1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// \brief This class is used by SelectionDAGISel to temporarily override
227  /// the optimization level on a per-function basis.
228  class OptLevelChanger {
229    SelectionDAGISel &IS;
230    CodeGenOpt::Level SavedOptLevel;
231    bool SavedFastISel;
232
233  public:
234    OptLevelChanger(SelectionDAGISel &ISel,
235                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
236      SavedOptLevel = IS.OptLevel;
237      if (NewOptLevel == SavedOptLevel)
238        return;
239      IS.OptLevel = NewOptLevel;
240      IS.TM.setOptLevel(NewOptLevel);
241      SavedFastISel = IS.TM.Options.EnableFastISel;
242      if (NewOptLevel == CodeGenOpt::None)
243        IS.TM.setFastISel(true);
244      DEBUG(dbgs() << "\nChanging optimization level for Function "
245            << IS.MF->getFunction()->getName() << "\n");
246      DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
247            << " ; After: -O" << NewOptLevel << "\n");
248    }
249
250    ~OptLevelChanger() {
251      if (IS.OptLevel == SavedOptLevel)
252        return;
253      DEBUG(dbgs() << "\nRestoring optimization level for Function "
254            << IS.MF->getFunction()->getName() << "\n");
255      DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
256            << " ; After: -O" << SavedOptLevel << "\n");
257      IS.OptLevel = SavedOptLevel;
258      IS.TM.setOptLevel(SavedOptLevel);
259      IS.TM.setFastISel(SavedFastISel);
260    }
261  };
262
263  //===--------------------------------------------------------------------===//
264  /// createDefaultScheduler - This creates an instruction scheduler appropriate
265  /// for the target.
266  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
267                                             CodeGenOpt::Level OptLevel) {
268    const TargetLowering *TLI = IS->getTargetLowering();
269    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
270
271    if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() ||
272        TLI->getSchedulingPreference() == Sched::Source)
273      return createSourceListDAGScheduler(IS, OptLevel);
274    if (TLI->getSchedulingPreference() == Sched::RegPressure)
275      return createBURRListDAGScheduler(IS, OptLevel);
276    if (TLI->getSchedulingPreference() == Sched::Hybrid)
277      return createHybridListDAGScheduler(IS, OptLevel);
278    if (TLI->getSchedulingPreference() == Sched::VLIW)
279      return createVLIWDAGScheduler(IS, OptLevel);
280    assert(TLI->getSchedulingPreference() == Sched::ILP &&
281           "Unknown sched type!");
282    return createILPListDAGScheduler(IS, OptLevel);
283  }
284}
285
286// EmitInstrWithCustomInserter - This method should be implemented by targets
287// that mark instructions with the 'usesCustomInserter' flag.  These
288// instructions are special in various ways, which require special support to
289// insert.  The specified MachineInstr is created but not inserted into any
290// basic blocks, and this method is called to expand it into a sequence of
291// instructions, potentially also creating new basic blocks and control flow.
292// When new basic blocks are inserted and the edges from MBB to its successors
293// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
294// DenseMap.
295MachineBasicBlock *
296TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
297                                            MachineBasicBlock *MBB) const {
298#ifndef NDEBUG
299  dbgs() << "If a target marks an instruction with "
300          "'usesCustomInserter', it must implement "
301          "TargetLowering::EmitInstrWithCustomInserter!";
302#endif
303  llvm_unreachable(0);
304}
305
306void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
307                                                   SDNode *Node) const {
308  assert(!MI->hasPostISelHook() &&
309         "If a target marks an instruction with 'hasPostISelHook', "
310         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
311}
312
313//===----------------------------------------------------------------------===//
314// SelectionDAGISel code
315//===----------------------------------------------------------------------===//
316
317SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
318                                   CodeGenOpt::Level OL) :
319  MachineFunctionPass(ID), TM(tm),
320  FuncInfo(new FunctionLoweringInfo(TM)),
321  CurDAG(new SelectionDAG(tm, OL)),
322  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
323  GFI(),
324  OptLevel(OL),
325  DAGSize(0) {
326    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
327    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
328    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
329    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
330  }
331
332SelectionDAGISel::~SelectionDAGISel() {
333  delete SDB;
334  delete CurDAG;
335  delete FuncInfo;
336}
337
338void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
339  AU.addRequired<AliasAnalysis>();
340  AU.addPreserved<AliasAnalysis>();
341  AU.addRequired<GCModuleInfo>();
342  AU.addPreserved<GCModuleInfo>();
343  AU.addRequired<TargetLibraryInfo>();
344  if (UseMBPI && OptLevel != CodeGenOpt::None)
345    AU.addRequired<BranchProbabilityInfo>();
346  MachineFunctionPass::getAnalysisUsage(AU);
347}
348
349/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
350/// may trap on it.  In this case we have to split the edge so that the path
351/// through the predecessor block that doesn't go to the phi block doesn't
352/// execute the possibly trapping instruction.
353///
354/// This is required for correctness, so it must be done at -O0.
355///
356static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
357  // Loop for blocks with phi nodes.
358  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
359    PHINode *PN = dyn_cast<PHINode>(BB->begin());
360    if (PN == 0) continue;
361
362  ReprocessBlock:
363    // For each block with a PHI node, check to see if any of the input values
364    // are potentially trapping constant expressions.  Constant expressions are
365    // the only potentially trapping value that can occur as the argument to a
366    // PHI.
367    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
368      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
369        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
370        if (CE == 0 || !CE->canTrap()) continue;
371
372        // The only case we have to worry about is when the edge is critical.
373        // Since this block has a PHI Node, we assume it has multiple input
374        // edges: check to see if the pred has multiple successors.
375        BasicBlock *Pred = PN->getIncomingBlock(i);
376        if (Pred->getTerminator()->getNumSuccessors() == 1)
377          continue;
378
379        // Okay, we have to split this edge.
380        SplitCriticalEdge(Pred->getTerminator(),
381                          GetSuccessorNumber(Pred, BB), SDISel, true);
382        goto ReprocessBlock;
383      }
384  }
385}
386
387bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
388  // Do some sanity-checking on the command-line options.
389  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
390         "-fast-isel-verbose requires -fast-isel");
391  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
392         "-fast-isel-abort requires -fast-isel");
393
394  const Function &Fn = *mf.getFunction();
395  const TargetInstrInfo &TII = *TM.getInstrInfo();
396  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
397  const TargetLowering *TLI = TM.getTargetLowering();
398
399  MF = &mf;
400  RegInfo = &MF->getRegInfo();
401  AA = &getAnalysis<AliasAnalysis>();
402  LibInfo = &getAnalysis<TargetLibraryInfo>();
403  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
404  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
405
406  TargetSubtargetInfo &ST =
407    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
408  ST.resetSubtargetFeatures(MF);
409  TM.resetTargetOptions(MF);
410
411  // Reset OptLevel to None for optnone functions.
412  CodeGenOpt::Level NewOptLevel = OptLevel;
413  if (Fn.hasFnAttribute(Attribute::OptimizeNone))
414    NewOptLevel = CodeGenOpt::None;
415  OptLevelChanger OLC(*this, NewOptLevel);
416
417  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
418
419  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
420
421  CurDAG->init(*MF, TTI, TLI);
422  FuncInfo->set(Fn, *MF, CurDAG);
423
424  if (UseMBPI && OptLevel != CodeGenOpt::None)
425    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
426  else
427    FuncInfo->BPI = 0;
428
429  SDB->init(GFI, *AA, LibInfo);
430
431  MF->setHasInlineAsm(false);
432
433  SelectAllBasicBlocks(Fn);
434
435  // If the first basic block in the function has live ins that need to be
436  // copied into vregs, emit the copies into the top of the block before
437  // emitting the code for the block.
438  MachineBasicBlock *EntryMBB = MF->begin();
439  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
440
441  DenseMap<unsigned, unsigned> LiveInMap;
442  if (!FuncInfo->ArgDbgValues.empty())
443    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
444           E = RegInfo->livein_end(); LI != E; ++LI)
445      if (LI->second)
446        LiveInMap.insert(std::make_pair(LI->first, LI->second));
447
448  // Insert DBG_VALUE instructions for function arguments to the entry block.
449  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
450    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
451    bool hasFI = MI->getOperand(0).isFI();
452    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
453    if (TargetRegisterInfo::isPhysicalRegister(Reg))
454      EntryMBB->insert(EntryMBB->begin(), MI);
455    else {
456      MachineInstr *Def = RegInfo->getVRegDef(Reg);
457      if (Def) {
458        MachineBasicBlock::iterator InsertPos = Def;
459        // FIXME: VR def may not be in entry block.
460        Def->getParent()->insert(llvm::next(InsertPos), MI);
461      } else
462        DEBUG(dbgs() << "Dropping debug info for dead vreg"
463              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
464    }
465
466    // If Reg is live-in then update debug info to track its copy in a vreg.
467    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
468    if (LDI != LiveInMap.end()) {
469      assert(!hasFI && "There's no handling of frame pointer updating here yet "
470                       "- add if needed");
471      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
472      MachineBasicBlock::iterator InsertPos = Def;
473      const MDNode *Variable =
474        MI->getOperand(MI->getNumOperands()-1).getMetadata();
475      bool IsIndirect = MI->isIndirectDebugValue();
476      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
477      // Def is never a terminator here, so it is ok to increment InsertPos.
478      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
479              TII.get(TargetOpcode::DBG_VALUE),
480              IsIndirect,
481              LDI->second, Offset, Variable);
482
483      // If this vreg is directly copied into an exported register then
484      // that COPY instructions also need DBG_VALUE, if it is the only
485      // user of LDI->second.
486      MachineInstr *CopyUseMI = NULL;
487      for (MachineRegisterInfo::use_iterator
488             UI = RegInfo->use_begin(LDI->second);
489           MachineInstr *UseMI = UI.skipInstruction();) {
490        if (UseMI->isDebugValue()) continue;
491        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
492          CopyUseMI = UseMI; continue;
493        }
494        // Otherwise this is another use or second copy use.
495        CopyUseMI = NULL; break;
496      }
497      if (CopyUseMI) {
498        MachineInstr *NewMI =
499          BuildMI(*MF, CopyUseMI->getDebugLoc(),
500                  TII.get(TargetOpcode::DBG_VALUE),
501                  IsIndirect,
502                  CopyUseMI->getOperand(0).getReg(),
503                  Offset, Variable);
504        MachineBasicBlock::iterator Pos = CopyUseMI;
505        EntryMBB->insertAfter(Pos, NewMI);
506      }
507    }
508  }
509
510  // Determine if there are any calls in this machine function.
511  MachineFrameInfo *MFI = MF->getFrameInfo();
512  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
513       ++I) {
514
515    if (MFI->hasCalls() && MF->hasInlineAsm())
516      break;
517
518    const MachineBasicBlock *MBB = I;
519    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
520         II != IE; ++II) {
521      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
522      if ((MCID.isCall() && !MCID.isReturn()) ||
523          II->isStackAligningInlineAsm()) {
524        MFI->setHasCalls(true);
525      }
526      if (II->isInlineAsm()) {
527        MF->setHasInlineAsm(true);
528      }
529    }
530  }
531
532  // Determine if there is a call to setjmp in the machine function.
533  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
534
535  // Replace forward-declared registers with the registers containing
536  // the desired value.
537  MachineRegisterInfo &MRI = MF->getRegInfo();
538  for (DenseMap<unsigned, unsigned>::iterator
539       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
540       I != E; ++I) {
541    unsigned From = I->first;
542    unsigned To = I->second;
543    // If To is also scheduled to be replaced, find what its ultimate
544    // replacement is.
545    for (;;) {
546      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
547      if (J == E) break;
548      To = J->second;
549    }
550    // Make sure the new register has a sufficiently constrained register class.
551    if (TargetRegisterInfo::isVirtualRegister(From) &&
552        TargetRegisterInfo::isVirtualRegister(To))
553      MRI.constrainRegClass(To, MRI.getRegClass(From));
554    // Replace it.
