1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989 Stephen Deering
5 * Copyright (c) 1992, 1993
6 *      The Regents of the University of California.  All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Stephen Deering of Stanford University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
36 */
37
38/*
39 * IP multicast forwarding procedures
40 *
41 * Written by David Waitzman, BBN Labs, August 1988.
42 * Modified by Steve Deering, Stanford, February 1989.
43 * Modified by Mark J. Steiglitz, Stanford, May, 1991
44 * Modified by Van Jacobson, LBL, January 1993
45 * Modified by Ajit Thyagarajan, PARC, August 1993
46 * Modified by Bill Fenner, PARC, April 1995
47 * Modified by Ahmed Helmy, SGI, June 1996
48 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
49 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
50 * Modified by Hitoshi Asaeda, WIDE, August 2000
51 * Modified by Pavlin Radoslavov, ICSI, October 2002
52 *
53 * MROUTING Revision: 3.5
54 * and PIM-SMv2 and PIM-DM support, advanced API support,
55 * bandwidth metering and signaling
56 */
57
58/*
59 * TODO: Prefix functions with ipmf_.
60 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
61 * domain attachment (if_afdata) so we can track consumers of that service.
62 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
63 * move it to socket options.
64 * TODO: Cleanup LSRR removal further.
65 * TODO: Push RSVP stubs into raw_ip.c.
66 * TODO: Use bitstring.h for vif set.
67 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
68 * TODO: Sync ip6_mroute.c with this file.
69 */
70
71#include <sys/cdefs.h>
72__FBSDID("$FreeBSD$");
73
74#include "opt_inet.h"
75#include "opt_mrouting.h"
76
77#define _PIM_VT 1
78
79#include <sys/param.h>
80#include <sys/kernel.h>
81#include <sys/stddef.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/ktr.h>
85#include <sys/malloc.h>
86#include <sys/mbuf.h>
87#include <sys/module.h>
88#include <sys/priv.h>
89#include <sys/protosw.h>
90#include <sys/signalvar.h>
91#include <sys/socket.h>
92#include <sys/socketvar.h>
93#include <sys/sockio.h>
94#include <sys/sx.h>
95#include <sys/sysctl.h>
96#include <sys/syslog.h>
97#include <sys/systm.h>
98#include <sys/time.h>
99#include <sys/counter.h>
100
101#include <net/if.h>
102#include <net/if_var.h>
103#include <net/netisr.h>
104#include <net/route.h>
105#include <net/vnet.h>
106
107#include <netinet/in.h>
108#include <netinet/igmp.h>
109#include <netinet/in_systm.h>
110#include <netinet/in_var.h>
111#include <netinet/ip.h>
112#include <netinet/ip_encap.h>
113#include <netinet/ip_mroute.h>
114#include <netinet/ip_var.h>
115#include <netinet/ip_options.h>
116#include <netinet/pim.h>
117#include <netinet/pim_var.h>
118#include <netinet/udp.h>
119
120#include <machine/in_cksum.h>
121
122#ifndef KTR_IPMF
123#define KTR_IPMF KTR_INET
124#endif
125
126#define		VIFI_INVALID	((vifi_t) -1)
127
128VNET_DEFINE_STATIC(uint32_t, last_tv_sec); /* last time we processed this */
129#define	V_last_tv_sec	VNET(last_tv_sec)
130
131static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
132
133/*
134 * Locking.  We use two locks: one for the virtual interface table and
135 * one for the forwarding table.  These locks may be nested in which case
136 * the VIF lock must always be taken first.  Note that each lock is used
137 * to cover not only the specific data structure but also related data
138 * structures.
139 */
140
141static struct mtx mrouter_mtx;
142#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
143#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
144#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
145#define	MROUTER_LOCK_INIT()						\
146	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
147#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
148
149static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
150static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
151
152VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
153VNET_PCPUSTAT_SYSINIT(mrtstat);
154VNET_PCPUSTAT_SYSUNINIT(mrtstat);
155SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
156    mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
157    "netinet/ip_mroute.h)");
158
159VNET_DEFINE_STATIC(u_long, mfchash);
160#define	V_mfchash		VNET(mfchash)
161#define	MFCHASH(a, g)							\
162	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
163	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
164#define	MFCHASHSIZE	256
165
166static u_long mfchashsize;			/* Hash size */
167VNET_DEFINE_STATIC(u_char *, nexpire);		/* 0..mfchashsize-1 */
168#define	V_nexpire		VNET(nexpire)
169VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
170#define	V_mfchashtbl		VNET(mfchashtbl)
171
172static struct mtx mfc_mtx;
173#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
174#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
175#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
176#define	MFC_LOCK_INIT()							\
177	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
178#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
179
180VNET_DEFINE_STATIC(vifi_t, numvifs);
181#define	V_numvifs		VNET(numvifs)
182VNET_DEFINE_STATIC(struct vif *, viftable);
183#define	V_viftable		VNET(viftable)
184
185static struct mtx vif_mtx;
186#define	VIF_LOCK()		mtx_lock(&vif_mtx)
187#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
188#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
189#define	VIF_LOCK_INIT()							\
190	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
191#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
192
193static eventhandler_tag if_detach_event_tag = NULL;
194
195VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
196#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
197
198#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
199#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
200
201/*
202 * Bandwidth meter variables and constants
203 */
204static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
205/*
206 * Pending timeouts are stored in a hash table, the key being the
207 * expiration time. Periodically, the entries are analysed and processed.
208 */
209#define	BW_METER_BUCKETS	1024
210VNET_DEFINE_STATIC(struct bw_meter **, bw_meter_timers);
211#define	V_bw_meter_timers	VNET(bw_meter_timers)
212VNET_DEFINE_STATIC(struct callout, bw_meter_ch);
213#define	V_bw_meter_ch		VNET(bw_meter_ch)
214#define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
215
216/*
217 * Pending upcalls are stored in a vector which is flushed when
218 * full, or periodically
219 */
220VNET_DEFINE_STATIC(struct bw_upcall *, bw_upcalls);
221#define	V_bw_upcalls		VNET(bw_upcalls)
222VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */
223#define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
224VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
225#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
226
227#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
228
229VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
230VNET_PCPUSTAT_SYSINIT(pimstat);
231VNET_PCPUSTAT_SYSUNINIT(pimstat);
232
233SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
234    "PIM");
235SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
236    pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
237
238static u_long	pim_squelch_wholepkt = 0;
239SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
240    &pim_squelch_wholepkt, 0,
241    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
242
243static const struct encaptab *pim_encap_cookie;
244static int pim_encapcheck(const struct mbuf *, int, int, void *);
245static int pim_input(struct mbuf *, int, int, void *);
246
247static const struct encap_config ipv4_encap_cfg = {
248	.proto = IPPROTO_PIM,
249	.min_length = sizeof(struct ip) + PIM_MINLEN,
250	.exact_match = 8,
251	.check = pim_encapcheck,
252	.input = pim_input
253};
254
255/*
256 * Note: the PIM Register encapsulation adds the following in front of a
257 * data packet:
258 *
259 * struct pim_encap_hdr {
260 *    struct ip ip;
261 *    struct pim_encap_pimhdr  pim;
262 * }
263 *
264 */
265
266struct pim_encap_pimhdr {
267	struct pim pim;
268	uint32_t   flags;
269};
270#define		PIM_ENCAP_TTL	64
271
272static struct ip pim_encap_iphdr = {
273#if BYTE_ORDER == LITTLE_ENDIAN
274	sizeof(struct ip) >> 2,
275	IPVERSION,
276#else
277	IPVERSION,
278	sizeof(struct ip) >> 2,
279#endif
280	0,			/* tos */
281	sizeof(struct ip),	/* total length */
282	0,			/* id */
283	0,			/* frag offset */
284	PIM_ENCAP_TTL,
285	IPPROTO_PIM,
286	0,			/* checksum */
287};
288
289static struct pim_encap_pimhdr pim_encap_pimhdr = {
290    {
291	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
292	0,			/* reserved */
293	0,			/* checksum */
294    },
295    0				/* flags */
296};
297
298VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
299#define	V_reg_vif_num		VNET(reg_vif_num)
300VNET_DEFINE_STATIC(struct ifnet, multicast_register_if);
301#define	V_multicast_register_if	VNET(multicast_register_if)
302
303/*
304 * Private variables.
305 */
306
307static u_long	X_ip_mcast_src(int);
308static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
309		    struct ip_moptions *);
310static int	X_ip_mrouter_done(void);
311static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
312static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
313static int	X_legal_vif_num(int);
314static int	X_mrt_ioctl(u_long, caddr_t, int);
315
316static int	add_bw_upcall(struct bw_upcall *);
317static int	add_mfc(struct mfcctl2 *);
318static int	add_vif(struct vifctl *);
319static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
320static void	bw_meter_process(void);
321static void	bw_meter_receive_packet(struct bw_meter *, int,
322		    struct timeval *);
323static void	bw_upcalls_send(void);
324static int	del_bw_upcall(struct bw_upcall *);
325static int	del_mfc(struct mfcctl2 *);
326static int	del_vif(vifi_t);
327static int	del_vif_locked(vifi_t);
328static void	expire_bw_meter_process(void *);
329static void	expire_bw_upcalls_send(void *);
330static void	expire_mfc(struct mfc *);
331static void	expire_upcalls(void *);
332static void	free_bw_list(struct bw_meter *);
333static int	get_sg_cnt(struct sioc_sg_req *);
334static int	get_vif_cnt(struct sioc_vif_req *);
335static void	if_detached_event(void *, struct ifnet *);
336static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
337static int	ip_mrouter_init(struct socket *, int);
338static __inline struct mfc *
339		mfc_find(struct in_addr *, struct in_addr *);
340static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
341static struct mbuf *
342		pim_register_prepare(struct ip *, struct mbuf *);
343static int	pim_register_send(struct ip *, struct vif *,
344		    struct mbuf *, struct mfc *);
345static int	pim_register_send_rp(struct ip *, struct vif *,
346		    struct mbuf *, struct mfc *);
347static int	pim_register_send_upcall(struct ip *, struct vif *,
348		    struct mbuf *, struct mfc *);
349static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
350static void	send_packet(struct vif *, struct mbuf *);
351static int	set_api_config(uint32_t *);
352static int	set_assert(int);
353static int	socket_send(struct socket *, struct mbuf *,
354		    struct sockaddr_in *);
355static void	unschedule_bw_meter(struct bw_meter *);
356
357/*
358 * Kernel multicast forwarding API capabilities and setup.
359 * If more API capabilities are added to the kernel, they should be
360 * recorded in `mrt_api_support'.
