1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 * Copyright 2012 ADARA Networks, Inc.
4 * Copyright 2017 Dell EMC Isilon
5 *
6 * Portions of this software were developed by Robert N. M. Watson under
7 * contract to ADARA Networks, Inc.
8 *
9 * Permission to use, copy, modify, and distribute this software and
10 * its documentation for any purpose and without fee is hereby
11 * granted, provided that both the above copyright notice and this
12 * permission notice appear in all copies, that both the above
13 * copyright notice and this permission notice appear in all
14 * supporting documentation, and that the name of M.I.T. not be used
15 * in advertising or publicity pertaining to distribution of the
16 * software without specific, written prior permission.  M.I.T. makes
17 * no representations about the suitability of this software for any
18 * purpose.  It is provided "as is" without express or implied
19 * warranty.
20 *
21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37 * This is sort of sneaky in the implementation, since
38 * we need to pretend to be enough of an Ethernet implementation
39 * to make arp work.  The way we do this is by telling everyone
40 * that we are an Ethernet, and then catch the packets that
41 * ether_output() sends to us via if_transmit(), rewrite them for
42 * use by the real outgoing interface, and ask it to send them.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD$");
47
48#include "opt_inet.h"
49#include "opt_inet6.h"
50#include "opt_kern_tls.h"
51#include "opt_vlan.h"
52#include "opt_ratelimit.h"
53
54#include <sys/param.h>
55#include <sys/eventhandler.h>
56#include <sys/kernel.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/module.h>
61#include <sys/rmlock.h>
62#include <sys/priv.h>
63#include <sys/queue.h>
64#include <sys/socket.h>
65#include <sys/sockio.h>
66#include <sys/sysctl.h>
67#include <sys/systm.h>
68#include <sys/sx.h>
69#include <sys/taskqueue.h>
70
71#include <net/bpf.h>
72#include <net/ethernet.h>
73#include <net/if.h>
74#include <net/if_var.h>
75#include <net/if_clone.h>
76#include <net/if_dl.h>
77#include <net/if_types.h>
78#include <net/if_vlan_var.h>
79#include <net/route.h>
80#include <net/vnet.h>
81
82#ifdef INET
83#include <netinet/in.h>
84#include <netinet/if_ether.h>
85#endif
86
87#ifdef INET6
88/*
89 * XXX: declare here to avoid to include many inet6 related files..
90 * should be more generalized?
91 */
92extern void	nd6_setmtu(struct ifnet *);
93#endif
94
95#define	VLAN_DEF_HWIDTH	4
96#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
97
98#define	UP_AND_RUNNING(ifp) \
99    ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
100
101CK_SLIST_HEAD(ifvlanhead, ifvlan);
102
103struct ifvlantrunk {
104	struct	ifnet   *parent;	/* parent interface of this trunk */
105	struct	mtx	lock;
106#ifdef VLAN_ARRAY
107#define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
108	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
109#else
110	struct	ifvlanhead *hash;	/* dynamic hash-list table */
111	uint16_t	hmask;
112	uint16_t	hwidth;
113#endif
114	int		refcnt;
115};
116
117#if defined(KERN_TLS) || defined(RATELIMIT)
118struct vlan_snd_tag {
119	struct m_snd_tag com;
120	struct m_snd_tag *tag;
121};
122
123static inline struct vlan_snd_tag *
124mst_to_vst(struct m_snd_tag *mst)
125{
126
127	return (__containerof(mst, struct vlan_snd_tag, com));
128}
129#endif
130
131/*
132 * This macro provides a facility to iterate over every vlan on a trunk with
133 * the assumption that none will be added/removed during iteration.
134 */
135#ifdef VLAN_ARRAY
136#define VLAN_FOREACH(_ifv, _trunk) \
137	size_t _i; \
138	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
139		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
140#else /* VLAN_ARRAY */
141#define VLAN_FOREACH(_ifv, _trunk) \
142	struct ifvlan *_next; \
143	size_t _i; \
144	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
145		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
146#endif /* VLAN_ARRAY */
147
148/*
149 * This macro provides a facility to iterate over every vlan on a trunk while
150 * also modifying the number of vlans on the trunk. The iteration continues
151 * until some condition is met or there are no more vlans on the trunk.
152 */
153#ifdef VLAN_ARRAY
154/* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
155#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
156	size_t _i; \
157	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
158		if (((_ifv) = (_trunk)->vlans[_i]))
159#else /* VLAN_ARRAY */
160/*
161 * The hash table case is more complicated. We allow for the hash table to be
162 * modified (i.e. vlans removed) while we are iterating over it. To allow for
163 * this we must restart the iteration every time we "touch" something during
164 * the iteration, since removal will resize the hash table and invalidate our
165 * current position. If acting on the touched element causes the trunk to be
166 * emptied, then iteration also stops.
167 */
168#define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
169	size_t _i; \
170	bool _touch = false; \
171	for (_i = 0; \
172	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
173	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
174		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
175		    (_touch = true))
176#endif /* VLAN_ARRAY */
177
178struct vlan_mc_entry {
179	struct sockaddr_dl		mc_addr;
180	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
181	struct epoch_context		mc_epoch_ctx;
182};
183
184struct ifvlan {
185	struct	ifvlantrunk *ifv_trunk;
186	struct	ifnet *ifv_ifp;
187#define	TRUNK(ifv)	((ifv)->ifv_trunk)
188#define	PARENT(ifv)	(TRUNK(ifv)->parent)
189	void	*ifv_cookie;
190	int	ifv_pflags;	/* special flags we have set on parent */
191	int	ifv_capenable;
192	int	ifv_encaplen;	/* encapsulation length */
193	int	ifv_mtufudge;	/* MTU fudged by this much */
194	int	ifv_mintu;	/* min transmission unit */
195	struct  ether_8021q_tag ifv_qtag;
196#define ifv_proto	ifv_qtag.proto
197#define ifv_vid		ifv_qtag.vid
198#define ifv_pcp		ifv_qtag.pcp
199	struct task lladdr_task;
200	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
201#ifndef VLAN_ARRAY
202	CK_SLIST_ENTRY(ifvlan) ifv_list;
203#endif
204};
205
206/* Special flags we should propagate to parent. */
207static struct {
208	int flag;
209	int (*func)(struct ifnet *, int);
210} vlan_pflags[] = {
211	{IFF_PROMISC, ifpromisc},
212	{IFF_ALLMULTI, if_allmulti},
213	{0, NULL}
214};
215
216extern int vlan_mtag_pcp;
217
218static const char vlanname[] = "vlan";
219static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
220
221static eventhandler_tag ifdetach_tag;
222static eventhandler_tag iflladdr_tag;
223
224/*
225 * if_vlan uses two module-level synchronizations primitives to allow concurrent
226 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
227 * while they are being used for tx/rx. To accomplish this in a way that has
228 * acceptable performance and cooperation with other parts of the network stack
229 * there is a non-sleepable epoch(9) and an sx(9).
230 *
231 * The performance-sensitive paths that warrant using the epoch(9) are
232 * vlan_transmit and vlan_input. Both have to check for the vlan interface's
233 * existence using if_vlantrunk, and being in the network tx/rx paths the use
234 * of an epoch(9) gives a measureable improvement in performance.
235 *
236 * The reason for having an sx(9) is mostly because there are still areas that
237 * must be sleepable and also have safe concurrent access to a vlan interface.
238 * Since the sx(9) exists, it is used by default in most paths unless sleeping
239 * is not permitted, or if it is not clear whether sleeping is permitted.
240 *
241 */
242#define _VLAN_SX_ID ifv_sx
243
244static struct sx _VLAN_SX_ID;
245
246#define VLAN_LOCKING_INIT() \
247	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
248
249#define VLAN_LOCKING_DESTROY() \
250	sx_destroy(&_VLAN_SX_ID)
251
252#define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
253#define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
254#define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
255#define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
256#define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
257#define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
258#define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
259
260/*
261 * We also have a per-trunk mutex that should be acquired when changing
262 * its state.
