1/*-
2 * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * $FreeBSD$
36 */
37
38#ifndef _HAMMER2_DISK_H_
39#define _HAMMER2_DISK_H_
40
41#ifndef _SYS_UUID_H_
42#include <sys/uuid.h>
43#endif
44#ifndef _SYS_DMSG_H_
45/*
46 * dmsg_hdr must be 64 bytes
47 */
48struct dmsg_hdr {
49	uint16_t	magic;		/* 00 sanity, synchro, endian */
50	uint16_t	reserved02;	/* 02 */
51	uint32_t	salt;		/* 04 random salt helps w/crypto */
52
53	uint64_t	msgid;		/* 08 message transaction id */
54	uint64_t	circuit;	/* 10 circuit id or 0	*/
55	uint64_t	reserved18;	/* 18 */
56
57	uint32_t	cmd;		/* 20 flags | cmd | hdr_size / ALIGN */
58	uint32_t	aux_crc;	/* 24 auxillary data crc */
59	uint32_t	aux_bytes;	/* 28 auxillary data length (bytes) */
60	uint32_t	error;		/* 2C error code or 0 */
61	uint64_t	aux_descr;	/* 30 negotiated OOB data descr */
62	uint32_t	reserved38;	/* 38 */
63	uint32_t	hdr_crc;	/* 3C (aligned) extended header crc */
64};
65
66typedef struct dmsg_hdr dmsg_hdr_t;
67#endif
68
69/*
70 * The structures below represent the on-disk media structures for the HAMMER2
71 * filesystem.  Note that all fields for on-disk structures are naturally
72 * aligned.  The host endian format is typically used - compatibility is
73 * possible if the implementation detects reversed endian and adjusts accesses
74 * accordingly.
75 *
76 * HAMMER2 primarily revolves around the directory topology:  inodes,
77 * directory entries, and block tables.  Block device buffer cache buffers
78 * are always 64KB.  Logical file buffers are typically 16KB.  All data
79 * references utilize 64-bit byte offsets.
80 *
81 * Free block management is handled independently using blocks reserved by
82 * the media topology.
83 */
84
85/*
86 * The data at the end of a file or directory may be a fragment in order
87 * to optimize storage efficiency.  The minimum fragment size is 1KB.
88 * Since allocations are in powers of 2 fragments must also be sized in
89 * powers of 2 (1024, 2048, ... 65536).
90 *
91 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
92 * which is 2^16.  Larger extents may be supported in the future.  Smaller
93 * fragments might be supported in the future (down to 64 bytes is possible),
94 * but probably will not be.
95 *
96 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
97 * buffer.  Indirect blocks down to 1KB are supported to keep small
98 * directories small.
99 *
100 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
101 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
102 *
103 *	16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
104 *	16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68.  (smaller top level indblk)
105 *
106 * The actual depth depends on copies redundancy and whether the filesystem
107 * has chosen to use a smaller indirect block size at the top level or not.
108 */
109#define HAMMER2_ALLOC_MIN	1024	/* minimum allocation size */
110#define HAMMER2_RADIX_MIN	10	/* minimum allocation size 2^N */
111#define HAMMER2_ALLOC_MAX	65536	/* maximum allocation size */
112#define HAMMER2_RADIX_MAX	16	/* maximum allocation size 2^N */
113#define HAMMER2_RADIX_KEY	64	/* number of bits in key */
114
115/*
116 * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
117 *		  	  or larger than the minimum physical IO size.
118 *
119 *			  NOTE: Should not be larger than 1K since inodes
120 *				are 1K.
121 *
122 * MINIOSIZE		- The minimum IO size.  This must be less than
123 *			  or equal to HAMMER2_LBUFSIZE.
124 *
125 * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
126 *
127 * HAMMER2_PBUFSIZE	- Topological block size used by files for all
128 *			  blocks except the block straddling EOF.
129 *
130 * HAMMER2_SEGSIZE	- Allocation map segment size, typically 4MB
131 *			  (space represented by a level0 bitmap).
132 */
133
134#define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
135#define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
136
137#define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
138#define HAMMER2_PBUFSIZE	65536
139#define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
140#define HAMMER2_LBUFSIZE	16384
141
142/*
143 * Generally speaking we want to use 16K and 64K I/Os
144 */
145#define HAMMER2_MINIORADIX	HAMMER2_LBUFRADIX
146#define HAMMER2_MINIOSIZE	HAMMER2_LBUFSIZE
147
148#define HAMMER2_IND_BYTES_MIN	4096
149#define HAMMER2_IND_BYTES_NOM	HAMMER2_LBUFSIZE
150#define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
151#define HAMMER2_IND_RADIX_MIN	12
152#define HAMMER2_IND_RADIX_NOM	HAMMER2_LBUFRADIX
153#define HAMMER2_IND_RADIX_MAX	HAMMER2_PBUFRADIX
154#define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
155				 sizeof(hammer2_blockref_t))
156#define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
157				 sizeof(hammer2_blockref_t))
158
159/*
160 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
161 * any element can occur at any index and holes can be anywhere.  As a
162 * future optimization we will be able to flag that such arrays are sorted
163 * and thus optimize lookups, but for now we don't.
164 *
165 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
166 * resulting in highly efficient storage for files <= 512 bytes and for files
167 * <= 512KB.  Up to 4 directory entries can be referenced from a directory
168 * without requiring an indirect block.
169 *
170 * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
171 * or 64KB (1024 blockrefs / ~64MB represented).
172 */
173#define HAMMER2_SET_RADIX		2	/* radix 2 = 4 entries */
174#define HAMMER2_SET_COUNT		(1 << HAMMER2_SET_RADIX)
175#define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
176#define HAMMER2_EMBEDDED_RADIX		9
177
178#define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
179#define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
180#define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
181
182#define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
183#define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
184#define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
185#define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
186#define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
187
188#define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
189
190/*
191 * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
192 * contains the volume header (or backup volume header), the free block
193 * table, and possibly other information in the future.  A 4MB segment for
194 * freemap is reserved at the beginning of every 1GB.
195 *
196 * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
197 *
198 * ==========
199 *  0 volume header (for the first four 2GB zones)
200 *  1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
201 *  2           level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
202 *  3           level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
203 *  4           level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
204 *  5           level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
205 *  6 freemap01 level1 (rotation)
206 *  7           level2
207 *  8           level3
208 *  9           level4
209 * 10           level5
210 * 11 freemap02 level1 (rotation)
211 * 12           level2
212 * 13           level3
213 * 14           level4
214 * 15           level5
215 * 16 freemap03 level1 (rotation)
216 * 17           level2
217 * 18           level3
218 * 19           level4
219 * 20           level5
220 * 21 freemap04 level1 (rotation)
221 * 22           level2
222 * 23           level3
223 * 24           level4
224 * 25           level5
225 * 26 freemap05 level1 (rotation)
226 * 27           level2
227 * 28           level3
228 * 29           level4
229 * 30           level5
230 * 31 freemap06 level1 (rotation)
231 * 32           level2
232 * 33           level3
233 * 34           level4
234 * 35           level5
235 * 36 freemap07 level1 (rotation)
236 * 37           level2
237 * 38           level3
238 * 39           level4
239 * 40           level5
240 * 41 unused
241 * .. unused
242 * 63 unused
243 * ==========
244 *
245 * The first four 2GB zones contain volume headers and volume header backups.