361 */
362#define MRT_API_VERSION		0x0305
363
364static const int mrt_api_version = MRT_API_VERSION;
365static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
366					 MRT_MFC_FLAGS_BORDER_VIF |
367					 MRT_MFC_RP |
368					 MRT_MFC_BW_UPCALL);
369VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
370#define	V_mrt_api_config	VNET(mrt_api_config)
371VNET_DEFINE_STATIC(int, pim_assert_enabled);
372#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
373static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
374
375/*
376 * Find a route for a given origin IP address and multicast group address.
377 * Statistics must be updated by the caller.
378 */
379static __inline struct mfc *
380mfc_find(struct in_addr *o, struct in_addr *g)
381{
382	struct mfc *rt;
383
384	MFC_LOCK_ASSERT();
385
386	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
387		if (in_hosteq(rt->mfc_origin, *o) &&
388		    in_hosteq(rt->mfc_mcastgrp, *g) &&
389		    TAILQ_EMPTY(&rt->mfc_stall))
390			break;
391	}
392
393	return (rt);
394}
395
396/*
397 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
398 */
399static int
400X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
401{
402    int	error, optval;
403    vifi_t	vifi;
404    struct	vifctl vifc;
405    struct	mfcctl2 mfc;
406    struct	bw_upcall bw_upcall;
407    uint32_t	i;
408
409    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
410	return EPERM;
411
412    error = 0;
413    switch (sopt->sopt_name) {
414    case MRT_INIT:
415	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
416	if (error)
417	    break;
418	error = ip_mrouter_init(so, optval);
419	break;
420
421    case MRT_DONE:
422	error = ip_mrouter_done();
423	break;
424
425    case MRT_ADD_VIF:
426	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
427	if (error)
428	    break;
429	error = add_vif(&vifc);
430	break;
431
432    case MRT_DEL_VIF:
433	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
434	if (error)
435	    break;
436	error = del_vif(vifi);
437	break;
438
439    case MRT_ADD_MFC:
440    case MRT_DEL_MFC:
441	/*
442	 * select data size depending on API version.
443	 */
444	if (sopt->sopt_name == MRT_ADD_MFC &&
445		V_mrt_api_config & MRT_API_FLAGS_ALL) {
446	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
447				sizeof(struct mfcctl2));
448	} else {
449	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
450				sizeof(struct mfcctl));
451	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
452			sizeof(mfc) - sizeof(struct mfcctl));
453	}
454	if (error)
455	    break;
456	if (sopt->sopt_name == MRT_ADD_MFC)
457	    error = add_mfc(&mfc);
458	else
459	    error = del_mfc(&mfc);
460	break;
461
462    case MRT_ASSERT:
463	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
464	if (error)
465	    break;
466	set_assert(optval);
467	break;
468
469    case MRT_API_CONFIG:
470	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
471	if (!error)
472	    error = set_api_config(&i);
473	if (!error)
474	    error = sooptcopyout(sopt, &i, sizeof i);
475	break;
476
477    case MRT_ADD_BW_UPCALL:
478    case MRT_DEL_BW_UPCALL:
479	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
480				sizeof bw_upcall);
481	if (error)
482	    break;
483	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
484	    error = add_bw_upcall(&bw_upcall);
485	else
486	    error = del_bw_upcall(&bw_upcall);
487	break;
488
489    default:
490	error = EOPNOTSUPP;
491	break;
492    }
493    return error;
494}
495
496/*
497 * Handle MRT getsockopt commands
498 */
499static int
500X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
501{
502    int error;
503
504    switch (sopt->sopt_name) {
505    case MRT_VERSION:
506	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
507	break;
508
509    case MRT_ASSERT:
510	error = sooptcopyout(sopt, &V_pim_assert_enabled,
511	    sizeof V_pim_assert_enabled);
512	break;
513
514    case MRT_API_SUPPORT:
515	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
516	break;
517
518    case MRT_API_CONFIG:
519	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
520	break;
521
522    default:
523	error = EOPNOTSUPP;
524	break;
525    }
526    return error;
527}
528
529/*
530 * Handle ioctl commands to obtain information from the cache
531 */
532static int
533X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
534{
535    int error = 0;
536
537    /*
538     * Currently the only function calling this ioctl routine is rtioctl_fib().
539     * Typically, only root can create the raw socket in order to execute
540     * this ioctl method, however the request might be coming from a prison
541     */
542    error = priv_check(curthread, PRIV_NETINET_MROUTE);
543    if (error)
544	return (error);
545    switch (cmd) {
546    case (SIOCGETVIFCNT):
547	error = get_vif_cnt((struct sioc_vif_req *)data);
548	break;
549
550    case (SIOCGETSGCNT):
551	error = get_sg_cnt((struct sioc_sg_req *)data);
552	break;
553
554    default:
555	error = EINVAL;
556	break;
557    }
558    return error;
559}
560
561/*
562 * returns the packet, byte, rpf-failure count for the source group provided
563 */
564static int
565get_sg_cnt(struct sioc_sg_req *req)
566{
567    struct mfc *rt;
568
569    MFC_LOCK();
570    rt = mfc_find(&req->src, &req->grp);
571    if (rt == NULL) {
572	MFC_UNLOCK();
573	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
574	return EADDRNOTAVAIL;
575    }
576    req->pktcnt = rt->mfc_pkt_cnt;
577    req->bytecnt = rt->mfc_byte_cnt;
578    req->wrong_if = rt->mfc_wrong_if;
579    MFC_UNLOCK();
580    return 0;
581}
582
583/*
584 * returns the input and output packet and byte counts on the vif provided
585 */
586static int
587get_vif_cnt(struct sioc_vif_req *req)
588{
589    vifi_t vifi = req->vifi;
590
591    VIF_LOCK();
592    if (vifi >= V_numvifs) {
593	VIF_UNLOCK();
594	return EINVAL;
595    }
596
597    req->icount = V_viftable[vifi].v_pkt_in;
598    req->ocount = V_viftable[vifi].v_pkt_out;
599    req->ibytes = V_viftable[vifi].v_bytes_in;
600    req->obytes = V_viftable[vifi].v_bytes_out;
601    VIF_UNLOCK();
602
603    return 0;
604}
605
606static void
607if_detached_event(void *arg __unused, struct ifnet *ifp)
608{
609    vifi_t vifi;
610    u_long i;
611
612    MROUTER_LOCK();
613
614    if (V_ip_mrouter == NULL) {
615	MROUTER_UNLOCK();
616	return;
617    }
618
619    VIF_LOCK();
620    MFC_LOCK();
621
622    /*
623     * Tear down multicast forwarder state associated with this ifnet.
624     * 1. Walk the vif list, matching vifs against this ifnet.
625     * 2. Walk the multicast forwarding cache (mfc) looking for
626     *    inner matches with this vif's index.
627     * 3. Expire any matching multicast forwarding cache entries.
628     * 4. Free vif state. This should disable ALLMULTI on the interface.
629     */
630    for (vifi = 0; vifi < V_numvifs; vifi++) {
631	if (V_viftable[vifi].v_ifp != ifp)
632		continue;
633	for (i = 0; i < mfchashsize; i++) {
634		struct mfc *rt, *nrt;
635
636		LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
637			if (rt->mfc_parent == vifi) {
638				expire_mfc(rt);
639			}
640		}
641	}
642	del_vif_locked(vifi);
643    }
644
645    MFC_UNLOCK();
646    VIF_UNLOCK();
647
648    MROUTER_UNLOCK();
649}
650
651/*
652 * Enable multicast forwarding.
653 */
654static int
655ip_mrouter_init(struct socket *so, int version)
656{
657
658    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
659        so->so_type, so->so_proto->pr_protocol);
660
661    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
662	return EOPNOTSUPP;
663
664    if (version != 1)
665	return ENOPROTOOPT;
666
667    MROUTER_LOCK();
668
669    if (ip_mrouter_unloading) {
670	MROUTER_UNLOCK();
671	return ENOPROTOOPT;
672    }
673
674    if (V_ip_mrouter != NULL) {
675	MROUTER_UNLOCK();
676	return EADDRINUSE;
677    }
678
679    V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
680	HASH_NOWAIT);
681
682    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
683	curvnet);
684    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
685	curvnet);
686    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
687	curvnet);
688
689    V_ip_mrouter = so;
690    ip_mrouter_cnt++;
691
692    MROUTER_UNLOCK();
693
694    CTR1(KTR_IPMF, "%s: done", __func__);
695
696    return 0;
697}
698
699/*
700 * Disable multicast forwarding.
701 */
702static int
703X_ip_mrouter_done(void)
704{
705    struct ifnet *ifp;
706    u_long i;
707    vifi_t vifi;
708
709    MROUTER_LOCK();
710
711    if (V_ip_mrouter == NULL) {
712	MROUTER_UNLOCK();
713	return EINVAL;
714    }
715
716    /*
717     * Detach/disable hooks to the reset of the system.
718     */
719    V_ip_mrouter = NULL;
720    ip_mrouter_cnt--;
721    V_mrt_api_config = 0;
722
723    VIF_LOCK();
724
725    /*
726     * For each phyint in use, disable promiscuous reception of all IP
727     * multicasts.
728     */
729    for (vifi = 0; vifi < V_numvifs; vifi++) {
730	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
731		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
732	    ifp = V_viftable[vifi].v_ifp;
733	    if_allmulti(ifp, 0);
734	}
735    }
736    bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
737    V_numvifs = 0;
738    V_pim_assert_enabled = 0;
739
740    VIF_UNLOCK();
741
742    callout_stop(&V_expire_upcalls_ch);
743    callout_stop(&V_bw_upcalls_ch);
744    callout_stop(&V_bw_meter_ch);
745
746    MFC_LOCK();
747
748    /*
749     * Free all multicast forwarding cache entries.
750     * Do not use hashdestroy(), as we must perform other cleanup.