263 */
264#define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
265#define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
266#define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
267#define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
268#define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
269
270/*
271 * The VLAN_ARRAY substitutes the dynamic hash with a static array
272 * with 4096 entries. In theory this can give a boost in processing,
273 * however in practice it does not. Probably this is because the array
274 * is too big to fit into CPU cache.
275 */
276#ifndef VLAN_ARRAY
277static	void vlan_inithash(struct ifvlantrunk *trunk);
278static	void vlan_freehash(struct ifvlantrunk *trunk);
279static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
280static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
281static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
282static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
283	uint16_t vid);
284#endif
285static	void trunk_destroy(struct ifvlantrunk *trunk);
286
287static	void vlan_init(void *foo);
288static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
289static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
290#if defined(KERN_TLS) || defined(RATELIMIT)
291static	int vlan_snd_tag_alloc(struct ifnet *,
292    union if_snd_tag_alloc_params *, struct m_snd_tag **);
293static	int vlan_snd_tag_modify(struct m_snd_tag *,
294    union if_snd_tag_modify_params *);
295static	int vlan_snd_tag_query(struct m_snd_tag *,
296    union if_snd_tag_query_params *);
297static	void vlan_snd_tag_free(struct m_snd_tag *);
298static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
299static void vlan_ratelimit_query(struct ifnet *,
300    struct if_ratelimit_query_results *);
301#endif
302static	void vlan_qflush(struct ifnet *ifp);
303static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
304    int (*func)(struct ifnet *, int));
305static	int vlan_setflags(struct ifnet *ifp, int status);
306static	int vlan_setmulti(struct ifnet *ifp);
307static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
308static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
309    const struct sockaddr *dst, struct route *ro);
310static	void vlan_unconfig(struct ifnet *ifp);
311static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
312static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
313	uint16_t proto);
314static	void vlan_link_state(struct ifnet *ifp);
315static	void vlan_capabilities(struct ifvlan *ifv);
316static	void vlan_trunk_capabilities(struct ifnet *ifp);
317
318static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
319static	int vlan_clone_match(struct if_clone *, const char *);
320static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
321static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
322
323static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
324static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
325
326static  void vlan_lladdr_fn(void *arg, int pending);
327
328static struct if_clone *vlan_cloner;
329
330#ifdef VIMAGE
331VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
332#define	V_vlan_cloner	VNET(vlan_cloner)
333#endif
334
335static void
336vlan_mc_free(struct epoch_context *ctx)
337{
338	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
339	free(mc, M_VLAN);
340}
341
342#ifndef VLAN_ARRAY
343#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
344
345static void
346vlan_inithash(struct ifvlantrunk *trunk)
347{
348	int i, n;
349
350	/*
351	 * The trunk must not be locked here since we call malloc(M_WAITOK).
352	 * It is OK in case this function is called before the trunk struct
353	 * gets hooked up and becomes visible from other threads.
354	 */
355
356	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
357	    ("%s: hash already initialized", __func__));
358
359	trunk->hwidth = VLAN_DEF_HWIDTH;
360	n = 1 << trunk->hwidth;
361	trunk->hmask = n - 1;
362	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
363	for (i = 0; i < n; i++)
364		CK_SLIST_INIT(&trunk->hash[i]);
365}
366
367static void
368vlan_freehash(struct ifvlantrunk *trunk)
369{
370#ifdef INVARIANTS
371	int i;
372
373	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
374	for (i = 0; i < (1 << trunk->hwidth); i++)
375		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
376		    ("%s: hash table not empty", __func__));
377#endif
378	free(trunk->hash, M_VLAN);
379	trunk->hash = NULL;
380	trunk->hwidth = trunk->hmask = 0;
381}
382
383static int
384vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
385{
386	int i, b;
387	struct ifvlan *ifv2;
388
389	VLAN_XLOCK_ASSERT();
390	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
391
392	b = 1 << trunk->hwidth;
393	i = HASH(ifv->ifv_vid, trunk->hmask);
394	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
395		if (ifv->ifv_vid == ifv2->ifv_vid)
396			return (EEXIST);
397
398	/*
399	 * Grow the hash when the number of vlans exceeds half of the number of
400	 * hash buckets squared. This will make the average linked-list length
401	 * buckets/2.
402	 */
403	if (trunk->refcnt > (b * b) / 2) {
404		vlan_growhash(trunk, 1);
405		i = HASH(ifv->ifv_vid, trunk->hmask);
406	}
407	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
408	trunk->refcnt++;
409
410	return (0);
411}
412
413static int
414vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
415{
416	int i, b;
417	struct ifvlan *ifv2;
418
419	VLAN_XLOCK_ASSERT();
420	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
421
422	b = 1 << trunk->hwidth;
423	i = HASH(ifv->ifv_vid, trunk->hmask);
424	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
425		if (ifv2 == ifv) {
426			trunk->refcnt--;
427			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
428			if (trunk->refcnt < (b * b) / 2)
429				vlan_growhash(trunk, -1);
430			return (0);
431		}
432
433	panic("%s: vlan not found\n", __func__);
434	return (ENOENT); /*NOTREACHED*/
435}
436
437/*
438 * Grow the hash larger or smaller if memory permits.
439 */
440static void
441vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
442{
443	struct ifvlan *ifv;
444	struct ifvlanhead *hash2;
445	int hwidth2, i, j, n, n2;
446
447	VLAN_XLOCK_ASSERT();
448	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
449
450	if (howmuch == 0) {
451		/* Harmless yet obvious coding error */
452		printf("%s: howmuch is 0\n", __func__);
453		return;
454	}
455
456	hwidth2 = trunk->hwidth + howmuch;
457	n = 1 << trunk->hwidth;
458	n2 = 1 << hwidth2;
459	/* Do not shrink the table below the default */
460	if (hwidth2 < VLAN_DEF_HWIDTH)
461		return;
462
463	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
464	if (hash2 == NULL) {
465		printf("%s: out of memory -- hash size not changed\n",
466		    __func__);
467		return;		/* We can live with the old hash table */
468	}
469	for (j = 0; j < n2; j++)
470		CK_SLIST_INIT(&hash2[j]);
471	for (i = 0; i < n; i++)
472		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
473			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
474			j = HASH(ifv->ifv_vid, n2 - 1);
475			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
476		}
477	NET_EPOCH_WAIT();
478	free(trunk->hash, M_VLAN);
479	trunk->hash = hash2;
480	trunk->hwidth = hwidth2;
481	trunk->hmask = n2 - 1;
482
483	if (bootverbose)
484		if_printf(trunk->parent,
485		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
486}
487
488static __inline struct ifvlan *
489vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
490{
491	struct ifvlan *ifv;
492
493	NET_EPOCH_ASSERT();
494
495	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
496		if (ifv->ifv_vid == vid)
497			return (ifv);
498	return (NULL);
499}
500
501#if 0
502/* Debugging code to view the hashtables. */
503static void
504vlan_dumphash(struct ifvlantrunk *trunk)
505{
506	int i;
507	struct ifvlan *ifv;
508
509	for (i = 0; i < (1 << trunk->hwidth); i++) {
510		printf("%d: ", i);
511		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
512			printf("%s ", ifv->ifv_ifp->if_xname);
513		printf("\n");
514	}
515}
516#endif /* 0 */
517#else
518
519static __inline struct ifvlan *
520vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
521{
522
523	return trunk->vlans[vid];
524}
525
526static __inline int
527vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
528{
529
530	if (trunk->vlans[ifv->ifv_vid] != NULL)
531		return EEXIST;
532	trunk->vlans[ifv->ifv_vid] = ifv;
533	trunk->refcnt++;
534
535	return (0);
536}
537
538static __inline int
539vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
540{
541
542	trunk->vlans[ifv->ifv_vid] = NULL;
543	trunk->refcnt--;
544
545	return (0);
546}
547
548static __inline void
549vlan_freehash(struct ifvlantrunk *trunk)
550{
551}
552
553static __inline void
554vlan_inithash(struct ifvlantrunk *trunk)
555{
556}
557
558#endif /* !VLAN_ARRAY */
559
560static void
561trunk_destroy(struct ifvlantrunk *trunk)
562{
563	VLAN_XLOCK_ASSERT();
564
565	vlan_freehash(trunk);
566	trunk->parent->if_vlantrunk = NULL;
567	TRUNK_LOCK_DESTROY(trunk);
568	if_rele(trunk->parent);
569	free(trunk, M_VLAN);
570}
571
572/*
573 * Program our multicast filter. What we're actually doing is
574 * programming the multicast filter of the parent. This has the
575 * side effect of causing the parent interface to receive multicast
576 * traffic that it doesn't really want, which ends up being discarded
577 * later by the upper protocol layers. Unfortunately, there's no way
578 * to avoid this: there really is only one physical interface.
