1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include "opt_ddb.h"
33#include "opt_kstack_usage_prof.h"
34
35#include <sys/param.h>
36#include <sys/bus.h>
37#include <sys/conf.h>
38#include <sys/cpuset.h>
39#include <sys/rtprio.h>
40#include <sys/systm.h>
41#include <sys/interrupt.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/ktr.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mutex.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/epoch.h>
52#include <sys/random.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/smp.h>
56#include <sys/sysctl.h>
57#include <sys/syslog.h>
58#include <sys/unistd.h>
59#include <sys/vmmeter.h>
60#include <machine/atomic.h>
61#include <machine/cpu.h>
62#include <machine/md_var.h>
63#include <machine/smp.h>
64#include <machine/stdarg.h>
65#ifdef DDB
66#include <ddb/ddb.h>
67#include <ddb/db_sym.h>
68#endif
69
70/*
71 * Describe an interrupt thread.  There is one of these per interrupt event.
72 */
73struct intr_thread {
74	struct intr_event *it_event;
75	struct thread *it_thread;	/* Kernel thread. */
76	int	it_flags;		/* (j) IT_* flags. */
77	int	it_need;		/* Needs service. */
78};
79
80/* Interrupt thread flags kept in it_flags */
81#define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
82#define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
83
84struct	intr_entropy {
85	struct	thread *td;
86	uintptr_t event;
87};
88
89struct	intr_event *clk_intr_event;
90struct	intr_event *tty_intr_event;
91void	*vm_ih;
92struct proc *intrproc;
93
94static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
95
96static int intr_storm_threshold = 0;
97SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN,
98    &intr_storm_threshold, 0,
99    "Number of consecutive interrupts before storm protection is enabled");
100static int intr_epoch_batch = 1000;
101SYSCTL_INT(_hw, OID_AUTO, intr_epoch_batch, CTLFLAG_RWTUN, &intr_epoch_batch,
102    0, "Maximum interrupt handler executions without re-entering epoch(9)");
103static TAILQ_HEAD(, intr_event) event_list =
104    TAILQ_HEAD_INITIALIZER(event_list);
105static struct mtx event_lock;
106MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
107
108static void	intr_event_update(struct intr_event *ie);
109static int	intr_event_schedule_thread(struct intr_event *ie);
110static struct intr_thread *ithread_create(const char *name);
111static void	ithread_destroy(struct intr_thread *ithread);
112static void	ithread_execute_handlers(struct proc *p,
113		    struct intr_event *ie);
114static void	ithread_loop(void *);
115static void	ithread_update(struct intr_thread *ithd);
116static void	start_softintr(void *);
117
118/* Map an interrupt type to an ithread priority. */
119u_char
120intr_priority(enum intr_type flags)
121{
122	u_char pri;
123
124	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
125	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
126	switch (flags) {
127	case INTR_TYPE_TTY:
128		pri = PI_TTY;
129		break;
130	case INTR_TYPE_BIO:
131		pri = PI_DISK;
132		break;
133	case INTR_TYPE_NET:
134		pri = PI_NET;
135		break;
136	case INTR_TYPE_CAM:
137		pri = PI_DISK;
138		break;
139	case INTR_TYPE_AV:
140		pri = PI_AV;
141		break;
142	case INTR_TYPE_CLK:
143		pri = PI_REALTIME;
144		break;
145	case INTR_TYPE_MISC:
146		pri = PI_DULL;          /* don't care */
147		break;
148	default:
149		/* We didn't specify an interrupt level. */
150		panic("intr_priority: no interrupt type in flags");
151	}
152
153	return pri;
154}
155
156/*
157 * Update an ithread based on the associated intr_event.
158 */
159static void
160ithread_update(struct intr_thread *ithd)
161{
162	struct intr_event *ie;
163	struct thread *td;
164	u_char pri;
165
166	ie = ithd->it_event;
167	td = ithd->it_thread;
168	mtx_assert(&ie->ie_lock, MA_OWNED);
169
170	/* Determine the overall priority of this event. */
171	if (CK_SLIST_EMPTY(&ie->ie_handlers))
172		pri = PRI_MAX_ITHD;
173	else
174		pri = CK_SLIST_FIRST(&ie->ie_handlers)->ih_pri;
175
176	/* Update name and priority. */
177	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
178#ifdef KTR
179	sched_clear_tdname(td);
180#endif
181	thread_lock(td);
182	sched_prio(td, pri);
183	thread_unlock(td);
184}
185
186/*
187 * Regenerate the full name of an interrupt event and update its priority.
188 */
189static void
190intr_event_update(struct intr_event *ie)
191{
192	struct intr_handler *ih;
193	char *last;
194	int missed, space, flags;
195
196	/* Start off with no entropy and just the name of the event. */
197	mtx_assert(&ie->ie_lock, MA_OWNED);
198	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
199	flags = 0;
200	missed = 0;
201	space = 1;
202
203	/* Run through all the handlers updating values. */
204	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
205		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
206		    sizeof(ie->ie_fullname)) {
207			strcat(ie->ie_fullname, " ");
208			strcat(ie->ie_fullname, ih->ih_name);
209			space = 0;
210		} else
211			missed++;
212		flags |= ih->ih_flags;
213	}
214	ie->ie_hflags = flags;
215
216	/*
217	 * If there is only one handler and its name is too long, just copy in
218	 * as much of the end of the name (includes the unit number) as will
219	 * fit.  Otherwise, we have multiple handlers and not all of the names
220	 * will fit.  Add +'s to indicate missing names.  If we run out of room
221	 * and still have +'s to add, change the last character from a + to a *.
222	 */
223	if (missed == 1 && space == 1) {
224		ih = CK_SLIST_FIRST(&ie->ie_handlers);
225		missed = strlen(ie->ie_fullname) + strlen(ih->ih_name) + 2 -
226		    sizeof(ie->ie_fullname);
227		strcat(ie->ie_fullname, (missed == 0) ? " " : "-");
228		strcat(ie->ie_fullname, &ih->ih_name[missed]);
229		missed = 0;
230	}
231	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
232	while (missed-- > 0) {
233		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
234			if (*last == '+') {
235				*last = '*';
236				break;
237			} else
238				*last = '+';
239		} else if (space) {
240			strcat(ie->ie_fullname, " +");
241			space = 0;
242		} else
243			strcat(ie->ie_fullname, "+");
244	}
245
246	/*
247	 * If this event has an ithread, update it's priority and
248	 * name.