751     */
752    for (i = 0; i < mfchashsize; i++) {
753	struct mfc *rt, *nrt;
754
755	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
756		expire_mfc(rt);
757	}
758    }
759    free(V_mfchashtbl, M_MRTABLE);
760    V_mfchashtbl = NULL;
761
762    bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
763
764    V_bw_upcalls_n = 0;
765    bzero(V_bw_meter_timers, BW_METER_BUCKETS * sizeof(*V_bw_meter_timers));
766
767    MFC_UNLOCK();
768
769    V_reg_vif_num = VIFI_INVALID;
770
771    MROUTER_UNLOCK();
772
773    CTR1(KTR_IPMF, "%s: done", __func__);
774
775    return 0;
776}
777
778/*
779 * Set PIM assert processing global
780 */
781static int
782set_assert(int i)
783{
784    if ((i != 1) && (i != 0))
785	return EINVAL;
786
787    V_pim_assert_enabled = i;
788
789    return 0;
790}
791
792/*
793 * Configure API capabilities
794 */
795int
796set_api_config(uint32_t *apival)
797{
798    u_long i;
799
800    /*
801     * We can set the API capabilities only if it is the first operation
802     * after MRT_INIT. I.e.:
803     *  - there are no vifs installed
804     *  - pim_assert is not enabled
805     *  - the MFC table is empty
806     */
807    if (V_numvifs > 0) {
808	*apival = 0;
809	return EPERM;
810    }
811    if (V_pim_assert_enabled) {
812	*apival = 0;
813	return EPERM;
814    }
815
816    MFC_LOCK();
817
818    for (i = 0; i < mfchashsize; i++) {
819	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
820	    MFC_UNLOCK();
821	    *apival = 0;
822	    return EPERM;
823	}
824    }
825
826    MFC_UNLOCK();
827
828    V_mrt_api_config = *apival & mrt_api_support;
829    *apival = V_mrt_api_config;
830
831    return 0;
832}
833
834/*
835 * Add a vif to the vif table
836 */
837static int
838add_vif(struct vifctl *vifcp)
839{
840    struct vif *vifp = V_viftable + vifcp->vifc_vifi;
841    struct sockaddr_in sin = {sizeof sin, AF_INET};
842    struct ifaddr *ifa;
843    struct ifnet *ifp;
844    int error;
845
846    VIF_LOCK();
847    if (vifcp->vifc_vifi >= MAXVIFS) {
848	VIF_UNLOCK();
849	return EINVAL;
850    }
851    /* rate limiting is no longer supported by this code */
852    if (vifcp->vifc_rate_limit != 0) {
853	log(LOG_ERR, "rate limiting is no longer supported\n");
854	VIF_UNLOCK();
855	return EINVAL;
856    }
857    if (!in_nullhost(vifp->v_lcl_addr)) {
858	VIF_UNLOCK();
859	return EADDRINUSE;
860    }
861    if (in_nullhost(vifcp->vifc_lcl_addr)) {
862	VIF_UNLOCK();
863	return EADDRNOTAVAIL;
864    }
865
866    /* Find the interface with an address in AF_INET family */
867    if (vifcp->vifc_flags & VIFF_REGISTER) {
868	/*
869	 * XXX: Because VIFF_REGISTER does not really need a valid
870	 * local interface (e.g. it could be 127.0.0.2), we don't
871	 * check its address.
872	 */
873	ifp = NULL;
874    } else {
875	struct epoch_tracker et;
876
877	sin.sin_addr = vifcp->vifc_lcl_addr;
878	NET_EPOCH_ENTER(et);
879	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
880	if (ifa == NULL) {
881	    NET_EPOCH_EXIT(et);
882	    VIF_UNLOCK();
883	    return EADDRNOTAVAIL;
884	}
885	ifp = ifa->ifa_ifp;
886	/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
887	NET_EPOCH_EXIT(et);
888    }
889
890    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
891	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
892	VIF_UNLOCK();
893	return EOPNOTSUPP;
894    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
895	ifp = &V_multicast_register_if;
896	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
897	if (V_reg_vif_num == VIFI_INVALID) {
898	    if_initname(&V_multicast_register_if, "register_vif", 0);
899	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
900	    V_reg_vif_num = vifcp->vifc_vifi;
901	}
902    } else {		/* Make sure the interface supports multicast */
903	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
904	    VIF_UNLOCK();
905	    return EOPNOTSUPP;
906	}
907
908	/* Enable promiscuous reception of all IP multicasts from the if */
909	error = if_allmulti(ifp, 1);
910	if (error) {
911	    VIF_UNLOCK();
912	    return error;
913	}
914    }
915
916    vifp->v_flags     = vifcp->vifc_flags;
917    vifp->v_threshold = vifcp->vifc_threshold;
918    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
919    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
920    vifp->v_ifp       = ifp;
921    /* initialize per vif pkt counters */
922    vifp->v_pkt_in    = 0;
923    vifp->v_pkt_out   = 0;
924    vifp->v_bytes_in  = 0;
925    vifp->v_bytes_out = 0;
926
927    /* Adjust numvifs up if the vifi is higher than numvifs */
928    if (V_numvifs <= vifcp->vifc_vifi)
929	V_numvifs = vifcp->vifc_vifi + 1;
930
931    VIF_UNLOCK();
932
933    CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
934	(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
935	(int)vifcp->vifc_threshold);
936
937    return 0;
938}
939
940/*
941 * Delete a vif from the vif table
942 */
943static int
944del_vif_locked(vifi_t vifi)
945{
946    struct vif *vifp;
947
948    VIF_LOCK_ASSERT();
949
950    if (vifi >= V_numvifs) {
951	return EINVAL;
952    }
953    vifp = &V_viftable[vifi];
954    if (in_nullhost(vifp->v_lcl_addr)) {
955	return EADDRNOTAVAIL;
956    }
957
958    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
959	if_allmulti(vifp->v_ifp, 0);
960
961    if (vifp->v_flags & VIFF_REGISTER)
962	V_reg_vif_num = VIFI_INVALID;
963
964    bzero((caddr_t)vifp, sizeof (*vifp));
965
966    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
967
968    /* Adjust numvifs down */
969    for (vifi = V_numvifs; vifi > 0; vifi--)
970	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
971	    break;
972    V_numvifs = vifi;
973
974    return 0;
975}
976
977static int
978del_vif(vifi_t vifi)
979{
980    int cc;
981
982    VIF_LOCK();
983    cc = del_vif_locked(vifi);
984    VIF_UNLOCK();
985
986    return cc;
987}
988
989/*
990 * update an mfc entry without resetting counters and S,G addresses.
991 */
992static void
993update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
994{
995    int i;
996
997    rt->mfc_parent = mfccp->mfcc_parent;
998    for (i = 0; i < V_numvifs; i++) {
999	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1000	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
1001	    MRT_MFC_FLAGS_ALL;
1002    }
1003    /* set the RP address */
1004    if (V_mrt_api_config & MRT_MFC_RP)
1005	rt->mfc_rp = mfccp->mfcc_rp;
1006    else
1007	rt->mfc_rp.s_addr = INADDR_ANY;
1008}
1009
1010/*
1011 * fully initialize an mfc entry from the parameter.
1012 */
1013static void
1014init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1015{
1016    rt->mfc_origin     = mfccp->mfcc_origin;
1017    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1018
1019    update_mfc_params(rt, mfccp);
1020
1021    /* initialize pkt counters per src-grp */
1022    rt->mfc_pkt_cnt    = 0;
1023    rt->mfc_byte_cnt   = 0;
1024    rt->mfc_wrong_if   = 0;
1025    timevalclear(&rt->mfc_last_assert);
1026}
1027
1028static void
1029expire_mfc(struct mfc *rt)
1030{
1031	struct rtdetq *rte, *nrte;
1032
1033	MFC_LOCK_ASSERT();
1034
1035	free_bw_list(rt->mfc_bw_meter);
1036
1037	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1038		m_freem(rte->m);
1039		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1040		free(rte, M_MRTABLE);
1041	}
1042
1043	LIST_REMOVE(rt, mfc_hash);
1044	free(rt, M_MRTABLE);
1045}
1046
1047/*
1048 * Add an mfc entry
1049 */
1050static int
1051add_mfc(struct mfcctl2 *mfccp)
1052{
1053    struct mfc *rt;
1054    struct rtdetq *rte, *nrte;
1055    u_long hash = 0;
1056    u_short nstl;
1057
1058    VIF_LOCK();
1059    MFC_LOCK();
1060
1061    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1062
1063    /* If an entry already exists, just update the fields */
1064    if (rt) {
1065	CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
1066	    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1067	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1068	    mfccp->mfcc_parent);
1069	update_mfc_params(rt, mfccp);
1070	MFC_UNLOCK();
1071	VIF_UNLOCK();
1072	return (0);
1073    }
1074
1075    /*
1076     * Find the entry for which the upcall was made and update
1077     */
1078    nstl = 0;
1079    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1080    LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1081	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1082	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1083	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1084		CTR5(KTR_IPMF,
1085		    "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
1086		    __func__, ntohl(mfccp->mfcc_origin.s_addr),
1087		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1088		    mfccp->mfcc_parent,
1089		    TAILQ_FIRST(&rt->mfc_stall));
1090		if (nstl++)
1091			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1092
1093		init_mfc_params(rt, mfccp);
1094		rt->mfc_expire = 0;	/* Don't clean this guy up */
1095		V_nexpire[hash]--;
1096
1097		/* Free queued packets, but attempt to forward them first. */
1098		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1099			if (rte->ifp != NULL)
1100				ip_mdq(rte->m, rte->ifp, rt, -1);
1101			m_freem(rte->m);
1102			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1103			rt->mfc_nstall--;
1104			free(rte, M_MRTABLE);
1105		}
1106	}
1107    }
1108
1109    /*
1110     * It is possible that an entry is being inserted without an upcall
1111     */
1112    if (nstl == 0) {
1113	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1114	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1115		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1116		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1117			init_mfc_params(rt, mfccp);
1118			if (rt->mfc_expire)
1119			    V_nexpire[hash]--;
1120			rt->mfc_expire = 0;
1121			break; /* XXX */
1122		}
1123	}
1124
1125	if (rt == NULL) {		/* no upcall, so make a new entry */
1126	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1127	    if (rt == NULL) {
1128		MFC_UNLOCK();
1129		VIF_UNLOCK();
1130		return (ENOBUFS);
1131	    }
1132
1133	    init_mfc_params(rt, mfccp);
1134	    TAILQ_INIT(&rt->mfc_stall);
1135	    rt->mfc_nstall = 0;
1136
1137	    rt->mfc_expire     = 0;
1138	    rt->mfc_bw_meter = NULL;
1139
1140	    /* insert new entry at head of hash chain */
1141	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1142	}
1143    }
1144
1145    MFC_UNLOCK();
1146    VIF_UNLOCK();
1147
1148    return (0);
1149}
1150
1151/*
1152 * Delete an mfc entry
1153 */
1154static int
1155del_mfc(struct mfcctl2 *mfccp)
1156{
1157    struct in_addr	origin;
1158    struct in_addr	mcastgrp;
1159    struct mfc		*rt;
1160
1161    origin = mfccp->mfcc_origin;
1162    mcastgrp = mfccp->mfcc_mcastgrp;
1163
1164    CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
1165	ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
1166
1167    MFC_LOCK();
1168
1169    rt = mfc_find(&origin, &mcastgrp);
1170    if (rt == NULL) {
1171	MFC_UNLOCK();
1172	return EADDRNOTAVAIL;
1173    }
1174
1175    /*
1176     * free the bw_meter entries
1177     */
1178    free_bw_list(rt->mfc_bw_meter);
1179    rt->mfc_bw_meter = NULL;
1180
1181    LIST_REMOVE(rt, mfc_hash);
1182    free(rt, M_MRTABLE);
1183
1184    MFC_UNLOCK();
1185
1186    return (0);
1187}
1188
1189/*
1190 * Send a message to the routing daemon on the multicast routing socket.