579 */
580static int
581vlan_setmulti(struct ifnet *ifp)
582{
583	struct ifnet		*ifp_p;
584	struct ifmultiaddr	*ifma;
585	struct ifvlan		*sc;
586	struct vlan_mc_entry	*mc;
587	int			error;
588
589	VLAN_XLOCK_ASSERT();
590
591	/* Find the parent. */
592	sc = ifp->if_softc;
593	ifp_p = PARENT(sc);
594
595	CURVNET_SET_QUIET(ifp_p->if_vnet);
596
597	/* First, remove any existing filter entries. */
598	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
599		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
600		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
601		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
602	}
603
604	/* Now program new ones. */
605	IF_ADDR_WLOCK(ifp);
606	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
607		if (ifma->ifma_addr->sa_family != AF_LINK)
608			continue;
609		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
610		if (mc == NULL) {
611			IF_ADDR_WUNLOCK(ifp);
612			return (ENOMEM);
613		}
614		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
615		mc->mc_addr.sdl_index = ifp_p->if_index;
616		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
617	}
618	IF_ADDR_WUNLOCK(ifp);
619	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
620		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
621		    NULL);
622		if (error)
623			return (error);
624	}
625
626	CURVNET_RESTORE();
627	return (0);
628}
629
630/*
631 * A handler for parent interface link layer address changes.
632 * If the parent interface link layer address is changed we
633 * should also change it on all children vlans.
634 */
635static void
636vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
637{
638	struct epoch_tracker et;
639	struct ifvlan *ifv;
640	struct ifnet *ifv_ifp;
641	struct ifvlantrunk *trunk;
642	struct sockaddr_dl *sdl;
643
644	/* Need the epoch since this is run on taskqueue_swi. */
645	NET_EPOCH_ENTER(et);
646	trunk = ifp->if_vlantrunk;
647	if (trunk == NULL) {
648		NET_EPOCH_EXIT(et);
649		return;
650	}
651
652	/*
653	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
654	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
655	 * ioctl calls on the parent garbling the lladdr of the child vlan.
656	 */
657	TRUNK_WLOCK(trunk);
658	VLAN_FOREACH(ifv, trunk) {
659		/*
660		 * Copy new new lladdr into the ifv_ifp, enqueue a task
661		 * to actually call if_setlladdr. if_setlladdr needs to
662		 * be deferred to a taskqueue because it will call into
663		 * the if_vlan ioctl path and try to acquire the global
664		 * lock.
665		 */
666		ifv_ifp = ifv->ifv_ifp;
667		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
668		    ifp->if_addrlen);
669		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
670		sdl->sdl_alen = ifp->if_addrlen;
671		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
672	}
673	TRUNK_WUNLOCK(trunk);
674	NET_EPOCH_EXIT(et);
675}
676
677/*
678 * A handler for network interface departure events.
679 * Track departure of trunks here so that we don't access invalid
680 * pointers or whatever if a trunk is ripped from under us, e.g.,
681 * by ejecting its hot-plug card.  However, if an ifnet is simply
682 * being renamed, then there's no need to tear down the state.
683 */
684static void
685vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
686{
687	struct ifvlan *ifv;
688	struct ifvlantrunk *trunk;
689
690	/* If the ifnet is just being renamed, don't do anything. */
691	if (ifp->if_flags & IFF_RENAMING)
692		return;
693	VLAN_XLOCK();
694	trunk = ifp->if_vlantrunk;
695	if (trunk == NULL) {
696		VLAN_XUNLOCK();
697		return;
698	}
699
700	/*
701	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
702	 * Check trunk pointer after each vlan_unconfig() as it will
703	 * free it and set to NULL after the last vlan was detached.
704	 */
705	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
706	    ifp->if_vlantrunk == NULL)
707		vlan_unconfig_locked(ifv->ifv_ifp, 1);
708
709	/* Trunk should have been destroyed in vlan_unconfig(). */
710	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
711	VLAN_XUNLOCK();
712}
713
714/*
715 * Return the trunk device for a virtual interface.
716 */
717static struct ifnet  *
718vlan_trunkdev(struct ifnet *ifp)
719{
720	struct ifvlan *ifv;
721
722	NET_EPOCH_ASSERT();
723
724	if (ifp->if_type != IFT_L2VLAN)
725		return (NULL);
726
727	ifv = ifp->if_softc;
728	ifp = NULL;
729	if (ifv->ifv_trunk)
730		ifp = PARENT(ifv);
731	return (ifp);
732}
733
734/*
735 * Return the 12-bit VLAN VID for this interface, for use by external
736 * components such as Infiniband.
737 *
738 * XXXRW: Note that the function name here is historical; it should be named
739 * vlan_vid().
740 */
741static int
742vlan_tag(struct ifnet *ifp, uint16_t *vidp)
743{
744	struct ifvlan *ifv;
745
746	if (ifp->if_type != IFT_L2VLAN)
747		return (EINVAL);
748	ifv = ifp->if_softc;
749	*vidp = ifv->ifv_vid;
750	return (0);
751}
752
753static int
754vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
755{
756	struct ifvlan *ifv;
757
758	if (ifp->if_type != IFT_L2VLAN)
759		return (EINVAL);
760	ifv = ifp->if_softc;
761	*pcpp = ifv->ifv_pcp;
762	return (0);
763}
764
765/*
766 * Return a driver specific cookie for this interface.  Synchronization
767 * with setcookie must be provided by the driver.
768 */
769static void *
770vlan_cookie(struct ifnet *ifp)
771{
772	struct ifvlan *ifv;
773
774	if (ifp->if_type != IFT_L2VLAN)
775		return (NULL);
776	ifv = ifp->if_softc;
777	return (ifv->ifv_cookie);
778}
779
780/*
781 * Store a cookie in our softc that drivers can use to store driver
782 * private per-instance data in.
783 */
784static int
785vlan_setcookie(struct ifnet *ifp, void *cookie)
786{
787	struct ifvlan *ifv;
788
789	if (ifp->if_type != IFT_L2VLAN)
790		return (EINVAL);
791	ifv = ifp->if_softc;
792	ifv->ifv_cookie = cookie;
793	return (0);
794}
795
796/*
797 * Return the vlan device present at the specific VID.
798 */
799static struct ifnet *
800vlan_devat(struct ifnet *ifp, uint16_t vid)
801{
802	struct ifvlantrunk *trunk;
803	struct ifvlan *ifv;
804
805	NET_EPOCH_ASSERT();
806
807	trunk = ifp->if_vlantrunk;
808	if (trunk == NULL)
809		return (NULL);
810	ifp = NULL;
811	ifv = vlan_gethash(trunk, vid);
812	if (ifv)
813		ifp = ifv->ifv_ifp;
814	return (ifp);
815}
816
817/*
818 * VLAN support can be loaded as a module.  The only place in the
819 * system that's intimately aware of this is ether_input.  We hook
820 * into this code through vlan_input_p which is defined there and
821 * set here.  No one else in the system should be aware of this so
822 * we use an explicit reference here.
