_mapsize,
209	     (u_long)(limit - base)));
210	memguard_cursor = base;
211
212	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
213	printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
214	printf("\tMEMGUARD map limit: 0x%lx\n", (u_long)limit);
215	printf("\tMEMGUARD map size: %jd KBytes\n",
216	    (uintmax_t)memguard_mapsize >> 10);
217}
218
219/*
220 * Run things that can't be done as early as memguard_init().
221 */
222static void
223memguard_sysinit(void)
224{
225	struct sysctl_oid_list *parent;
226
227	parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
228
229	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapstart", CTLFLAG_RD,
230	    &memguard_map->min_offset, "MemGuard KVA base");
231	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "maplimit", CTLFLAG_RD,
232	    &memguard_map->max_offset, "MemGuard KVA end");
233	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapused", CTLFLAG_RD,
234	    &memguard_map->size, "MemGuard KVA used");
235}
236SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
237
238/*
239 * v2sizep() converts a virtual address of the first page allocated for
240 * an item to a pointer to u_long recording the size of the original
241 * allocation request.
242 *
243 * This routine is very similar to those defined by UMA in uma_int.h.
244 * The difference is that this routine stores the originally allocated
245 * size in one of the page's fields that is unused when the page is
246 * wired rather than the object field, which is used.
247 */
248static u_long *
249v2sizep(vm_offset_t va)
250{
251	vm_paddr_t pa;
252	struct vm_page *p;
253
254	pa = pmap_kextract(va);
255	if (pa == 0)
256		panic("MemGuard detected double-free of %p", (void *)va);
257	p = PHYS_TO_VM_PAGE(pa);
258	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
259	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
260	return ((u_long *)&p->pageq.tqe_next);
261}
262
263/*
264 * Allocate a single object of specified size with specified flags
265 * (either M_WAITOK or M_NOWAIT).
266 */
267void *
268memguard_alloc(unsigned long req_size, int flags)
269{
270	vm_offset_t addr;
271	u_long size_p, size_v;
272	int do_guard, rv;
273
274	size_p = round_page(req_size);
275	if (size_p == 0)
276		return (NULL);
277	/*
278	 * To ensure there are holes on both sides of the allocation,
279	 * request 2 extra pages of KVA.  We will only actually add a
280	 * vm_map_entry and get pages for the original request.  Save
281	 * the value of memguard_options so we have a consistent
282	 * value.
283	 */
284	size_v = size_p;
285	do_guard = (memguard_options & MG_GUARD) != 0;
286	if (do_guard)
287		size_v += 2 * PAGE_SIZE;
288
289	vm_map_lock(memguard_map);
290	/*
291	 * When we pass our memory limit, reject sub-page allocations.
292	 * Page-size and larger allocations will use the same amount
293	 * of physical memory whether we allocate or hand off to
294	 * uma_large_alloc(), so keep those.
295	 */
296	if (memguard_map->size >= memguard_physlimit &&
297	    req_size < PAGE_SIZE) {
298		addr = (vm_offset_t)NULL;
299		memguard_fail_pgs++;
300		goto out;
301	}
302	/*
303	 * Keep a moving cursor so we don't recycle KVA as long as
304	 * possible.  It's not perfect, since we don't know in what
305	 * order previous allocations will be free'd, but it's simple
306	 * and fast, and requires O(1) additional storage if guard
307	 * pages are not used.
308	 *
309	 * XXX This scheme will lead to greater fragmentation of the
310	 * map, unless vm_map_findspace() is tweaked.
311	 */
312	for (;;) {
313		rv = vm_map_findspace(memguard_map, memguard_cursor,
314		    size_v, &addr);
315		if (rv == KERN_SUCCESS)
316			break;
317		/*
318		 * The map has no space.  This may be due to
319		 * fragmentation, or because the cursor is near the
320		 * end of the map.