1191 */
1192static int
1193socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1194{
1195    if (s) {
1196	SOCKBUF_LOCK(&s->so_rcv);
1197	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1198	    NULL) != 0) {
1199	    sorwakeup_locked(s);
1200	    return 0;
1201	}
1202	SOCKBUF_UNLOCK(&s->so_rcv);
1203    }
1204    m_freem(mm);
1205    return -1;
1206}
1207
1208/*
1209 * IP multicast forwarding function. This function assumes that the packet
1210 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1211 * pointed to by "ifp", and the packet is to be relayed to other networks
1212 * that have members of the packet's destination IP multicast group.
1213 *
1214 * The packet is returned unscathed to the caller, unless it is
1215 * erroneous, in which case a non-zero return value tells the caller to
1216 * discard it.
1217 */
1218
1219#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1220
1221static int
1222X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1223    struct ip_moptions *imo)
1224{
1225    struct mfc *rt;
1226    int error;
1227    vifi_t vifi;
1228
1229    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
1230	ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1231
1232    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1233		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1234	/*
1235	 * Packet arrived via a physical interface or
1236	 * an encapsulated tunnel or a register_vif.
1237	 */
1238    } else {
1239	/*
1240	 * Packet arrived through a source-route tunnel.
1241	 * Source-route tunnels are no longer supported.
1242	 */
1243	return (1);
1244    }
1245
1246    VIF_LOCK();
1247    MFC_LOCK();
1248    if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1249	if (ip->ip_ttl < MAXTTL)
1250	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1251	error = ip_mdq(m, ifp, NULL, vifi);
1252	MFC_UNLOCK();
1253	VIF_UNLOCK();
1254	return error;
1255    }
1256
1257    /*
1258     * Don't forward a packet with time-to-live of zero or one,
1259     * or a packet destined to a local-only group.
1260     */
1261    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1262	MFC_UNLOCK();
1263	VIF_UNLOCK();
1264	return 0;
1265    }
1266
1267    /*
1268     * Determine forwarding vifs from the forwarding cache table
1269     */
1270    MRTSTAT_INC(mrts_mfc_lookups);
1271    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1272
1273    /* Entry exists, so forward if necessary */
1274    if (rt != NULL) {
1275	error = ip_mdq(m, ifp, rt, -1);
1276	MFC_UNLOCK();
1277	VIF_UNLOCK();
1278	return error;
1279    } else {
1280	/*
1281	 * If we don't have a route for packet's origin,
1282	 * Make a copy of the packet & send message to routing daemon
1283	 */
1284
1285	struct mbuf *mb0;
1286	struct rtdetq *rte;
1287	u_long hash;
1288	int hlen = ip->ip_hl << 2;
1289
1290	MRTSTAT_INC(mrts_mfc_misses);
1291	MRTSTAT_INC(mrts_no_route);
1292	CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
1293	    ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
1294
1295	/*
1296	 * Allocate mbufs early so that we don't do extra work if we are
1297	 * just going to fail anyway.  Make sure to pullup the header so
1298	 * that other people can't step on it.
1299	 */
1300	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1301	    M_NOWAIT|M_ZERO);
1302	if (rte == NULL) {
1303	    MFC_UNLOCK();
1304	    VIF_UNLOCK();
1305	    return ENOBUFS;
1306	}
1307
1308	mb0 = m_copypacket(m, M_NOWAIT);
1309	if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
1310	    mb0 = m_pullup(mb0, hlen);
1311	if (mb0 == NULL) {
1312	    free(rte, M_MRTABLE);
1313	    MFC_UNLOCK();
1314	    VIF_UNLOCK();
1315	    return ENOBUFS;
1316	}
1317
1318	/* is there an upcall waiting for this flow ? */
1319	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1320	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1321		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1322		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1323		    !TAILQ_EMPTY(&rt->mfc_stall))
1324			break;
1325	}
1326
1327	if (rt == NULL) {
1328	    int i;
1329	    struct igmpmsg *im;
1330	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1331	    struct mbuf *mm;
1332
1333	    /*
1334	     * Locate the vifi for the incoming interface for this packet.
1335	     * If none found, drop packet.
1336	     */
1337	    for (vifi = 0; vifi < V_numvifs &&
1338		    V_viftable[vifi].v_ifp != ifp; vifi++)
1339		;
1340	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1341		goto non_fatal;
1342
1343	    /* no upcall, so make a new entry */
1344	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1345	    if (rt == NULL)
1346		goto fail;
1347
1348	    /* Make a copy of the header to send to the user level process */
1349	    mm = m_copym(mb0, 0, hlen, M_NOWAIT);
1350	    if (mm == NULL)
1351		goto fail1;
1352
1353	    /*
1354	     * Send message to routing daemon to install
1355	     * a route into the kernel table
1356	     */
1357
1358	    im = mtod(mm, struct igmpmsg *);
1359	    im->im_msgtype = IGMPMSG_NOCACHE;
1360	    im->im_mbz = 0;
1361	    im->im_vif = vifi;
1362
1363	    MRTSTAT_INC(mrts_upcalls);
1364
1365	    k_igmpsrc.sin_addr = ip->ip_src;
1366	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1367		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1368		MRTSTAT_INC(mrts_upq_sockfull);
1369fail1:
1370		free(rt, M_MRTABLE);
1371fail:
1372		free(rte, M_MRTABLE);
1373		m_freem(mb0);
1374		MFC_UNLOCK();
1375		VIF_UNLOCK();
1376		return ENOBUFS;
1377	    }
1378
1379	    /* insert new entry at head of hash chain */
1380	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1381	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1382	    rt->mfc_expire	      = UPCALL_EXPIRE;
1383	    V_nexpire[hash]++;
1384	    for (i = 0; i < V_numvifs; i++) {
1385		rt->mfc_ttls[i] = 0;
1386		rt->mfc_flags[i] = 0;
1387	    }
1388	    rt->mfc_parent = -1;
1389
1390	    /* clear the RP address */
1391	    rt->mfc_rp.s_addr = INADDR_ANY;
1392	    rt->mfc_bw_meter = NULL;
1393
1394	    /* initialize pkt counters per src-grp */
1395	    rt->mfc_pkt_cnt = 0;
1396	    rt->mfc_byte_cnt = 0;
1397	    rt->mfc_wrong_if = 0;
1398	    timevalclear(&rt->mfc_last_assert);
1399
1400	    TAILQ_INIT(&rt->mfc_stall);
1401	    rt->mfc_nstall = 0;
1402
1403	    /* link into table */
1404	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1405	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1406	    rt->mfc_nstall++;
1407
1408	} else {
1409	    /* determine if queue has overflowed */
1410	    if (rt->mfc_nstall > MAX_UPQ) {
1411		MRTSTAT_INC(mrts_upq_ovflw);
1412non_fatal:
1413		free(rte, M_MRTABLE);
1414		m_freem(mb0);
1415		MFC_UNLOCK();
1416		VIF_UNLOCK();
1417		return (0);
1418	    }
1419	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1420	    rt->mfc_nstall++;
1421	}
1422
1423	rte->m			= mb0;
1424	rte->ifp		= ifp;
1425
1426	MFC_UNLOCK();
1427	VIF_UNLOCK();
1428
1429	return 0;
1430    }
1431}
1432
1433/*
1434 * Clean up the cache entry if upcall is not serviced
1435 */
1436static void
1437expire_upcalls(void *arg)
1438{
1439    u_long i;
1440
1441    CURVNET_SET((struct vnet *) arg);
1442
1443    MFC_LOCK();
1444
1445    for (i = 0; i < mfchashsize; i++) {
1446	struct mfc *rt, *nrt;
1447
1448	if (V_nexpire[i] == 0)
1449	    continue;
1450
1451	LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1452		if (TAILQ_EMPTY(&rt->mfc_stall))
1453			continue;
1454
1455		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1456			continue;
1457
1458		/*
1459		 * free the bw_meter entries
1460		 */
1461		while (rt->mfc_bw_meter != NULL) {
1462		    struct bw_meter *x = rt->mfc_bw_meter;
1463
1464		    rt->mfc_bw_meter = x->bm_mfc_next;
1465		    free(x, M_BWMETER);
1466		}
1467
1468		MRTSTAT_INC(mrts_cache_cleanups);
1469		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1470		    (u_long)ntohl(rt->mfc_origin.s_addr),
1471		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1472
1473		expire_mfc(rt);
1474	    }
1475    }
1476
1477    MFC_UNLOCK();
1478
1479    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1480	curvnet);
1481
1482    CURVNET_RESTORE();
1483}
1484
1485/*
1486 * Packet forwarding routine once entry in the cache is made
1487 */
1488static int
1489ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1490{
1491    struct ip  *ip = mtod(m, struct ip *);
1492    vifi_t vifi;
1493    int plen = ntohs(ip->ip_len);
1494
1495    VIF_LOCK_ASSERT();
1496
1497    /*
1498     * If xmt_vif is not -1, send on only the requested vif.
1499     *
1500     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1501     */
1502    if (xmt_vif < V_numvifs) {
1503	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1504		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1505	else
1506		phyint_send(ip, V_viftable + xmt_vif, m);
1507	return 1;
1508    }
1509
1510    /*
1511     * Don't forward if it didn't arrive from the parent vif for its origin.
1512     */
1513    vifi = rt->mfc_parent;
1514    if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1515	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1516	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1517	MRTSTAT_INC(mrts_wrong_if);
1518	++rt->mfc_wrong_if;
1519	/*
1520	 * If we are doing PIM assert processing, send a message
1521	 * to the routing daemon.
1522	 *
1523	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1524	 * can complete the SPT switch, regardless of the type
1525	 * of the iif (broadcast media, GRE tunnel, etc).