823 */
824extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
825
826/* For if_link_state_change() eyes only... */
827extern	void (*vlan_link_state_p)(struct ifnet *);
828
829static int
830vlan_modevent(module_t mod, int type, void *data)
831{
832
833	switch (type) {
834	case MOD_LOAD:
835		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
836		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
837		if (ifdetach_tag == NULL)
838			return (ENOMEM);
839		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
840		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
841		if (iflladdr_tag == NULL)
842			return (ENOMEM);
843		VLAN_LOCKING_INIT();
844		vlan_input_p = vlan_input;
845		vlan_link_state_p = vlan_link_state;
846		vlan_trunk_cap_p = vlan_trunk_capabilities;
847		vlan_trunkdev_p = vlan_trunkdev;
848		vlan_cookie_p = vlan_cookie;
849		vlan_setcookie_p = vlan_setcookie;
850		vlan_tag_p = vlan_tag;
851		vlan_pcp_p = vlan_pcp;
852		vlan_devat_p = vlan_devat;
853#ifndef VIMAGE
854		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
855		    vlan_clone_create, vlan_clone_destroy);
856#endif
857		if (bootverbose)
858			printf("vlan: initialized, using "
859#ifdef VLAN_ARRAY
860			       "full-size arrays"
861#else
862			       "hash tables with chaining"
863#endif
864
865			       "\n");
866		break;
867	case MOD_UNLOAD:
868#ifndef VIMAGE
869		if_clone_detach(vlan_cloner);
870#endif
871		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
872		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
873		vlan_input_p = NULL;
874		vlan_link_state_p = NULL;
875		vlan_trunk_cap_p = NULL;
876		vlan_trunkdev_p = NULL;
877		vlan_tag_p = NULL;
878		vlan_cookie_p = NULL;
879		vlan_setcookie_p = NULL;
880		vlan_devat_p = NULL;
881		VLAN_LOCKING_DESTROY();
882		if (bootverbose)
883			printf("vlan: unloaded\n");
884		break;
885	default:
886		return (EOPNOTSUPP);
887	}
888	return (0);
889}
890
891static moduledata_t vlan_mod = {
892	"if_vlan",
893	vlan_modevent,
894	0
895};
896
897DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
898MODULE_VERSION(if_vlan, 3);
899
900#ifdef VIMAGE
901static void
902vnet_vlan_init(const void *unused __unused)
903{
904
905	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
906		    vlan_clone_create, vlan_clone_destroy);
907	V_vlan_cloner = vlan_cloner;
908}
909VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
910    vnet_vlan_init, NULL);
911
912static void
913vnet_vlan_uninit(const void *unused __unused)
914{
915
916	if_clone_detach(V_vlan_cloner);
917}
918VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
919    vnet_vlan_uninit, NULL);
920#endif
921
922/*
923 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
924 */
925static struct ifnet *
926vlan_clone_match_ethervid(const char *name, int *vidp)
927{
928	char ifname[IFNAMSIZ];
929	char *cp;
930	struct ifnet *ifp;
931	int vid;
932
933	strlcpy(ifname, name, IFNAMSIZ);
934	if ((cp = strrchr(ifname, '.')) == NULL)
935		return (NULL);
936	*cp = '\0';
937	if ((ifp = ifunit_ref(ifname)) == NULL)
938		return (NULL);
939	/* Parse VID. */
940	if (*++cp == '\0') {
941		if_rele(ifp);
942		return (NULL);
943	}
944	vid = 0;
945	for(; *cp >= '0' && *cp <= '9'; cp++)
946		vid = (vid * 10) + (*cp - '0');
947	if (*cp != '\0') {
948		if_rele(ifp);
949		return (NULL);
950	}
951	if (vidp != NULL)
952		*vidp = vid;
953
954	return (ifp);
955}
956
957static int
958vlan_clone_match(struct if_clone *ifc, const char *name)
959{
960	struct ifnet *ifp;
961	const char *cp;
962
963	ifp = vlan_clone_match_ethervid(name, NULL);
964	if (ifp != NULL) {
965		if_rele(ifp);
966		return (1);
967	}
968
969	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
970		return (0);
971	for (cp = name + 4; *cp != '\0'; cp++) {
972		if (*cp < '0' || *cp > '9')
973			return (0);
974	}
975
976	return (1);
977}
978
979static int
980vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
981{
982	char *dp;
983	bool wildcard = false;
984	bool subinterface = false;
985	int unit;
986	int error;
987	int vid = 0;
988	uint16_t proto = ETHERTYPE_VLAN;
989	struct ifvlan *ifv;
990	struct ifnet *ifp;
991	struct ifnet *p = NULL;
992	struct ifaddr *ifa;
993	struct sockaddr_dl *sdl;
994	struct vlanreq vlr;
995	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
996
997
998	/*
999	 * There are three ways to specify the cloned device:
1000	 * o pass a parameter block with the clone request.
1001	 * o specify parameters in the text of the clone device name
1002	 * o specify no parameters and get an unattached device that
1003	 *   must be configured separately.
1004	 * The first technique is preferred; the latter two are supported
1005	 * for backwards compatibility.
1006	 *
1007	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1008	 * called for.
1009	 */
1010
1011	if (params) {
1012		error = copyin(params, &vlr, sizeof(vlr));
1013		if (error)
1014			return error;
1015		vid = vlr.vlr_tag;
1016		proto = vlr.vlr_proto;
1017
1018#ifdef COMPAT_FREEBSD12
1019		if (proto == 0)
1020			proto = ETHERTYPE_VLAN;
1021#endif
1022		p = ifunit_ref(vlr.vlr_parent);
1023		if (p == NULL)
1024			return (ENXIO);
1025	}
1026
1027	if ((error = ifc_name2unit(name, &unit)) == 0) {
1028
1029		/*
1030		 * vlanX interface. Set wildcard to true if the unit number
1031		 * is not fixed (-1)
1032		 */
1033		wildcard = (unit < 0);
1034	} else {
1035		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1036		if (p_tmp != NULL) {
1037			error = 0;
1038			subinterface = true;
1039			unit = IF_DUNIT_NONE;
1040			wildcard = false;
1041			if (p != NULL) {
1042				if_rele(p_tmp);
1043				if (p != p_tmp)
1044					error = EINVAL;
1045			} else
1046				p = p_tmp;
1047		} else
1048			error = ENXIO;
1049	}
1050
1051	if (error != 0) {
1052		if (p != NULL)
1053			if_rele(p);
1054		return (error);
1055	}
1056
1057	if (!subinterface) {
1058		/* vlanX interface, mark X as busy or allocate new unit # */
1059		error = ifc_alloc_unit(ifc, &unit);
1060		if (error != 0) {
1061			if (p != NULL)
1062				if_rele(p);
1063			return (error);
1064		}
1065	}
1066
1067	/* In the wildcard case, we need to update the name. */
1068	if (wildcard) {
1069		for (dp = name; *dp != '\0'; dp++);
1070		if (snprintf(dp, len - (dp-name), "%d", unit) >
1071		    len - (dp-name) - 1) {
1072			panic("%s: interface name too long", __func__);
1073		}
1074	}
1075
1076	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1077	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1078	if (ifp == NULL) {
1079		if (!subinterface)
1080			ifc_free_unit(ifc, unit);
1081		free(ifv, M_VLAN);
1082		if (p != NULL)
1083			if_rele(p);
1084		return (ENOSPC);
1085	}
1086	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1087	ifp->if_softc = ifv;
1088	/*
1089	 * Set the name manually rather than using if_initname because
1090	 * we don't conform to the default naming convention for interfaces.
1091	 */
1092	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1093	ifp->if_dname = vlanname;
1094	ifp->if_dunit = unit;
1095
1096	ifp->if_init = vlan_init;
1097	ifp->if_transmit = vlan_transmit;
1098	ifp->if_qflush = vlan_qflush;
1099	ifp->if_ioctl = vlan_ioctl;
1100#if defined(KERN_TLS) || defined(RATELIMIT)
1101	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1102	ifp->if_snd_tag_modify = vlan_snd_tag_modify;
1103	ifp->if_snd_tag_query = vlan_snd_tag_query;
1104	ifp->if_snd_tag_free = vlan_snd_tag_free;
1105	ifp->if_next_snd_tag = vlan_next_snd_tag;
1106	ifp->if_ratelimit_query = vlan_ratelimit_query;
1107#endif
1108	ifp->if_flags = VLAN_IFFLAGS;
1109	ether_ifattach(ifp, eaddr);
1110	/* Now undo some of the damage... */
1111	ifp->if_baudrate = 0;
1112	ifp->if_type = IFT_L2VLAN;
1113	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1114	ifa = ifp->if_addr;
1115	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1116	sdl->sdl_type = IFT_L2VLAN;
1117
1118	if (p != NULL) {
1119		error = vlan_config(ifv, p, vid, proto);
1120		if_rele(p);
1121		if (error != 0) {
1122			/*
1123			 * Since we've partially failed, we need to back
1124			 * out all the way, otherwise userland could get
1125			 * confused.  Thus, we destroy the interface.