249	 */
250	if (ie->ie_thread != NULL)
251		ithread_update(ie->ie_thread);
252	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
253}
254
255int
256intr_event_create(struct intr_event **event, void *source, int flags, int irq,
257    void (*pre_ithread)(void *), void (*post_ithread)(void *),
258    void (*post_filter)(void *), int (*assign_cpu)(void *, int),
259    const char *fmt, ...)
260{
261	struct intr_event *ie;
262	va_list ap;
263
264	/* The only valid flag during creation is IE_SOFT. */
265	if ((flags & ~IE_SOFT) != 0)
266		return (EINVAL);
267	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
268	ie->ie_source = source;
269	ie->ie_pre_ithread = pre_ithread;
270	ie->ie_post_ithread = post_ithread;
271	ie->ie_post_filter = post_filter;
272	ie->ie_assign_cpu = assign_cpu;
273	ie->ie_flags = flags;
274	ie->ie_irq = irq;
275	ie->ie_cpu = NOCPU;
276	CK_SLIST_INIT(&ie->ie_handlers);
277	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
278
279	va_start(ap, fmt);
280	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
281	va_end(ap);
282	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
283	mtx_lock(&event_lock);
284	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
285	mtx_unlock(&event_lock);
286	if (event != NULL)
287		*event = ie;
288	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
289	return (0);
290}
291
292/*
293 * Bind an interrupt event to the specified CPU.  Note that not all
294 * platforms support binding an interrupt to a CPU.  For those
295 * platforms this request will fail.  Using a cpu id of NOCPU unbinds
296 * the interrupt event.
297 */
298static int
299_intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread)
300{
301	lwpid_t id;
302	int error;
303
304	/* Need a CPU to bind to. */
305	if (cpu != NOCPU && CPU_ABSENT(cpu))
306		return (EINVAL);
307
308	if (ie->ie_assign_cpu == NULL)
309		return (EOPNOTSUPP);
310
311	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
312	if (error)
313		return (error);
314
315	/*
316	 * If we have any ithreads try to set their mask first to verify
317	 * permissions, etc.
318	 */
319	if (bindithread) {
320		mtx_lock(&ie->ie_lock);
321		if (ie->ie_thread != NULL) {
322			id = ie->ie_thread->it_thread->td_tid;
323			mtx_unlock(&ie->ie_lock);
324			error = cpuset_setithread(id, cpu);
325			if (error)
326				return (error);
327		} else
328			mtx_unlock(&ie->ie_lock);
329	}
330	if (bindirq)
331		error = ie->ie_assign_cpu(ie->ie_source, cpu);
332	if (error) {
333		if (bindithread) {
334			mtx_lock(&ie->ie_lock);
335			if (ie->ie_thread != NULL) {
336				cpu = ie->ie_cpu;
337				id = ie->ie_thread->it_thread->td_tid;
338				mtx_unlock(&ie->ie_lock);
339				(void)cpuset_setithread(id, cpu);
340			} else
341				mtx_unlock(&ie->ie_lock);
342		}
343		return (error);
344	}
345
346	if (bindirq) {
347		mtx_lock(&ie->ie_lock);
348		ie->ie_cpu = cpu;
349		mtx_unlock(&ie->ie_lock);
350	}
351
352	return (error);
353}
354
355/*
356 * Bind an interrupt event to the specified CPU.  For supported platforms, any
357 * associated ithreads as well as the primary interrupt context will be bound
358 * to the specificed CPU.
359 */
360int
361intr_event_bind(struct intr_event *ie, int cpu)
362{
363
364	return (_intr_event_bind(ie, cpu, true, true));
365}
366
367/*
368 * Bind an interrupt event to the specified CPU, but do not bind associated
369 * ithreads.
370 */
371int
372intr_event_bind_irqonly(struct intr_event *ie, int cpu)
373{
374
375	return (_intr_event_bind(ie, cpu, true, false));
376}
377
378/*
379 * Bind an interrupt event's ithread to the specified CPU.
380 */
381int
382intr_event_bind_ithread(struct intr_event *ie, int cpu)
383{
384
385	return (_intr_event_bind(ie, cpu, false, true));
386}
387
388/*
389 * Bind an interrupt event's ithread to the specified cpuset.
390 */
391int
392intr_event_bind_ithread_cpuset(struct intr_event *ie, cpuset_t *cs)
393{
394	lwpid_t id;
395
396	mtx_lock(&ie->ie_lock);
397	if (ie->ie_thread != NULL) {
398		id = ie->ie_thread->it_thread->td_tid;
399		mtx_unlock(&ie->ie_lock);
400		return (cpuset_setthread(id, cs));
401	} else {
402		mtx_unlock(&ie->ie_lock);
403	}
404	return (ENODEV);
405}
406
407static struct intr_event *
408intr_lookup(int irq)
409{
410	struct intr_event *ie;
411
412	mtx_lock(&event_lock);
413	TAILQ_FOREACH(ie, &event_list, ie_list)
414		if (ie->ie_irq == irq &&
415		    (ie->ie_flags & IE_SOFT) == 0 &&
416		    CK_SLIST_FIRST(&ie->ie_handlers) != NULL)
417			break;
418	mtx_unlock(&event_lock);
419	return (ie);
420}
421
422int
423intr_setaffinity(int irq, int mode, void *m)
424{
425	struct intr_event *ie;
426	cpuset_t *mask;
427	int cpu, n;
428
429	mask = m;
430	cpu = NOCPU;
431	/*
432	 * If we're setting all cpus we can unbind.  Otherwise make sure
433	 * only one cpu is in the set.