246 * After that the volume header block# is reserved for future use.  Similarly,
247 * there are many blocks related to various Freemap levels which are not
248 * used in every segment and those are also reserved for future use.
249 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
250 *
251 *			Freemap (see the FREEMAP document)
252 *
253 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks.  Each block in
254 * a set represents a level of depth in the freemap topology.  Eight sets
255 * exist to prevent live updates from disturbing the state of the freemap
256 * were a crash/reboot to occur.  That is, a live update is not committed
257 * until the update's flush reaches the volume root.  There are FOUR volume
258 * roots representing the last four synchronization points, so the freemap
259 * must be consistent no matter which volume root is chosen by the mount
260 * code.
261 *
262 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
263 * 16PB and 4EB indirect map.  The volume header itself has a set of 4 freemap
264 * blockrefs representing another 2 bits, giving us a total 64 bits of
265 * representable address space.
266 *
267 * The Level 0 64KB block represents 1GB of storage represented by 32KB
268 * (256 x struct hammer2_bmap_data).  Each structure represents 4MB of storage
269 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
270 * storage.  These 2 bits represent the following states:
271 *
272 *	00	Free
273 *	01	(reserved) (Possibly partially allocated)
274 *	10	Possibly free
275 *	11	Allocated
276 *
277 * One important thing to note here is that the freemap resolution is 16KB,
278 * but the minimum storage allocation size is 1KB.  The hammer2 vfs keeps
279 * track of sub-allocations in memory, which means that on a unmount or reboot
280 * the entire 16KB of a partially allocated block will be considered fully
281 * allocated.  It is possible for fragmentation to build up over time, but
282 * defragmentation is fairly easy to accomplish since all modifications
283 * allocate a new block.
284 *
285 * The Second thing to note is that due to the way snapshots and inode
286 * replication works, deleting a file cannot immediately free the related
287 * space.  Furthermore, deletions often do not bother to traverse the
288 * block subhierarchy being deleted.  And to go even further, whole
289 * sub-directory trees can be deleted simply by deleting the directory inode
290 * at the top.  So even though we have a symbol to represent a 'possibly free'
291 * block (binary 10), only the bulk free scanning code can actually use it.
292 * Normal 'rm's or other deletions do not.
293 *
294 * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
295 *	     (i.e. a multiple of 4MB).  VOLUME_ALIGN must be >= ZONE_SEG.
296 *
297 * In Summary:
298 *
299 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
300 *     from the next set).  The new copy is reused until a flush occurs at
301 *     which point the next modification will then rotate to the next set.
302 */
303#define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
304#define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
305#define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
306#define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
307
308#define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
309#define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
310#define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
311#define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
312
313#define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
314#define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
315#define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
316#define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
317#define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
318
319#define HAMMER2_ZONE_FREEMAP_INC	5	/* 5 deep */
320
321#define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
322#define HAMMER2_ZONE_FREEMAP_00		1	/* normal freemap rotation */
323#define HAMMER2_ZONE_FREEMAP_01		6	/* normal freemap rotation */
324#define HAMMER2_ZONE_FREEMAP_02		11	/* normal freemap rotation */
325#define HAMMER2_ZONE_FREEMAP_03		16	/* normal freemap rotation */
326#define HAMMER2_ZONE_FREEMAP_04		21	/* normal freemap rotation */
327#define HAMMER2_ZONE_FREEMAP_05		26	/* normal freemap rotation */
328#define HAMMER2_ZONE_FREEMAP_06		31	/* normal freemap rotation */
329#define HAMMER2_ZONE_FREEMAP_07		36	/* normal freemap rotation */
330#define HAMMER2_ZONE_FREEMAP_END	41	/* (non-inclusive) */
331
332#define HAMMER2_ZONE_UNUSED41		41
333#define HAMMER2_ZONE_UNUSED42		42
334#define HAMMER2_ZONE_UNUSED43		43
335#define HAMMER2_ZONE_UNUSED44		44
336#define HAMMER2_ZONE_UNUSED45		45
337#define HAMMER2_ZONE_UNUSED46		46
338#define HAMMER2_ZONE_UNUSED47		47
339#define HAMMER2_ZONE_UNUSED48		48
340#define HAMMER2_ZONE_UNUSED49		49
341#define HAMMER2_ZONE_UNUSED50		50
342#define HAMMER2_ZONE_UNUSED51		51
343#define HAMMER2_ZONE_UNUSED52		52
344#define HAMMER2_ZONE_UNUSED53		53
345#define HAMMER2_ZONE_UNUSED54		54
346#define HAMMER2_ZONE_UNUSED55		55
347#define HAMMER2_ZONE_UNUSED56		56
348#define HAMMER2_ZONE_UNUSED57		57
349#define HAMMER2_ZONE_UNUSED58		58
350#define HAMMER2_ZONE_UNUSED59		59
351#define HAMMER2_ZONE_UNUSED60		60
352#define HAMMER2_ZONE_UNUSED61		61
353#define HAMMER2_ZONE_UNUSED62		62
354#define HAMMER2_ZONE_UNUSED63		63
355#define HAMMER2_ZONE_END		64	/* non-inclusive */
356
357#define HAMMER2_NFREEMAPS		8	/* FREEMAP_00 - FREEMAP_07 */
358
359						/* relative to FREEMAP_x */
360#define HAMMER2_ZONEFM_LEVEL1		0	/* 1GB leafmap */
361#define HAMMER2_ZONEFM_LEVEL2		1	/* 256GB indmap */
362#define HAMMER2_ZONEFM_LEVEL3		2	/* 64TB indmap */
363#define HAMMER2_ZONEFM_LEVEL4		3	/* 16PB indmap */
364#define HAMMER2_ZONEFM_LEVEL5		4	/* 4EB indmap */
365/* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
366
367/*
368 * Freemap radix.  Assumes a set-count of 4, 128-byte blockrefs,
369 * 32KB indirect block for freemap (LEVELN_PSIZE below).
370 *
371 * Leaf entry represents 4MB of storage broken down into a 512-bit
372 * bitmap, 2-bits per entry.  So course bitmap item represents 16KB.