321		 */
322		if (memguard_cursor == vm_map_min(memguard_map)) {
323			memguard_fail_kva++;
324			addr = (vm_offset_t)NULL;
325			goto out;
326		}
327		memguard_wrap++;
328		memguard_cursor = vm_map_min(memguard_map);
329	}
330	if (do_guard)
331		addr += PAGE_SIZE;
332	rv = kmem_back(memguard_map, addr, size_p, flags);
333	if (rv != KERN_SUCCESS) {
334		memguard_fail_pgs++;
335		addr = (vm_offset_t)NULL;
336		goto out;
337	}
338	memguard_cursor = addr + size_p;
339	*v2sizep(trunc_page(addr)) = req_size;
340	memguard_succ++;
341	if (req_size < PAGE_SIZE) {
342		memguard_wasted += (PAGE_SIZE - req_size);
343		if (do_guard) {
344			/*
345			 * Align the request to 16 bytes, and return
346			 * an address near the end of the page, to
347			 * better detect array overrun.
348			 */
349			req_size = roundup2(req_size, 16);
350			addr += (PAGE_SIZE - req_size);
351		}
352	}
353out:
354	vm_map_unlock(memguard_map);
355	return ((void *)addr);
356}
357
358int
359is_memguard_addr(void *addr)
360{
361	vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
362
363	return (a >= memguard_map->min_offset && a < memguard_map->max_offset);
364}
365
366/*
367 * Free specified single object.
368 */
369void
370memguard_free(void *ptr)
371{
372	vm_offset_t addr;
373	u_long req_size, size;
374	char *temp;
375	int i;
376
377	addr = trunc_page((uintptr_t)ptr);
378	req_size = *v2sizep(addr);
379	size = round_page(req_size);
380
381	/*
382	 * Page should not be guarded right now, so force a write.
383	 * The purpose of this is to increase the likelihood of
384	 * catching a double-free, but not necessarily a
385	 * tamper-after-free (the second thread freeing might not
386	 * write before freeing, so this forces it to and,
387	 * subsequently, trigger a fault).
388	 */
389	temp = ptr;
390	for (i = 0; i < size; i += PAGE_SIZE)
391		temp[i] = 'M';
392
393	/*
394	 * This requires carnal knowledge of the implementation of
395	 * kmem_free(), but since we've already replaced kmem_malloc()
396	 * above, it's not really any worse.  We want to use the
397	 * vm_map lock to serialize updates to memguard_wasted, since
398	 * we had the lock at increment.
399	 */
400	vm_map_lock(memguard_map);
401	if (req_size < PAGE_SIZE)
402		memguard_wasted -= (PAGE_SIZE - req_size);
403	(void)vm_map_delete(memguard_map, addr, addr + size);
404	vm_map_unlock(memguard_map);
405}
406
407/*
408 * Re-allocate an allocation that was originally guarded.
409 */
410void *
411memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
412    int flags)
413{
414	void *newaddr;
415	u_long old_size;
416
417	/*
418	 * Allocate the new block.  Force the allocation to be guarded
419	 * as the original may have been guarded through random
420	 * chance, and that should be preserved.
421	 */
422	if ((newaddr = memguard_alloc(size, flags)) == NULL)
423		return (NULL);
424
425	/* Copy over original contents. */
426	old_size = *v2sizep(trunc_page((uintptr_t)addr));
427	bcopy(addr, newaddr, min(size, old_size));
428	memguard_free(addr);
429	return (newaddr);
430}
431
432int
433memguard_cmp(struct malloc_type *mtp, unsigned long size)
434{
435
436	if (size < memguard_minsize) {
437		memguard_minsize_reject++;
438		return (0);
439	}
440	if ((memguard_options & MG_ALLLARGE) != 0 && size >= PAGE_SIZE)
441		return (1);
442	if (memguard_frequency > 0 &&
443	    (random() % 100000) < memguard_frequency) {
444		memguard_frequency_hits++;
445		return (1);
446	}
447#if 1
448	/*
449	 * The safest way of comparsion is to always compare short description
450	 * string of memory type, but it is also the slowest way.
451	 */
452	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
453#else
454	/*
455	 * If we compare pointers, there are two possible problems:
456	 * 1. Memory type was unloaded and new memory type was allocated at the
457	 *    same address.
458	 * 2. Memory type was unloaded and loaded again, but allocated at a
459	 *    different address.
460	 */
461	if (vm_memguard_mtype != NULL)
462		return (mtp == vm_memguard_mtype);
463	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
464		vm_memguard_mtype = mtp;
465		return (1);
466	}
467	return (0);
468#endif
469}
470