434	 */
435	if (CPU_CMP(cpuset_root, mask)) {
436		for (n = 0; n < CPU_SETSIZE; n++) {
437			if (!CPU_ISSET(n, mask))
438				continue;
439			if (cpu != NOCPU)
440				return (EINVAL);
441			cpu = n;
442		}
443	}
444	ie = intr_lookup(irq);
445	if (ie == NULL)
446		return (ESRCH);
447	switch (mode) {
448	case CPU_WHICH_IRQ:
449		return (intr_event_bind(ie, cpu));
450	case CPU_WHICH_INTRHANDLER:
451		return (intr_event_bind_irqonly(ie, cpu));
452	case CPU_WHICH_ITHREAD:
453		return (intr_event_bind_ithread(ie, cpu));
454	default:
455		return (EINVAL);
456	}
457}
458
459int
460intr_getaffinity(int irq, int mode, void *m)
461{
462	struct intr_event *ie;
463	struct thread *td;
464	struct proc *p;
465	cpuset_t *mask;
466	lwpid_t id;
467	int error;
468
469	mask = m;
470	ie = intr_lookup(irq);
471	if (ie == NULL)
472		return (ESRCH);
473
474	error = 0;
475	CPU_ZERO(mask);
476	switch (mode) {
477	case CPU_WHICH_IRQ:
478	case CPU_WHICH_INTRHANDLER:
479		mtx_lock(&ie->ie_lock);
480		if (ie->ie_cpu == NOCPU)
481			CPU_COPY(cpuset_root, mask);
482		else
483			CPU_SET(ie->ie_cpu, mask);
484		mtx_unlock(&ie->ie_lock);
485		break;
486	case CPU_WHICH_ITHREAD:
487		mtx_lock(&ie->ie_lock);
488		if (ie->ie_thread == NULL) {
489			mtx_unlock(&ie->ie_lock);
490			CPU_COPY(cpuset_root, mask);
491		} else {
492			id = ie->ie_thread->it_thread->td_tid;
493			mtx_unlock(&ie->ie_lock);
494			error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL);
495			if (error != 0)
496				return (error);
497			CPU_COPY(&td->td_cpuset->cs_mask, mask);
498			PROC_UNLOCK(p);
499		}
500	default:
501		return (EINVAL);
502	}
503	return (0);
504}
505
506int
507intr_event_destroy(struct intr_event *ie)
508{
509
510	mtx_lock(&event_lock);
511	mtx_lock(&ie->ie_lock);
512	if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
513		mtx_unlock(&ie->ie_lock);
514		mtx_unlock(&event_lock);
515		return (EBUSY);
516	}
517	TAILQ_REMOVE(&event_list, ie, ie_list);
518#ifndef notyet
519	if (ie->ie_thread != NULL) {
520		ithread_destroy(ie->ie_thread);
521		ie->ie_thread = NULL;
522	}
523#endif
524	mtx_unlock(&ie->ie_lock);
525	mtx_unlock(&event_lock);
526	mtx_destroy(&ie->ie_lock);
527	free(ie, M_ITHREAD);
528	return (0);
529}
530
531static struct intr_thread *
532ithread_create(const char *name)
533{
534	struct intr_thread *ithd;
535	struct thread *td;
536	int error;
537
538	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
539
540	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
541		    &td, RFSTOPPED | RFHIGHPID,
542		    0, "intr", "%s", name);
543	if (error)
544		panic("kproc_create() failed with %d", error);
545	thread_lock(td);
546	sched_class(td, PRI_ITHD);
547	TD_SET_IWAIT(td);
548	thread_unlock(td);
549	td->td_pflags |= TDP_ITHREAD;
550	ithd->it_thread = td;
551	CTR2(KTR_INTR, "%s: created %s", __func__, name);
552	return (ithd);
553}
554
555static void
556ithread_destroy(struct intr_thread *ithread)
557{
558	struct thread *td;
559
560	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
561	td = ithread->it_thread;
562	thread_lock(td);
563	ithread->it_flags |= IT_DEAD;
564	if (TD_AWAITING_INTR(td)) {
565		TD_CLR_IWAIT(td);
566		sched_add(td, SRQ_INTR);
567	} else
568		thread_unlock(td);
569}
570
571int
572intr_event_add_handler(struct intr_event *ie, const char *name,
573    driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
574    enum intr_type flags, void **cookiep)
575{
576	struct intr_handler *ih, *temp_ih;
577	struct intr_handler **prevptr;
578	struct intr_thread *it;
579
580	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
581		return (EINVAL);
582
583	/* Allocate and populate an interrupt handler structure. */
584	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
585	ih->ih_filter = filter;
586	ih->ih_handler = handler;
587	ih->ih_argument = arg;
588	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
589	ih->ih_event = ie;
590	ih->ih_pri = pri;
591	if (flags & INTR_EXCL)
592		ih->ih_flags = IH_EXCLUSIVE;
593	if (flags & INTR_MPSAFE)
594		ih->ih_flags |= IH_MPSAFE;
595	if (flags & INTR_ENTROPY)
596		ih->ih_flags |= IH_ENTROPY;
597	if (flags & INTR_TYPE_NET)
598		ih->ih_flags |= IH_NET;
599
600	/* We can only have one exclusive handler in a event. */
601	mtx_lock(&ie->ie_lock);
602	if (!CK_SLIST_EMPTY(&ie->ie_handlers)) {
603		if ((flags & INTR_EXCL) ||
604		    (CK_SLIST_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
605			mtx_unlock(&ie->ie_lock);
606			free(ih, M_ITHREAD);
607			return (EINVAL);
608		}
609	}
610
611	/* Create a thread if we need one. */
612	while (ie->ie_thread == NULL && handler != NULL) {
613		if (ie->ie_flags & IE_ADDING_THREAD)
614			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
615		else {
616			ie->ie_flags |= IE_ADDING_THREAD;
617			mtx_unlock(&ie->ie_lock);
618			it = ithread_create("intr: newborn");
619			mtx_lock(&ie->ie_lock);
620			ie->ie_flags &= ~IE_ADDING_THREAD;
621			ie->ie_thread = it;
622			it->it_event = ie;
623			ithread_update(it);
624			wakeup(ie);
625		}
626	}
627
628	/* Add the new handler to the event in priority order. */
629	CK_SLIST_FOREACH_PREVPTR(temp_ih, prevptr, &ie->ie_handlers, ih_next) {
630		if (temp_ih->ih_pri > ih->ih_pri)
631			break;
632	}
633	CK_SLIST_INSERT_PREVPTR(prevptr, temp_ih, ih, ih_next);
634
635	intr_event_update(ie);
636
637	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
638	    ie->ie_name);
639	mtx_unlock(&ie->ie_lock);
640
641	if (cookiep != NULL)
642		*cookiep = ih;
643	return (0);
644}
645
646/*
647 * Append a description preceded by a ':' to the name of the specified
648 * interrupt handler.