373 */
374#if HAMMER2_SET_COUNT != 4
375#error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
376#endif
377#define HAMMER2_FREEMAP_LEVEL6_RADIX	64	/* 16EB (end) */
378#define HAMMER2_FREEMAP_LEVEL5_RADIX	62	/* 4EB */
379#define HAMMER2_FREEMAP_LEVEL4_RADIX	54	/* 16PB */
380#define HAMMER2_FREEMAP_LEVEL3_RADIX	46	/* 64TB */
381#define HAMMER2_FREEMAP_LEVEL2_RADIX	38	/* 256GB */
382#define HAMMER2_FREEMAP_LEVEL1_RADIX	30	/* 1GB */
383#define HAMMER2_FREEMAP_LEVEL0_RADIX	22	/* 4MB (128by in l-1 leaf) */
384
385#define HAMMER2_FREEMAP_LEVELN_PSIZE	32768	/* physical bytes */
386
387#define HAMMER2_FREEMAP_LEVEL5_SIZE	((hammer2_off_t)1 <<		\
388					 HAMMER2_FREEMAP_LEVEL5_RADIX)
389#define HAMMER2_FREEMAP_LEVEL4_SIZE	((hammer2_off_t)1 <<		\
390					 HAMMER2_FREEMAP_LEVEL4_RADIX)
391#define HAMMER2_FREEMAP_LEVEL3_SIZE	((hammer2_off_t)1 <<		\
392					 HAMMER2_FREEMAP_LEVEL3_RADIX)
393#define HAMMER2_FREEMAP_LEVEL2_SIZE	((hammer2_off_t)1 <<		\
394					 HAMMER2_FREEMAP_LEVEL2_RADIX)
395#define HAMMER2_FREEMAP_LEVEL1_SIZE	((hammer2_off_t)1 <<		\
396					 HAMMER2_FREEMAP_LEVEL1_RADIX)
397#define HAMMER2_FREEMAP_LEVEL0_SIZE	((hammer2_off_t)1 <<		\
398					 HAMMER2_FREEMAP_LEVEL0_RADIX)
399
400#define HAMMER2_FREEMAP_LEVEL5_MASK	(HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
401#define HAMMER2_FREEMAP_LEVEL4_MASK	(HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
402#define HAMMER2_FREEMAP_LEVEL3_MASK	(HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
403#define HAMMER2_FREEMAP_LEVEL2_MASK	(HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
404#define HAMMER2_FREEMAP_LEVEL1_MASK	(HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
405#define HAMMER2_FREEMAP_LEVEL0_MASK	(HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
406
407#define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
408					 sizeof(hammer2_bmap_data_t))
409
410/*
411 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
412 *     which is on a 1GB demark.  This will eat a little more space but for
413 *     now we retain compatibility and make FMZONEBASE every 1GB
414 */
415#define H2FMZONEBASE(key)	((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
416#define H2FMBASE(key, radix)	((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
417
418/*
419 * 16KB bitmap granularity (x2 bits per entry).
420 */
421#define HAMMER2_FREEMAP_BLOCK_RADIX	14
422#define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
423#define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
424
425/*
426 * bitmap[] structure.  2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
427 *
428 * 8 x 64-bit elements, 2 bits per block.
429 * 32 blocks (radix 5) per element.
430 * representing INDEX_SIZE bytes worth of storage per element.
431 */
432
433typedef uint64_t			hammer2_bitmap_t;
434
435#define HAMMER2_BMAP_ALLONES		((hammer2_bitmap_t)-1)
436#define HAMMER2_BMAP_ELEMENTS		8
437#define HAMMER2_BMAP_BITS_PER_ELEMENT	64
438#define HAMMER2_BMAP_INDEX_RADIX	5	/* 32 blocks per element */
439#define HAMMER2_BMAP_BLOCKS_PER_ELEMENT	(1 << HAMMER2_BMAP_INDEX_RADIX)
440
441#define HAMMER2_BMAP_INDEX_SIZE		(HAMMER2_FREEMAP_BLOCK_SIZE * \
442					 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
443#define HAMMER2_BMAP_INDEX_MASK		(HAMMER2_BMAP_INDEX_SIZE - 1)
444
445#define HAMMER2_BMAP_SIZE		(HAMMER2_BMAP_INDEX_SIZE * \
446					 HAMMER2_BMAP_ELEMENTS)
447#define HAMMER2_BMAP_MASK		(HAMMER2_BMAP_SIZE - 1)
448
449/*
450 * Two linear areas can be reserved after the initial 4MB segment in the base
451 * zone (the one starting at offset 0).  These areas are NOT managed by the
452 * block allocator and do not fall under HAMMER2 crc checking rules based
453 * at the volume header (but can be self-CRCd internally, depending).
454 */
455#define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
456#define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
457#define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
458
459#define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
460#define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
461#define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
462
463/*
464 * Most HAMMER2 types are implemented as unsigned 64-bit integers.
465 * Transaction ids are monotonic.
466 *
467 * We utilize 32-bit iSCSI CRCs.
468 */
469typedef uint64_t hammer2_tid_t;
470typedef uint64_t hammer2_off_t;
471typedef uint64_t hammer2_key_t;
472typedef uint32_t hammer2_crc32_t;
473
474/*
475 * Miscellanious ranges (all are unsigned).
476 */
477#define HAMMER2_TID_MIN		1ULL
478#define HAMMER2_TID_MAX		0xFFFFFFFFFFFFFFFFULL
479#define HAMMER2_KEY_MIN		0ULL
480#define HAMMER2_KEY_MAX		0xFFFFFFFFFFFFFFFFULL
481#define HAMMER2_OFFSET_MIN	0ULL
482#define HAMMER2_OFFSET_MAX	0xFFFFFFFFFFFFFFFFULL
483
484/*
485 * HAMMER2 data offset special cases and masking.
486 *
487 * All HAMMER2 data offsets have to be broken down into a 64K buffer base
488 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
489 *
490 * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
491 * of the data offset field specifies how large the data chunk being pointed
492 * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
493 * needed in the low bits of the data offset field).  However, the practical
494 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
495 * HAMMER2_RADIX_MIN to 10.  The maximum radix is currently 16 (64KB), but
496 * we fully intend to support larger extents in the future.
497 *
498 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
499 *	    case which means no data associated with the blockref, and
500 *	    not the '1 byte' it would otherwise calculate to.
501 */
502#define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
503#define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
504#define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
505#define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
506#define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
507#define HAMMER2_MAX_COPIES	6
508
509/*
510 * HAMMER2 directory support and pre-defined keys
511 */
512#define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
513#define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
514#define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
515#define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
516#define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
517
518#define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
519#define HAMMER2_BOOT_KEY	0xd9b36ce135528000ULL	/* sroot to BOOT PFS */
520
521/************************************************************************
522 *				DMSG SUPPORT				*
523 ************************************************************************
524 * LNK_VOLCONF
525 *
526 * All HAMMER2 directories directly under the super-root on your local
527 * media can be mounted separately, even if they share the same physical
528 * device.
529 *
530 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
531 * cluster via local media.  The local media does not have to participate
532 * in the cluster, other than to provide the hammer2_volconf[] array and
533 * root inode for the mount.
534 *
535 * This is important: The mount device path you specify serves to bootstrap
536 * your entry into the cluster, but your mount will make active connections
537 * to ALL copy elements in the hammer2_volconf[] array which match the
538 * PFSID of the directory in the super-root that you specified.  The local
539 * media path does not have to be mentioned in this array but becomes part
540 * of the cluster based on its type and access rights.  ALL ELEMENTS ARE
541 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
542 *
543 * The actual cluster may be far larger than the elements you list in the
544 * hammer2_volconf[] array.  You list only the elements you wish to
545 * directly connect to and you are able to access the rest of the cluster
546 * indirectly through those connections.