555    MRI.replaceRegWith(From, To);
556  }
557
558  // Freeze the set of reserved registers now that MachineFrameInfo has been
559  // set up. All the information required by getReservedRegs() should be
560  // available now.
561  MRI.freezeReservedRegs(*MF);
562
563  // Release function-specific state. SDB and CurDAG are already cleared
564  // at this point.
565  FuncInfo->clear();
566
567  return true;
568}
569
570void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
571                                        BasicBlock::const_iterator End,
572                                        bool &HadTailCall) {
573  // Lower all of the non-terminator instructions. If a call is emitted
574  // as a tail call, cease emitting nodes for this block. Terminators
575  // are handled below.
576  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
577    SDB->visit(*I);
578
579  // Make sure the root of the DAG is up-to-date.
580  CurDAG->setRoot(SDB->getControlRoot());
581  HadTailCall = SDB->HasTailCall;
582  SDB->clear();
583
584  // Final step, emit the lowered DAG as machine code.
585  CodeGenAndEmitDAG();
586}
587
588void SelectionDAGISel::ComputeLiveOutVRegInfo() {
589  SmallPtrSet<SDNode*, 128> VisitedNodes;
590  SmallVector<SDNode*, 128> Worklist;
591
592  Worklist.push_back(CurDAG->getRoot().getNode());
593
594  APInt KnownZero;
595  APInt KnownOne;
596
597  do {
598    SDNode *N = Worklist.pop_back_val();
599
600    // If we've already seen this node, ignore it.
601    if (!VisitedNodes.insert(N))
602      continue;
603
604    // Otherwise, add all chain operands to the worklist.
605    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
606      if (N->getOperand(i).getValueType() == MVT::Other)
607        Worklist.push_back(N->getOperand(i).getNode());
608
609    // If this is a CopyToReg with a vreg dest, process it.
610    if (N->getOpcode() != ISD::CopyToReg)
611      continue;
612
613    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
614    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
615      continue;
616
617    // Ignore non-scalar or non-integer values.
618    SDValue Src = N->getOperand(2);
619    EVT SrcVT = Src.getValueType();
620    if (!SrcVT.isInteger() || SrcVT.isVector())
621      continue;
622
623    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
624    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
625    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
626  } while (!Worklist.empty());
627}
628
629void SelectionDAGISel::CodeGenAndEmitDAG() {
630  std::string GroupName;
631  if (TimePassesIsEnabled)
632    GroupName = "Instruction Selection and Scheduling";
633  std::string BlockName;
634  int BlockNumber = -1;
635  (void)BlockNumber;
636#ifdef NDEBUG
637  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
638      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
639      ViewSUnitDAGs)
640#endif
641  {
642    BlockNumber = FuncInfo->MBB->getNumber();
643    BlockName = MF->getName().str() + ":" +
644                FuncInfo->MBB->getBasicBlock()->getName().str();
645  }
646  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
647        << " '" << BlockName << "'\n"; CurDAG->dump());
648
649  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
650
651  // Run the DAG combiner in pre-legalize mode.
652  {
653    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
654    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
655  }
656
657  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
658        << " '" << BlockName << "'\n"; CurDAG->dump());
659
660  // Second step, hack on the DAG until it only uses operations and types that
661  // the target supports.
662  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
663                                               BlockName);
664
665  bool Changed;
666  {
667    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
668    Changed = CurDAG->LegalizeTypes();
669  }
670
671  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
672        << " '" << BlockName << "'\n"; CurDAG->dump());
673
674  CurDAG->NewNodesMustHaveLegalTypes = true;
675
676  if (Changed) {
677    if (ViewDAGCombineLT)
678      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
679
680    // Run the DAG combiner in post-type-legalize mode.
681    {
682      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
683                         TimePassesIsEnabled);
684      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
685    }
686
687    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
688          << " '" << BlockName << "'\n"; CurDAG->dump());
689
690  }
691
692  {
693    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
694    Changed = CurDAG->LegalizeVectors();
695  }
696
697  if (Changed) {
698    {
699      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
700      CurDAG->LegalizeTypes();
701    }
702
703    if (ViewDAGCombineLT)
704      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
705
706    // Run the DAG combiner in post-type-legalize mode.
707    {
708      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
709                         TimePassesIsEnabled);
710      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
711    }
712
713    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
714          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
715  }
716
717  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
718
719  {
720    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
721    CurDAG->Legalize();
722  }
723
724  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
725        << " '" << BlockName << "'\n"; CurDAG->dump());
726
727  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
728
729  // Run the DAG combiner in post-legalize mode.
730  {
731    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
732    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
733  }
734
735  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
736        << " '" << BlockName << "'\n"; CurDAG->dump());
737
738  if (OptLevel != CodeGenOpt::None)
739    ComputeLiveOutVRegInfo();
740
741  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
742
743  // Third, instruction select all of the operations to machine code, adding the
744  // code to the MachineBasicBlock.
745  {
746    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
747    DoInstructionSelection();
748  }
749
750  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
751        << " '" << BlockName << "'\n"; CurDAG->dump());
752
753  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
754
755  // Schedule machine code.
756  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
757  {
758    NamedRegionTimer T("Instruction Scheduling", GroupName,
759                       TimePassesIsEnabled);
760    Scheduler->Run(CurDAG, FuncInfo->MBB);
761  }
762
763  if (ViewSUnitDAGs) Scheduler->viewGraph();
764
765  // Emit machine code to BB.  This can change 'BB' to the last block being
766  // inserted into.
767  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
768  {
769    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
770
771    // FuncInfo->InsertPt is passed by reference and set to the end of the
772    // scheduled instructions.
773    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
774  }
775
776  // If the block was split, make sure we update any references that are used to
777  // update PHI nodes later on.
778  if (FirstMBB != LastMBB)
779    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
780
781  // Free the scheduler state.
782  {
783    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
784                       TimePassesIsEnabled);
785    delete Scheduler;
786  }
787
788  // Free the SelectionDAG state, now that we're finished with it.
789  CurDAG->clear();
790}
791
792namespace {
793/// ISelUpdater - helper class to handle updates of the instruction selection
794/// graph.
795class ISelUpdater : public SelectionDAG::DAGUpdateListener {
796  SelectionDAG::allnodes_iterator &ISelPosition;
797public:
798  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
799    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
800
801  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
802  /// deleted is the current ISelPosition node, update ISelPosition.
803  ///
804  virtual void NodeDeleted(SDNode *N, SDNode *E) {
805    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
806      ++ISelPosition;
807  }
808};
809} // end anonymous namespace
810
811void SelectionDAGISel::DoInstructionSelection() {
812  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
813        << FuncInfo->MBB->getNumber()
814        << " '" << FuncInfo->MBB->getName() << "'\n");
815
816  PreprocessISelDAG();
817
818  // Select target instructions for the DAG.
819  {
820    // Number all nodes with a topological order and set DAGSize.
821    DAGSize = CurDAG->AssignTopologicalOrder();
822
823    // Create a dummy node (which is not added to allnodes), that adds
824    // a reference to the root node, preventing it from being deleted,
825    // and tracking any changes of the root.
826    HandleSDNode Dummy(CurDAG->getRoot());
827    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
828    ++ISelPosition;
829
830    // Make sure that ISelPosition gets properly updated when nodes are deleted
831    // in calls made from this function.
832    ISelUpdater ISU(*CurDAG, ISelPosition);
833
834    // The AllNodes list is now topological-sorted. Visit the
835    // nodes by starting at the end of the list (the root of the
836    // graph) and preceding back toward the beginning (the entry
837    // node).
838    while (ISelPosition != CurDAG->allnodes_begin()) {
839      SDNode *Node = --ISelPosition;
840      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
841      // but there are currently some corner cases that it misses. Also, this
842      // makes it theoretically possible to disable the DAGCombiner.
843      if (Node->use_empty())
844        continue;
845
846      SDNode *ResNode = Select(Node);
847
848      // FIXME: This is pretty gross.  'Select' should be changed to not return
849      // anything at all and this code should be nuked with a tactical strike.
850
851      // If node should not be replaced, continue with the next one.
852      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
853        continue;
854      // Replace node.
855      if (ResNode) {
856        ReplaceUses(Node, ResNode);
857      }
858
859      // If after the replacement this node is not used any more,
860      // remove this dead node.
861      if (Node->use_empty()) // Don't delete EntryToken, etc.
862        CurDAG->RemoveDeadNode(Node);
863    }
864
865    CurDAG->setRoot(Dummy.getValue());
866  }
867
868  DEBUG(dbgs() << "===== Instruction selection ends:\n");
869
870  PostprocessISelDAG();
871}
872
873/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
874/// do other setup for EH landing-pad blocks.
875void SelectionDAGISel::PrepareEHLandingPad() {
876  MachineBasicBlock *MBB = FuncInfo->MBB;
877
878  // Add a label to mark the beginning of the landing pad.  Deletion of the
879  // landing pad can thus be detected via the MachineModuleInfo.
880  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
881
882  // Assign the call site to the landing pad's begin label.
883  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
884
885  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
886  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
887    .addSym(Label);
888
889  // Mark exception register as live in.
890  const TargetLowering *TLI = getTargetLowering();
891  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
892  if (unsigned Reg = TLI->getExceptionPointerRegister())
893    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
894
895  // Mark exception selector register as live in.
896  if (unsigned Reg = TLI->getExceptionSelectorRegister())
897    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
898}
899
900/// isFoldedOrDeadInstruction - Return true if the specified instruction is
901/// side-effect free and is either dead or folded into a generated instruction.
902/// Return false if it needs to be emitted.
903static bool isFoldedOrDeadInstruction(const Instruction *I,
904                                      FunctionLoweringInfo *FuncInfo) {
905  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
906         !isa<TerminatorInst>(I) && // Terminators aren't folded.
907         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
908         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
909         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
910}
911
912#ifndef NDEBUG
913// Collect per Instruction statistics for fast-isel misses.  Only those
914// instructions that cause the bail are accounted for.  It does not account for
915// instructions higher in the block.  Thus, summing the per instructions stats
916// will not add up to what is reported by NumFastIselFailures.
917static void collectFailStats(const Instruction *I) {
918  switch (I->getOpcode()) {
919  default: assert (0 && "<Invalid operator> ");
920
921  // Terminators
922  case Instruction::Ret:         NumFastIselFailRet++; return;
923  case Instruction::Br:          NumFastIselFailBr++; return;
924  case Instruction::Switch:      NumFastIselFailSwitch++; return;
925  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
926  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
927  case Instruction::Resume:      NumFastIselFailResume++; return;
928  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
929
930  // Standard binary operators...
931  case Instruction::Add:  NumFastIselFailAdd++; return;
932  case Instruction::FAdd: NumFastIselFailFAdd++; return;
933  case Instruction::Sub:  NumFastIselFailSub++; return;
934  case Instruction::FSub: NumFastIselFailFSub++; return;
935  case Instruction::Mul:  NumFastIselFailMul++; return;
936  case Instruction::FMul: NumFastIselFailFMul++; return;
937  case Instruction::UDiv: NumFastIselFailUDiv++; return;
938  case Instruction::SDiv: NumFastIselFailSDiv++; return;
939  case Instruction::FDiv: NumFastIselFailFDiv++; return;
940  case Instruction::URem: NumFastIselFailURem++; return;
941  case Instruction::SRem: NumFastIselFailSRem++; return;
942  case Instruction::FRem: NumFastIselFailFRem++; return;
943
944  // Logical operators...
945  case Instruction::And: NumFastIselFailAnd++; return;
946  case Instruction::Or:  NumFastIselFailOr++; return;
947  case Instruction::Xor: NumFastIselFailXor++; return;
948
949  // Memory instructions...
950  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
951  case Instruction::Load:          NumFastIselFailLoad++; return;
952  case Instruction::Store:         NumFastIselFailStore++; return;
953  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
954  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
955  case Instruction::Fence:         NumFastIselFailFence++; return;
956  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
957
958  // Convert instructions...