649 */
650int
651intr_event_describe_handler(struct intr_event *ie, void *cookie,
652    const char *descr)
653{
654	struct intr_handler *ih;
655	size_t space;
656	char *start;
657
658	mtx_lock(&ie->ie_lock);
659#ifdef INVARIANTS
660	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
661		if (ih == cookie)
662			break;
663	}
664	if (ih == NULL) {
665		mtx_unlock(&ie->ie_lock);
666		panic("handler %p not found in interrupt event %p", cookie, ie);
667	}
668#endif
669	ih = cookie;
670
671	/*
672	 * Look for an existing description by checking for an
673	 * existing ":".  This assumes device names do not include
674	 * colons.  If one is found, prepare to insert the new
675	 * description at that point.  If one is not found, find the
676	 * end of the name to use as the insertion point.
677	 */
678	start = strchr(ih->ih_name, ':');
679	if (start == NULL)
680		start = strchr(ih->ih_name, 0);
681
682	/*
683	 * See if there is enough remaining room in the string for the
684	 * description + ":".  The "- 1" leaves room for the trailing
685	 * '\0'.  The "+ 1" accounts for the colon.
686	 */
687	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
688	if (strlen(descr) + 1 > space) {
689		mtx_unlock(&ie->ie_lock);
690		return (ENOSPC);
691	}
692
693	/* Append a colon followed by the description. */
694	*start = ':';
695	strcpy(start + 1, descr);
696	intr_event_update(ie);
697	mtx_unlock(&ie->ie_lock);
698	return (0);
699}
700
701/*
702 * Return the ie_source field from the intr_event an intr_handler is
703 * associated with.
704 */
705void *
706intr_handler_source(void *cookie)
707{
708	struct intr_handler *ih;
709	struct intr_event *ie;
710
711	ih = (struct intr_handler *)cookie;
712	if (ih == NULL)
713		return (NULL);
714	ie = ih->ih_event;
715	KASSERT(ie != NULL,
716	    ("interrupt handler \"%s\" has a NULL interrupt event",
717	    ih->ih_name));
718	return (ie->ie_source);
719}
720
721/*
722 * If intr_event_handle() is running in the ISR context at the time of the call,
723 * then wait for it to complete.
724 */
725static void
726intr_event_barrier(struct intr_event *ie)
727{
728	int phase;
729
730	mtx_assert(&ie->ie_lock, MA_OWNED);
731	phase = ie->ie_phase;
732
733	/*
734	 * Switch phase to direct future interrupts to the other active counter.
735	 * Make sure that any preceding stores are visible before the switch.
736	 */
737	KASSERT(ie->ie_active[!phase] == 0, ("idle phase has activity"));
738	atomic_store_rel_int(&ie->ie_phase, !phase);
739
740	/*
741	 * This code cooperates with wait-free iteration of ie_handlers
742	 * in intr_event_handle.
743	 * Make sure that the removal and the phase update are not reordered
744	 * with the active count check.
745	 * Note that no combination of acquire and release fences can provide
746	 * that guarantee as Store->Load sequences can always be reordered.
747	 */
748	atomic_thread_fence_seq_cst();
749
750	/*
751	 * Now wait on the inactive phase.
752	 * The acquire fence is needed so that that all post-barrier accesses
753	 * are after the check.
754	 */
755	while (ie->ie_active[phase] > 0)
756		cpu_spinwait();
757	atomic_thread_fence_acq();
758}
759
760static void
761intr_handler_barrier(struct intr_handler *handler)
762{
763	struct intr_event *ie;
764
765	ie = handler->ih_event;
766	mtx_assert(&ie->ie_lock, MA_OWNED);
767	KASSERT((handler->ih_flags & IH_DEAD) == 0,
768	    ("update for a removed handler"));
769
770	if (ie->ie_thread == NULL) {
771		intr_event_barrier(ie);
772		return;
773	}
774	if ((handler->ih_flags & IH_CHANGED) == 0) {
775		handler->ih_flags |= IH_CHANGED;
776		intr_event_schedule_thread(ie);
777	}
778	while ((handler->ih_flags & IH_CHANGED) != 0)
779		msleep(handler, &ie->ie_lock, 0, "ih_barr", 0);
780}
781
782/*
783 * Sleep until an ithread finishes executing an interrupt handler.
784 *
785 * XXX Doesn't currently handle interrupt filters or fast interrupt
786 * handlers. This is intended for LinuxKPI drivers only.
787 * Do not use in BSD code.
788 */
789void
790_intr_drain(int irq)
791{
792	struct intr_event *ie;
793	struct intr_thread *ithd;
794	struct thread *td;
795
796	ie = intr_lookup(irq);
797	if (ie == NULL)
798		return;
799	if (ie->ie_thread == NULL)
800		return;
801	ithd = ie->ie_thread;
802	td = ithd->it_thread;
803	/*
804	 * We set the flag and wait for it to be cleared to avoid
805	 * long delays with potentially busy interrupt handlers
806	 * were we to only sample TD_AWAITING_INTR() every tick.
807	 */
808	thread_lock(td);
809	if (!TD_AWAITING_INTR(td)) {
810		ithd->it_flags |= IT_WAIT;
811		while (ithd->it_flags & IT_WAIT) {
812			thread_unlock(td);
813			pause("idrain", 1);
814			thread_lock(td);
815		}
816	}
817	thread_unlock(td);
818	return;
819}
820
821int
822intr_event_remove_handler(void *cookie)
823{
824	struct intr_handler *handler = (struct intr_handler *)cookie;
825	struct intr_event *ie;
826	struct intr_handler *ih;
827	struct intr_handler **prevptr;
828#ifdef notyet
829	int dead;
830#endif
831
832	if (handler == NULL)
833		return (EINVAL);
834	ie = handler->ih_event;
835	KASSERT(ie != NULL,
836	    ("interrupt handler \"%s\" has a NULL interrupt event",
837	    handler->ih_name));
838
839	mtx_lock(&ie->ie_lock);
840	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
841	    ie->ie_name);
842	CK_SLIST_FOREACH_PREVPTR(ih, prevptr, &ie->ie_handlers, ih_next) {
843		if (ih == handler)
844			break;
845	}
846	if (ih == NULL) {
847		panic("interrupt handler \"%s\" not found in "
848		    "interrupt event \"%s\"", handler->ih_name, ie->ie_name);
849	}
850
851	/*
852	 * If there is no ithread, then directly remove the handler.  Note that
853	 * intr_event_handle() iterates ie_handlers in a lock-less fashion, so
854	 * care needs to be taken to keep ie_handlers consistent and to free
855	 * the removed handler only when ie_handlers is quiescent.