547 *
548 * WARNING!  This structure must be exactly 128 bytes long for its config
549 *	     array to fit in the volume header.
550 */
551struct hammer2_volconf {
552	uint8_t	copyid;		/* 00	 copyid 0-255 (must match slot) */
553	uint8_t inprog;		/* 01	 operation in progress, or 0 */
554	uint8_t chain_to;	/* 02	 operation chaining to, or 0 */
555	uint8_t chain_from;	/* 03	 operation chaining from, or 0 */
556	uint16_t flags;		/* 04-05 flags field */
557	uint8_t error;		/* 06	 last operational error */
558	uint8_t priority;	/* 07	 priority and round-robin flag */
559	uint8_t remote_pfs_type;/* 08	 probed direct remote PFS type */
560	uint8_t reserved08[23];	/* 09-1F */
561	uuid_t	pfs_clid;	/* 20-2F copy target must match this uuid */
562	uint8_t label[16];	/* 30-3F import/export label */
563	uint8_t path[64];	/* 40-7F target specification string or key */
564} __packed;
565
566typedef struct hammer2_volconf hammer2_volconf_t;
567
568#define DMSG_VOLF_ENABLED	0x0001
569#define DMSG_VOLF_INPROG	0x0002
570#define DMSG_VOLF_CONN_RR	0x80	/* round-robin at same priority */
571#define DMSG_VOLF_CONN_EF	0x40	/* media errors flagged */
572#define DMSG_VOLF_CONN_PRI	0x0F	/* select priority 0-15 (15=best) */
573
574struct dmsg_lnk_hammer2_volconf {
575	dmsg_hdr_t		head;
576	hammer2_volconf_t	copy;	/* copy spec */
577	int32_t			index;
578	int32_t			unused01;
579	uuid_t			mediaid;
580	int64_t			reserved02[32];
581} __packed;
582
583typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
584
585#define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
586					  dmsg_lnk_hammer2_volconf)
587
588#define H2_LNK_VOLCONF(msg)	((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
589
590/*
591 * HAMMER2 directory entry header (embedded in blockref)  exactly 16 bytes
592 */
593struct hammer2_dirent_head {
594	hammer2_tid_t		inum;		/* inode number */
595	uint16_t		namlen;		/* name length */
596	uint8_t			type;		/* OBJTYPE_*	*/
597	uint8_t			unused0B;
598	uint8_t			unused0C[4];
599} __packed;
600
601typedef struct hammer2_dirent_head hammer2_dirent_head_t;
602
603/*
604 * The media block reference structure.  This forms the core of the HAMMER2
605 * media topology recursion.  This 128-byte data structure is embedded in the
606 * volume header, in inodes (which are also directory entries), and in
607 * indirect blocks.
608 *
609 * A blockref references a single media item, which typically can be a
610 * directory entry (aka inode), indirect block, or data block.
611 *
612 * The primary feature a blockref represents is the ability to validate
613 * the entire tree underneath it via its check code.  Any modification to
614 * anything propagates up the blockref tree all the way to the root, replacing
615 * the related blocks and compounding the generated check code.
616 *
617 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
618 * complex as a 512 bit cryptographic hash.  I originally used a 64-byte
619 * blockref but later expanded it to 128 bytes to be able to support the
620 * larger check code as well as to embed statistics for quota operation.
621 *
622 * Simple check codes are not sufficient for unverified dedup.  Even with
623 * a maximally-sized check code unverified dedup should only be used in
624 * in subdirectory trees where you do not need 100% data integrity.
625 *
626 * Unverified dedup is deduping based on meta-data only without verifying
627 * that the data blocks are actually identical.  Verified dedup guarantees
628 * integrity but is a far more I/O-expensive operation.
629 *
630 * --
631 *
632 * mirror_tid - per cluster node modified (propagated upward by flush)
633 * modify_tid - clc record modified (not propagated).
634 * update_tid - clc record updated (propagated upward on verification)
635 *
636 * CLC - Stands for 'Cluster Level Change', identifiers which are identical
637 *	 within the topology across all cluster nodes (when fully
638 *	 synchronized).
639 *
640 * NOTE: The range of keys represented by the blockref is (key) to
641 *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
642 *	 blocks bottom-up, inserting a new root when radix expansion
643 *	 is required.
644 *
645 * leaf_count  - Helps manage leaf collapse calculations when indirect
646 *		 blocks become mostly empty.  This value caps out at
647 *		 HAMMER2_BLOCKREF_LEAF_MAX (65535).
648 *
649 *		 Used by the chain code to determine when to pull leafs up
650 *		 from nearly empty indirect blocks.  For the purposes of this
651 *		 calculation, BREF_TYPE_INODE is considered a leaf, along
652 *		 with DIRENT and DATA.
653 *
654 *				    RESERVED FIELDS
655 *
656 * A number of blockref fields are reserved and should generally be set to
657 * 0 for future compatibility.
658 *
659 *				FUTURE BLOCKREF EXPANSION
660 *
661 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
662 */
663struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
664	uint8_t		type;		/* type of underlying item */
665	uint8_t		methods;	/* check method & compression method */
666	uint8_t		copyid;		/* specify which copy this is */
667	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
668	uint8_t		vradix;		/* virtual data/meta-data size */
669	uint8_t		flags;		/* blockref flags */
670	uint16_t	leaf_count;	/* leaf aggregation count */
671	hammer2_key_t	key;		/* key specification */
672	hammer2_tid_t	mirror_tid;	/* media flush topology & freemap */
673	hammer2_tid_t	modify_tid;	/* clc modify (not propagated) */
674	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
675	hammer2_tid_t	update_tid;	/* clc modify (propagated upward) */
676	union {
677		char	buf[16];
678
679		/*
680		 * Directory entry header (BREF_TYPE_DIRENT)
681		 *
682		 * NOTE: check.buf contains filename if <= 64 bytes.  Longer
683		 *	 filenames are stored in a data reference of size
684		 *	 HAMMER2_ALLOC_MIN (at least 256, typically 1024).
685		 *
686		 * NOTE: inode structure may contain a copy of a recently
687		 *	 associated filename, for recovery purposes.
688		 *
689		 * NOTE: Superroot entries are INODEs, not DIRENTs.  Code
690		 *	 allows both cases.
691		 */
692		hammer2_dirent_head_t dirent;
693
694		/*
695		 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
696		 */
697		struct {
698			hammer2_key_t	data_count;
699			hammer2_key_t	inode_count;
700		} stats;
701	} embed;
702	union {				/* check info */
703		char	buf[64];
704		struct {
705			uint32_t value;
706			uint32_t reserved[15];
707		} iscsi32;
708		struct {
709			uint64_t value;
710			uint64_t reserved[7];
711		} xxhash64;
712		struct {
713			char data[24];
714			char reserved[40];
715		} sha192;
716		struct {
717			char data[32];
718			char reserved[32];
719		} sha256;
720		struct {
721			char data[64];
722		} sha512;
723
724		/*
725		 * Freemap hints are embedded in addition to the icrc32.