959  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
960  case Instruction::ZExt:     NumFastIselFailZExt++; return;
961  case Instruction::SExt:     NumFastIselFailSExt++; return;
962  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
963  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
964  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
965  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
966  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
967  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
968  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
969  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
970  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
971
972  // Other instructions...
973  case Instruction::ICmp:           NumFastIselFailICmp++; return;
974  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
975  case Instruction::PHI:            NumFastIselFailPHI++; return;
976  case Instruction::Select:         NumFastIselFailSelect++; return;
977  case Instruction::Call:           NumFastIselFailCall++; return;
978  case Instruction::Shl:            NumFastIselFailShl++; return;
979  case Instruction::LShr:           NumFastIselFailLShr++; return;
980  case Instruction::AShr:           NumFastIselFailAShr++; return;
981  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
982  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
983  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
984  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
985  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
986  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
987  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
988  }
989}
990#endif
991
992void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
993  // Initialize the Fast-ISel state, if needed.
994  FastISel *FastIS = 0;
995  if (TM.Options.EnableFastISel)
996    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
997
998  // Iterate over all basic blocks in the function.
999  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1000  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1001       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1002    const BasicBlock *LLVMBB = *I;
1003
1004    if (OptLevel != CodeGenOpt::None) {
1005      bool AllPredsVisited = true;
1006      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1007           PI != PE; ++PI) {
1008        if (!FuncInfo->VisitedBBs.count(*PI)) {
1009          AllPredsVisited = false;
1010          break;
1011        }
1012      }
1013
1014      if (AllPredsVisited) {
1015        for (BasicBlock::const_iterator I = LLVMBB->begin();
1016             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1017          FuncInfo->ComputePHILiveOutRegInfo(PN);
1018      } else {
1019        for (BasicBlock::const_iterator I = LLVMBB->begin();
1020             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1021          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1022      }
1023
1024      FuncInfo->VisitedBBs.insert(LLVMBB);
1025    }
1026
1027    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1028    BasicBlock::const_iterator const End = LLVMBB->end();
1029    BasicBlock::const_iterator BI = End;
1030
1031    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1032    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1033
1034    // Setup an EH landing-pad block.
1035    FuncInfo->ExceptionPointerVirtReg = 0;
1036    FuncInfo->ExceptionSelectorVirtReg = 0;
1037    if (FuncInfo->MBB->isLandingPad())
1038      PrepareEHLandingPad();
1039
1040    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1041    if (FastIS) {
1042      FastIS->startNewBlock();
1043
1044      // Emit code for any incoming arguments. This must happen before
1045      // beginning FastISel on the entry block.
1046      if (LLVMBB == &Fn.getEntryBlock()) {
1047        ++NumEntryBlocks;
1048
1049        // Lower any arguments needed in this block if this is the entry block.
1050        if (!FastIS->LowerArguments()) {
1051          // Fast isel failed to lower these arguments
1052          ++NumFastIselFailLowerArguments;
1053          if (EnableFastISelAbortArgs)
1054            llvm_unreachable("FastISel didn't lower all arguments");
1055
1056          // Use SelectionDAG argument lowering
1057          LowerArguments(Fn);
1058          CurDAG->setRoot(SDB->getControlRoot());
1059          SDB->clear();
1060          CodeGenAndEmitDAG();
1061        }
1062
1063        // If we inserted any instructions at the beginning, make a note of
1064        // where they are, so we can be sure to emit subsequent instructions
1065        // after them.
1066        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1067          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1068        else
1069          FastIS->setLastLocalValue(0);
1070      }
1071
1072      unsigned NumFastIselRemaining = std::distance(Begin, End);
1073      // Do FastISel on as many instructions as possible.
1074      for (; BI != Begin; --BI) {
1075        const Instruction *Inst = llvm::prior(BI);
1076
1077        // If we no longer require this instruction, skip it.
1078        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1079          --NumFastIselRemaining;
1080          continue;
1081        }
1082
1083        // Bottom-up: reset the insert pos at the top, after any local-value
1084        // instructions.
1085        FastIS->recomputeInsertPt();
1086
1087        // Try to select the instruction with FastISel.
1088        if (FastIS->SelectInstruction(Inst)) {
1089          --NumFastIselRemaining;
1090          ++NumFastIselSuccess;
1091          // If fast isel succeeded, skip over all the folded instructions, and
1092          // then see if there is a load right before the selected instructions.
1093          // Try to fold the load if so.
1094          const Instruction *BeforeInst = Inst;
1095          while (BeforeInst != Begin) {
1096            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1097            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1098              break;
1099          }
1100          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1101              BeforeInst->hasOneUse() &&
1102              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1103            // If we succeeded, don't re-select the load.
1104            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1105            --NumFastIselRemaining;
1106            ++NumFastIselSuccess;
1107          }
1108          continue;
1109        }
1110
1111#ifndef NDEBUG
1112        if (EnableFastISelVerbose2)
1113          collectFailStats(Inst);
1114#endif
1115
1116        // Then handle certain instructions as single-LLVM-Instruction blocks.
1117        if (isa<CallInst>(Inst)) {
1118
1119          if (EnableFastISelVerbose || EnableFastISelAbort) {
1120            dbgs() << "FastISel missed call: ";
1121            Inst->dump();
1122          }
1123
1124          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1125            unsigned &R = FuncInfo->ValueMap[Inst];
1126            if (!R)
1127              R = FuncInfo->CreateRegs(Inst->getType());
1128          }
1129
1130          bool HadTailCall = false;
1131          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1132          SelectBasicBlock(Inst, BI, HadTailCall);
1133
1134          // If the call was emitted as a tail call, we're done with the block.
1135          // We also need to delete any previously emitted instructions.
1136          if (HadTailCall) {
1137            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1138            --BI;
1139            break;
1140          }
1141
1142          // Recompute NumFastIselRemaining as Selection DAG instruction
1143          // selection may have handled the call, input args, etc.
1144          unsigned RemainingNow = std::distance(Begin, BI);
1145          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1146          NumFastIselRemaining = RemainingNow;
1147          continue;
1148        }
1149
1150        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1151          // Don't abort, and use a different message for terminator misses.
1152          NumFastIselFailures += NumFastIselRemaining;
1153          if (EnableFastISelVerbose || EnableFastISelAbort) {
1154            dbgs() << "FastISel missed terminator: ";
1155            Inst->dump();
1156          }
1157        } else {
1158          NumFastIselFailures += NumFastIselRemaining;
1159          if (EnableFastISelVerbose || EnableFastISelAbort) {
1160            dbgs() << "FastISel miss: ";
1161            Inst->dump();
1162          }
1163          if (EnableFastISelAbort)
1164            // The "fast" selector couldn't handle something and bailed.
1165            // For the purpose of debugging, just abort.
1166            llvm_unreachable("FastISel didn't select the entire block");
1167        }
1168        break;
1169      }
1170
1171      FastIS->recomputeInsertPt();
1172    } else {
1173      // Lower any arguments needed in this block if this is the entry block.
1174      if (LLVMBB == &Fn.getEntryBlock()) {
1175        ++NumEntryBlocks;
1176        LowerArguments(Fn);
1177      }
1178    }
1179
1180    if (Begin != BI)
1181      ++NumDAGBlocks;
1182    else
1183      ++NumFastIselBlocks;
1184
1185    if (Begin != BI) {
1186      // Run SelectionDAG instruction selection on the remainder of the block
1187      // not handled by FastISel. If FastISel is not run, this is the entire
1188      // block.
1189      bool HadTailCall;
1190      SelectBasicBlock(Begin, BI, HadTailCall);
1191    }
1192
1193    FinishBasicBlock();
1194    FuncInfo->PHINodesToUpdate.clear();
1195  }
1196
1197  delete FastIS;
1198  SDB->clearDanglingDebugInfo();
1199  SDB->SPDescriptor.resetPerFunctionState();
1200}
1201
1202/// Given that the input MI is before a partial terminator sequence TSeq, return
1203/// true if M + TSeq also a partial terminator sequence.
1204///
1205/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1206/// lowering copy vregs into physical registers, which are then passed into
1207/// terminator instructors so we can satisfy ABI constraints. A partial
1208/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1209/// may be the whole terminator sequence).
1210static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1211  // If we do not have a copy or an implicit def, we return true if and only if
1212  // MI is a debug value.
1213  if (!MI->isCopy() && !MI->isImplicitDef())
1214    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1215    // physical registers if there is debug info associated with the terminator
1216    // of our mbb. We want to include said debug info in our terminator
1217    // sequence, so we return true in that case.
1218    return MI->isDebugValue();
1219
1220  // We have left the terminator sequence if we are not doing one of the
1221  // following:
1222  //
1223  // 1. Copying a vreg into a physical register.
1224  // 2. Copying a vreg into a vreg.
1225  // 3. Defining a register via an implicit def.
1226
1227  // OPI should always be a register definition...
1228  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1229  if (!OPI->isReg() || !OPI->isDef())
1230    return false;
1231
1232  // Defining any register via an implicit def is always ok.
1233  if (MI->isImplicitDef())
1234    return true;
1235
1236  // Grab the copy source...
1237  MachineInstr::const_mop_iterator OPI2 = OPI;
1238  ++OPI2;
1239  assert(OPI2 != MI->operands_end()
1240         && "Should have a copy implying we should have 2 arguments.");
1241
1242  // Make sure that the copy dest is not a vreg when the copy source is a
1243  // physical register.
1244  if (!OPI2->isReg() ||
1245      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1246       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1247    return false;
1248
1249  return true;
1250}
1251
1252/// Find the split point at which to splice the end of BB into its success stack
1253/// protector check machine basic block.
1254///
1255/// On many platforms, due to ABI constraints, terminators, even before register
1256/// allocation, use physical registers. This creates an issue for us since
1257/// physical registers at this point can not travel across basic
1258/// blocks. Luckily, selectiondag always moves physical registers into vregs
1259/// when they enter functions and moves them through a sequence of copies back
1260/// into the physical registers right before the terminator creating a
1261/// ``Terminator Sequence''. This function is searching for the beginning of the
1262/// terminator sequence so that we can ensure that we splice off not just the
1263/// terminator, but additionally the copies that move the vregs into the
1264/// physical registers.
1265static MachineBasicBlock::iterator
1266FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1267  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1268  //
1269  if (SplitPoint == BB->begin())
1270    return SplitPoint;
1271
1272  MachineBasicBlock::iterator Start = BB->begin();
1273  MachineBasicBlock::iterator Previous = SplitPoint;
1274  --Previous;
1275
1276  while (MIIsInTerminatorSequence(Previous)) {
1277    SplitPoint = Previous;
1278    if (Previous == Start)
1279      break;
1280    --Previous;
1281  }
1282
1283  return SplitPoint;
1284}
1285
1286void
1287SelectionDAGISel::FinishBasicBlock() {
1288
1289  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1290               << FuncInfo->PHINodesToUpdate.size() << "\n";
1291        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1292          dbgs() << "Node " << i << " : ("
1293                 << FuncInfo->PHINodesToUpdate[i].first
1294                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1295
1296  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1297                                  SDB->JTCases.empty() &&
1298                                  SDB->BitTestCases.empty();
1299
1300  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1301  // PHI nodes in successors.
1302  if (MustUpdatePHINodes) {
1303    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1304      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1305      assert(PHI->isPHI() &&
1306             "This is not a machine PHI node that we are updating!");
1307      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1308        continue;
1309      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1310    }
1311  }
1312
1313  // Handle stack protector.
1314  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1315    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1316    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1317
1318    // Find the split point to split the parent mbb. At the same time copy all
1319    // physical registers used in the tail of parent mbb into virtual registers
1320    // before the split point and back into physical registers after the split
1321    // point. This prevents us needing to deal with Live-ins and many other
1322    // register allocation issues caused by us splitting the parent mbb. The
1323    // register allocator will clean up said virtual copies later on.