1526	 */
1527	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1528	    V_viftable[vifi].v_ifp) {
1529	    if (ifp == &V_multicast_register_if)
1530		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1531
1532	    /* Get vifi for the incoming packet */
1533	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1534		vifi++)
1535		;
1536	    if (vifi >= V_numvifs)
1537		return 0;	/* The iif is not found: ignore the packet. */
1538
1539	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1540		return 0;	/* WRONGVIF disabled: ignore the packet */
1541
1542	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1543		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1544		struct igmpmsg *im;
1545		int hlen = ip->ip_hl << 2;
1546		struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
1547
1548		if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
1549		    mm = m_pullup(mm, hlen);
1550		if (mm == NULL)
1551		    return ENOBUFS;
1552
1553		im = mtod(mm, struct igmpmsg *);
1554		im->im_msgtype	= IGMPMSG_WRONGVIF;
1555		im->im_mbz		= 0;
1556		im->im_vif		= vifi;
1557
1558		MRTSTAT_INC(mrts_upcalls);
1559
1560		k_igmpsrc.sin_addr = im->im_src;
1561		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1562		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1563		    MRTSTAT_INC(mrts_upq_sockfull);
1564		    return ENOBUFS;
1565		}
1566	    }
1567	}
1568	return 0;
1569    }
1570
1571    /* If I sourced this packet, it counts as output, else it was input. */
1572    if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1573	V_viftable[vifi].v_pkt_out++;
1574	V_viftable[vifi].v_bytes_out += plen;
1575    } else {
1576	V_viftable[vifi].v_pkt_in++;
1577	V_viftable[vifi].v_bytes_in += plen;
1578    }
1579    rt->mfc_pkt_cnt++;
1580    rt->mfc_byte_cnt += plen;
1581
1582    /*
1583     * For each vif, decide if a copy of the packet should be forwarded.
1584     * Forward if:
1585     *		- the ttl exceeds the vif's threshold
1586     *		- there are group members downstream on interface
1587     */
1588    for (vifi = 0; vifi < V_numvifs; vifi++)
1589	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1590	    V_viftable[vifi].v_pkt_out++;
1591	    V_viftable[vifi].v_bytes_out += plen;
1592	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1593		pim_register_send(ip, V_viftable + vifi, m, rt);
1594	    else
1595		phyint_send(ip, V_viftable + vifi, m);
1596	}
1597
1598    /*
1599     * Perform upcall-related bw measuring.
1600     */
1601    if (rt->mfc_bw_meter != NULL) {
1602	struct bw_meter *x;
1603	struct timeval now;
1604
1605	microtime(&now);
1606	MFC_LOCK_ASSERT();
1607	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1608	    bw_meter_receive_packet(x, plen, &now);
1609    }
1610
1611    return 0;
1612}
1613
1614/*
1615 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1616 */
1617static int
1618X_legal_vif_num(int vif)
1619{
1620	int ret;
1621
1622	ret = 0;
1623	if (vif < 0)
1624		return (ret);
1625
1626	VIF_LOCK();
1627	if (vif < V_numvifs)
1628		ret = 1;
1629	VIF_UNLOCK();
1630
1631	return (ret);
1632}
1633
1634/*
1635 * Return the local address used by this vif
1636 */
1637static u_long
1638X_ip_mcast_src(int vifi)
1639{
1640	in_addr_t addr;
1641
1642	addr = INADDR_ANY;
1643	if (vifi < 0)
1644		return (addr);
1645
1646	VIF_LOCK();
1647	if (vifi < V_numvifs)
1648		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1649	VIF_UNLOCK();
1650
1651	return (addr);
1652}
1653
1654static void
1655phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1656{
1657    struct mbuf *mb_copy;
1658    int hlen = ip->ip_hl << 2;
1659
1660    VIF_LOCK_ASSERT();
1661
1662    /*
1663     * Make a new reference to the packet; make sure that
1664     * the IP header is actually copied, not just referenced,
1665     * so that ip_output() only scribbles on the copy.
1666     */
1667    mb_copy = m_copypacket(m, M_NOWAIT);
1668    if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
1669	mb_copy = m_pullup(mb_copy, hlen);
1670    if (mb_copy == NULL)
1671	return;
1672
1673    send_packet(vifp, mb_copy);
1674}
1675
1676static void
1677send_packet(struct vif *vifp, struct mbuf *m)
1678{
1679	struct ip_moptions imo;
1680	int error __unused;
1681
1682	VIF_LOCK_ASSERT();
1683
1684	imo.imo_multicast_ifp  = vifp->v_ifp;
1685	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1686	imo.imo_multicast_loop = 1;
1687	imo.imo_multicast_vif  = -1;
1688	STAILQ_INIT(&imo.imo_head);
1689
1690	/*
1691	 * Re-entrancy should not be a problem here, because
1692	 * the packets that we send out and are looped back at us
1693	 * should get rejected because they appear to come from
1694	 * the loopback interface, thus preventing looping.
1695	 */
1696	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1697	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1698	    (ptrdiff_t)(vifp - V_viftable), error);
1699}
1700
1701/*
1702 * Stubs for old RSVP socket shim implementation.
1703 */
1704
1705static int
1706X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1707{
1708
1709	return (EOPNOTSUPP);
1710}
1711
1712static void
1713X_ip_rsvp_force_done(struct socket *so __unused)
1714{
1715
1716}
1717
1718static int
1719X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1720{
1721	struct mbuf *m;
1722
1723	m = *mp;
1724	*mp = NULL;
1725	if (!V_rsvp_on)
1726		m_freem(m);
1727	return (IPPROTO_DONE);
1728}
1729
1730/*
1731 * Code for bandwidth monitors
1732 */
1733
1734/*
1735 * Define common interface for timeval-related methods
1736 */
1737#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1738#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1739#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1740
1741static uint32_t
1742compute_bw_meter_flags(struct bw_upcall *req)
1743{
1744    uint32_t flags = 0;
1745
1746    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1747	flags |= BW_METER_UNIT_PACKETS;
1748    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1749	flags |= BW_METER_UNIT_BYTES;
1750    if (req->bu_flags & BW_UPCALL_GEQ)
1751	flags |= BW_METER_GEQ;
1752    if (req->bu_flags & BW_UPCALL_LEQ)
1753	flags |= BW_METER_LEQ;
1754
1755    return flags;
1756}
1757
1758/*
1759 * Add a bw_meter entry
1760 */
1761static int
1762add_bw_upcall(struct bw_upcall *req)
1763{
1764    struct mfc *mfc;
1765    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1766		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1767    struct timeval now;
1768    struct bw_meter *x;
1769    uint32_t flags;
1770
1771    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1772	return EOPNOTSUPP;
1773
1774    /* Test if the flags are valid */
1775    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1776	return EINVAL;
1777    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1778	return EINVAL;
1779    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1780	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1781	return EINVAL;
1782
1783    /* Test if the threshold time interval is valid */
1784    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1785	return EINVAL;
1786
1787    flags = compute_bw_meter_flags(req);
1788
1789    /*
1790     * Find if we have already same bw_meter entry
1791     */
1792    MFC_LOCK();
1793    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1794    if (mfc == NULL) {
1795	MFC_UNLOCK();
1796	return EADDRNOTAVAIL;
1797    }
1798    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1799	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1800			   &req->bu_threshold.b_time, ==)) &&
1801	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1802	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1803	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1804	    MFC_UNLOCK();
1805	    return 0;		/* XXX Already installed */
1806	}
1807    }
1808
1809    /* Allocate the new bw_meter entry */
1810    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1811    if (x == NULL) {
1812	MFC_UNLOCK();
1813	return ENOBUFS;
1814    }
1815
1816    /* Set the new bw_meter entry */
1817    x->bm_threshold.b_time = req->bu_threshold.b_time;
1818    microtime(&now);
1819    x->bm_start_time = now;
1820    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1821    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1822    x->bm_measured.b_packets = 0;
1823    x->bm_measured.b_bytes = 0;
1824    x->bm_flags = flags;
1825    x->bm_time_next = NULL;
1826    x->bm_time_hash = BW_METER_BUCKETS;
1827
1828    /* Add the new bw_meter entry to the front of entries for this MFC */
1829    x->bm_mfc = mfc;
1830    x->bm_mfc_next = mfc->mfc_bw_meter;
1831    mfc->mfc_bw_meter = x;
1832    schedule_bw_meter(x, &now);
1833    MFC_UNLOCK();
1834
1835    return 0;
1836}
1837
1838static void
1839free_bw_list(struct bw_meter *list)
1840{
1841    while (list != NULL) {
1842	struct bw_meter *x = list;
1843
1844	list = list->bm_mfc_next;
1845	unschedule_bw_meter(x);
1846	free(x, M_BWMETER);
1847    }
1848}
1849
1850/*
1851 * Delete one or multiple bw_meter entries
1852 */
1853static int
1854del_bw_upcall(struct bw_upcall *req)
1855{
1856    struct mfc *mfc;
1857    struct bw_meter *x;
1858
1859    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1860	return EOPNOTSUPP;
1861
1862    MFC_LOCK();
1863
1864    /* Find the corresponding MFC entry */
1865    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1866    if (mfc == NULL) {
1867	MFC_UNLOCK();
1868	return EADDRNOTAVAIL;
1869    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1870	/*
1871	 * Delete all bw_meter entries for this mfc
1872	 */
1873	struct bw_meter *list;
1874
1875	list = mfc->mfc_bw_meter;
1876	mfc->mfc_bw_meter = NULL;
1877	free_bw_list(list);
1878	MFC_UNLOCK();
1879	return 0;
1880    } else {			/* Delete a single bw_meter entry */
1881	struct bw_meter *prev;
1882	uint32_t flags = 0;
1883
1884	flags = compute_bw_meter_flags(req);
1885
1886	/* Find the bw_meter entry to delete */
1887	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1888	     prev = x, x = x->bm_mfc_next) {
1889	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1890			       &req->bu_threshold.b_time, ==)) &&
1891		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1892		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1893		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1894		break;
1895	}
1896	if (x != NULL) { /* Delete entry from the list for this MFC */
1897	    if (prev != NULL)
1898		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1899	    else
1900		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1901
1902	    unschedule_bw_meter(x);
1903	    MFC_UNLOCK();
1904	    /* Free the bw_meter entry */
1905	    free(x, M_BWMETER);
1906	    return 0;
1907	} else {
1908	    MFC_UNLOCK();
1909	    return EINVAL;
1910	}
1911    }
1912    /* NOTREACHED */
1913}
1914
1915/*
1916 * Perform bandwidth measurement processing that may result in an upcall
1917 */
1918static void
1919bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1920{
1921    struct timeval delta;
1922
1923    MFC_LOCK_ASSERT();
1924
1925    delta = *nowp;
1926    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1927
1928    if (x->bm_flags & BW_METER_GEQ) {
1929	/*
1930	 * Processing for ">=" type of bw_meter entry
1931	 */
1932	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1933	    /* Reset the bw_meter entry */
1934	    x->bm_start_time = *nowp;
1935	    x->bm_measured.b_packets = 0;
1936	    x->bm_measured.b_bytes = 0;
1937	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1938	}
1939
1940	/* Record that a packet is received */
1941	x->bm_measured.b_packets++;
1942	x->bm_measured.b_bytes += plen;
1943
1944	/*
1945	 * Test if we should deliver an upcall
1946	 */
1947	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1948	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1949		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1950		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1951		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1952		/* Prepare an upcall for delivery */
1953		bw_meter_prepare_upcall(x, nowp);
1954		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1955	    }
1956	}
1957    } else if (x->bm_flags & BW_METER_LEQ) {
1958	/*
1959	 * Processing for "<=" type of bw_meter entry
1960	 */
1961	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1962	    /*
1963	     * We are behind time with the multicast forwarding table
1964	     * scanning for "<=" type of bw_meter entries, so test now
1965	     * if we should deliver an upcall.