726		 *
727		 * bigmask - Radixes available for allocation (0-31).
728		 *	     Heuristical (may be permissive but not
729		 *	     restrictive).  Typically only radix values
730		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
731		 *
732		 * avail   - Total available space remaining, in bytes
733		 */
734		struct {
735			uint32_t icrc32;
736			uint32_t bigmask;	/* available radixes */
737			uint64_t avail;		/* total available bytes */
738			char reserved[48];
739		} freemap;
740	} check;
741} __packed;
742
743typedef struct hammer2_blockref hammer2_blockref_t;
744
745#define HAMMER2_BLOCKREF_BYTES		128	/* blockref struct in bytes */
746#define HAMMER2_BLOCKREF_RADIX		7
747
748#define HAMMER2_BLOCKREF_LEAF_MAX	65535
749
750/*
751 * On-media and off-media blockref types.
752 *
753 * types >= 128 are pseudo values that should never be present on-media.
754 */
755#define HAMMER2_BREF_TYPE_EMPTY		0
756#define HAMMER2_BREF_TYPE_INODE		1
757#define HAMMER2_BREF_TYPE_INDIRECT	2
758#define HAMMER2_BREF_TYPE_DATA		3
759#define HAMMER2_BREF_TYPE_DIRENT	4
760#define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
761#define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
762#define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
763#define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
764
765#define HAMMER2_BREF_FLAG_PFSROOT	0x01	/* see also related opflag */
766#define HAMMER2_BREF_FLAG_ZERO		0x02
767
768/*
769 * Encode/decode check mode and compression mode for
770 * bref.methods.  The compression level is not encoded in
771 * bref.methods.
772 */
773#define HAMMER2_ENC_CHECK(n)		(((n) & 15) << 4)
774#define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
775#define HAMMER2_ENC_COMP(n)		((n) & 15)
776#define HAMMER2_DEC_COMP(n)		((n) & 15)
777
778#define HAMMER2_CHECK_NONE		0
779#define HAMMER2_CHECK_DISABLED		1
780#define HAMMER2_CHECK_ISCSI32		2
781#define HAMMER2_CHECK_XXHASH64		3
782#define HAMMER2_CHECK_SHA192		4
783#define HAMMER2_CHECK_FREEMAP		5
784
785#define HAMMER2_CHECK_DEFAULT		HAMMER2_CHECK_XXHASH64
786
787/* user-specifiable check modes only */
788#define HAMMER2_CHECK_STRINGS		{ "none", "disabled", "crc32", \
789					  "xxhash64", "sha192" }
790#define HAMMER2_CHECK_STRINGS_COUNT	5
791
792/*
793 * Encode/decode check or compression algorithm request in
794 * ipdata->meta.check_algo and ipdata->meta.comp_algo.
795 */
796#define HAMMER2_ENC_ALGO(n)		(n)
797#define HAMMER2_DEC_ALGO(n)		((n) & 15)
798#define HAMMER2_ENC_LEVEL(n)		((n) << 4)
799#define HAMMER2_DEC_LEVEL(n)		(((n) >> 4) & 15)
800
801#define HAMMER2_COMP_NONE		0
802#define HAMMER2_COMP_AUTOZERO		1
803#define HAMMER2_COMP_LZ4		2
804#define HAMMER2_COMP_ZLIB		3
805
806#define HAMMER2_COMP_NEWFS_DEFAULT	HAMMER2_COMP_LZ4
807#define HAMMER2_COMP_STRINGS		{ "none", "autozero", "lz4", "zlib" }
808#define HAMMER2_COMP_STRINGS_COUNT	4
809
810/*
811 * Passed to hammer2_chain_create(), causes methods to be inherited from
812 * parent.
813 */
814#define HAMMER2_METH_DEFAULT		-1
815
816/*
817 * HAMMER2 block references are collected into sets of 4 blockrefs.  These
818 * sets are fully associative, meaning the elements making up a set are
819 * not sorted in any way and may contain duplicate entries, holes, or
820 * entries which shortcut multiple levels of indirection.  Sets are used
821 * in various ways:
822 *
823 * (1) When redundancy is desired a set may contain several duplicate
824 *     entries pointing to different copies of the same data.  Up to 4 copies
825 *     are supported.
826 *
827 * (2) The blockrefs in a set can shortcut multiple levels of indirections
828 *     within the bounds imposed by the parent of set.
829 *
830 * When a set fills up another level of indirection is inserted, moving
831 * some or all of the set's contents into indirect blocks placed under the
832 * set.  This is a top-down approach in that indirect blocks are not created
833 * until the set actually becomes full (that is, the entries in the set can
834 * shortcut the indirect blocks when the set is not full).  Depending on how
835 * things are filled multiple indirect blocks will eventually be created.
836 *
837 * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
838 * are also treated as fully set-associative.
839 */
840struct hammer2_blockset {
841	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
842};
843
844typedef struct hammer2_blockset hammer2_blockset_t;
845
846/*
847 * Catch programmer snafus
848 */
849#if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
850#error "hammer2 direct radix is incorrect"
851#endif
852#if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
853#error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
854#endif
855#if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
856#error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
857#endif
858
859/*
860 * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
861 *
862 * Each 128-byte entry contains the bitmap and meta-data required to manage
863 * a LEVEL0 (4MB) block of storage.  The storage is managed in 256 x 16KB
864 * chunks.
865 *
866 * A smaller allocation granularity is supported via a linear iterator and/or
867 * must otherwise be tracked in ram.
868 *
869 * (data structure must be 128 bytes exactly)
870 *
871 * linear  - A BYTE linear allocation offset used for sub-16KB allocations
872 *	     only.  May contain values between 0 and 4MB.  Must be ignored
873 *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
874 *	     used to sub-allocate within the 16KB block (which is already
875 *	     marked as allocated in the bitmap).
876 *
877 *	     Sub-allocations need only be 1KB-aligned and do not have to be
878 *	     size-aligned, and 16KB or larger allocations do not update this
879 *	     field, resulting in pretty good packing.
880 *
881 *	     Please note that file data granularity may be limited by
882 *	     other issues such as buffer cache direct-mapping and the
883 *	     desire to support sector sizes up to 16KB (so H2 only issues
884 *	     I/O's in multiples of 16KB anyway).
885 *
886 * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
887 *	     free.  Used to cluster device buffers so all elements must have
888 *	     the same device block size, but may mix logical sizes.
889 *
890 *	     Typically integrated with the blockref type in the upper 8 bits
891 *	     to localize inodes and indrect blocks, improving bulk free scans
892 *	     and directory scans.