1126			 */
1127			ether_ifdetach(ifp);
1128			vlan_unconfig(ifp);
1129			if_free(ifp);
1130			if (!subinterface)
1131				ifc_free_unit(ifc, unit);
1132			free(ifv, M_VLAN);
1133
1134			return (error);
1135		}
1136	}
1137
1138	return (0);
1139}
1140
1141static int
1142vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1143{
1144	struct ifvlan *ifv = ifp->if_softc;
1145	int unit = ifp->if_dunit;
1146
1147	if (ifp->if_vlantrunk)
1148		return (EBUSY);
1149
1150	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1151	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1152	/*
1153	 * We should have the only reference to the ifv now, so we can now
1154	 * drain any remaining lladdr task before freeing the ifnet and the
1155	 * ifvlan.
1156	 */
1157	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1158	NET_EPOCH_WAIT();
1159	if_free(ifp);
1160	free(ifv, M_VLAN);
1161	if (unit != IF_DUNIT_NONE)
1162		ifc_free_unit(ifc, unit);
1163
1164	return (0);
1165}
1166
1167/*
1168 * The ifp->if_init entry point for vlan(4) is a no-op.
1169 */
1170static void
1171vlan_init(void *foo __unused)
1172{
1173}
1174
1175/*
1176 * The if_transmit method for vlan(4) interface.
1177 */
1178static int
1179vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1180{
1181	struct ifvlan *ifv;
1182	struct ifnet *p;
1183	int error, len, mcast;
1184
1185	NET_EPOCH_ASSERT();
1186
1187	ifv = ifp->if_softc;
1188	if (TRUNK(ifv) == NULL) {
1189		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1190		m_freem(m);
1191		return (ENETDOWN);
1192	}
1193	p = PARENT(ifv);
1194	len = m->m_pkthdr.len;
1195	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1196
1197	BPF_MTAP(ifp, m);
1198
1199#if defined(KERN_TLS) || defined(RATELIMIT)
1200	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1201		struct vlan_snd_tag *vst;
1202		struct m_snd_tag *mst;
1203
1204		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1205		mst = m->m_pkthdr.snd_tag;
1206		vst = mst_to_vst(mst);
1207		if (vst->tag->ifp != p) {
1208			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1209			m_freem(m);
1210			return (EAGAIN);
1211		}
1212
1213		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1214		m_snd_tag_rele(mst);
1215	}
1216#endif
1217
1218	/*
1219	 * Do not run parent's if_transmit() if the parent is not up,
1220	 * or parent's driver will cause a system crash.
1221	 */
1222	if (!UP_AND_RUNNING(p)) {
1223		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1224		m_freem(m);
1225		return (ENETDOWN);
1226	}
1227
1228	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1229		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1230		return (0);
1231	}
1232
1233	/*
1234	 * Send it, precisely as ether_output() would have.
1235	 */
1236	error = (p->if_transmit)(p, m);
1237	if (error == 0) {
1238		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1239		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1240		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1241	} else
1242		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1243	return (error);
1244}
1245
1246static int
1247vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1248    struct route *ro)
1249{
1250	struct ifvlan *ifv;
1251	struct ifnet *p;
1252
1253	NET_EPOCH_ASSERT();
1254
1255	/*
1256	 * Find the first non-VLAN parent interface.
1257	 */
1258	ifv = ifp->if_softc;
1259	do {
1260		if (TRUNK(ifv) == NULL) {
1261			m_freem(m);
1262			return (ENETDOWN);
1263		}
1264		p = PARENT(ifv);
1265		ifv = p->if_softc;
1266	} while (p->if_type == IFT_L2VLAN);
1267
1268	return p->if_output(ifp, m, dst, ro);
1269}
1270
1271/*
1272 * The ifp->if_qflush entry point for vlan(4) is a no-op.
1273 */
1274static void
1275vlan_qflush(struct ifnet *ifp __unused)
1276{
1277}
1278
1279static void
1280vlan_input(struct ifnet *ifp, struct mbuf *m)
1281{
1282	struct ifvlantrunk *trunk;
1283	struct ifvlan *ifv;
1284	struct m_tag *mtag;
1285	uint16_t vid, tag;
1286
1287	NET_EPOCH_ASSERT();
1288
1289	trunk = ifp->if_vlantrunk;
1290	if (trunk == NULL) {
1291		m_freem(m);
1292		return;
1293	}
1294
1295	if (m->m_flags & M_VLANTAG) {
1296		/*
1297		 * Packet is tagged, but m contains a normal
1298		 * Ethernet frame; the tag is stored out-of-band.
1299		 */
1300		tag = m->m_pkthdr.ether_vtag;
1301		m->m_flags &= ~M_VLANTAG;
1302	} else {
1303		struct ether_vlan_header *evl;
1304
1305		/*
1306		 * Packet is tagged in-band as specified by 802.1q.
1307		 */
1308		switch (ifp->if_type) {
1309		case IFT_ETHER:
1310			if (m->m_len < sizeof(*evl) &&
1311			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1312				if_printf(ifp, "cannot pullup VLAN header\n");
1313				return;
1314			}
1315			evl = mtod(m, struct ether_vlan_header *);
1316			tag = ntohs(evl->evl_tag);
1317
1318			/*
1319			 * Remove the 802.1q header by copying the Ethernet
1320			 * addresses over it and adjusting the beginning of
1321			 * the data in the mbuf.  The encapsulated Ethernet
1322			 * type field is already in place.
1323			 */
1324			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1325			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1326			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1327			break;
1328
1329		default:
1330#ifdef INVARIANTS
1331			panic("%s: %s has unsupported if_type %u",
1332			      __func__, ifp->if_xname, ifp->if_type);
1333#endif
1334			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1335			m_freem(m);
1336			return;
1337		}
1338	}
1339
1340	vid = EVL_VLANOFTAG(tag);
1341
1342	ifv = vlan_gethash(trunk, vid);
1343	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1344		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1345		m_freem(m);
1346		return;
1347	}
1348
1349	if (vlan_mtag_pcp) {
1350		/*
1351		 * While uncommon, it is possible that we will find a 802.1q
1352		 * packet encapsulated inside another packet that also had an
1353		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1354		 * arriving over ethernet.  In that case, we replace the
1355		 * existing 802.1q PCP m_tag value.
1356		 */
1357		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1358		if (mtag == NULL) {
1359			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1360			    sizeof(uint8_t), M_NOWAIT);
1361			if (mtag == NULL) {
1362				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1363				m_freem(m);
1364				return;
1365			}
1366			m_tag_prepend(m, mtag);
1367		}
1368		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1369	}
1370
1371	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1372	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1373
1374	/* Pass it back through the parent's input routine. */
1375	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1376}
1377
1378static void
1379vlan_lladdr_fn(void *arg, int pending __unused)
1380{
1381	struct ifvlan *ifv;
1382	struct ifnet *ifp;
1383
1384	ifv = (struct ifvlan *)arg;
1385	ifp = ifv->ifv_ifp;
1386
1387	CURVNET_SET(ifp->if_vnet);
1388
1389	/* The ifv_ifp already has the lladdr copied in. */
1390	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1391
1392	CURVNET_RESTORE();
1393}
1394
1395static int
1396vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1397	uint16_t proto)
1398{
1399	struct epoch_tracker et;
1400	struct ifvlantrunk *trunk;
1401	struct ifnet *ifp;
1402	int error = 0;
1403
1404	/*
1405	 * We can handle non-ethernet hardware types as long as
1406	 * they handle the tagging and headers themselves.