1324    MachineBasicBlock::iterator SplitPoint =
1325      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1326
1327    // Splice the terminator of ParentMBB into SuccessMBB.
1328    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1329                       SplitPoint,
1330                       ParentMBB->end());
1331
1332    // Add compare/jump on neq/jump to the parent BB.
1333    FuncInfo->MBB = ParentMBB;
1334    FuncInfo->InsertPt = ParentMBB->end();
1335    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1336    CurDAG->setRoot(SDB->getRoot());
1337    SDB->clear();
1338    CodeGenAndEmitDAG();
1339
1340    // CodeGen Failure MBB if we have not codegened it yet.
1341    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1342    if (!FailureMBB->size()) {
1343      FuncInfo->MBB = FailureMBB;
1344      FuncInfo->InsertPt = FailureMBB->end();
1345      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1346      CurDAG->setRoot(SDB->getRoot());
1347      SDB->clear();
1348      CodeGenAndEmitDAG();
1349    }
1350
1351    // Clear the Per-BB State.
1352    SDB->SPDescriptor.resetPerBBState();
1353  }
1354
1355  // If we updated PHI Nodes, return early.
1356  if (MustUpdatePHINodes)
1357    return;
1358
1359  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1360    // Lower header first, if it wasn't already lowered
1361    if (!SDB->BitTestCases[i].Emitted) {
1362      // Set the current basic block to the mbb we wish to insert the code into
1363      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1364      FuncInfo->InsertPt = FuncInfo->MBB->end();
1365      // Emit the code
1366      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1367      CurDAG->setRoot(SDB->getRoot());
1368      SDB->clear();
1369      CodeGenAndEmitDAG();
1370    }
1371
1372    uint32_t UnhandledWeight = 0;
1373    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1374      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1375
1376    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1377      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1378      // Set the current basic block to the mbb we wish to insert the code into
1379      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1380      FuncInfo->InsertPt = FuncInfo->MBB->end();
1381      // Emit the code
1382      if (j+1 != ej)
1383        SDB->visitBitTestCase(SDB->BitTestCases[i],
1384                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1385                              UnhandledWeight,
1386                              SDB->BitTestCases[i].Reg,
1387                              SDB->BitTestCases[i].Cases[j],
1388                              FuncInfo->MBB);
1389      else
1390        SDB->visitBitTestCase(SDB->BitTestCases[i],
1391                              SDB->BitTestCases[i].Default,
1392                              UnhandledWeight,
1393                              SDB->BitTestCases[i].Reg,
1394                              SDB->BitTestCases[i].Cases[j],
1395                              FuncInfo->MBB);
1396
1397
1398      CurDAG->setRoot(SDB->getRoot());
1399      SDB->clear();
1400      CodeGenAndEmitDAG();
1401    }
1402
1403    // Update PHI Nodes
1404    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1405         pi != pe; ++pi) {
1406      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1407      MachineBasicBlock *PHIBB = PHI->getParent();
1408      assert(PHI->isPHI() &&
1409             "This is not a machine PHI node that we are updating!");
1410      // This is "default" BB. We have two jumps to it. From "header" BB and
1411      // from last "case" BB.
1412      if (PHIBB == SDB->BitTestCases[i].Default)
1413        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1414           .addMBB(SDB->BitTestCases[i].Parent)
1415           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1416           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1417      // One of "cases" BB.
1418      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1419           j != ej; ++j) {
1420        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1421        if (cBB->isSuccessor(PHIBB))
1422          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1423      }
1424    }
1425  }
1426  SDB->BitTestCases.clear();
1427
1428  // If the JumpTable record is filled in, then we need to emit a jump table.
1429  // Updating the PHI nodes is tricky in this case, since we need to determine
1430  // whether the PHI is a successor of the range check MBB or the jump table MBB
1431  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1432    // Lower header first, if it wasn't already lowered
1433    if (!SDB->JTCases[i].first.Emitted) {
1434      // Set the current basic block to the mbb we wish to insert the code into
1435      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1436      FuncInfo->InsertPt = FuncInfo->MBB->end();
1437      // Emit the code
1438      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1439                                FuncInfo->MBB);
1440      CurDAG->setRoot(SDB->getRoot());
1441      SDB->clear();
1442      CodeGenAndEmitDAG();
1443    }
1444
1445    // Set the current basic block to the mbb we wish to insert the code into
1446    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1447    FuncInfo->InsertPt = FuncInfo->MBB->end();
1448    // Emit the code
1449    SDB->visitJumpTable(SDB->JTCases[i].second);
1450    CurDAG->setRoot(SDB->getRoot());
1451    SDB->clear();
1452    CodeGenAndEmitDAG();
1453
1454    // Update PHI Nodes
1455    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1456         pi != pe; ++pi) {
1457      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1458      MachineBasicBlock *PHIBB = PHI->getParent();
1459      assert(PHI->isPHI() &&
1460             "This is not a machine PHI node that we are updating!");
1461      // "default" BB. We can go there only from header BB.
1462      if (PHIBB == SDB->JTCases[i].second.Default)
1463        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1464           .addMBB(SDB->JTCases[i].first.HeaderBB);
1465      // JT BB. Just iterate over successors here
1466      if (FuncInfo->MBB->isSuccessor(PHIBB))
1467        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1468    }
1469  }
1470  SDB->JTCases.clear();
1471
1472  // If the switch block involved a branch to one of the actual successors, we
1473  // need to update PHI nodes in that block.
1474  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1475    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1476    assert(PHI->isPHI() &&
1477           "This is not a machine PHI node that we are updating!");
1478    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1479      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1480  }
1481
1482  // If we generated any switch lowering information, build and codegen any
1483  // additional DAGs necessary.
1484  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1485    // Set the current basic block to the mbb we wish to insert the code into
1486    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1487    FuncInfo->InsertPt = FuncInfo->MBB->end();
1488
1489    // Determine the unique successors.
1490    SmallVector<MachineBasicBlock *, 2> Succs;
1491    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1492    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1493      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1494
1495    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1496    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1497    CurDAG->setRoot(SDB->getRoot());
1498    SDB->clear();
1499    CodeGenAndEmitDAG();
1500
1501    // Remember the last block, now that any splitting is done, for use in
1502    // populating PHI nodes in successors.
1503    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1504
1505    // Handle any PHI nodes in successors of this chunk, as if we were coming
1506    // from the original BB before switch expansion.  Note that PHI nodes can
1507    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1508    // handle them the right number of times.
1509    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1510      FuncInfo->MBB = Succs[i];
1511      FuncInfo->InsertPt = FuncInfo->MBB->end();
1512      // FuncInfo->MBB may have been removed from the CFG if a branch was
1513      // constant folded.
1514      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1515        for (MachineBasicBlock::iterator
1516             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1517             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1518          MachineInstrBuilder PHI(*MF, MBBI);
1519          // This value for this PHI node is recorded in PHINodesToUpdate.
1520          for (unsigned pn = 0; ; ++pn) {
1521            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1522                   "Didn't find PHI entry!");
1523            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1524              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1525              break;
1526            }
1527          }
1528        }
1529      }
1530    }
1531  }
1532  SDB->SwitchCases.clear();
1533}
1534
1535
1536/// Create the scheduler. If a specific scheduler was specified
1537/// via the SchedulerRegistry, use it, otherwise select the
1538/// one preferred by the target.
1539///
1540ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1541  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1542
1543  if (!Ctor) {
1544    Ctor = ISHeuristic;
1545    RegisterScheduler::setDefault(Ctor);
1546  }
1547
1548  return Ctor(this, OptLevel);
1549}
1550
1551//===----------------------------------------------------------------------===//
1552// Helper functions used by the generated instruction selector.
1553//===----------------------------------------------------------------------===//
1554// Calls to these methods are generated by tblgen.
1555
1556/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1557/// the dag combiner simplified the 255, we still want to match.  RHS is the
1558/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1559/// specified in the .td file (e.g. 255).
1560bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1561                                    int64_t DesiredMaskS) const {
1562  const APInt &ActualMask = RHS->getAPIntValue();
1563  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1564
1565  // If the actual mask exactly matches, success!
1566  if (ActualMask == DesiredMask)
1567    return true;
1568
1569  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1570  if (ActualMask.intersects(~DesiredMask))
1571    return false;
1572
1573  // Otherwise, the DAG Combiner may have proven that the value coming in is
1574  // either already zero or is not demanded.  Check for known zero input bits.
1575  APInt NeededMask = DesiredMask & ~ActualMask;
1576  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1577    return true;
1578
1579  // TODO: check to see if missing bits are just not demanded.
1580
1581  // Otherwise, this pattern doesn't match.
1582  return false;
1583}
1584
1585/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1586/// the dag combiner simplified the 255, we still want to match.  RHS is the
1587/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1588/// specified in the .td file (e.g. 255).
1589bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1590                                   int64_t DesiredMaskS) const {
1591  const APInt &ActualMask = RHS->getAPIntValue();
1592  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1593
1594  // If the actual mask exactly matches, success!
1595  if (ActualMask == DesiredMask)
1596    return true;
1597
1598  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1599  if (ActualMask.intersects(~DesiredMask))
1600    return false;
1601
1602  // Otherwise, the DAG Combiner may have proven that the value coming in is
1603  // either already zero or is not demanded.  Check for known zero input bits.
1604  APInt NeededMask = DesiredMask & ~ActualMask;
1605
1606  APInt KnownZero, KnownOne;
1607  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1608
1609  // If all the missing bits in the or are already known to be set, match!
1610  if ((NeededMask & KnownOne) == NeededMask)
1611    return true;
1612
1613  // TODO: check to see if missing bits are just not demanded.
1614
1615  // Otherwise, this pattern doesn't match.
1616  return false;
1617}
1618
1619
1620/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1621/// by tblgen.  Others should not call it.
1622void SelectionDAGISel::
1623SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1624  std::vector<SDValue> InOps;
1625  std::swap(InOps, Ops);
1626
1627  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1628  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1629  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1630  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1631
1632  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1633  if (InOps[e-1].getValueType() == MVT::Glue)
1634    --e;  // Don't process a glue operand if it is here.
1635
1636  while (i != e) {
1637    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1638    if (!InlineAsm::isMemKind(Flags)) {
1639      // Just skip over this operand, copying the operands verbatim.
1640      Ops.insert(Ops.end(), InOps.begin()+i,
1641                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1642      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1643    } else {
1644      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1645             "Memory operand with multiple values?");
1646      // Otherwise, this is a memory operand.  Ask the target to select it.
1647      std::vector<SDValue> SelOps;
1648      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1649        report_fatal_error("Could not match memory address.  Inline asm"
1650                           " failure!");
1651
1652      // Add this to the output node.
1653      unsigned NewFlags =
1654        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1655      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1656      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1657      i += 2;
1658    }
1659  }
1660
1661  // Add the glue input back if present.
1662  if (e != InOps.size())
1663    Ops.push_back(InOps.back());
1664}
1665
1666/// findGlueUse - Return use of MVT::Glue value produced by the specified
1667/// SDNode.
1668///
1669static SDNode *findGlueUse(SDNode *N) {
1670  unsigned FlagResNo = N->getNumValues()-1;
1671  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1672    SDUse &Use = I.getUse();
1673    if (Use.getResNo() == FlagResNo)
1674      return Use.getUser();
1675  }
1676  return NULL;
1677}
1678
1679/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1680/// This function recursively traverses up the operand chain, ignoring
1681/// certain nodes.
1682static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1683                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1684                          bool IgnoreChains) {
1685  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1686  // greater than all of its (recursive) operands.  If we scan to a point where
1687  // 'use' is smaller than the node we're scanning for, then we know we will
1688  // never find it.
1689  //
1690  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1691  // happen because we scan down to newly selected nodes in the case of glue
1692  // uses.
1693  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1694    return false;
1695
1696  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1697  // won't fail if we scan it again.
1698  if (!Visited.insert(Use))
1699    return false;
1700
1701  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1702    // Ignore chain uses, they are validated by HandleMergeInputChains.