1966	     */
1967	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1968		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1969		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1970		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1971		/* Prepare an upcall for delivery */
1972		bw_meter_prepare_upcall(x, nowp);
1973	    }
1974	    /* Reschedule the bw_meter entry */
1975	    unschedule_bw_meter(x);
1976	    schedule_bw_meter(x, nowp);
1977	}
1978
1979	/* Record that a packet is received */
1980	x->bm_measured.b_packets++;
1981	x->bm_measured.b_bytes += plen;
1982
1983	/*
1984	 * Test if we should restart the measuring interval
1985	 */
1986	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1987	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1988	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1989	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1990	    /* Don't restart the measuring interval */
1991	} else {
1992	    /* Do restart the measuring interval */
1993	    /*
1994	     * XXX: note that we don't unschedule and schedule, because this
1995	     * might be too much overhead per packet. Instead, when we process
1996	     * all entries for a given timer hash bin, we check whether it is
1997	     * really a timeout. If not, we reschedule at that time.
1998	     */
1999	    x->bm_start_time = *nowp;
2000	    x->bm_measured.b_packets = 0;
2001	    x->bm_measured.b_bytes = 0;
2002	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2003	}
2004    }
2005}
2006
2007/*
2008 * Prepare a bandwidth-related upcall
2009 */
2010static void
2011bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2012{
2013    struct timeval delta;
2014    struct bw_upcall *u;
2015
2016    MFC_LOCK_ASSERT();
2017
2018    /*
2019     * Compute the measured time interval
2020     */
2021    delta = *nowp;
2022    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2023
2024    /*
2025     * If there are too many pending upcalls, deliver them now
2026     */
2027    if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2028	bw_upcalls_send();
2029
2030    /*
2031     * Set the bw_upcall entry
2032     */
2033    u = &V_bw_upcalls[V_bw_upcalls_n++];
2034    u->bu_src = x->bm_mfc->mfc_origin;
2035    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2036    u->bu_threshold.b_time = x->bm_threshold.b_time;
2037    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2038    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2039    u->bu_measured.b_time = delta;
2040    u->bu_measured.b_packets = x->bm_measured.b_packets;
2041    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2042    u->bu_flags = 0;
2043    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2044	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2045    if (x->bm_flags & BW_METER_UNIT_BYTES)
2046	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2047    if (x->bm_flags & BW_METER_GEQ)
2048	u->bu_flags |= BW_UPCALL_GEQ;
2049    if (x->bm_flags & BW_METER_LEQ)
2050	u->bu_flags |= BW_UPCALL_LEQ;
2051}
2052
2053/*
2054 * Send the pending bandwidth-related upcalls
2055 */
2056static void
2057bw_upcalls_send(void)
2058{
2059    struct mbuf *m;
2060    int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2061    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2062    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2063				      0,		/* unused2 */
2064				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2065				      0,		/* im_mbz  */
2066				      0,		/* im_vif  */
2067				      0,		/* unused3 */
2068				      { 0 },		/* im_src  */
2069				      { 0 } };		/* im_dst  */
2070
2071    MFC_LOCK_ASSERT();
2072
2073    if (V_bw_upcalls_n == 0)
2074	return;			/* No pending upcalls */
2075
2076    V_bw_upcalls_n = 0;
2077
2078    /*
2079     * Allocate a new mbuf, initialize it with the header and
2080     * the payload for the pending calls.
2081     */
2082    m = m_gethdr(M_NOWAIT, MT_DATA);
2083    if (m == NULL) {
2084	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2085	return;
2086    }
2087
2088    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2089    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2090
2091    /*
2092     * Send the upcalls
2093     * XXX do we need to set the address in k_igmpsrc ?
2094     */
2095    MRTSTAT_INC(mrts_upcalls);
2096    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2097	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2098	MRTSTAT_INC(mrts_upq_sockfull);
2099    }
2100}
2101
2102/*
2103 * Compute the timeout hash value for the bw_meter entries
2104 */
2105#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2106    do {								\
2107	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2108									\
2109	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2110	(hash) = next_timeval.tv_sec;					\
2111	if (next_timeval.tv_usec)					\
2112	    (hash)++; /* XXX: make sure we don't timeout early */	\
2113	(hash) %= BW_METER_BUCKETS;					\
2114    } while (0)
2115
2116/*
2117 * Schedule a timer to process periodically bw_meter entry of type "<="
2118 * by linking the entry in the proper hash bucket.
2119 */
2120static void
2121schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2122{
2123    int time_hash;
2124
2125    MFC_LOCK_ASSERT();
2126
2127    if (!(x->bm_flags & BW_METER_LEQ))
2128	return;		/* XXX: we schedule timers only for "<=" entries */
2129
2130    /*
2131     * Reset the bw_meter entry
2132     */
2133    x->bm_start_time = *nowp;
2134    x->bm_measured.b_packets = 0;
2135    x->bm_measured.b_bytes = 0;
2136    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2137
2138    /*
2139     * Compute the timeout hash value and insert the entry
2140     */
2141    BW_METER_TIMEHASH(x, time_hash);
2142    x->bm_time_next = V_bw_meter_timers[time_hash];
2143    V_bw_meter_timers[time_hash] = x;
2144    x->bm_time_hash = time_hash;
2145}
2146
2147/*
2148 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2149 * by removing the entry from the proper hash bucket.
2150 */
2151static void
2152unschedule_bw_meter(struct bw_meter *x)
2153{
2154    int time_hash;
2155    struct bw_meter *prev, *tmp;
2156
2157    MFC_LOCK_ASSERT();
2158
2159    if (!(x->bm_flags & BW_METER_LEQ))
2160	return;		/* XXX: we schedule timers only for "<=" entries */
2161
2162    /*
2163     * Compute the timeout hash value and delete the entry
2164     */
2165    time_hash = x->bm_time_hash;
2166    if (time_hash >= BW_METER_BUCKETS)
2167	return;		/* Entry was not scheduled */
2168
2169    for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2170	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2171	if (tmp == x)
2172	    break;
2173
2174    if (tmp == NULL)
2175	panic("unschedule_bw_meter: bw_meter entry not found");
2176
2177    if (prev != NULL)
2178	prev->bm_time_next = x->bm_time_next;
2179    else
2180	V_bw_meter_timers[time_hash] = x->bm_time_next;
2181
2182    x->bm_time_next = NULL;
2183    x->bm_time_hash = BW_METER_BUCKETS;
2184}
2185
2186/*
2187 * Process all "<=" type of bw_meter that should be processed now,
2188 * and for each entry prepare an upcall if necessary. Each processed
2189 * entry is rescheduled again for the (periodic) processing.
2190 *
2191 * This is run periodically (once per second normally). On each round,
2192 * all the potentially matching entries are in the hash slot that we are
2193 * looking at.
2194 */
2195static void
2196bw_meter_process()
2197{
2198    uint32_t loops;
2199    int i;
2200    struct timeval now, process_endtime;
2201
2202    microtime(&now);
2203    if (V_last_tv_sec == now.tv_sec)
2204	return;		/* nothing to do */
2205
2206    loops = now.tv_sec - V_last_tv_sec;
2207    V_last_tv_sec = now.tv_sec;
2208    if (loops > BW_METER_BUCKETS)
2209	loops = BW_METER_BUCKETS;
2210
2211    MFC_LOCK();
2212    /*
2213     * Process all bins of bw_meter entries from the one after the last
2214     * processed to the current one. On entry, i points to the last bucket
2215     * visited, so we need to increment i at the beginning of the loop.
2216     */
2217    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2218	struct bw_meter *x, *tmp_list;
2219
2220	if (++i >= BW_METER_BUCKETS)
2221	    i = 0;
2222
2223	/* Disconnect the list of bw_meter entries from the bin */
2224	tmp_list = V_bw_meter_timers[i];
2225	V_bw_meter_timers[i] = NULL;
2226
2227	/* Process the list of bw_meter entries */
2228	while (tmp_list != NULL) {
2229	    x = tmp_list;
2230	    tmp_list = tmp_list->bm_time_next;
2231
2232	    /* Test if the time interval is over */
2233	    process_endtime = x->bm_start_time;
2234	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2235	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2236		/* Not yet: reschedule, but don't reset */
2237		int time_hash;
2238
2239		BW_METER_TIMEHASH(x, time_hash);
2240		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2241		    /*
2242		     * XXX: somehow the bin processing is a bit ahead of time.
2243		     * Put the entry in the next bin.
2244		     */
2245		    if (++time_hash >= BW_METER_BUCKETS)
2246			time_hash = 0;
2247		}
2248		x->bm_time_next = V_bw_meter_timers[time_hash];
2249		V_bw_meter_timers[time_hash] = x;
2250		x->bm_time_hash = time_hash;
2251
2252		continue;
2253	    }
2254
2255	    /*
2256	     * Test if we should deliver an upcall
2257	     */
2258	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2259		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2260		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2261		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2262		/* Prepare an upcall for delivery */
2263		bw_meter_prepare_upcall(x, &now);
2264	    }
2265
2266	    /*
2267	     * Reschedule for next processing
2268	     */
2269	    schedule_bw_meter(x, &now);
2270	}
2271    }
2272
2273    /* Send all upcalls that are pending delivery */
2274    bw_upcalls_send();
2275
2276    MFC_UNLOCK();
2277}
2278
2279/*
2280 * A periodic function for sending all upcalls that are pending delivery
2281 */
2282static void
2283expire_bw_upcalls_send(void *arg)
2284{
2285    CURVNET_SET((struct vnet *) arg);
2286
2287    MFC_LOCK();
2288    bw_upcalls_send();
2289    MFC_UNLOCK();
2290
2291    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2292	curvnet);
2293    CURVNET_RESTORE();
2294}
2295
2296/*
2297 * A periodic function for periodic scanning of the multicast forwarding
2298 * table for processing all "<=" bw_meter entries.