893 *
894 * bitmap  - Two bits per 16KB allocation block arranged in arrays of
895 *	     64-bit elements, 256x2 bits representing ~4MB worth of media
896 *	     storage.  Bit patterns are as follows:
897 *
898 *	     00	Unallocated
899 *	     01 (reserved)
900 *	     10 Possibly free
901 *           11 Allocated
902 */
903struct hammer2_bmap_data {
904	int32_t linear;		/* 00 linear sub-granular allocation offset */
905	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
906	uint8_t reserved06;	/* 06 */
907	uint8_t reserved07;	/* 07 */
908	uint32_t reserved08;	/* 08 */
909	uint32_t reserved0C;	/* 0C */
910	uint32_t reserved10;	/* 10 */
911	uint32_t reserved14;	/* 14 */
912	uint32_t reserved18;	/* 18 */
913	uint32_t avail;		/* 1C */
914	uint32_t reserved20[8];	/* 20-3F 256 bits manages 128K/1KB/2-bits */
915				/* 40-7F 512 bits manages 4MB of storage */
916	hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
917} __packed;
918
919typedef struct hammer2_bmap_data hammer2_bmap_data_t;
920
921/*
922 * XXX "Inodes ARE directory entries" is no longer the case.  Hardlinks are
923 * dirents which refer to the same inode#, which is how filesystems usually
924 * implement hardlink.  The following comments need to be updated.
925 *
926 * In HAMMER2 inodes ARE directory entries, with a special exception for
927 * hardlinks.  The inode number is stored in the inode rather than being
928 * based on the location of the inode (since the location moves every time
929 * the inode or anything underneath the inode is modified).
930 *
931 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
932 * for the filename, and 512 bytes worth of direct file data OR an embedded
933 * blockset.  The in-memory hammer2_inode structure contains only the mostly-
934 * node-independent meta-data portion (some flags are node-specific and will
935 * not be synchronized).  The rest of the inode is node-specific and chain I/O
936 * is required to obtain it.
937 *
938 * Directories represent one inode per blockref.  Inodes are not laid out
939 * as a file but instead are represented by the related blockrefs.  The
940 * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
941 * that blocksets are fully associative, so a certain degree efficiency is
942 * achieved just from that.
943 *
944 * Up to 512 bytes of direct data can be embedded in an inode, and since
945 * inodes are essentially directory entries this also means that small data
946 * files end up simply being laid out linearly in the directory, resulting
947 * in fewer seeks and highly optimal access.
948 *
949 * The compression mode can be changed at any time in the inode and is
950 * recorded on a blockref-by-blockref basis.
951 *
952 * Hardlinks are supported via the inode map.  Essentially the way a hardlink
953 * works is that all individual directory entries representing the same file
954 * are special cased and specify the same inode number.  The actual file
955 * is placed in the nearest parent directory that is parent to all instances
956 * of the hardlink.  If all hardlinks to a file are in the same directory
957 * the actual file will also be placed in that directory.  This file uses
958 * the inode number as the directory entry key and is invisible to normal
959 * directory scans.  Real directory entry keys are differentiated from the
960 * inode number key via bit 63.  Access to the hardlink silently looks up
961 * the real file and forwards all operations to that file.  Removal of the
962 * last hardlink also removes the real file.
963 */
964#define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
965#define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
966#define HAMMER2_INODE_VERSION_ONE	1
967
968#define HAMMER2_INODE_START		1024	/* dynamically allocated */
969
970struct hammer2_inode_meta {
971	uint16_t	version;	/* 0000 inode data version */
972	uint8_t		reserved02;	/* 0002 */
973	uint8_t		pfs_subtype;	/* 0003 pfs sub-type */
974
975	/*
976	 * core inode attributes, inode type, misc flags
977	 */
978	uint32_t	uflags;		/* 0004 chflags */
979	uint32_t	rmajor;		/* 0008 available for device nodes */
980	uint32_t	rminor;		/* 000C available for device nodes */
981	uint64_t	ctime;		/* 0010 inode change time */
982	uint64_t	mtime;		/* 0018 modified time */
983	uint64_t	atime;		/* 0020 access time (unsupported) */
984	uint64_t	btime;		/* 0028 birth time */
985	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
986	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
987
988	uint8_t		type;		/* 0050 object type */
989	uint8_t		op_flags;	/* 0051 operational flags */
990	uint16_t	cap_flags;	/* 0052 capability flags */
991	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
992
993	/*
994	 * inode size, identification, localized recursive configuration
995	 * for compression and backup copies.
996	 *
997	 * NOTE: Nominal parent inode number (iparent) is only applicable
998	 *	 for directories but can also help for files during
999	 *	 catastrophic recovery.
1000	 */
1001	hammer2_tid_t	inum;		/* 0058 inode number */
1002	hammer2_off_t	size;		/* 0060 size of file */
1003	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
1004	hammer2_tid_t	iparent;	/* 0070 nominal parent inum */
1005	hammer2_key_t	name_key;	/* 0078 full filename key */
1006	uint16_t	name_len;	/* 0080 filename length */
1007	uint8_t		ncopies;	/* 0082 ncopies to local media */
1008	uint8_t		comp_algo;	/* 0083 compression request & algo */
1009
1010	/*
1011	 * These fields are currently only applicable to PFSROOTs.
1012	 *
1013	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
1014	 *	 identify an instance of a PFS in the cluster because
1015	 *	 a mount may contain more than one copy of the PFS as
1016	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
1017	 *	 registration in the cluster.
1018	 */
1019	uint8_t		target_type;	/* 0084 hardlink target type */
1020	uint8_t		check_algo;	/* 0085 check code request & algo */
1021	uint8_t		pfs_nmasters;	/* 0086 (if PFSROOT) if multi-master */
1022	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
1023	uint64_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
1024	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
1025	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
1026
1027	/*
1028	 * Quotas and aggregate sub-tree inode and data counters.  Note that
1029	 * quotas are not replicated downward, they are explicitly set by
1030	 * the sysop and in-memory structures keep track of inheritance.
1031	 */
1032	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
1033	hammer2_key_t	unusedB8;	/* 00B8 subtree byte count */
1034	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
1035	hammer2_key_t	unusedC8;	/* 00C8 subtree inode count */
1036
1037	/*
1038	 * The last snapshot tid is tested against modify_tid to determine
1039	 * when a copy must be made of a data block whos check mode has been
1040	 * disabled (a disabled check mode allows data blocks to be updated
1041	 * in place instead of copy-on-write).
1042	 */
1043	hammer2_tid_t	pfs_lsnap_tid;	/* 00D0 last snapshot tid */
1044	hammer2_tid_t	reservedD8;	/* 00D8 (avail) */
1045
1046	/*
1047	 * Tracks (possibly degenerate) free areas covering all sub-tree
1048	 * allocations under inode, not counting the inode itself.
1049	 * 0/0 indicates empty entry.  fully set-associative.