1703    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1704      continue;
1705
1706    SDNode *N = Use->getOperand(i).getNode();
1707    if (N == Def) {
1708      if (Use == ImmedUse || Use == Root)
1709        continue;  // We are not looking for immediate use.
1710      assert(N != Root);
1711      return true;
1712    }
1713
1714    // Traverse up the operand chain.
1715    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1716      return true;
1717  }
1718  return false;
1719}
1720
1721/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1722/// operand node N of U during instruction selection that starts at Root.
1723bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1724                                          SDNode *Root) const {
1725  if (OptLevel == CodeGenOpt::None) return false;
1726  return N.hasOneUse();
1727}
1728
1729/// IsLegalToFold - Returns true if the specific operand node N of
1730/// U can be folded during instruction selection that starts at Root.
1731bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1732                                     CodeGenOpt::Level OptLevel,
1733                                     bool IgnoreChains) {
1734  if (OptLevel == CodeGenOpt::None) return false;
1735
1736  // If Root use can somehow reach N through a path that that doesn't contain
1737  // U then folding N would create a cycle. e.g. In the following
1738  // diagram, Root can reach N through X. If N is folded into into Root, then
1739  // X is both a predecessor and a successor of U.
1740  //
1741  //          [N*]           //
1742  //         ^   ^           //
1743  //        /     \          //
1744  //      [U*]    [X]?       //
1745  //        ^     ^          //
1746  //         \   /           //
1747  //          \ /            //
1748  //         [Root*]         //
1749  //
1750  // * indicates nodes to be folded together.
1751  //
1752  // If Root produces glue, then it gets (even more) interesting. Since it
1753  // will be "glued" together with its glue use in the scheduler, we need to
1754  // check if it might reach N.
1755  //
1756  //          [N*]           //
1757  //         ^   ^           //
1758  //        /     \          //
1759  //      [U*]    [X]?       //
1760  //        ^       ^        //
1761  //         \       \       //
1762  //          \      |       //
1763  //         [Root*] |       //
1764  //          ^      |       //
1765  //          f      |       //
1766  //          |      /       //
1767  //         [Y]    /        //
1768  //           ^   /         //
1769  //           f  /          //
1770  //           | /           //
1771  //          [GU]           //
1772  //
1773  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1774  // (call it Fold), then X is a predecessor of GU and a successor of
1775  // Fold. But since Fold and GU are glued together, this will create
1776  // a cycle in the scheduling graph.
1777
1778  // If the node has glue, walk down the graph to the "lowest" node in the
1779  // glueged set.
1780  EVT VT = Root->getValueType(Root->getNumValues()-1);
1781  while (VT == MVT::Glue) {
1782    SDNode *GU = findGlueUse(Root);
1783    if (GU == NULL)
1784      break;
1785    Root = GU;
1786    VT = Root->getValueType(Root->getNumValues()-1);
1787
1788    // If our query node has a glue result with a use, we've walked up it.  If
1789    // the user (which has already been selected) has a chain or indirectly uses
1790    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1791    // this, we cannot ignore chains in this predicate.
1792    IgnoreChains = false;
1793  }
1794
1795
1796  SmallPtrSet<SDNode*, 16> Visited;
1797  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1798}
1799
1800SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1801  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1802  SelectInlineAsmMemoryOperands(Ops);
1803
1804  EVT VTs[] = { MVT::Other, MVT::Glue };
1805  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1806                                VTs, &Ops[0], Ops.size());
1807  New->setNodeId(-1);
1808  return New.getNode();
1809}
1810
1811SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1812  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1813}
1814
1815/// GetVBR - decode a vbr encoding whose top bit is set.
1816LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1817GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1818  assert(Val >= 128 && "Not a VBR");
1819  Val &= 127;  // Remove first vbr bit.
1820
1821  unsigned Shift = 7;
1822  uint64_t NextBits;
1823  do {
1824    NextBits = MatcherTable[Idx++];
1825    Val |= (NextBits&127) << Shift;
1826    Shift += 7;
1827  } while (NextBits & 128);
1828
1829  return Val;
1830}
1831
1832
1833/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1834/// interior glue and chain results to use the new glue and chain results.
1835void SelectionDAGISel::
1836UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1837                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1838                    SDValue InputGlue,
1839                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1840                    bool isMorphNodeTo) {
1841  SmallVector<SDNode*, 4> NowDeadNodes;
1842
1843  // Now that all the normal results are replaced, we replace the chain and
1844  // glue results if present.
1845  if (!ChainNodesMatched.empty()) {
1846    assert(InputChain.getNode() != 0 &&
1847           "Matched input chains but didn't produce a chain");
1848    // Loop over all of the nodes we matched that produced a chain result.
1849    // Replace all the chain results with the final chain we ended up with.
1850    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1851      SDNode *ChainNode = ChainNodesMatched[i];
1852
1853      // If this node was already deleted, don't look at it.
1854      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1855        continue;
1856
1857      // Don't replace the results of the root node if we're doing a
1858      // MorphNodeTo.
1859      if (ChainNode == NodeToMatch && isMorphNodeTo)
1860        continue;
1861
1862      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1863      if (ChainVal.getValueType() == MVT::Glue)
1864        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1865      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1866      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1867
1868      // If the node became dead and we haven't already seen it, delete it.
1869      if (ChainNode->use_empty() &&
1870          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1871        NowDeadNodes.push_back(ChainNode);
1872    }
1873  }
1874
1875  // If the result produces glue, update any glue results in the matched
1876  // pattern with the glue result.
1877  if (InputGlue.getNode() != 0) {
1878    // Handle any interior nodes explicitly marked.
1879    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1880      SDNode *FRN = GlueResultNodesMatched[i];
1881
1882      // If this node was already deleted, don't look at it.
1883      if (FRN->getOpcode() == ISD::DELETED_NODE)
1884        continue;
1885
1886      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1887             "Doesn't have a glue result");
1888      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1889                                        InputGlue);
1890
1891      // If the node became dead and we haven't already seen it, delete it.
1892      if (FRN->use_empty() &&
1893          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1894        NowDeadNodes.push_back(FRN);
1895    }
1896  }
1897
1898  if (!NowDeadNodes.empty())
1899    CurDAG->RemoveDeadNodes(NowDeadNodes);
1900
1901  DEBUG(dbgs() << "ISEL: Match complete!\n");
1902}
1903
1904enum ChainResult {
1905  CR_Simple,
1906  CR_InducesCycle,
1907  CR_LeadsToInteriorNode
1908};
1909
1910/// WalkChainUsers - Walk down the users of the specified chained node that is
1911/// part of the pattern we're matching, looking at all of the users we find.
1912/// This determines whether something is an interior node, whether we have a
1913/// non-pattern node in between two pattern nodes (which prevent folding because
1914/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1915/// between pattern nodes (in which case the TF becomes part of the pattern).
1916///
1917/// The walk we do here is guaranteed to be small because we quickly get down to
1918/// already selected nodes "below" us.
1919static ChainResult
1920WalkChainUsers(const SDNode *ChainedNode,
1921               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1922               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1923  ChainResult Result = CR_Simple;
1924
1925  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1926         E = ChainedNode->use_end(); UI != E; ++UI) {
1927    // Make sure the use is of the chain, not some other value we produce.
1928    if (UI.getUse().getValueType() != MVT::Other) continue;
1929
1930    SDNode *User = *UI;
1931
1932    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1933      continue;
1934
1935    // If we see an already-selected machine node, then we've gone beyond the
1936    // pattern that we're selecting down into the already selected chunk of the
1937    // DAG.
1938    unsigned UserOpcode = User->getOpcode();
1939    if (User->isMachineOpcode() ||
1940        UserOpcode == ISD::CopyToReg ||
1941        UserOpcode == ISD::CopyFromReg ||
1942        UserOpcode == ISD::INLINEASM ||
1943        UserOpcode == ISD::EH_LABEL ||
1944        UserOpcode == ISD::LIFETIME_START ||
1945        UserOpcode == ISD::LIFETIME_END) {
1946      // If their node ID got reset to -1 then they've already been selected.
1947      // Treat them like a MachineOpcode.
1948      if (User->getNodeId() == -1)
1949        continue;
1950    }
1951
1952    // If we have a TokenFactor, we handle it specially.
1953    if (User->getOpcode() != ISD::TokenFactor) {
1954      // If the node isn't a token factor and isn't part of our pattern, then it
1955      // must be a random chained node in between two nodes we're selecting.
1956      // This happens when we have something like:
1957      //   x = load ptr
1958      //   call
1959      //   y = x+4
1960      //   store y -> ptr
1961      // Because we structurally match the load/store as a read/modify/write,
1962      // but the call is chained between them.  We cannot fold in this case
1963      // because it would induce a cycle in the graph.
1964      if (!std::count(ChainedNodesInPattern.begin(),
1965                      ChainedNodesInPattern.end(), User))
1966        return CR_InducesCycle;
1967
1968      // Otherwise we found a node that is part of our pattern.  For example in:
1969      //   x = load ptr
1970      //   y = x+4
1971      //   store y -> ptr
1972      // This would happen when we're scanning down from the load and see the
1973      // store as a user.  Record that there is a use of ChainedNode that is
1974      // part of the pattern and keep scanning uses.
1975      Result = CR_LeadsToInteriorNode;
1976      InteriorChainedNodes.push_back(User);
1977      continue;
1978    }
1979
1980    // If we found a TokenFactor, there are two cases to consider: first if the
1981    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1982    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1983    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1984    //     [Load chain]
1985    //         ^
1986    //         |
1987    //       [Load]
1988    //       ^    ^
1989    //       |    \                    DAG's like cheese
1990    //      /       \                       do you?
1991    //     /         |
1992    // [TokenFactor] [Op]
1993    //     ^          ^
1994    //     |          |
1995    //      \        /
1996    //       \      /
1997    //       [Store]
1998    //
1999    // In this case, the TokenFactor becomes part of our match and we rewrite it
2000    // as a new TokenFactor.
2001    //
2002    // To distinguish these two cases, do a recursive walk down the uses.
2003    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2004    case CR_Simple:
2005      // If the uses of the TokenFactor are just already-selected nodes, ignore
2006      // it, it is "below" our pattern.
2007      continue;
2008    case CR_InducesCycle:
2009      // If the uses of the TokenFactor lead to nodes that are not part of our
2010      // pattern that are not selected, folding would turn this into a cycle,
2011      // bail out now.
2012      return CR_InducesCycle;
2013    case CR_LeadsToInteriorNode:
2014      break;  // Otherwise, keep processing.
2015    }
2016
2017    // Okay, we know we're in the interesting interior case.  The TokenFactor
2018    // is now going to be considered part of the pattern so that we rewrite its
2019    // uses (it may have uses that are not part of the pattern) with the
2020    // ultimate chain result of the generated code.  We will also add its chain
2021    // inputs as inputs to the ultimate TokenFactor we create.
2022    Result = CR_LeadsToInteriorNode;
2023    ChainedNodesInPattern.push_back(User);
2024    InteriorChainedNodes.push_back(User);
2025    continue;
2026  }
2027
2028  return Result;
2029}
2030
2031/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2032/// operation for when the pattern matched at least one node with a chains.  The
2033/// input vector contains a list of all of the chained nodes that we match.  We
2034/// must determine if this is a valid thing to cover (i.e. matching it won't
2035/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2036/// be used as the input node chain for the generated nodes.
2037static SDValue
2038HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2039                       SelectionDAG *CurDAG) {
2040  // Walk all of the chained nodes we've matched, recursively scanning down the
2041  // users of the chain result. This adds any TokenFactor nodes that are caught
2042  // in between chained nodes to the chained and interior nodes list.
2043  SmallVector<SDNode*, 3> InteriorChainedNodes;
2044  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2045    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2046                       InteriorChainedNodes) == CR_InducesCycle)
2047      return SDValue(); // Would induce a cycle.
2048  }
2049
2050  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2051  // that we are interested in.  Form our input TokenFactor node.