1407	 */
1408	if (p->if_type != IFT_ETHER &&
1409	    p->if_type != IFT_L2VLAN &&
1410	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1411		return (EPROTONOSUPPORT);
1412	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1413		return (EPROTONOSUPPORT);
1414	/*
1415	 * Don't let the caller set up a VLAN VID with
1416	 * anything except VLID bits.
1417	 * VID numbers 0x0 and 0xFFF are reserved.
1418	 */
1419	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1420		return (EINVAL);
1421	if (ifv->ifv_trunk)
1422		return (EBUSY);
1423
1424	VLAN_XLOCK();
1425	if (p->if_vlantrunk == NULL) {
1426		trunk = malloc(sizeof(struct ifvlantrunk),
1427		    M_VLAN, M_WAITOK | M_ZERO);
1428		vlan_inithash(trunk);
1429		TRUNK_LOCK_INIT(trunk);
1430		TRUNK_WLOCK(trunk);
1431		p->if_vlantrunk = trunk;
1432		trunk->parent = p;
1433		if_ref(trunk->parent);
1434		TRUNK_WUNLOCK(trunk);
1435	} else {
1436		trunk = p->if_vlantrunk;
1437	}
1438
1439	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1440	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1441	error = vlan_inshash(trunk, ifv);
1442	if (error)
1443		goto done;
1444	ifv->ifv_proto = proto;
1445	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1446	ifv->ifv_mintu = ETHERMIN;
1447	ifv->ifv_pflags = 0;
1448	ifv->ifv_capenable = -1;
1449
1450	/*
1451	 * If the parent supports the VLAN_MTU capability,
1452	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1453	 * use it.
1454	 */
1455	if (p->if_capenable & IFCAP_VLAN_MTU) {
1456		/*
1457		 * No need to fudge the MTU since the parent can
1458		 * handle extended frames.
1459		 */
1460		ifv->ifv_mtufudge = 0;
1461	} else {
1462		/*
1463		 * Fudge the MTU by the encapsulation size.  This
1464		 * makes us incompatible with strictly compliant
1465		 * 802.1Q implementations, but allows us to use
1466		 * the feature with other NetBSD implementations,
1467		 * which might still be useful.
1468		 */
1469		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1470	}
1471
1472	ifv->ifv_trunk = trunk;
1473	ifp = ifv->ifv_ifp;
1474	/*
1475	 * Initialize fields from our parent.  This duplicates some
1476	 * work with ether_ifattach() but allows for non-ethernet
1477	 * interfaces to also work.
1478	 */
1479	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1480	ifp->if_baudrate = p->if_baudrate;
1481	ifp->if_input = p->if_input;
1482	ifp->if_resolvemulti = p->if_resolvemulti;
1483	ifp->if_addrlen = p->if_addrlen;
1484	ifp->if_broadcastaddr = p->if_broadcastaddr;
1485	ifp->if_pcp = ifv->ifv_pcp;
1486
1487	/*
1488	 * We wrap the parent's if_output using vlan_output to ensure that it
1489	 * can't become stale.
1490	 */
1491	ifp->if_output = vlan_output;
1492
1493	/*
1494	 * Copy only a selected subset of flags from the parent.
1495	 * Other flags are none of our business.
1496	 */
1497#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1498	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1499	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1500#undef VLAN_COPY_FLAGS
1501
1502	ifp->if_link_state = p->if_link_state;
1503
1504	NET_EPOCH_ENTER(et);
1505	vlan_capabilities(ifv);
1506	NET_EPOCH_EXIT(et);
1507
1508	/*
1509	 * Set up our interface address to reflect the underlying
1510	 * physical interface's.
1511	 */
1512	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1513	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1514	    p->if_addrlen;
1515
1516	/*
1517	 * Do not schedule link address update if it was the same
1518	 * as previous parent's. This helps avoid updating for each
1519	 * associated llentry.
1520	 */
1521	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1522		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1523		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1524	}
1525
1526	/* We are ready for operation now. */
1527	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1528
1529	/* Update flags on the parent, if necessary. */
1530	vlan_setflags(ifp, 1);
1531
1532	/*
1533	 * Configure multicast addresses that may already be
1534	 * joined on the vlan device.
1535	 */
1536	(void)vlan_setmulti(ifp);
1537
1538done:
1539	if (error == 0)
1540		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1541	VLAN_XUNLOCK();
1542
1543	return (error);
1544}
1545
1546static void
1547vlan_unconfig(struct ifnet *ifp)
1548{
1549
1550	VLAN_XLOCK();
1551	vlan_unconfig_locked(ifp, 0);
1552	VLAN_XUNLOCK();
1553}
1554
1555static void
1556vlan_unconfig_locked(struct ifnet *ifp, int departing)
1557{
1558	struct ifvlantrunk *trunk;
1559	struct vlan_mc_entry *mc;
1560	struct ifvlan *ifv;
1561	struct ifnet  *parent;
1562	int error;
1563
1564	VLAN_XLOCK_ASSERT();
1565
1566	ifv = ifp->if_softc;
1567	trunk = ifv->ifv_trunk;
1568	parent = NULL;
1569
1570	if (trunk != NULL) {
1571		parent = trunk->parent;
1572
1573		/*
1574		 * Since the interface is being unconfigured, we need to
1575		 * empty the list of multicast groups that we may have joined
1576		 * while we were alive from the parent's list.
1577		 */
1578		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1579			/*
1580			 * If the parent interface is being detached,
1581			 * all its multicast addresses have already
1582			 * been removed.  Warn about errors if
1583			 * if_delmulti() does fail, but don't abort as
1584			 * all callers expect vlan destruction to
1585			 * succeed.
1586			 */
1587			if (!departing) {
1588				error = if_delmulti(parent,
1589				    (struct sockaddr *)&mc->mc_addr);
1590				if (error)
1591					if_printf(ifp,
1592		    "Failed to delete multicast address from parent: %d\n",
1593					    error);
1594			}
1595			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1596			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1597		}
1598
1599		vlan_setflags(ifp, 0); /* clear special flags on parent */
1600
1601		vlan_remhash(trunk, ifv);
1602		ifv->ifv_trunk = NULL;
1603
1604		/*
1605		 * Check if we were the last.
1606		 */
1607		if (trunk->refcnt == 0) {
1608			parent->if_vlantrunk = NULL;
1609			NET_EPOCH_WAIT();
1610			trunk_destroy(trunk);
1611		}
1612	}
1613
1614	/* Disconnect from parent. */
1615	if (ifv->ifv_pflags)
1616		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1617	ifp->if_mtu = ETHERMTU;
1618	ifp->if_link_state = LINK_STATE_UNKNOWN;
1619	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1620
1621	/*
1622	 * Only dispatch an event if vlan was
1623	 * attached, otherwise there is nothing
1624	 * to cleanup anyway.
1625	 */
1626	if (parent != NULL)
1627		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1628}
1629
1630/* Handle a reference counted flag that should be set on the parent as well */
1631static int
1632vlan_setflag(struct ifnet *ifp, int flag, int status,
1633	     int (*func)(struct ifnet *, int))
1634{
1635	struct ifvlan *ifv;
1636	int error;
1637
1638	VLAN_SXLOCK_ASSERT();
1639
1640	ifv = ifp->if_softc;
1641	status = status ? (ifp->if_flags & flag) : 0;
1642	/* Now "status" contains the flag value or 0 */
1643
1644	/*
1645	 * See if recorded parent's status is different from what
1646	 * we want it to be.  If it is, flip it.  We record parent's
1647	 * status in ifv_pflags so that we won't clear parent's flag
1648	 * we haven't set.  In fact, we don't clear or set parent's
1649	 * flags directly, but get or release references to them.
1650	 * That's why we can be sure that recorded flags still are
1651	 * in accord with actual parent's flags.