2299 */
2300static void
2301expire_bw_meter_process(void *arg)
2302{
2303    CURVNET_SET((struct vnet *) arg);
2304
2305    if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2306	bw_meter_process();
2307
2308    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2309	curvnet);
2310    CURVNET_RESTORE();
2311}
2312
2313/*
2314 * End of bandwidth monitoring code
2315 */
2316
2317/*
2318 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2319 *
2320 */
2321static int
2322pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2323    struct mfc *rt)
2324{
2325    struct mbuf *mb_copy, *mm;
2326
2327    /*
2328     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2329     * rendezvous point was unspecified, and we were told not to.
2330     */
2331    if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2332	in_nullhost(rt->mfc_rp))
2333	return 0;
2334
2335    mb_copy = pim_register_prepare(ip, m);
2336    if (mb_copy == NULL)
2337	return ENOBUFS;
2338
2339    /*
2340     * Send all the fragments. Note that the mbuf for each fragment
2341     * is freed by the sending machinery.
2342     */
2343    for (mm = mb_copy; mm; mm = mb_copy) {
2344	mb_copy = mm->m_nextpkt;
2345	mm->m_nextpkt = 0;
2346	mm = m_pullup(mm, sizeof(struct ip));
2347	if (mm != NULL) {
2348	    ip = mtod(mm, struct ip *);
2349	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2350		pim_register_send_rp(ip, vifp, mm, rt);
2351	    } else {
2352		pim_register_send_upcall(ip, vifp, mm, rt);
2353	    }
2354	}
2355    }
2356
2357    return 0;
2358}
2359
2360/*
2361 * Return a copy of the data packet that is ready for PIM Register
2362 * encapsulation.
2363 * XXX: Note that in the returned copy the IP header is a valid one.
2364 */
2365static struct mbuf *
2366pim_register_prepare(struct ip *ip, struct mbuf *m)
2367{
2368    struct mbuf *mb_copy = NULL;
2369    int mtu;
2370
2371    /* Take care of delayed checksums */
2372    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2373	in_delayed_cksum(m);
2374	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2375    }
2376
2377    /*
2378     * Copy the old packet & pullup its IP header into the
2379     * new mbuf so we can modify it.
2380     */
2381    mb_copy = m_copypacket(m, M_NOWAIT);
2382    if (mb_copy == NULL)
2383	return NULL;
2384    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2385    if (mb_copy == NULL)
2386	return NULL;
2387
2388    /* take care of the TTL */
2389    ip = mtod(mb_copy, struct ip *);
2390    --ip->ip_ttl;
2391
2392    /* Compute the MTU after the PIM Register encapsulation */
2393    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2394
2395    if (ntohs(ip->ip_len) <= mtu) {
2396	/* Turn the IP header into a valid one */
2397	ip->ip_sum = 0;
2398	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2399    } else {
2400	/* Fragment the packet */
2401	mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2402	if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2403	    m_freem(mb_copy);
2404	    return NULL;
2405	}
2406    }
2407    return mb_copy;
2408}
2409
2410/*
2411 * Send an upcall with the data packet to the user-level process.
2412 */
2413static int
2414pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2415    struct mbuf *mb_copy, struct mfc *rt)
2416{
2417    struct mbuf *mb_first;
2418    int len = ntohs(ip->ip_len);
2419    struct igmpmsg *im;
2420    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2421
2422    VIF_LOCK_ASSERT();
2423
2424    /*
2425     * Add a new mbuf with an upcall header
2426     */
2427    mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2428    if (mb_first == NULL) {
2429	m_freem(mb_copy);
2430	return ENOBUFS;
2431    }
2432    mb_first->m_data += max_linkhdr;
2433    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2434    mb_first->m_len = sizeof(struct igmpmsg);
2435    mb_first->m_next = mb_copy;
2436
2437    /* Send message to routing daemon */
2438    im = mtod(mb_first, struct igmpmsg *);
2439    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2440    im->im_mbz		= 0;
2441    im->im_vif		= vifp - V_viftable;
2442    im->im_src		= ip->ip_src;
2443    im->im_dst		= ip->ip_dst;
2444
2445    k_igmpsrc.sin_addr	= ip->ip_src;
2446
2447    MRTSTAT_INC(mrts_upcalls);
2448
2449    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2450	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2451	MRTSTAT_INC(mrts_upq_sockfull);
2452	return ENOBUFS;
2453    }
2454
2455    /* Keep statistics */
2456    PIMSTAT_INC(pims_snd_registers_msgs);
2457    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2458
2459    return 0;
2460}
2461
2462/*
2463 * Encapsulate the data packet in PIM Register message and send it to the RP.
2464 */
2465static int
2466pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2467    struct mfc *rt)
2468{
2469    struct mbuf *mb_first;
2470    struct ip *ip_outer;
2471    struct pim_encap_pimhdr *pimhdr;
2472    int len = ntohs(ip->ip_len);
2473    vifi_t vifi = rt->mfc_parent;
2474
2475    VIF_LOCK_ASSERT();
2476
2477    if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2478	m_freem(mb_copy);
2479	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2480    }
2481
2482    /*
2483     * Add a new mbuf with the encapsulating header
2484     */
2485    mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2486    if (mb_first == NULL) {
2487	m_freem(mb_copy);
2488	return ENOBUFS;
2489    }
2490    mb_first->m_data += max_linkhdr;
2491    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2492    mb_first->m_next = mb_copy;
2493
2494    mb_first->m_pkthdr.len = len + mb_first->m_len;
2495
2496    /*
2497     * Fill in the encapsulating IP and PIM header
2498     */
2499    ip_outer = mtod(mb_first, struct ip *);
2500    *ip_outer = pim_encap_iphdr;
2501    ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2502	sizeof(pim_encap_pimhdr));
2503    ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2504    ip_outer->ip_dst = rt->mfc_rp;
2505    /*
2506     * Copy the inner header TOS to the outer header, and take care of the
2507     * IP_DF bit.
2508     */
2509    ip_outer->ip_tos = ip->ip_tos;
2510    if (ip->ip_off & htons(IP_DF))
2511	ip_outer->ip_off |= htons(IP_DF);
2512    ip_fillid(ip_outer);
2513    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2514					 + sizeof(pim_encap_iphdr));
2515    *pimhdr = pim_encap_pimhdr;
2516    /* If the iif crosses a border, set the Border-bit */
2517    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2518	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2519
2520    mb_first->m_data += sizeof(pim_encap_iphdr);
2521    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2522    mb_first->m_data -= sizeof(pim_encap_iphdr);
2523
2524    send_packet(vifp, mb_first);
2525
2526    /* Keep statistics */
2527    PIMSTAT_INC(pims_snd_registers_msgs);
2528    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2529
2530    return 0;
2531}
2532
2533/*
2534 * pim_encapcheck() is called by the encap4_input() path at runtime to
2535 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2536 * into the kernel.
2537 */
2538static int
2539pim_encapcheck(const struct mbuf *m __unused, int off __unused,
2540    int proto __unused, void *arg __unused)
2541{
2542
2543    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2544    return (8);		/* claim the datagram. */
2545}
2546
2547/*
2548 * PIM-SMv2 and PIM-DM messages processing.
2549 * Receives and verifies the PIM control messages, and passes them
2550 * up to the listening socket, using rip_input().
2551 * The only message with special processing is the PIM_REGISTER message
2552 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2553 * is passed to if_simloop().
2554 */
2555static int
2556pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
2557{
2558    struct ip *ip = mtod(m, struct ip *);
2559    struct pim *pim;
2560    int iphlen = off;
2561    int minlen;
2562    int datalen = ntohs(ip->ip_len) - iphlen;
2563    int ip_tos;
2564
2565    /* Keep statistics */
2566    PIMSTAT_INC(pims_rcv_total_msgs);
2567    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2568
2569    /*
2570     * Validate lengths
2571     */
2572    if (datalen < PIM_MINLEN) {
2573	PIMSTAT_INC(pims_rcv_tooshort);
2574	CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
2575	    __func__, datalen, ntohl(ip->ip_src.s_addr));
2576	m_freem(m);
2577	return (IPPROTO_DONE);
2578    }
2579
2580    /*
2581     * If the packet is at least as big as a REGISTER, go agead
2582     * and grab the PIM REGISTER header size, to avoid another
2583     * possible m_pullup() later.
2584     *
2585     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2586     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2587     */
2588    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2589    /*
2590     * Get the IP and PIM headers in contiguous memory, and
2591     * possibly the PIM REGISTER header.
2592     */
2593    if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
2594	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2595	return (IPPROTO_DONE);
2596    }
2597
2598    /* m_pullup() may have given us a new mbuf so reset ip. */
2599    ip = mtod(m, struct ip *);
2600    ip_tos = ip->ip_tos;
2601
2602    /* adjust mbuf to point to the PIM header */
2603    m->m_data += iphlen;
2604    m->m_len  -= iphlen;
2605    pim = mtod(m, struct pim *);
2606
2607    /*
2608     * Validate checksum. If PIM REGISTER, exclude the data packet.
2609     *
2610     * XXX: some older PIMv2 implementations don't make this distinction,
2611     * so for compatibility reason perform the checksum over part of the
2612     * message, and if error, then over the whole message.
2613     */
2614    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2615	/* do nothing, checksum okay */
2616    } else if (in_cksum(m, datalen)) {
2617	PIMSTAT_INC(pims_rcv_badsum);
2618	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2619	m_freem(m);
2620	return (IPPROTO_DONE);
2621    }
2622
2623    /* PIM version check */
2624    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2625	PIMSTAT_INC(pims_rcv_badversion);
2626	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2627	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2628	m_freem(m);
2629	return (IPPROTO_DONE);
2630    }
2631
2632    /* restore mbuf back to the outer IP */
2633    m->m_data -= iphlen;
2634    m->m_len  += iphlen;
2635
2636    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2637	/*
2638	 * Since this is a REGISTER, we'll make a copy of the register
2639	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2640	 * routing daemon.