2052  SmallVector<SDValue, 3> InputChains;
2053  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2054    // Add the input chain of this node to the InputChains list (which will be
2055    // the operands of the generated TokenFactor) if it's not an interior node.
2056    SDNode *N = ChainNodesMatched[i];
2057    if (N->getOpcode() != ISD::TokenFactor) {
2058      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2059        continue;
2060
2061      // Otherwise, add the input chain.
2062      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2063      assert(InChain.getValueType() == MVT::Other && "Not a chain");
2064      InputChains.push_back(InChain);
2065      continue;
2066    }
2067
2068    // If we have a token factor, we want to add all inputs of the token factor
2069    // that are not part of the pattern we're matching.
2070    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2071      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2072                      N->getOperand(op).getNode()))
2073        InputChains.push_back(N->getOperand(op));
2074    }
2075  }
2076
2077  if (InputChains.size() == 1)
2078    return InputChains[0];
2079  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2080                         MVT::Other, &InputChains[0], InputChains.size());
2081}
2082
2083/// MorphNode - Handle morphing a node in place for the selector.
2084SDNode *SelectionDAGISel::
2085MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2086          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2087  // It is possible we're using MorphNodeTo to replace a node with no
2088  // normal results with one that has a normal result (or we could be
2089  // adding a chain) and the input could have glue and chains as well.
2090  // In this case we need to shift the operands down.
2091  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2092  // than the old isel though.
2093  int OldGlueResultNo = -1, OldChainResultNo = -1;
2094
2095  unsigned NTMNumResults = Node->getNumValues();
2096  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2097    OldGlueResultNo = NTMNumResults-1;
2098    if (NTMNumResults != 1 &&
2099        Node->getValueType(NTMNumResults-2) == MVT::Other)
2100      OldChainResultNo = NTMNumResults-2;
2101  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2102    OldChainResultNo = NTMNumResults-1;
2103
2104  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2105  // that this deletes operands of the old node that become dead.
2106  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2107
2108  // MorphNodeTo can operate in two ways: if an existing node with the
2109  // specified operands exists, it can just return it.  Otherwise, it
2110  // updates the node in place to have the requested operands.
2111  if (Res == Node) {
2112    // If we updated the node in place, reset the node ID.  To the isel,
2113    // this should be just like a newly allocated machine node.
2114    Res->setNodeId(-1);
2115  }
2116
2117  unsigned ResNumResults = Res->getNumValues();
2118  // Move the glue if needed.
2119  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2120      (unsigned)OldGlueResultNo != ResNumResults-1)
2121    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2122                                      SDValue(Res, ResNumResults-1));
2123
2124  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2125    --ResNumResults;
2126
2127  // Move the chain reference if needed.
2128  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2129      (unsigned)OldChainResultNo != ResNumResults-1)
2130    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2131                                      SDValue(Res, ResNumResults-1));
2132
2133  // Otherwise, no replacement happened because the node already exists. Replace
2134  // Uses of the old node with the new one.
2135  if (Res != Node)
2136    CurDAG->ReplaceAllUsesWith(Node, Res);
2137
2138  return Res;
2139}
2140
2141/// CheckSame - Implements OP_CheckSame.
2142LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2143CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2144          SDValue N,
2145          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2146  // Accept if it is exactly the same as a previously recorded node.
2147  unsigned RecNo = MatcherTable[MatcherIndex++];
2148  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2149  return N == RecordedNodes[RecNo].first;
2150}
2151
2152/// CheckChildSame - Implements OP_CheckChildXSame.
2153LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2154CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2155             SDValue N,
2156             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2157             unsigned ChildNo) {
2158  if (ChildNo >= N.getNumOperands())
2159    return false;  // Match fails if out of range child #.
2160  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2161                     RecordedNodes);
2162}
2163
2164/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2165LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2166CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2167                      const SelectionDAGISel &SDISel) {
2168  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2169}
2170
2171/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2172LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2173CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2174                   const SelectionDAGISel &SDISel, SDNode *N) {
2175  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2176}
2177
2178LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2179CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2180            SDNode *N) {
2181  uint16_t Opc = MatcherTable[MatcherIndex++];
2182  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2183  return N->getOpcode() == Opc;
2184}
2185
2186LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2187CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2188          SDValue N, const TargetLowering *TLI) {
2189  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2190  if (N.getValueType() == VT) return true;
2191
2192  // Handle the case when VT is iPTR.
2193  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2194}
2195
2196LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2197CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2198               SDValue N, const TargetLowering *TLI,
2199               unsigned ChildNo) {
2200  if (ChildNo >= N.getNumOperands())
2201    return false;  // Match fails if out of range child #.
2202  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2203}
2204
2205LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2206CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2207              SDValue N) {
2208  return cast<CondCodeSDNode>(N)->get() ==
2209      (ISD::CondCode)MatcherTable[MatcherIndex++];
2210}
2211
2212LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2213CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2214               SDValue N, const TargetLowering *TLI) {
2215  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2216  if (cast<VTSDNode>(N)->getVT() == VT)
2217    return true;
2218
2219  // Handle the case when VT is iPTR.
2220  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2221}
2222
2223LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2224CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2225             SDValue N) {
2226  int64_t Val = MatcherTable[MatcherIndex++];
2227  if (Val & 128)
2228    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2229
2230  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2231  return C != 0 && C->getSExtValue() == Val;
2232}
2233
2234LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2235CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2236            SDValue N, const SelectionDAGISel &SDISel) {
2237  int64_t Val = MatcherTable[MatcherIndex++];
2238  if (Val & 128)
2239    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2240
2241  if (N->getOpcode() != ISD::AND) return false;
2242
2243  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2244  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2245}
2246
2247LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2248CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2249           SDValue N, const SelectionDAGISel &SDISel) {
2250  int64_t Val = MatcherTable[MatcherIndex++];
2251  if (Val & 128)
2252    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2253
2254  if (N->getOpcode() != ISD::OR) return false;
2255
2256  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2257  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2258}
2259
2260/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2261/// scope, evaluate the current node.  If the current predicate is known to
2262/// fail, set Result=true and return anything.  If the current predicate is
2263/// known to pass, set Result=false and return the MatcherIndex to continue
2264/// with.  If the current predicate is unknown, set Result=false and return the
2265/// MatcherIndex to continue with.
2266static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2267                                       unsigned Index, SDValue N,
2268                                       bool &Result,
2269                                       const SelectionDAGISel &SDISel,
2270                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2271  switch (Table[Index++]) {
2272  default:
2273    Result = false;
2274    return Index-1;  // Could not evaluate this predicate.
2275  case SelectionDAGISel::OPC_CheckSame:
2276    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2277    return Index;
2278  case SelectionDAGISel::OPC_CheckChild0Same:
2279  case SelectionDAGISel::OPC_CheckChild1Same:
2280  case SelectionDAGISel::OPC_CheckChild2Same:
2281  case SelectionDAGISel::OPC_CheckChild3Same:
2282    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2283                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2284    return Index;
2285  case SelectionDAGISel::OPC_CheckPatternPredicate:
2286    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2287    return Index;
2288  case SelectionDAGISel::OPC_CheckPredicate:
2289    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2290    return Index;
2291  case SelectionDAGISel::OPC_CheckOpcode:
2292    Result = !::CheckOpcode(Table, Index, N.getNode());
2293    return Index;
2294  case SelectionDAGISel::OPC_CheckType:
2295    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2296    return Index;
2297  case SelectionDAGISel::OPC_CheckChild0Type:
2298  case SelectionDAGISel::OPC_CheckChild1Type:
2299  case SelectionDAGISel::OPC_CheckChild2Type:
2300  case SelectionDAGISel::OPC_CheckChild3Type:
2301  case SelectionDAGISel::OPC_CheckChild4Type:
2302  case SelectionDAGISel::OPC_CheckChild5Type:
2303  case SelectionDAGISel::OPC_CheckChild6Type:
2304  case SelectionDAGISel::OPC_CheckChild7Type:
2305    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2306                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2307    return Index;
2308  case SelectionDAGISel::OPC_CheckCondCode:
2309    Result = !::CheckCondCode(Table, Index, N);
2310    return Index;
2311  case SelectionDAGISel::OPC_CheckValueType:
2312    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2313    return Index;
2314  case SelectionDAGISel::OPC_CheckInteger:
2315    Result = !::CheckInteger(Table, Index, N);
2316    return Index;
2317  case SelectionDAGISel::OPC_CheckAndImm:
2318    Result = !::CheckAndImm(Table, Index, N, SDISel);
2319    return Index;
2320  case SelectionDAGISel::OPC_CheckOrImm:
2321    Result = !::CheckOrImm(Table, Index, N, SDISel);
2322    return Index;
2323  }
2324}
2325
2326namespace {
2327
2328struct MatchScope {
2329  /// FailIndex - If this match fails, this is the index to continue with.
2330  unsigned FailIndex;
2331
2332  /// NodeStack - The node stack when the scope was formed.
2333  SmallVector<SDValue, 4> NodeStack;
2334
2335  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2336  unsigned NumRecordedNodes;
2337
2338  /// NumMatchedMemRefs - The number of matched memref entries.
2339  unsigned NumMatchedMemRefs;
2340
2341  /// InputChain/InputGlue - The current chain/glue
2342  SDValue InputChain, InputGlue;
2343
2344  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2345  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2346};
2347
2348}
2349
2350SDNode *SelectionDAGISel::
2351SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2352                 unsigned TableSize) {
2353  // FIXME: Should these even be selected?  Handle these cases in the caller?
2354  switch (NodeToMatch->getOpcode()) {
2355  default:
2356    break;
2357  case ISD::EntryToken:       // These nodes remain the same.
2358  case ISD::BasicBlock:
2359  case ISD::Register:
2360  case ISD::RegisterMask:
2361  //case ISD::VALUETYPE:
2362  //case ISD::CONDCODE:
2363  case ISD::HANDLENODE:
2364  case ISD::MDNODE_SDNODE:
2365  case ISD::TargetConstant:
2366  case ISD::TargetConstantFP:
2367  case ISD::TargetConstantPool:
2368  case ISD::TargetFrameIndex:
2369  case ISD::TargetExternalSymbol:
2370  case ISD::TargetBlockAddress:
2371  case ISD::TargetJumpTable:
2372  case ISD::TargetGlobalTLSAddress:
2373  case ISD::TargetGlobalAddress:
2374  case ISD::TokenFactor:
2375  case ISD::CopyFromReg:
2376  case ISD::CopyToReg:
2377  case ISD::EH_LABEL:
2378  case ISD::LIFETIME_START:
2379  case ISD::LIFETIME_END:
2380    NodeToMatch->setNodeId(-1); // Mark selected.
2381    return 0;
2382  case ISD::AssertSext:
2383  case ISD::AssertZext:
2384    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2385                                      NodeToMatch->getOperand(0));
2386    return 0;
2387  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2388  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2389  }
2390
2391  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2392
2393  // Set up the node stack with NodeToMatch as the only node on the stack.
2394  SmallVector<SDValue, 8> NodeStack;
2395  SDValue N = SDValue(NodeToMatch, 0);
2396  NodeStack.push_back(N);
2397
2398  // MatchScopes - Scopes used when matching, if a match failure happens, this
2399  // indicates where to continue checking.
2400  SmallVector<MatchScope, 8> MatchScopes;
2401
2402  // RecordedNodes - This is the set of nodes that have been recorded by the
2403  // state machine.  The second value is the parent of the node, or null if the
2404  // root is recorded.
2405  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2406
2407  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2408  // pattern.
2409  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2410
2411  // These are the current input chain and glue for use when generating nodes.
2412  // Various Emit operations change these.  For example, emitting a copytoreg
2413  // uses and updates these.
2414  SDValue InputChain, InputGlue;
2415
2416  // ChainNodesMatched - If a pattern matches nodes that have input/output
2417  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2418  // which ones they are.  The result is captured into this list so that we can
2419  // update the chain results when the pattern is complete.