856	 */
857	if (ie->ie_thread == NULL) {
858		CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next);
859		intr_event_barrier(ie);
860		intr_event_update(ie);
861		mtx_unlock(&ie->ie_lock);
862		free(handler, M_ITHREAD);
863		return (0);
864	}
865
866	/*
867	 * Let the interrupt thread do the job.
868	 * The interrupt source is disabled when the interrupt thread is
869	 * running, so it does not have to worry about interaction with
870	 * intr_event_handle().
871	 */
872	KASSERT((handler->ih_flags & IH_DEAD) == 0,
873	    ("duplicate handle remove"));
874	handler->ih_flags |= IH_DEAD;
875	intr_event_schedule_thread(ie);
876	while (handler->ih_flags & IH_DEAD)
877		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
878	intr_event_update(ie);
879
880#ifdef notyet
881	/*
882	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
883	 * this could lead to races of stale data when servicing an
884	 * interrupt.
885	 */
886	dead = 1;
887	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
888		if (ih->ih_handler != NULL) {
889			dead = 0;
890			break;
891		}
892	}
893	if (dead) {
894		ithread_destroy(ie->ie_thread);
895		ie->ie_thread = NULL;
896	}
897#endif
898	mtx_unlock(&ie->ie_lock);
899	free(handler, M_ITHREAD);
900	return (0);
901}
902
903int
904intr_event_suspend_handler(void *cookie)
905{
906	struct intr_handler *handler = (struct intr_handler *)cookie;
907	struct intr_event *ie;
908
909	if (handler == NULL)
910		return (EINVAL);
911	ie = handler->ih_event;
912	KASSERT(ie != NULL,
913	    ("interrupt handler \"%s\" has a NULL interrupt event",
914	    handler->ih_name));
915	mtx_lock(&ie->ie_lock);
916	handler->ih_flags |= IH_SUSP;
917	intr_handler_barrier(handler);
918	mtx_unlock(&ie->ie_lock);
919	return (0);
920}
921
922int
923intr_event_resume_handler(void *cookie)
924{
925	struct intr_handler *handler = (struct intr_handler *)cookie;
926	struct intr_event *ie;
927
928	if (handler == NULL)
929		return (EINVAL);
930	ie = handler->ih_event;
931	KASSERT(ie != NULL,
932	    ("interrupt handler \"%s\" has a NULL interrupt event",
933	    handler->ih_name));
934
935	/*
936	 * intr_handler_barrier() acts not only as a barrier,
937	 * it also allows to check for any pending interrupts.
938	 */
939	mtx_lock(&ie->ie_lock);
940	handler->ih_flags &= ~IH_SUSP;
941	intr_handler_barrier(handler);
942	mtx_unlock(&ie->ie_lock);
943	return (0);
944}
945
946static int
947intr_event_schedule_thread(struct intr_event *ie)
948{
949	struct intr_entropy entropy;
950	struct intr_thread *it;
951	struct thread *td;
952	struct thread *ctd;
953
954	/*
955	 * If no ithread or no handlers, then we have a stray interrupt.
956	 */
957	if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers) ||
958	    ie->ie_thread == NULL)
959		return (EINVAL);
960
961	ctd = curthread;
962	it = ie->ie_thread;
963	td = it->it_thread;
964
965	/*
966	 * If any of the handlers for this ithread claim to be good
967	 * sources of entropy, then gather some.
968	 */
969	if (ie->ie_hflags & IH_ENTROPY) {
970		entropy.event = (uintptr_t)ie;
971		entropy.td = ctd;
972		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_INTERRUPT);
973	}
974
975	KASSERT(td->td_proc != NULL, ("ithread %s has no process", ie->ie_name));
976
977	/*
978	 * Set it_need to tell the thread to keep running if it is already
979	 * running.  Then, lock the thread and see if we actually need to
980	 * put it on the runqueue.
981	 *
982	 * Use store_rel to arrange that the store to ih_need in
983	 * swi_sched() is before the store to it_need and prepare for
984	 * transfer of this order to loads in the ithread.
985	 */
986	atomic_store_rel_int(&it->it_need, 1);
987	thread_lock(td);
988	if (TD_AWAITING_INTR(td)) {
989		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, td->td_proc->p_pid,
990		    td->td_name);
991		TD_CLR_IWAIT(td);
992		sched_add(td, SRQ_INTR);
993	} else {
994		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
995		    __func__, td->td_proc->p_pid, td->td_name, it->it_need, td->td_state);
996		thread_unlock(td);
997	}
998
999	return (0);
1000}
1001
1002/*
1003 * Allow interrupt event binding for software interrupt handlers -- a no-op,
1004 * since interrupts are generated in software rather than being directed by
1005 * a PIC.
1006 */
1007static int
1008swi_assign_cpu(void *arg, int cpu)
1009{
1010
1011	return (0);
1012}
1013
1014/*
1015 * Add a software interrupt handler to a specified event.  If a given event
1016 * is not specified, then a new event is created.
1017 */
1018int
1019swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1020	    void *arg, int pri, enum intr_type flags, void **cookiep)
1021{
1022	struct intr_event *ie;
1023	int error = 0;
1024
1025	if (flags & INTR_ENTROPY)
1026		return (EINVAL);
1027
1028	ie = (eventp != NULL) ? *eventp : NULL;
1029
1030	if (ie != NULL) {
1031		if (!(ie->ie_flags & IE_SOFT))
1032			return (EINVAL);
1033	} else {
1034		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1035		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1036		if (error)
1037			return (error);
1038		if (eventp != NULL)
1039			*eventp = ie;
1040	}
1041	if (handler != NULL) {
1042		error = intr_event_add_handler(ie, name, NULL, handler, arg,
1043		    PI_SWI(pri), flags, cookiep);
1044	}
1045	return (error);
1046}
1047
1048/*
1049 * Schedule a software interrupt thread.