1652	 */
1653	if (status != (ifv->ifv_pflags & flag)) {
1654		error = (*func)(PARENT(ifv), status);
1655		if (error)
1656			return (error);
1657		ifv->ifv_pflags &= ~flag;
1658		ifv->ifv_pflags |= status;
1659	}
1660	return (0);
1661}
1662
1663/*
1664 * Handle IFF_* flags that require certain changes on the parent:
1665 * if "status" is true, update parent's flags respective to our if_flags;
1666 * if "status" is false, forcedly clear the flags set on parent.
1667 */
1668static int
1669vlan_setflags(struct ifnet *ifp, int status)
1670{
1671	int error, i;
1672
1673	for (i = 0; vlan_pflags[i].flag; i++) {
1674		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1675				     status, vlan_pflags[i].func);
1676		if (error)
1677			return (error);
1678	}
1679	return (0);
1680}
1681
1682/* Inform all vlans that their parent has changed link state */
1683static void
1684vlan_link_state(struct ifnet *ifp)
1685{
1686	struct epoch_tracker et;
1687	struct ifvlantrunk *trunk;
1688	struct ifvlan *ifv;
1689
1690	NET_EPOCH_ENTER(et);
1691	trunk = ifp->if_vlantrunk;
1692	if (trunk == NULL) {
1693		NET_EPOCH_EXIT(et);
1694		return;
1695	}
1696
1697	TRUNK_WLOCK(trunk);
1698	VLAN_FOREACH(ifv, trunk) {
1699		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1700		if_link_state_change(ifv->ifv_ifp,
1701		    trunk->parent->if_link_state);
1702	}
1703	TRUNK_WUNLOCK(trunk);
1704	NET_EPOCH_EXIT(et);
1705}
1706
1707static void
1708vlan_capabilities(struct ifvlan *ifv)
1709{
1710	struct ifnet *p;
1711	struct ifnet *ifp;
1712	struct ifnet_hw_tsomax hw_tsomax;
1713	int cap = 0, ena = 0, mena;
1714	u_long hwa = 0;
1715
1716	NET_EPOCH_ASSERT();
1717	VLAN_SXLOCK_ASSERT();
1718
1719	p = PARENT(ifv);
1720	ifp = ifv->ifv_ifp;
1721
1722	/* Mask parent interface enabled capabilities disabled by user. */
1723	mena = p->if_capenable & ifv->ifv_capenable;
1724
1725	/*
1726	 * If the parent interface can do checksum offloading
1727	 * on VLANs, then propagate its hardware-assisted
1728	 * checksumming flags. Also assert that checksum
1729	 * offloading requires hardware VLAN tagging.
1730	 */
1731	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1732		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1733	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1734	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1735		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1736		if (ena & IFCAP_TXCSUM)
1737			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1738			    CSUM_UDP | CSUM_SCTP);
1739		if (ena & IFCAP_TXCSUM_IPV6)
1740			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1741			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1742	}
1743
1744	/*
1745	 * If the parent interface can do TSO on VLANs then
1746	 * propagate the hardware-assisted flag. TSO on VLANs
1747	 * does not necessarily require hardware VLAN tagging.
1748	 */
1749	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1750	if_hw_tsomax_common(p, &hw_tsomax);
1751	if_hw_tsomax_update(ifp, &hw_tsomax);
1752	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1753		cap |= p->if_capabilities & IFCAP_TSO;
1754	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1755		ena |= mena & IFCAP_TSO;
1756		if (ena & IFCAP_TSO)
1757			hwa |= p->if_hwassist & CSUM_TSO;
1758	}
1759
1760	/*
1761	 * If the parent interface can do LRO and checksum offloading on
1762	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1763	 * cost nothing, while false negative may lead to some confusions.
1764	 */
1765	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1766		cap |= p->if_capabilities & IFCAP_LRO;
1767	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1768		ena |= p->if_capenable & IFCAP_LRO;
1769
1770	/*
1771	 * If the parent interface can offload TCP connections over VLANs then
1772	 * propagate its TOE capability to the VLAN interface.
1773	 *
1774	 * All TOE drivers in the tree today can deal with VLANs.  If this
1775	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1776	 * with its own bit.
1777	 */
1778#define	IFCAP_VLAN_TOE IFCAP_TOE
1779	if (p->if_capabilities & IFCAP_VLAN_TOE)
1780		cap |= p->if_capabilities & IFCAP_TOE;
1781	if (p->if_capenable & IFCAP_VLAN_TOE) {
1782		TOEDEV(ifp) = TOEDEV(p);
1783		ena |= mena & IFCAP_TOE;
1784	}
1785
1786	/*
1787	 * If the parent interface supports dynamic link state, so does the
1788	 * VLAN interface.
1789	 */
1790	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1791	ena |= (mena & IFCAP_LINKSTATE);
1792
1793#ifdef RATELIMIT
1794	/*
1795	 * If the parent interface supports ratelimiting, so does the
1796	 * VLAN interface.
1797	 */
1798	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1799	ena |= (mena & IFCAP_TXRTLMT);
1800#endif
1801
1802	/*
1803	 * If the parent interface supports unmapped mbufs, so does
1804	 * the VLAN interface.  Note that this should be fine even for
1805	 * interfaces that don't support hardware tagging as headers
1806	 * are prepended in normal mbufs to unmapped mbufs holding
1807	 * payload data.
1808	 */
1809	cap |= (p->if_capabilities & IFCAP_MEXTPG);
1810	ena |= (mena & IFCAP_MEXTPG);
1811
1812	/*
1813	 * If the parent interface can offload encryption and segmentation
1814	 * of TLS records over TCP, propagate it's capability to the VLAN
1815	 * interface.
1816	 *
1817	 * All TLS drivers in the tree today can deal with VLANs.  If
1818	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
1819	 * defined.
1820	 */
1821	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1822		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1823	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1824		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1825
1826	ifp->if_capabilities = cap;
1827	ifp->if_capenable = ena;
1828	ifp->if_hwassist = hwa;
1829}
1830
1831static void
1832vlan_trunk_capabilities(struct ifnet *ifp)
1833{
1834	struct epoch_tracker et;
1835	struct ifvlantrunk *trunk;
1836	struct ifvlan *ifv;
1837
1838	VLAN_SLOCK();
1839	trunk = ifp->if_vlantrunk;
1840	if (trunk == NULL) {
1841		VLAN_SUNLOCK();
1842		return;
1843	}
1844	NET_EPOCH_ENTER(et);
1845	VLAN_FOREACH(ifv, trunk)
1846		vlan_capabilities(ifv);
1847	NET_EPOCH_EXIT(et);
1848	VLAN_SUNLOCK();
1849}
1850
1851static int
1852vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1853{
1854	struct ifnet *p;
1855	struct ifreq *ifr;
1856	struct ifaddr *ifa;
1857	struct ifvlan *ifv;
1858	struct ifvlantrunk *trunk;
1859	struct vlanreq vlr;
1860	int error = 0, oldmtu;
1861
1862	ifr = (struct ifreq *)data;
1863	ifa = (struct ifaddr *) data;
1864	ifv = ifp->if_softc;
1865
1866	switch (cmd) {
1867	case SIOCSIFADDR:
1868		ifp->if_flags |= IFF_UP;
1869#ifdef INET
1870		if (ifa->ifa_addr->sa_family == AF_INET)
1871			arp_ifinit(ifp, ifa);
1872#endif
1873		break;
1874	case SIOCGIFADDR:
1875		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1876		    ifp->if_addrlen);
1877		break;
1878	case SIOCGIFMEDIA:
1879		VLAN_SLOCK();
1880		if (TRUNK(ifv) != NULL) {
1881			p = PARENT(ifv);
1882			if_ref(p);
1883			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1884			if_rele(p);
1885			/* Limit the result to the parent's current config. */
1886			if (error == 0) {
1887				struct ifmediareq *ifmr;
1888
1889				ifmr = (struct ifmediareq *)data;
1890				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1891					ifmr->ifm_count = 1;
1892					error = copyout(&ifmr->ifm_current,
1893						ifmr->ifm_ulist,
1894						sizeof(int));
1895				}
1896			}
1897		} else {
1898			error = EINVAL;
1899		}
1900		VLAN_SUNLOCK();
1901		break;
1902
1903	case SIOCSIFMEDIA:
1904		error = EINVAL;
1905		break;
1906
1907	case SIOCSIFMTU:
1908		/*
1909		 * Set the interface MTU.