2420  SmallVector<SDNode*, 3> ChainNodesMatched;
2421  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2422
2423  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2424        NodeToMatch->dump(CurDAG);
2425        dbgs() << '\n');
2426
2427  // Determine where to start the interpreter.  Normally we start at opcode #0,
2428  // but if the state machine starts with an OPC_SwitchOpcode, then we
2429  // accelerate the first lookup (which is guaranteed to be hot) with the
2430  // OpcodeOffset table.
2431  unsigned MatcherIndex = 0;
2432
2433  if (!OpcodeOffset.empty()) {
2434    // Already computed the OpcodeOffset table, just index into it.
2435    if (N.getOpcode() < OpcodeOffset.size())
2436      MatcherIndex = OpcodeOffset[N.getOpcode()];
2437    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2438
2439  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2440    // Otherwise, the table isn't computed, but the state machine does start
2441    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2442    // is the first time we're selecting an instruction.
2443    unsigned Idx = 1;
2444    while (1) {
2445      // Get the size of this case.
2446      unsigned CaseSize = MatcherTable[Idx++];
2447      if (CaseSize & 128)
2448        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2449      if (CaseSize == 0) break;
2450
2451      // Get the opcode, add the index to the table.
2452      uint16_t Opc = MatcherTable[Idx++];
2453      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2454      if (Opc >= OpcodeOffset.size())
2455        OpcodeOffset.resize((Opc+1)*2);
2456      OpcodeOffset[Opc] = Idx;
2457      Idx += CaseSize;
2458    }
2459
2460    // Okay, do the lookup for the first opcode.
2461    if (N.getOpcode() < OpcodeOffset.size())
2462      MatcherIndex = OpcodeOffset[N.getOpcode()];
2463  }
2464
2465  while (1) {
2466    assert(MatcherIndex < TableSize && "Invalid index");
2467#ifndef NDEBUG
2468    unsigned CurrentOpcodeIndex = MatcherIndex;
2469#endif
2470    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2471    switch (Opcode) {
2472    case OPC_Scope: {
2473      // Okay, the semantics of this operation are that we should push a scope
2474      // then evaluate the first child.  However, pushing a scope only to have
2475      // the first check fail (which then pops it) is inefficient.  If we can
2476      // determine immediately that the first check (or first several) will
2477      // immediately fail, don't even bother pushing a scope for them.
2478      unsigned FailIndex;
2479
2480      while (1) {
2481        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2482        if (NumToSkip & 128)
2483          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2484        // Found the end of the scope with no match.
2485        if (NumToSkip == 0) {
2486          FailIndex = 0;
2487          break;
2488        }
2489
2490        FailIndex = MatcherIndex+NumToSkip;
2491
2492        unsigned MatcherIndexOfPredicate = MatcherIndex;
2493        (void)MatcherIndexOfPredicate; // silence warning.
2494
2495        // If we can't evaluate this predicate without pushing a scope (e.g. if
2496        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2497        // push the scope and evaluate the full predicate chain.
2498        bool Result;
2499        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2500                                              Result, *this, RecordedNodes);
2501        if (!Result)
2502          break;
2503
2504        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2505                     << "index " << MatcherIndexOfPredicate
2506                     << ", continuing at " << FailIndex << "\n");
2507        ++NumDAGIselRetries;
2508
2509        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2510        // move to the next case.
2511        MatcherIndex = FailIndex;
2512      }
2513
2514      // If the whole scope failed to match, bail.
2515      if (FailIndex == 0) break;
2516
2517      // Push a MatchScope which indicates where to go if the first child fails
2518      // to match.
2519      MatchScope NewEntry;
2520      NewEntry.FailIndex = FailIndex;
2521      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2522      NewEntry.NumRecordedNodes = RecordedNodes.size();
2523      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2524      NewEntry.InputChain = InputChain;
2525      NewEntry.InputGlue = InputGlue;
2526      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2527      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2528      MatchScopes.push_back(NewEntry);
2529      continue;
2530    }
2531    case OPC_RecordNode: {
2532      // Remember this node, it may end up being an operand in the pattern.
2533      SDNode *Parent = 0;
2534      if (NodeStack.size() > 1)
2535        Parent = NodeStack[NodeStack.size()-2].getNode();
2536      RecordedNodes.push_back(std::make_pair(N, Parent));
2537      continue;
2538    }
2539
2540    case OPC_RecordChild0: case OPC_RecordChild1:
2541    case OPC_RecordChild2: case OPC_RecordChild3:
2542    case OPC_RecordChild4: case OPC_RecordChild5:
2543    case OPC_RecordChild6: case OPC_RecordChild7: {
2544      unsigned ChildNo = Opcode-OPC_RecordChild0;
2545      if (ChildNo >= N.getNumOperands())
2546        break;  // Match fails if out of range child #.
2547
2548      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2549                                             N.getNode()));
2550      continue;
2551    }
2552    case OPC_RecordMemRef:
2553      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2554      continue;
2555
2556    case OPC_CaptureGlueInput:
2557      // If the current node has an input glue, capture it in InputGlue.
2558      if (N->getNumOperands() != 0 &&
2559          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2560        InputGlue = N->getOperand(N->getNumOperands()-1);
2561      continue;
2562
2563    case OPC_MoveChild: {
2564      unsigned ChildNo = MatcherTable[MatcherIndex++];
2565      if (ChildNo >= N.getNumOperands())
2566        break;  // Match fails if out of range child #.
2567      N = N.getOperand(ChildNo);
2568      NodeStack.push_back(N);
2569      continue;
2570    }
2571
2572    case OPC_MoveParent:
2573      // Pop the current node off the NodeStack.
2574      NodeStack.pop_back();
2575      assert(!NodeStack.empty() && "Node stack imbalance!");
2576      N = NodeStack.back();
2577      continue;
2578
2579    case OPC_CheckSame:
2580      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2581      continue;
2582
2583    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2584    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2585      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2586                            Opcode-OPC_CheckChild0Same))
2587        break;
2588      continue;
2589
2590    case OPC_CheckPatternPredicate:
2591      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2592      continue;
2593    case OPC_CheckPredicate:
2594      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2595                                N.getNode()))
2596        break;
2597      continue;
2598    case OPC_CheckComplexPat: {
2599      unsigned CPNum = MatcherTable[MatcherIndex++];
2600      unsigned RecNo = MatcherTable[MatcherIndex++];
2601      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2602      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2603                               RecordedNodes[RecNo].first, CPNum,
2604                               RecordedNodes))
2605        break;
2606      continue;
2607    }
2608    case OPC_CheckOpcode:
2609      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2610      continue;
2611
2612    case OPC_CheckType:
2613      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2614        break;
2615      continue;
2616
2617    case OPC_SwitchOpcode: {
2618      unsigned CurNodeOpcode = N.getOpcode();
2619      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2620      unsigned CaseSize;
2621      while (1) {
2622        // Get the size of this case.
2623        CaseSize = MatcherTable[MatcherIndex++];
2624        if (CaseSize & 128)
2625          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2626        if (CaseSize == 0) break;
2627
2628        uint16_t Opc = MatcherTable[MatcherIndex++];
2629        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2630
2631        // If the opcode matches, then we will execute this case.
2632        if (CurNodeOpcode == Opc)
2633          break;
2634
2635        // Otherwise, skip over this case.
2636        MatcherIndex += CaseSize;
2637      }
2638
2639      // If no cases matched, bail out.
2640      if (CaseSize == 0) break;
2641
2642      // Otherwise, execute the case we found.
2643      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2644                   << " to " << MatcherIndex << "\n");
2645      continue;
2646    }
2647
2648    case OPC_SwitchType: {
2649      MVT CurNodeVT = N.getSimpleValueType();
2650      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2651      unsigned CaseSize;
2652      while (1) {
2653        // Get the size of this case.
2654        CaseSize = MatcherTable[MatcherIndex++];
2655        if (CaseSize & 128)
2656          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2657        if (CaseSize == 0) break;
2658
2659        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2660        if (CaseVT == MVT::iPTR)
2661          CaseVT = getTargetLowering()->getPointerTy();
2662
2663        // If the VT matches, then we will execute this case.
2664        if (CurNodeVT == CaseVT)
2665          break;
2666
2667        // Otherwise, skip over this case.
2668        MatcherIndex += CaseSize;
2669      }
2670
2671      // If no cases matched, bail out.
2672      if (CaseSize == 0) break;
2673
2674      // Otherwise, execute the case we found.
2675      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2676                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2677      continue;
2678    }
2679    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2680    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2681    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2682    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2683      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2684                            Opcode-OPC_CheckChild0Type))
2685        break;
2686      continue;
2687    case OPC_CheckCondCode:
2688      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2689      continue;
2690    case OPC_CheckValueType:
2691      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2692        break;
2693      continue;
2694    case OPC_CheckInteger:
2695      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2696      continue;
2697    case OPC_CheckAndImm:
2698      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2699      continue;
2700    case OPC_CheckOrImm:
2701      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2702      continue;
2703
2704    case OPC_CheckFoldableChainNode: {
2705      assert(NodeStack.size() != 1 && "No parent node");
2706      // Verify that all intermediate nodes between the root and this one have
2707      // a single use.
2708      bool HasMultipleUses = false;
2709      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2710        if (!NodeStack[i].hasOneUse()) {
2711          HasMultipleUses = true;
2712          break;
2713        }
2714      if (HasMultipleUses) break;
2715
2716      // Check to see that the target thinks this is profitable to fold and that
2717      // we can fold it without inducing cycles in the graph.
2718      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2719                              NodeToMatch) ||
2720          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2721                         NodeToMatch, OptLevel,
2722                         true/*We validate our own chains*/))
2723        break;
2724
2725      continue;
2726    }
2727    case OPC_EmitInteger: {
2728      MVT::SimpleValueType VT =
2729        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2730      int64_t Val = MatcherTable[MatcherIndex++];
2731      if (Val & 128)
2732        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2733      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2734                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2735      continue;
2736    }
2737    case OPC_EmitRegister: {
2738      MVT::SimpleValueType VT =
2739        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2740      unsigned RegNo = MatcherTable[MatcherIndex++];
2741      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2742                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2743      continue;
2744    }
2745    case OPC_EmitRegister2: {
2746      // For targets w/ more than 256 register names, the register enum
2747      // values are stored in two bytes in the matcher table (just like
2748      // opcodes).
2749      MVT::SimpleValueType VT =
2750        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2751      unsigned RegNo = MatcherTable[MatcherIndex++];
2752      RegNo |= MatcherTable[MatcherIndex++] << 8;
2753      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2754                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2755      continue;
2756    }
2757
2758    case OPC_EmitConvertToTarget:  {
2759      // Convert from IMM/FPIMM to target version.
2760      unsigned RecNo = MatcherTable[MatcherIndex++];
2761      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
2762      SDValue Imm = RecordedNodes[RecNo].first;
2763
2764      if (Imm->getOpcode() == ISD::Constant) {
2765        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2766        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2767      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2768        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2769        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2770      }
2771
2772      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2773      continue;
2774    }
2775
2776    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2777    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2778      // These are space-optimized forms of OPC_EmitMergeInputChains.
2779      assert(InputChain.getNode() == 0 &&
2780             "EmitMergeInputChains should be the first chain producing node");
2781      assert(ChainNodesMatched.empty() &&
2782             "Should only have one EmitMergeInputChains per match");
2783
2784      // Read all of the chained nodes.
2785      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2786      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2787      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2788
2789      // FIXME: What if other value results of the node have uses not matched
2790      // by this pattern?
2791      if (ChainNodesMatched.back() != NodeToMatch &&
2792          !RecordedNodes[RecNo].first.hasOneUse()) {
2793        ChainNodesMatched.clear();
2794        break;
2795      }
2796
2797      // Merge the input chains if they are not intra-pattern references.
2798      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2799
2800      if (InputChain.getNode() == 0)
2801        break;  // Failed to merge.