1050	 *
1051	 * (not yet implemented)
1052	 */
1053	uint64_t	decrypt_check;	/* 00E0 decryption validator */
1054	hammer2_off_t	reservedE0[3];	/* 00E8/F0/F8 */
1055} __packed;
1056
1057typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1058
1059struct hammer2_inode_data {
1060	hammer2_inode_meta_t	meta;	/* 0000-00FF */
1061	unsigned char	filename[HAMMER2_INODE_MAXNAME];
1062					/* 0100-01FF (256 char, unterminated) */
1063	union {				/* 0200-03FF (64x8 = 512 bytes) */
1064		hammer2_blockset_t blockset;
1065		char data[HAMMER2_EMBEDDED_BYTES];
1066	} u;
1067} __packed;
1068
1069typedef struct hammer2_inode_data hammer2_inode_data_t;
1070
1071#define HAMMER2_OPFLAG_DIRECTDATA	0x01
1072#define HAMMER2_OPFLAG_PFSROOT		0x02	/* (see also bref flag) */
1073#define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
1074
1075#define HAMMER2_OBJTYPE_UNKNOWN		0
1076#define HAMMER2_OBJTYPE_DIRECTORY	1
1077#define HAMMER2_OBJTYPE_REGFILE		2
1078#define HAMMER2_OBJTYPE_FIFO		4
1079#define HAMMER2_OBJTYPE_CDEV		5
1080#define HAMMER2_OBJTYPE_BDEV		6
1081#define HAMMER2_OBJTYPE_SOFTLINK	7
1082#define HAMMER2_OBJTYPE_UNUSED08	8
1083#define HAMMER2_OBJTYPE_SOCKET		9
1084#define HAMMER2_OBJTYPE_WHITEOUT	10
1085
1086#define HAMMER2_COPYID_NONE		0
1087#define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
1088
1089#define HAMMER2_COPYID_COUNT		256
1090
1091/*
1092 * PFS types identify the role of a PFS within a cluster.  The PFS types
1093 * is stored on media and in LNK_SPAN messages and used in other places.
1094 *
1095 * The low 4 bits specify the current active type while the high 4 bits
1096 * specify the transition target if the PFS is being upgraded or downgraded,
1097 * If the upper 4 bits are not zero it may effect how a PFS is used during
1098 * the transition.
1099 *
1100 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1101 * at least all MASTERs have updated their pfs_nmasters field.  And upgrading
1102 * a SLAVE to a MASTER cannot complete until the new prospective master has
1103 * been fully synchronized (though theoretically full synchronization is
1104 * not required if a (new) quorum of other masters are fully synchronized).
1105 *
1106 * It generally does not matter which PFS element you actually mount, you
1107 * are mounting 'the cluster'.  So, for example, a network mount will mount
1108 * a DUMMY PFS type on a memory filesystem.  However, there are two exceptions.
1109 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1110 * must be directly mounted.
1111 */
1112#define HAMMER2_PFSTYPE_NONE		0x00
1113#define HAMMER2_PFSTYPE_CACHE		0x01
1114#define HAMMER2_PFSTYPE_UNUSED02	0x02
1115#define HAMMER2_PFSTYPE_SLAVE		0x03
1116#define HAMMER2_PFSTYPE_SOFT_SLAVE	0x04
1117#define HAMMER2_PFSTYPE_SOFT_MASTER	0x05
1118#define HAMMER2_PFSTYPE_MASTER		0x06
1119#define HAMMER2_PFSTYPE_UNUSED07	0x07
1120#define HAMMER2_PFSTYPE_SUPROOT		0x08
1121#define HAMMER2_PFSTYPE_DUMMY		0x09
1122#define HAMMER2_PFSTYPE_MAX		16
1123
1124#define HAMMER2_PFSTRAN_NONE		0x00	/* no transition in progress */
1125#define HAMMER2_PFSTRAN_CACHE		0x10
1126#define HAMMER2_PFSTRAN_UNMUSED20	0x20
1127#define HAMMER2_PFSTRAN_SLAVE		0x30
1128#define HAMMER2_PFSTRAN_SOFT_SLAVE	0x40
1129#define HAMMER2_PFSTRAN_SOFT_MASTER	0x50
1130#define HAMMER2_PFSTRAN_MASTER		0x60
1131#define HAMMER2_PFSTRAN_UNUSED70	0x70
1132#define HAMMER2_PFSTRAN_SUPROOT		0x80
1133#define HAMMER2_PFSTRAN_DUMMY		0x90
1134
1135#define HAMMER2_PFS_DEC(n)		((n) & 0x0F)
1136#define HAMMER2_PFS_DEC_TRANSITION(n)	(((n) >> 4) & 0x0F)
1137#define HAMMER2_PFS_ENC_TRANSITION(n)	(((n) & 0x0F) << 4)
1138
1139#define HAMMER2_PFSSUBTYPE_NONE		0
1140#define HAMMER2_PFSSUBTYPE_SNAPSHOT	1	/* manual/managed snapshot */
1141#define HAMMER2_PFSSUBTYPE_AUTOSNAP	2	/* automatic snapshot */
1142
1143/*
1144 * PFS mode of operation is a bitmask.  This is typically not stored
1145 * on-media, but defined here because the field may be used in dmsgs.
1146 */
1147#define HAMMER2_PFSMODE_QUORUM		0x01
1148#define HAMMER2_PFSMODE_RW		0x02
1149
1150/*
1151 *				Allocation Table
1152 *
1153 */
1154
1155
1156/*
1157 * Flags (8 bits) - blockref, for freemap only
1158 *
1159 * Note that the minimum chunk size is 1KB so we could theoretically have
1160 * 10 bits here, but we might have some future extension that allows a
1161 * chunk size down to 256 bytes and if so we will need bits 8 and 9.
1162 */
1163#define HAMMER2_AVF_SELMASK		0x03	/* select group */
1164#define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
1165#define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
1166#define HAMMER2_AVF_RESERVED10		0x10
1167#define HAMMER2_AVF_RESERVED20		0x20
1168#define HAMMER2_AVF_RESERVED40		0x40
1169#define HAMMER2_AVF_RESERVED80		0x80
1170#define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
1171#define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
1172
1173#define HAMMER2_AV_SELECT_A		0x00
1174#define HAMMER2_AV_SELECT_B		0x01
1175#define HAMMER2_AV_SELECT_C		0x02
1176#define HAMMER2_AV_SELECT_D		0x03
1177
1178/*
1179 * The volume header eats a 64K block.  There is currently an issue where
1180 * we want to try to fit all nominal filesystem updates in a 512-byte section
1181 * but it may be a lost cause due to the need for a blockset.
1182 *
1183 * All information is stored in host byte order.  The volume header's magic
1184 * number may be checked to determine the byte order.  If you wish to mount
1185 * between machines w/ different endian modes you'll need filesystem code
1186 * which acts on the media data consistently (either all one way or all the
1187 * other).  Our code currently does not do that.
1188 *
1189 * A read-write mount may have to recover missing allocations by doing an
1190 * incremental mirror scan looking for modifications made after alloc_tid.
1191 * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
1192 * operations are usually very, very fast.
1193 *
1194 * Read-only mounts do not need to do any recovery, access to the filesystem
1195 * topology is always consistent after a crash (is always consistent, period).
1196 * However, there may be shortcutted blockref updates present from deep in
1197 * the tree which are stored in the volumeh eader and must be tracked on
1198 * the fly.
1199 *
1200 * NOTE: The copyinfo[] array contains the configuration for both the
1201 *	 cluster connections and any local media copies.  The volume
1202 *	 header will be replicated for each local media copy.