1050 */
1051void
1052swi_sched(void *cookie, int flags)
1053{
1054	struct intr_handler *ih = (struct intr_handler *)cookie;
1055	struct intr_event *ie = ih->ih_event;
1056	struct intr_entropy entropy;
1057	int error __unused;
1058
1059	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1060	    ih->ih_need);
1061
1062	if ((flags & SWI_FROMNMI) == 0) {
1063		entropy.event = (uintptr_t)ih;
1064		entropy.td = curthread;
1065		random_harvest_queue(&entropy, sizeof(entropy), RANDOM_SWI);
1066	}
1067
1068	/*
1069	 * Set ih_need for this handler so that if the ithread is already
1070	 * running it will execute this handler on the next pass.  Otherwise,
1071	 * it will execute it the next time it runs.
1072	 */
1073	ih->ih_need = 1;
1074
1075	if (flags & SWI_DELAY)
1076		return;
1077
1078	if (flags & SWI_FROMNMI) {
1079#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
1080		KASSERT(ie == clk_intr_event,
1081		    ("SWI_FROMNMI used not with clk_intr_event"));
1082		ipi_self_from_nmi(IPI_SWI);
1083#endif
1084	} else {
1085		VM_CNT_INC(v_soft);
1086		error = intr_event_schedule_thread(ie);
1087		KASSERT(error == 0, ("stray software interrupt"));
1088	}
1089}
1090
1091/*
1092 * Remove a software interrupt handler.  Currently this code does not
1093 * remove the associated interrupt event if it becomes empty.  Calling code
1094 * may do so manually via intr_event_destroy(), but that's not really
1095 * an optimal interface.
1096 */
1097int
1098swi_remove(void *cookie)
1099{
1100
1101	return (intr_event_remove_handler(cookie));
1102}
1103
1104static void
1105intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1106{
1107	struct intr_handler *ih, *ihn, *ihp;
1108
1109	ihp = NULL;
1110	CK_SLIST_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1111		/*
1112		 * If this handler is marked for death, remove it from
1113		 * the list of handlers and wake up the sleeper.
1114		 */
1115		if (ih->ih_flags & IH_DEAD) {
1116			mtx_lock(&ie->ie_lock);
1117			if (ihp == NULL)
1118				CK_SLIST_REMOVE_HEAD(&ie->ie_handlers, ih_next);
1119			else
1120				CK_SLIST_REMOVE_AFTER(ihp, ih_next);
1121			ih->ih_flags &= ~IH_DEAD;
1122			wakeup(ih);
1123			mtx_unlock(&ie->ie_lock);
1124			continue;
1125		}
1126
1127		/*
1128		 * Now that we know that the current element won't be removed
1129		 * update the previous element.
1130		 */
1131		ihp = ih;
1132
1133		if ((ih->ih_flags & IH_CHANGED) != 0) {
1134			mtx_lock(&ie->ie_lock);
1135			ih->ih_flags &= ~IH_CHANGED;
1136			wakeup(ih);
1137			mtx_unlock(&ie->ie_lock);
1138		}
1139
1140		/* Skip filter only handlers */
1141		if (ih->ih_handler == NULL)
1142			continue;
1143
1144		/* Skip suspended handlers */
1145		if ((ih->ih_flags & IH_SUSP) != 0)
1146			continue;
1147
1148		/*
1149		 * For software interrupt threads, we only execute
1150		 * handlers that have their need flag set.  Hardware
1151		 * interrupt threads always invoke all of their handlers.
1152		 *
1153		 * ih_need can only be 0 or 1.  Failed cmpset below
1154		 * means that there is no request to execute handlers,
1155		 * so a retry of the cmpset is not needed.
1156		 */
1157		if ((ie->ie_flags & IE_SOFT) != 0 &&
1158		    atomic_cmpset_int(&ih->ih_need, 1, 0) == 0)
1159			continue;
1160
1161		/* Execute this handler. */
1162		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1163		    __func__, p->p_pid, (void *)ih->ih_handler,
1164		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1165
1166		if (!(ih->ih_flags & IH_MPSAFE))
1167			mtx_lock(&Giant);
1168		ih->ih_handler(ih->ih_argument);
1169		if (!(ih->ih_flags & IH_MPSAFE))
1170			mtx_unlock(&Giant);
1171	}
1172}
1173
1174static void
1175ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1176{
1177
1178	/* Interrupt handlers should not sleep. */
1179	if (!(ie->ie_flags & IE_SOFT))
1180		THREAD_NO_SLEEPING();
1181	intr_event_execute_handlers(p, ie);
1182	if (!(ie->ie_flags & IE_SOFT))
1183		THREAD_SLEEPING_OK();
1184
1185	/*
1186	 * Interrupt storm handling:
1187	 *
1188	 * If this interrupt source is currently storming, then throttle
1189	 * it to only fire the handler once  per clock tick.
1190	 *
1191	 * If this interrupt source is not currently storming, but the
1192	 * number of back to back interrupts exceeds the storm threshold,
1193	 * then enter storming mode.
1194	 */
1195	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1196	    !(ie->ie_flags & IE_SOFT)) {
1197		/* Report the message only once every second. */
1198		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1199			printf(
1200	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1201			    ie->ie_name);
1202		}
1203		pause("istorm", 1);
1204	} else
1205		ie->ie_count++;
1206
1207	/*
1208	 * Now that all the handlers have had a chance to run, reenable
1209	 * the interrupt source.
1210	 */
1211	if (ie->ie_post_ithread != NULL)
1212		ie->ie_post_ithread(ie->ie_source);
1213}
1214
1215/*
1216 * This is the main code for interrupt threads.
1217 */
1218static void
1219ithread_loop(void *arg)
1220{
1221	struct epoch_tracker et;
1222	struct intr_thread *ithd;
1223	struct intr_event *ie;
1224	struct thread *td;
1225	struct proc *p;
1226	int wake, epoch_count;
1227	bool needs_epoch;
1228
1229	td = curthread;
1230	p = td->td_proc;
1231	ithd = (struct intr_thread *)arg;
1232	KASSERT(ithd->it_thread == td,
1233	    ("%s: ithread and proc linkage out of sync", __func__));
1234	ie = ithd->it_event;
1235	ie->ie_count = 0;
1236	wake = 0;
1237
1238	/*
1239	 * As long as we have interrupts outstanding, go through the
1240	 * list of handlers, giving each one a go at it.
1241	 */
1242	for (;;) {
1243		/*
1244		 * If we are an orphaned thread, then just die.
1245		 */
1246		if (ithd->it_flags & IT_DEAD) {
1247			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1248			    p->p_pid, td->td_name);
1249			free(ithd, M_ITHREAD);
1250			kthread_exit();
1251		}
1252
1253		/*
1254		 * Service interrupts.  If another interrupt arrives while
1255		 * we are running, it will set it_need to note that we
1256		 * should make another pass.