2802      continue;
2803    }
2804
2805    case OPC_EmitMergeInputChains: {
2806      assert(InputChain.getNode() == 0 &&
2807             "EmitMergeInputChains should be the first chain producing node");
2808      // This node gets a list of nodes we matched in the input that have
2809      // chains.  We want to token factor all of the input chains to these nodes
2810      // together.  However, if any of the input chains is actually one of the
2811      // nodes matched in this pattern, then we have an intra-match reference.
2812      // Ignore these because the newly token factored chain should not refer to
2813      // the old nodes.
2814      unsigned NumChains = MatcherTable[MatcherIndex++];
2815      assert(NumChains != 0 && "Can't TF zero chains");
2816
2817      assert(ChainNodesMatched.empty() &&
2818             "Should only have one EmitMergeInputChains per match");
2819
2820      // Read all of the chained nodes.
2821      for (unsigned i = 0; i != NumChains; ++i) {
2822        unsigned RecNo = MatcherTable[MatcherIndex++];
2823        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
2824        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2825
2826        // FIXME: What if other value results of the node have uses not matched
2827        // by this pattern?
2828        if (ChainNodesMatched.back() != NodeToMatch &&
2829            !RecordedNodes[RecNo].first.hasOneUse()) {
2830          ChainNodesMatched.clear();
2831          break;
2832        }
2833      }
2834
2835      // If the inner loop broke out, the match fails.
2836      if (ChainNodesMatched.empty())
2837        break;
2838
2839      // Merge the input chains if they are not intra-pattern references.
2840      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2841
2842      if (InputChain.getNode() == 0)
2843        break;  // Failed to merge.
2844
2845      continue;
2846    }
2847
2848    case OPC_EmitCopyToReg: {
2849      unsigned RecNo = MatcherTable[MatcherIndex++];
2850      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
2851      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2852
2853      if (InputChain.getNode() == 0)
2854        InputChain = CurDAG->getEntryNode();
2855
2856      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2857                                        DestPhysReg, RecordedNodes[RecNo].first,
2858                                        InputGlue);
2859
2860      InputGlue = InputChain.getValue(1);
2861      continue;
2862    }
2863
2864    case OPC_EmitNodeXForm: {
2865      unsigned XFormNo = MatcherTable[MatcherIndex++];
2866      unsigned RecNo = MatcherTable[MatcherIndex++];
2867      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
2868      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2869      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2870      continue;
2871    }
2872
2873    case OPC_EmitNode:
2874    case OPC_MorphNodeTo: {
2875      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2876      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2877      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2878      // Get the result VT list.
2879      unsigned NumVTs = MatcherTable[MatcherIndex++];
2880      SmallVector<EVT, 4> VTs;
2881      for (unsigned i = 0; i != NumVTs; ++i) {
2882        MVT::SimpleValueType VT =
2883          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2884        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2885        VTs.push_back(VT);
2886      }
2887
2888      if (EmitNodeInfo & OPFL_Chain)
2889        VTs.push_back(MVT::Other);
2890      if (EmitNodeInfo & OPFL_GlueOutput)
2891        VTs.push_back(MVT::Glue);
2892
2893      // This is hot code, so optimize the two most common cases of 1 and 2
2894      // results.
2895      SDVTList VTList;
2896      if (VTs.size() == 1)
2897        VTList = CurDAG->getVTList(VTs[0]);
2898      else if (VTs.size() == 2)
2899        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2900      else
2901        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2902
2903      // Get the operand list.
2904      unsigned NumOps = MatcherTable[MatcherIndex++];
2905      SmallVector<SDValue, 8> Ops;
2906      for (unsigned i = 0; i != NumOps; ++i) {
2907        unsigned RecNo = MatcherTable[MatcherIndex++];
2908        if (RecNo & 128)
2909          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2910
2911        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2912        Ops.push_back(RecordedNodes[RecNo].first);
2913      }
2914
2915      // If there are variadic operands to add, handle them now.
2916      if (EmitNodeInfo & OPFL_VariadicInfo) {
2917        // Determine the start index to copy from.
2918        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2919        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2920        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2921               "Invalid variadic node");
2922        // Copy all of the variadic operands, not including a potential glue
2923        // input.
2924        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2925             i != e; ++i) {
2926          SDValue V = NodeToMatch->getOperand(i);
2927          if (V.getValueType() == MVT::Glue) break;
2928          Ops.push_back(V);
2929        }
2930      }
2931
2932      // If this has chain/glue inputs, add them.
2933      if (EmitNodeInfo & OPFL_Chain)
2934        Ops.push_back(InputChain);
2935      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2936        Ops.push_back(InputGlue);
2937
2938      // Create the node.
2939      SDNode *Res = 0;
2940      if (Opcode != OPC_MorphNodeTo) {
2941        // If this is a normal EmitNode command, just create the new node and
2942        // add the results to the RecordedNodes list.
2943        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2944                                     VTList, Ops);
2945
2946        // Add all the non-glue/non-chain results to the RecordedNodes list.
2947        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2948          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2949          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2950                                                             (SDNode*) 0));
2951        }
2952
2953      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2954        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2955                        EmitNodeInfo);
2956      } else {
2957        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2958        // We will visit the equivalent node later.
2959        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2960        return 0;
2961      }
2962
2963      // If the node had chain/glue results, update our notion of the current
2964      // chain and glue.
2965      if (EmitNodeInfo & OPFL_GlueOutput) {
2966        InputGlue = SDValue(Res, VTs.size()-1);
2967        if (EmitNodeInfo & OPFL_Chain)
2968          InputChain = SDValue(Res, VTs.size()-2);
2969      } else if (EmitNodeInfo & OPFL_Chain)
2970        InputChain = SDValue(Res, VTs.size()-1);
2971
2972      // If the OPFL_MemRefs glue is set on this node, slap all of the
2973      // accumulated memrefs onto it.
2974      //
2975      // FIXME: This is vastly incorrect for patterns with multiple outputs
2976      // instructions that access memory and for ComplexPatterns that match
2977      // loads.
2978      if (EmitNodeInfo & OPFL_MemRefs) {
2979        // Only attach load or store memory operands if the generated
2980        // instruction may load or store.
2981        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2982        bool mayLoad = MCID.mayLoad();
2983        bool mayStore = MCID.mayStore();
2984
2985        unsigned NumMemRefs = 0;
2986        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2987               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2988          if ((*I)->isLoad()) {
2989            if (mayLoad)
2990              ++NumMemRefs;
2991          } else if ((*I)->isStore()) {
2992            if (mayStore)
2993              ++NumMemRefs;
2994          } else {
2995            ++NumMemRefs;
2996          }
2997        }
2998
2999        MachineSDNode::mmo_iterator MemRefs =
3000          MF->allocateMemRefsArray(NumMemRefs);
3001
3002        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3003        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3004               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3005          if ((*I)->isLoad()) {
3006            if (mayLoad)
3007              *MemRefsPos++ = *I;
3008          } else if ((*I)->isStore()) {
3009            if (mayStore)
3010              *MemRefsPos++ = *I;
3011          } else {
3012            *MemRefsPos++ = *I;
3013          }
3014        }
3015
3016        cast<MachineSDNode>(Res)
3017          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3018      }
3019
3020      DEBUG(dbgs() << "  "
3021                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3022                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3023
3024      // If this was a MorphNodeTo then we're completely done!
3025      if (Opcode == OPC_MorphNodeTo) {
3026        // Update chain and glue uses.
3027        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3028                            InputGlue, GlueResultNodesMatched, true);
3029        return Res;
3030      }
3031
3032      continue;
3033    }
3034
3035    case OPC_MarkGlueResults: {
3036      unsigned NumNodes = MatcherTable[MatcherIndex++];
3037
3038      // Read and remember all the glue-result nodes.
3039      for (unsigned i = 0; i != NumNodes; ++i) {
3040        unsigned RecNo = MatcherTable[MatcherIndex++];
3041        if (RecNo & 128)
3042          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3043
3044        assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3045        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3046      }
3047      continue;
3048    }
3049
3050    case OPC_CompleteMatch: {
3051      // The match has been completed, and any new nodes (if any) have been
3052      // created.  Patch up references to the matched dag to use the newly
3053      // created nodes.
3054      unsigned NumResults = MatcherTable[MatcherIndex++];
3055
3056      for (unsigned i = 0; i != NumResults; ++i) {
3057        unsigned ResSlot = MatcherTable[MatcherIndex++];
3058        if (ResSlot & 128)
3059          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3060
3061        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3062        SDValue Res = RecordedNodes[ResSlot].first;
3063
3064        assert(i < NodeToMatch->getNumValues() &&
3065               NodeToMatch->getValueType(i) != MVT::Other &&
3066               NodeToMatch->getValueType(i) != MVT::Glue &&
3067               "Invalid number of results to complete!");
3068        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3069                NodeToMatch->getValueType(i) == MVT::iPTR ||
3070                Res.getValueType() == MVT::iPTR ||
3071                NodeToMatch->getValueType(i).getSizeInBits() ==
3072                    Res.getValueType().getSizeInBits()) &&
3073               "invalid replacement");
3074        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3075      }
3076
3077      // If the root node defines glue, add it to the glue nodes to update list.
3078      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3079        GlueResultNodesMatched.push_back(NodeToMatch);
3080
3081      // Update chain and glue uses.
3082      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3083                          InputGlue, GlueResultNodesMatched, false);
3084
3085      assert(NodeToMatch->use_empty() &&
3086             "Didn't replace all uses of the node?");
3087
3088      // FIXME: We just return here, which interacts correctly with SelectRoot
3089      // above.  We should fix this to not return an SDNode* anymore.
3090      return 0;
3091    }
3092    }
3093
3094    // If the code reached this point, then the match failed.  See if there is
3095    // another child to try in the current 'Scope', otherwise pop it until we
3096    // find a case to check.
3097    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3098    ++NumDAGIselRetries;
3099    while (1) {
3100      if (MatchScopes.empty()) {
3101        CannotYetSelect(NodeToMatch);
3102        return 0;
3103      }
3104
3105      // Restore the interpreter state back to the point where the scope was
3106      // formed.
3107      MatchScope &LastScope = MatchScopes.back();
3108      RecordedNodes.resize(LastScope.NumRecordedNodes);
3109      NodeStack.clear();
3110      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3111      N = NodeStack.back();
3112
3113      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3114        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3115      MatcherIndex = LastScope.FailIndex;
3116
3117      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3118
3119      InputChain = LastScope.InputChain;
3120      InputGlue = LastScope.InputGlue;
3121      if (!LastScope.HasChainNodesMatched)
3122        ChainNodesMatched.clear();
3123      if (!LastScope.HasGlueResultNodesMatched)
3124        GlueResultNodesMatched.clear();
3125
3126      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3127      // we have reached the end of this scope, otherwise we have another child
3128      // in the current scope to try.
3129      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3130      if (NumToSkip & 128)
3131        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3132
3133      // If we have another child in this scope to match, update FailIndex and
3134      // try it.
3135      if (NumToSkip != 0) {
3136        LastScope.FailIndex = MatcherIndex+NumToSkip;
3137        break;
3138      }
3139
3140      // End of this scope, pop it and try the next child in the containing
3141      // scope.
3142      MatchScopes.pop_back();
3143    }
3144  }
3145}
3146
3147
3148
3149void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3150  std::string msg;
3151  raw_string_ostream Msg(msg);
3152  Msg << "Cannot select: ";
3153
3154  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3155      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3156      N->getOpcode() != ISD::INTRINSIC_VOID) {
3157    N->printrFull(Msg, CurDAG);
3158    Msg << "\nIn function: " << MF->getName();
3159  } else {
3160    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3161    unsigned iid =
3162      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3163    if (iid < Intrinsic::num_intrinsics)
3164      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3165    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3166      Msg << "target intrinsic %" << TII->getName(iid);
3167    else
3168      Msg << "unknown intrinsic #" << iid;
3169  }
3170  report_fatal_error(Msg.str());
3171}
3172
3173char SelectionDAGISel::ID = 0;
3174