2641	 */
2642	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2643	struct mbuf *mcp;
2644	struct ip *encap_ip;
2645	u_int32_t *reghdr;
2646	struct ifnet *vifp;
2647
2648	VIF_LOCK();
2649	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2650	    VIF_UNLOCK();
2651	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2652		(int)V_reg_vif_num);
2653	    m_freem(m);
2654	    return (IPPROTO_DONE);
2655	}
2656	/* XXX need refcnt? */
2657	vifp = V_viftable[V_reg_vif_num].v_ifp;
2658	VIF_UNLOCK();
2659
2660	/*
2661	 * Validate length
2662	 */
2663	if (datalen < PIM_REG_MINLEN) {
2664	    PIMSTAT_INC(pims_rcv_tooshort);
2665	    PIMSTAT_INC(pims_rcv_badregisters);
2666	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2667	    m_freem(m);
2668	    return (IPPROTO_DONE);
2669	}
2670
2671	reghdr = (u_int32_t *)(pim + 1);
2672	encap_ip = (struct ip *)(reghdr + 1);
2673
2674	CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
2675	    __func__, ntohl(encap_ip->ip_src.s_addr),
2676	    ntohs(encap_ip->ip_len));
2677
2678	/* verify the version number of the inner packet */
2679	if (encap_ip->ip_v != IPVERSION) {
2680	    PIMSTAT_INC(pims_rcv_badregisters);
2681	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2682	    m_freem(m);
2683	    return (IPPROTO_DONE);
2684	}
2685
2686	/* verify the inner packet is destined to a mcast group */
2687	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2688	    PIMSTAT_INC(pims_rcv_badregisters);
2689	    CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
2690		ntohl(encap_ip->ip_dst.s_addr));
2691	    m_freem(m);
2692	    return (IPPROTO_DONE);
2693	}
2694
2695	/* If a NULL_REGISTER, pass it to the daemon */
2696	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2697	    goto pim_input_to_daemon;
2698
2699	/*
2700	 * Copy the TOS from the outer IP header to the inner IP header.
2701	 */
2702	if (encap_ip->ip_tos != ip_tos) {
2703	    /* Outer TOS -> inner TOS */
2704	    encap_ip->ip_tos = ip_tos;
2705	    /* Recompute the inner header checksum. Sigh... */
2706
2707	    /* adjust mbuf to point to the inner IP header */
2708	    m->m_data += (iphlen + PIM_MINLEN);
2709	    m->m_len  -= (iphlen + PIM_MINLEN);
2710
2711	    encap_ip->ip_sum = 0;
2712	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2713
2714	    /* restore mbuf to point back to the outer IP header */
2715	    m->m_data -= (iphlen + PIM_MINLEN);
2716	    m->m_len  += (iphlen + PIM_MINLEN);
2717	}
2718
2719	/*
2720	 * Decapsulate the inner IP packet and loopback to forward it
2721	 * as a normal multicast packet. Also, make a copy of the
2722	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2723	 * to pass to the daemon later, so it can take the appropriate
2724	 * actions (e.g., send back PIM_REGISTER_STOP).
2725	 * XXX: here m->m_data points to the outer IP header.
2726	 */
2727	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
2728	if (mcp == NULL) {
2729	    CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
2730	    m_freem(m);
2731	    return (IPPROTO_DONE);
2732	}
2733
2734	/* Keep statistics */
2735	/* XXX: registers_bytes include only the encap. mcast pkt */
2736	PIMSTAT_INC(pims_rcv_registers_msgs);
2737	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2738
2739	/*
2740	 * forward the inner ip packet; point m_data at the inner ip.
2741	 */
2742	m_adj(m, iphlen + PIM_MINLEN);
2743
2744	CTR4(KTR_IPMF,
2745	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2746	    __func__,
2747	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2748	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2749	    (int)V_reg_vif_num);
2750
2751	/* NB: vifp was collected above; can it change on us? */
2752	if_simloop(vifp, m, dst.sin_family, 0);
2753
2754	/* prepare the register head to send to the mrouting daemon */
2755	m = mcp;
2756    }
2757
2758pim_input_to_daemon:
2759    /*
2760     * Pass the PIM message up to the daemon; if it is a Register message,
2761     * pass the 'head' only up to the daemon. This includes the
2762     * outer IP header, PIM header, PIM-Register header and the
2763     * inner IP header.
2764     * XXX: the outer IP header pkt size of a Register is not adjust to
2765     * reflect the fact that the inner multicast data is truncated.
2766     */
2767    return (rip_input(&m, &off, proto));
2768}
2769
2770static int
2771sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2772{
2773	struct mfc	*rt;
2774	int		 error, i;
2775
2776	if (req->newptr)
2777		return (EPERM);
2778	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2779		return (0);
2780	error = sysctl_wire_old_buffer(req, 0);
2781	if (error)
2782		return (error);
2783
2784	MFC_LOCK();
2785	for (i = 0; i < mfchashsize; i++) {
2786		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2787			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2788			if (error)
2789				goto out_locked;
2790		}
2791	}
2792out_locked:
2793	MFC_UNLOCK();
2794	return (error);
2795}
2796
2797static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
2798    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
2799    "IPv4 Multicast Forwarding Table "
2800    "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2801
2802static int
2803sysctl_viflist(SYSCTL_HANDLER_ARGS)
2804{
2805	int error;
2806
2807	if (req->newptr)
2808		return (EPERM);
2809	if (V_viftable == NULL)		/* XXX unlocked */
2810		return (0);
2811	error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS);
2812	if (error)
2813		return (error);
2814
2815	VIF_LOCK();
2816	error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS);
2817	VIF_UNLOCK();
2818	return (error);
2819}
2820
2821SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
2822    CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2823    sysctl_viflist, "S,vif[MAXVIFS]",
2824    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
2825
2826static void
2827vnet_mroute_init(const void *unused __unused)
2828{
2829
2830	V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2831
2832	V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
2833	    M_MRTABLE, M_WAITOK|M_ZERO);
2834	V_bw_meter_timers = mallocarray(BW_METER_BUCKETS,
2835	    sizeof(*V_bw_meter_timers), M_MRTABLE, M_WAITOK|M_ZERO);
2836	V_bw_upcalls = mallocarray(BW_UPCALLS_MAX, sizeof(*V_bw_upcalls),
2837	    M_MRTABLE, M_WAITOK|M_ZERO);
2838
2839	callout_init(&V_expire_upcalls_ch, 1);
2840	callout_init(&V_bw_upcalls_ch, 1);
2841	callout_init(&V_bw_meter_ch, 1);
2842}
2843
2844VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
2845	NULL);
2846
2847static void
2848vnet_mroute_uninit(const void *unused __unused)
2849{
2850
2851	free(V_bw_upcalls, M_MRTABLE);
2852	free(V_bw_meter_timers, M_MRTABLE);
2853	free(V_viftable, M_MRTABLE);
2854	free(V_nexpire, M_MRTABLE);
2855	V_nexpire = NULL;
2856}
2857
2858VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
2859	vnet_mroute_uninit, NULL);
2860
2861static int
2862ip_mroute_modevent(module_t mod, int type, void *unused)
2863{
2864
2865    switch (type) {
2866    case MOD_LOAD:
2867	MROUTER_LOCK_INIT();
2868
2869	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2870	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2871	if (if_detach_event_tag == NULL) {
2872		printf("ip_mroute: unable to register "
2873		    "ifnet_departure_event handler\n");
2874		MROUTER_LOCK_DESTROY();
2875		return (EINVAL);
2876	}
2877
2878	MFC_LOCK_INIT();
2879	VIF_LOCK_INIT();
2880
2881	mfchashsize = MFCHASHSIZE;
2882	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2883	    !powerof2(mfchashsize)) {
2884		printf("WARNING: %s not a power of 2; using default\n",
2885		    "net.inet.ip.mfchashsize");
2886		mfchashsize = MFCHASHSIZE;
2887	}
2888
2889	pim_squelch_wholepkt = 0;
2890	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2891	    &pim_squelch_wholepkt);
2892
2893	pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
2894	if (pim_encap_cookie == NULL) {
2895		printf("ip_mroute: unable to attach pim encap\n");
2896		VIF_LOCK_DESTROY();
2897		MFC_LOCK_DESTROY();
2898		MROUTER_LOCK_DESTROY();
2899		return (EINVAL);
2900	}
2901
2902	ip_mcast_src = X_ip_mcast_src;
2903	ip_mforward = X_ip_mforward;
2904	ip_mrouter_done = X_ip_mrouter_done;
2905	ip_mrouter_get = X_ip_mrouter_get;
2906	ip_mrouter_set = X_ip_mrouter_set;
2907
2908	ip_rsvp_force_done = X_ip_rsvp_force_done;
2909	ip_rsvp_vif = X_ip_rsvp_vif;
2910
2911	legal_vif_num = X_legal_vif_num;
2912	mrt_ioctl = X_mrt_ioctl;
2913	rsvp_input_p = X_rsvp_input;
2914	break;
2915
2916    case MOD_UNLOAD:
2917	/*
2918	 * Typically module unload happens after the user-level
2919	 * process has shutdown the kernel services (the check
2920	 * below insures someone can't just yank the module out
2921	 * from under a running process).  But if the module is
2922	 * just loaded and then unloaded w/o starting up a user
2923	 * process we still need to cleanup.
2924	 */
2925	MROUTER_LOCK();
2926	if (ip_mrouter_cnt != 0) {
2927	    MROUTER_UNLOCK();
2928	    return (EINVAL);
2929	}
2930	ip_mrouter_unloading = 1;
2931	MROUTER_UNLOCK();
2932
2933	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2934
2935	if (pim_encap_cookie) {
2936	    ip_encap_detach(pim_encap_cookie);
2937	    pim_encap_cookie = NULL;
2938	}
2939
2940	ip_mcast_src = NULL;
2941	ip_mforward = NULL;
2942	ip_mrouter_done = NULL;
2943	ip_mrouter_get = NULL;
2944	ip_mrouter_set = NULL;
2945
2946	ip_rsvp_force_done = NULL;
2947	ip_rsvp_vif = NULL;
2948
2949	legal_vif_num = NULL;
2950	mrt_ioctl = NULL;
2951	rsvp_input_p = NULL;
2952
2953	VIF_LOCK_DESTROY();
2954	MFC_LOCK_DESTROY();
2955	MROUTER_LOCK_DESTROY();
2956	break;
2957
2958    default:
2959	return EOPNOTSUPP;
2960    }
2961    return 0;
2962}
2963
2964static moduledata_t ip_mroutemod = {
2965    "ip_mroute",
2966    ip_mroute_modevent,
2967    0
2968};
2969
2970DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);
2971