1203 *
1204 *	 The mount command may specify multiple medias or just one and
1205 *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
1206 *	 array on mount.
1207 *
1208 * NOTE: root_blockref points to the super-root directory, not the root
1209 *	 directory.  The root directory will be a subdirectory under the
1210 *	 super-root.
1211 *
1212 *	 The super-root directory contains all root directories and all
1213 *	 snapshots (readonly or writable).  It is possible to do a
1214 *	 null-mount of the super-root using special path constructions
1215 *	 relative to your mounted root.
1216 *
1217 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
1218 *	 a PFS, including mirroring and storage quota operations, and this is
1219 *	 preferred over creating discrete PFSs in the super-root.  Instead
1220 *	 the super-root is most typically used to create writable snapshots,
1221 *	 alternative roots, and so forth.  The super-root is also used by
1222 *	 the automatic snapshotting mechanism.
1223 */
1224#define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
1225#define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
1226
1227struct hammer2_volume_data {
1228	/*
1229	 * sector #0 - 512 bytes
1230	 */
1231	uint64_t	magic;			/* 0000 Signature */
1232	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
1233	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
1234	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
1235	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
1236	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
1237
1238	uint32_t	version;		/* 0030 */
1239	uint32_t	flags;			/* 0034 */
1240	uint8_t		copyid;			/* 0038 copyid of phys vol */
1241	uint8_t		freemap_version;	/* 0039 freemap algorithm */
1242	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
1243	uint8_t		reserved003B;		/* 003B */
1244	uint32_t	reserved003C;		/* 003C */
1245
1246	uuid_t		fsid;			/* 0040 */
1247	uuid_t		fstype;			/* 0050 */
1248
1249	/*
1250	 * allocator_size is precalculated at newfs time and does not include
1251	 * reserved blocks, boot, or redo areas.
1252	 *
1253	 * Initial non-reserved-area allocations do not use the freemap
1254	 * but instead adjust alloc_iterator.  Dynamic allocations take
1255	 * over starting at (allocator_beg).  This makes newfs_hammer2's
1256	 * job a lot easier and can also serve as a testing jig.
1257	 */
1258	hammer2_off_t	allocator_size;		/* 0060 Total data space */
1259	hammer2_off_t   allocator_free;		/* 0068	Free space */
1260	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
1261
1262	/*
1263	 * mirror_tid reflects the highest committed change for this
1264	 * block device regardless of whether it is to the super-root
1265	 * or to a PFS or whatever.
1266	 *
1267	 * freemap_tid reflects the highest committed freemap change for
1268	 * this block device.
1269	 */
1270	hammer2_tid_t	mirror_tid;		/* 0078 committed tid (vol) */
1271	hammer2_tid_t	reserved0080;		/* 0080 */
1272	hammer2_tid_t	reserved0088;		/* 0088 */
1273	hammer2_tid_t	freemap_tid;		/* 0090 committed tid (fmap) */
1274	hammer2_tid_t	bulkfree_tid;		/* 0098 bulkfree incremental */
1275	hammer2_tid_t	reserved00A0[5];	/* 00A0-00C7 */
1276
1277	/*
1278	 * Copyids are allocated dynamically from the copyexists bitmap.
1279	 * An id from the active copies set (up to 8, see copyinfo later on)
1280	 * may still exist after the copy set has been removed from the
1281	 * volume header and its bit will remain active in the bitmap and
1282	 * cannot be reused until it is 100% removed from the hierarchy.
1283	 */
1284	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
1285	char		reserved0140[248];	/* 00E8-01DF */
1286
1287	/*
1288	 * 32 bit CRC array at the end of the first 512 byte sector.
1289	 *
1290	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
1291	 *		   the other icrc's except this one).
1292	 *
1293	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1294	 *		   the blockset for the root.
1295	 *
1296	 * icrc_sects[5] - Sector 2
1297	 * icrc_sects[4] - Sector 3
1298	 * icrc_sects[3] - Sector 4 (the freemap blockset)
1299	 */
1300	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
1301
1302	/*
1303	 * sector #1 - 512 bytes
1304	 *
1305	 * The entire sector is used by a blockset.
1306	 */
1307	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
1308
1309	/*
1310	 * sector #2-7
1311	 */
1312	char	sector2[512];			/* 0400-05FF reserved */
1313	char	sector3[512];			/* 0600-07FF reserved */
1314	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
1315	char	sector5[512];			/* 0A00-0BFF reserved */
1316	char	sector6[512];			/* 0C00-0DFF reserved */
1317	char	sector7[512];			/* 0E00-0FFF reserved */
1318
1319	/*
1320	 * sector #8-71	- 32768 bytes
1321	 *
1322	 * Contains the configuration for up to 256 copyinfo targets.  These
1323	 * specify local and remote copies operating as masters or slaves.
1324	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1325	 * indicates the local media).
1326	 *
1327	 * Each inode contains a set of up to 8 copyids, either inherited
1328	 * from its parent or explicitly specified in the inode, which
1329	 * indexes into this array.
1330	 */
1331						/* 1000-8FFF copyinfo config */
1332	hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1333
1334	/*
1335	 * Remaining sections are reserved for future use.
1336	 */
1337	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
1338
1339	/*
1340	 * icrc on entire volume header
1341	 */
1342	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
1343} __packed;
1344
1345typedef struct hammer2_volume_data hammer2_volume_data_t;
1346
1347/*
1348 * Various parts of the volume header have their own iCRCs.
1349 *
1350 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1351 * and not included the icrc calculation.
1352 *
1353 * The second 512 bytes also has its own iCRC but it is stored in the first
1354 * 512 bytes so it covers the entire second 512 bytes.
1355 *
1356 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1357 * which is where the iCRC for the whole volume is stored.  This is currently
1358 * a catch-all for anything not individually iCRCd.
1359 */
1360#define HAMMER2_VOL_ICRC_SECT0		7
1361#define HAMMER2_VOL_ICRC_SECT1		6
1362
1363#define HAMMER2_VOLUME_BYTES		65536
1364
1365#define HAMMER2_VOLUME_ICRC0_OFF	0
1366#define HAMMER2_VOLUME_ICRC1_OFF	512
1367#define HAMMER2_VOLUME_ICRCVH_OFF	0
1368
1369#define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
1370#define HAMMER2_VOLUME_ICRC1_SIZE	(512)
1371#define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
1372
1373#define HAMMER2_VOL_VERSION_MIN		1
1374#define HAMMER2_VOL_VERSION_DEFAULT	1
1375#define HAMMER2_VOL_VERSION_WIP 	2
1376
1377#define HAMMER2_NUM_VOLHDRS		4
1378
1379union hammer2_media_data {
1380	hammer2_volume_data_t	voldata;
1381        hammer2_inode_data_t    ipdata;
1382	hammer2_blockset_t	blkset;
1383	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
1384	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
1385	char			buf[HAMMER2_PBUFSIZE];
1386} __packed;
1387
1388typedef union hammer2_media_data hammer2_media_data_t;
1389
1390#endif /* !_HAMMER2_DISK_H_ */
1391