1257		 *
1258		 * The load_acq part of the following cmpset ensures
1259		 * that the load of ih_need in ithread_execute_handlers()
1260		 * is ordered after the load of it_need here.
1261		 */
1262		needs_epoch =
1263		    (atomic_load_int(&ie->ie_hflags) & IH_NET) != 0;
1264		if (needs_epoch) {
1265			epoch_count = 0;
1266			NET_EPOCH_ENTER(et);
1267		}
1268		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) {
1269			ithread_execute_handlers(p, ie);
1270			if (needs_epoch &&
1271			    ++epoch_count >= intr_epoch_batch) {
1272				NET_EPOCH_EXIT(et);
1273				epoch_count = 0;
1274				NET_EPOCH_ENTER(et);
1275			}
1276		}
1277		if (needs_epoch)
1278			NET_EPOCH_EXIT(et);
1279		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1280		mtx_assert(&Giant, MA_NOTOWNED);
1281
1282		/*
1283		 * Processed all our interrupts.  Now get the sched
1284		 * lock.  This may take a while and it_need may get
1285		 * set again, so we have to check it again.
1286		 */
1287		thread_lock(td);
1288		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1289		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1290			TD_SET_IWAIT(td);
1291			ie->ie_count = 0;
1292			mi_switch(SW_VOL | SWT_IWAIT);
1293		} else {
1294			if (ithd->it_flags & IT_WAIT) {
1295				wake = 1;
1296				ithd->it_flags &= ~IT_WAIT;
1297			}
1298			thread_unlock(td);
1299		}
1300		if (wake) {
1301			wakeup(ithd);
1302			wake = 0;
1303		}
1304	}
1305}
1306
1307/*
1308 * Main interrupt handling body.
1309 *
1310 * Input:
1311 * o ie:                        the event connected to this interrupt.
1312 * o frame:                     some archs (i.e. i386) pass a frame to some.
1313 *                              handlers as their main argument.
1314 * Return value:
1315 * o 0:                         everything ok.
1316 * o EINVAL:                    stray interrupt.
1317 */
1318int
1319intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1320{
1321	struct intr_handler *ih;
1322	struct trapframe *oldframe;
1323	struct thread *td;
1324	int phase;
1325	int ret;
1326	bool filter, thread;
1327
1328	td = curthread;
1329
1330#ifdef KSTACK_USAGE_PROF
1331	intr_prof_stack_use(td, frame);
1332#endif
1333
1334	/* An interrupt with no event or handlers is a stray interrupt. */
1335	if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers))
1336		return (EINVAL);
1337
1338	/*
1339	 * Execute fast interrupt handlers directly.
1340	 * To support clock handlers, if a handler registers
1341	 * with a NULL argument, then we pass it a pointer to
1342	 * a trapframe as its argument.
1343	 */
1344	td->td_intr_nesting_level++;
1345	filter = false;
1346	thread = false;
1347	ret = 0;
1348	critical_enter();
1349	oldframe = td->td_intr_frame;
1350	td->td_intr_frame = frame;
1351
1352	phase = ie->ie_phase;
1353	atomic_add_int(&ie->ie_active[phase], 1);
1354
1355	/*
1356	 * This fence is required to ensure that no later loads are
1357	 * re-ordered before the ie_active store.
1358	 */
1359	atomic_thread_fence_seq_cst();
1360
1361	CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) {
1362		if ((ih->ih_flags & IH_SUSP) != 0)
1363			continue;
1364		if ((ie->ie_flags & IE_SOFT) != 0 && ih->ih_need == 0)
1365			continue;
1366		if (ih->ih_filter == NULL) {
1367			thread = true;
1368			continue;
1369		}
1370		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1371		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1372		    ih->ih_argument, ih->ih_name);
1373		if (ih->ih_argument == NULL)
1374			ret = ih->ih_filter(frame);
1375		else
1376			ret = ih->ih_filter(ih->ih_argument);
1377		KASSERT(ret == FILTER_STRAY ||
1378		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1379		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1380		    ("%s: incorrect return value %#x from %s", __func__, ret,
1381		    ih->ih_name));
1382		filter = filter || ret == FILTER_HANDLED;
1383
1384		/*
1385		 * Wrapper handler special handling:
1386		 *
1387		 * in some particular cases (like pccard and pccbb),
1388		 * the _real_ device handler is wrapped in a couple of
1389		 * functions - a filter wrapper and an ithread wrapper.
1390		 * In this case (and just in this case), the filter wrapper
1391		 * could ask the system to schedule the ithread and mask
1392		 * the interrupt source if the wrapped handler is composed
1393		 * of just an ithread handler.
1394		 *
1395		 * TODO: write a generic wrapper to avoid people rolling
1396		 * their own.