1910		 */
1911		VLAN_SLOCK();
1912		trunk = TRUNK(ifv);
1913		if (trunk != NULL) {
1914			TRUNK_WLOCK(trunk);
1915			if (ifr->ifr_mtu >
1916			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1917			    ifr->ifr_mtu <
1918			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1919				error = EINVAL;
1920			else
1921				ifp->if_mtu = ifr->ifr_mtu;
1922			TRUNK_WUNLOCK(trunk);
1923		} else
1924			error = EINVAL;
1925		VLAN_SUNLOCK();
1926		break;
1927
1928	case SIOCSETVLAN:
1929#ifdef VIMAGE
1930		/*
1931		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1932		 * interface to be delegated to a jail without allowing the
1933		 * jail to change what underlying interface/VID it is
1934		 * associated with.  We are not entirely convinced that this
1935		 * is the right way to accomplish that policy goal.
1936		 */
1937		if (ifp->if_vnet != ifp->if_home_vnet) {
1938			error = EPERM;
1939			break;
1940		}
1941#endif
1942		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
1943		if (error)
1944			break;
1945		if (vlr.vlr_parent[0] == '\0') {
1946			vlan_unconfig(ifp);
1947			break;
1948		}
1949		p = ifunit_ref(vlr.vlr_parent);
1950		if (p == NULL) {
1951			error = ENOENT;
1952			break;
1953		}
1954#ifdef COMPAT_FREEBSD12
1955		if (vlr.vlr_proto == 0)
1956			vlr.vlr_proto = ETHERTYPE_VLAN;
1957#endif
1958		oldmtu = ifp->if_mtu;
1959		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
1960		if_rele(p);
1961
1962		/*
1963		 * VLAN MTU may change during addition of the vlandev.
1964		 * If it did, do network layer specific procedure.
1965		 */
1966		if (ifp->if_mtu != oldmtu) {
1967#ifdef INET6
1968			nd6_setmtu(ifp);
1969#endif
1970			rt_updatemtu(ifp);
1971		}
1972		break;
1973
1974	case SIOCGETVLAN:
1975#ifdef VIMAGE
1976		if (ifp->if_vnet != ifp->if_home_vnet) {
1977			error = EPERM;
1978			break;
1979		}
1980#endif
1981		bzero(&vlr, sizeof(vlr));
1982		VLAN_SLOCK();
1983		if (TRUNK(ifv) != NULL) {
1984			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1985			    sizeof(vlr.vlr_parent));
1986			vlr.vlr_tag = ifv->ifv_vid;
1987			vlr.vlr_proto = ifv->ifv_proto;
1988		}
1989		VLAN_SUNLOCK();
1990		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
1991		break;
1992
1993	case SIOCSIFFLAGS:
1994		/*
1995		 * We should propagate selected flags to the parent,
1996		 * e.g., promiscuous mode.
1997		 */
1998		VLAN_XLOCK();
1999		if (TRUNK(ifv) != NULL)
2000			error = vlan_setflags(ifp, 1);
2001		VLAN_XUNLOCK();
2002		break;
2003
2004	case SIOCADDMULTI:
2005	case SIOCDELMULTI:
2006		/*
2007		 * If we don't have a parent, just remember the membership for
2008		 * when we do.
2009		 *
2010		 * XXX We need the rmlock here to avoid sleeping while
2011		 * holding in6_multi_mtx.
2012		 */
2013		VLAN_XLOCK();
2014		trunk = TRUNK(ifv);
2015		if (trunk != NULL)
2016			error = vlan_setmulti(ifp);
2017		VLAN_XUNLOCK();
2018
2019		break;
2020	case SIOCGVLANPCP:
2021#ifdef VIMAGE
2022		if (ifp->if_vnet != ifp->if_home_vnet) {
2023			error = EPERM;
2024			break;
2025		}
2026#endif
2027		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2028		break;
2029
2030	case SIOCSVLANPCP:
2031#ifdef VIMAGE
2032		if (ifp->if_vnet != ifp->if_home_vnet) {
2033			error = EPERM;
2034			break;
2035		}
2036#endif
2037		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2038		if (error)
2039			break;
2040		if (ifr->ifr_vlan_pcp > 7) {
2041			error = EINVAL;
2042			break;
2043		}
2044		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2045		ifp->if_pcp = ifv->ifv_pcp;
2046		/* broadcast event about PCP change */
2047		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2048		break;
2049
2050	case SIOCSIFCAP:
2051		VLAN_SLOCK();
2052		ifv->ifv_capenable = ifr->ifr_reqcap;
2053		trunk = TRUNK(ifv);
2054		if (trunk != NULL) {
2055			struct epoch_tracker et;
2056
2057			NET_EPOCH_ENTER(et);
2058			vlan_capabilities(ifv);
2059			NET_EPOCH_EXIT(et);
2060		}
2061		VLAN_SUNLOCK();
2062		break;
2063
2064	default:
2065		error = EINVAL;
2066		break;
2067	}
2068
2069	return (error);
2070}
2071
2072#if defined(KERN_TLS) || defined(RATELIMIT)
2073static int
2074vlan_snd_tag_alloc(struct ifnet *ifp,
2075    union if_snd_tag_alloc_params *params,
2076    struct m_snd_tag **ppmt)
2077{
2078	struct epoch_tracker et;
2079	struct vlan_snd_tag *vst;
2080	struct ifvlan *ifv;
2081	struct ifnet *parent;
2082	int error;
2083
2084	NET_EPOCH_ENTER(et);
2085	ifv = ifp->if_softc;
2086	if (ifv->ifv_trunk != NULL)
2087		parent = PARENT(ifv);
2088	else
2089		parent = NULL;
2090	if (parent == NULL) {
2091		NET_EPOCH_EXIT(et);
2092		return (EOPNOTSUPP);
2093	}
2094	if_ref(parent);
2095	NET_EPOCH_EXIT(et);
2096
2097	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2098	if (vst == NULL) {
2099		if_rele(parent);
2100		return (ENOMEM);
2101	}
2102
2103	error = m_snd_tag_alloc(parent, params, &vst->tag);
2104	if_rele(parent);
2105	if (error) {
2106		free(vst, M_VLAN);
2107		return (error);
2108	}
2109
2110	m_snd_tag_init(&vst->com, ifp, vst->tag->type);
2111
2112	*ppmt = &vst->com;
2113	return (0);
2114}
2115
2116static struct m_snd_tag *
2117vlan_next_snd_tag(struct m_snd_tag *mst)
2118{
2119	struct vlan_snd_tag *vst;
2120
2121	vst = mst_to_vst(mst);
2122	return (vst->tag);
2123}
2124
2125static int
2126vlan_snd_tag_modify(struct m_snd_tag *mst,
2127    union if_snd_tag_modify_params *params)
2128{
2129	struct vlan_snd_tag *vst;
2130
2131	vst = mst_to_vst(mst);
2132	return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
2133}
2134
2135static int
2136vlan_snd_tag_query(struct m_snd_tag *mst,
2137    union if_snd_tag_query_params *params)
2138{
2139	struct vlan_snd_tag *vst;
2140
2141	vst = mst_to_vst(mst);
2142	return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
2143}
2144
2145static void
2146vlan_snd_tag_free(struct m_snd_tag *mst)
2147{
2148	struct vlan_snd_tag *vst;
2149
2150	vst = mst_to_vst(mst);
2151	m_snd_tag_rele(vst->tag);
2152	free(vst, M_VLAN);
2153}
2154
2155static void
2156vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2157{
2158	/*
2159	 * For vlan, we have an indirect
2160	 * interface. The caller needs to
2161	 * get a ratelimit tag on the actual
2162	 * interface the flow will go on.
2163	 */
2164	q->rate_table = NULL;
2165	q->flags = RT_IS_INDIRECT;
2166	q->max_flows = 0;
2167	q->number_of_rates = 0;
2168}
2169
2170#endif
2171