1397		 */
1398		if (!thread) {
1399			if (ret == FILTER_SCHEDULE_THREAD)
1400				thread = true;
1401		}
1402	}
1403	atomic_add_rel_int(&ie->ie_active[phase], -1);
1404
1405	td->td_intr_frame = oldframe;
1406
1407	if (thread) {
1408		if (ie->ie_pre_ithread != NULL)
1409			ie->ie_pre_ithread(ie->ie_source);
1410	} else {
1411		if (ie->ie_post_filter != NULL)
1412			ie->ie_post_filter(ie->ie_source);
1413	}
1414
1415	/* Schedule the ithread if needed. */
1416	if (thread) {
1417		int error __unused;
1418
1419		error =  intr_event_schedule_thread(ie);
1420		KASSERT(error == 0, ("bad stray interrupt"));
1421	}
1422	critical_exit();
1423	td->td_intr_nesting_level--;
1424#ifdef notyet
1425	/* The interrupt is not aknowledged by any filter and has no ithread. */
1426	if (!thread && !filter)
1427		return (EINVAL);
1428#endif
1429	return (0);
1430}
1431
1432#ifdef DDB
1433/*
1434 * Dump details about an interrupt handler
1435 */
1436static void
1437db_dump_intrhand(struct intr_handler *ih)
1438{
1439	int comma;
1440
1441	db_printf("\t%-10s ", ih->ih_name);
1442	switch (ih->ih_pri) {
1443	case PI_REALTIME:
1444		db_printf("CLK ");
1445		break;
1446	case PI_AV:
1447		db_printf("AV  ");
1448		break;
1449	case PI_TTY:
1450		db_printf("TTY ");
1451		break;
1452	case PI_NET:
1453		db_printf("NET ");
1454		break;
1455	case PI_DISK:
1456		db_printf("DISK");
1457		break;
1458	case PI_DULL:
1459		db_printf("DULL");
1460		break;
1461	default:
1462		if (ih->ih_pri >= PI_SOFT)
1463			db_printf("SWI ");
1464		else
1465			db_printf("%4u", ih->ih_pri);
1466		break;
1467	}
1468	db_printf(" ");
1469	if (ih->ih_filter != NULL) {
1470		db_printf("[F]");
1471		db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
1472	}
1473	if (ih->ih_handler != NULL) {
1474		if (ih->ih_filter != NULL)
1475			db_printf(",");
1476		db_printf("[H]");
1477		db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1478	}
1479	db_printf("(%p)", ih->ih_argument);
1480	if (ih->ih_need ||
1481	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1482	    IH_MPSAFE)) != 0) {
1483		db_printf(" {");
1484		comma = 0;
1485		if (ih->ih_flags & IH_EXCLUSIVE) {
1486			if (comma)
1487				db_printf(", ");
1488			db_printf("EXCL");
1489			comma = 1;
1490		}
1491		if (ih->ih_flags & IH_ENTROPY) {
1492			if (comma)
1493				db_printf(", ");
1494			db_printf("ENTROPY");
1495			comma = 1;
1496		}
1497		if (ih->ih_flags & IH_DEAD) {
1498			if (comma)
1499				db_printf(", ");
1500			db_printf("DEAD");
1501			comma = 1;
1502		}
1503		if (ih->ih_flags & IH_MPSAFE) {
1504			if (comma)
1505				db_printf(", ");
1506			db_printf("MPSAFE");
1507			comma = 1;
1508		}
1509		if (ih->ih_need) {
1510			if (comma)
1511				db_printf(", ");
1512			db_printf("NEED");
1513		}
1514		db_printf("}");
1515	}
1516	db_printf("\n");
1517}
1518
1519/*
1520 * Dump details about a event.
1521 */
1522void
1523db_dump_intr_event(struct intr_event *ie, int handlers)
1524{
1525	struct intr_handler *ih;
1526	struct intr_thread *it;
1527	int comma;
1528
1529	db_printf("%s ", ie->ie_fullname);
1530	it = ie->ie_thread;
1531	if (it != NULL)
1532		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1533	else
1534		db_printf("(no thread)");
1535	if ((ie->ie_flags & (IE_SOFT | IE_ADDING_THREAD)) != 0 ||
1536	    (it != NULL && it->it_need)) {
1537		db_printf(" {");
1538		comma = 0;
1539		if (ie->ie_flags & IE_SOFT) {
1540			db_printf("SOFT");
1541			comma = 1;
1542		}
1543		if (ie->ie_flags & IE_ADDING_THREAD) {
1544			if (comma)
1545				db_printf(", ");
1546			db_printf("ADDING_THREAD");
1547			comma = 1;
1548		}
1549		if (it != NULL && it->it_need) {
1550			if (comma)
1551				db_printf(", ");
1552			db_printf("NEED");
1553		}
1554		db_printf("}");
1555	}
1556	db_printf("\n");
1557
1558	if (handlers)
1559		CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next)
1560		    db_dump_intrhand(ih);
1561}
1562
1563/*
1564 * Dump data about interrupt handlers
1565 */
1566DB_SHOW_COMMAND(intr, db_show_intr)
1567{
1568	struct intr_event *ie;
1569	int all, verbose;
1570
1571	verbose = strchr(modif, 'v') != NULL;
1572	all = strchr(modif, 'a') != NULL;
1573	TAILQ_FOREACH(ie, &event_list, ie_list) {
1574		if (!all && CK_SLIST_EMPTY(&ie->ie_handlers))
1575			continue;
1576		db_dump_intr_event(ie, verbose);
1577		if (db_pager_quit)
1578			break;
1579	}
1580}
1581#endif /* DDB */
1582
1583/*
1584 * Start standard software interrupt threads
1585 */
1586static void
1587start_softintr(void *dummy)
1588{
1589
1590	if (swi_add(&clk_intr_event, "clk", NULL, NULL, SWI_CLOCK,
1591	    INTR_MPSAFE, NULL))
1592		panic("died while creating clk swi ithread");
1593	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1594		panic("died while creating vm swi ithread");
1595}
1596SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1597    NULL);
1598
1599/*
1600 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1601 * The data for this machine dependent, and the declarations are in machine
1602 * dependent code.  The layout of intrnames and intrcnt however is machine
1603 * independent.
1604 *
1605 * We do not know the length of intrcnt and intrnames at compile time, so
1606 * calculate things at run time.
1607 */
1608static int
1609sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1610{
1611	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1612}
1613
1614SYSCTL_PROC(_hw, OID_AUTO, intrnames,
1615    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1616    sysctl_intrnames, "",
1617    "Interrupt Names");
1618
1619static int
1620sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1621{
1622#ifdef SCTL_MASK32
1623	uint32_t *intrcnt32;
1624	unsigned i;
1625	int error;
1626
1627	if (req->flags & SCTL_MASK32) {
1628		if (!req->oldptr)
1629			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1630		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1631		if (intrcnt32 == NULL)
1632			return (ENOMEM);
1633		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1634			intrcnt32[i] = intrcnt[i];
1635		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1636		free(intrcnt32, M_TEMP);
1637		return (error);
1638	}
1639#endif
1640	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1641}
1642
1643SYSCTL_PROC(_hw, OID_AUTO, intrcnt,
1644    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1645    sysctl_intrcnt, "",
1646    "Interrupt Counts");
1647
1648#ifdef DDB
1649/*
1650 * DDB command to dump the interrupt statistics.
1651 */
1652DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1653{
1654	u_long *i;
1655	char *cp;
1656	u_int j;
1657
1658	cp = intrnames;
1659	j = 0;
1660	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
1661	    i++, j++) {
1662		if (*cp == '\0')
1663			break;
1664		if (*i != 0)
1665			db_printf("%s\t%lu\n", cp, *i);
1666		cp += strlen(cp) + 1;
1667	}
1668}
1669#endif
1670