1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2000-2001, 2003 David O'Brien
6 * Copyright (c) 1995-1996 S��ren Schmidt
7 * Copyright (c) 1996 Peter Wemm
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer
15 *    in this position and unchanged.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 *    derived from this software without specific prior written permission
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_capsicum.h"
38
39#include <sys/param.h>
40#include <sys/capsicum.h>
41#include <sys/compressor.h>
42#include <sys/exec.h>
43#include <sys/fcntl.h>
44#include <sys/imgact.h>
45#include <sys/imgact_elf.h>
46#include <sys/jail.h>
47#include <sys/kernel.h>
48#include <sys/lock.h>
49#include <sys/malloc.h>
50#include <sys/mount.h>
51#include <sys/mman.h>
52#include <sys/namei.h>
53#include <sys/proc.h>
54#include <sys/procfs.h>
55#include <sys/ptrace.h>
56#include <sys/racct.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sf_buf.h>
61#include <sys/smp.h>
62#include <sys/systm.h>
63#include <sys/signalvar.h>
64#include <sys/stat.h>
65#include <sys/sx.h>
66#include <sys/syscall.h>
67#include <sys/sysctl.h>
68#include <sys/sysent.h>
69#include <sys/vnode.h>
70#include <sys/syslog.h>
71#include <sys/eventhandler.h>
72#include <sys/user.h>
73
74#include <vm/vm.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_param.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_object.h>
80#include <vm/vm_extern.h>
81
82#include <machine/elf.h>
83#include <machine/md_var.h>
84
85#define ELF_NOTE_ROUNDSIZE	4
86#define OLD_EI_BRAND	8
87
88static int __elfN(check_header)(const Elf_Ehdr *hdr);
89static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
90    const char *interp, int32_t *osrel, uint32_t *fctl0);
91static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
92    u_long *entry);
93static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
94    caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
95static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97    int32_t *osrel);
98static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99static boolean_t __elfN(check_note)(struct image_params *imgp,
100    Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0,
101    uint32_t *fctl0);
102static vm_prot_t __elfN(trans_prot)(Elf_Word);
103static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104
105SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
106    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
107    "");
108
109#define	CORE_BUF_SIZE	(16 * 1024)
110
111int __elfN(fallback_brand) = -1;
112SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
113    fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
114    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
115
116static int elf_legacy_coredump = 0;
117SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
118    &elf_legacy_coredump, 0,
119    "include all and only RW pages in core dumps");
120
121int __elfN(nxstack) =
122#if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
123    (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
124    defined(__riscv)
125	1;
126#else
127	0;
128#endif
129SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
130    nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
131    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
132
133#if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
134int i386_read_exec = 0;
135SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
136    "enable execution from readable segments");
137#endif
138
139static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
140static int
141sysctl_pie_base(SYSCTL_HANDLER_ARGS)
142{
143	u_long val;
144	int error;
145
146	val = __elfN(pie_base);
147	error = sysctl_handle_long(oidp, &val, 0, req);
148	if (error != 0 || req->newptr == NULL)
149		return (error);
150	if ((val & PAGE_MASK) != 0)
151		return (EINVAL);
152	__elfN(pie_base) = val;
153	return (0);
154}
155SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
156    CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
157    sysctl_pie_base, "LU",
158    "PIE load base without randomization");
159
160SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
161    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
162    "");
163#define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
164
165static int __elfN(aslr_enabled) = 0;
166SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
167    &__elfN(aslr_enabled), 0,
168    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
169    ": enable address map randomization");
170
171static int __elfN(pie_aslr_enabled) = 0;
172SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
173    &__elfN(pie_aslr_enabled), 0,
174    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
175    ": enable address map randomization for PIE binaries");
176
177static int __elfN(aslr_honor_sbrk) = 1;
178SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
179    &__elfN(aslr_honor_sbrk), 0,
180    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
181
182static int __elfN(aslr_stack_gap) = 3;
183SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW,
184    &__elfN(aslr_stack_gap), 0,
185    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
186    ": maximum percentage of main stack to waste on a random gap");
187
188static int __elfN(sigfastblock) = 1;
189SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
190    CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
191    "enable sigfastblock for new processes");
192
193static bool __elfN(allow_wx) = true;
194SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
195    CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
196    "Allow pages to be mapped simultaneously writable and executable");
197
198static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
199
200#define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
201
202static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
203
204Elf_Brandnote __elfN(freebsd_brandnote) = {
205	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
206	.hdr.n_descsz	= sizeof(int32_t),
207	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
208	.vendor		= FREEBSD_ABI_VENDOR,
209	.flags		= BN_TRANSLATE_OSREL,
210	.trans_osrel	= __elfN(freebsd_trans_osrel)
211};
212
213static bool
214__elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
215{
216	uintptr_t p;
217
218	p = (uintptr_t)(note + 1);
219	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
220	*osrel = *(const int32_t *)(p);
221
222	return (true);
223}
224
225static const char GNU_ABI_VENDOR[] = "GNU";
226static int GNU_KFREEBSD_ABI_DESC = 3;
227
228Elf_Brandnote __elfN(kfreebsd_brandnote) = {
229	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
230	.hdr.n_descsz	= 16,	/* XXX at least 16 */
231	.hdr.n_type	= 1,
232	.vendor		= GNU_ABI_VENDOR,
233	.flags		= BN_TRANSLATE_OSREL,
234	.trans_osrel	= kfreebsd_trans_osrel
235};
236
237static bool
238kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
239{
240	const Elf32_Word *desc;
241	uintptr_t p;
242
243	p = (uintptr_t)(note + 1);
244	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
245
246	desc = (const Elf32_Word *)p;
247	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
248		return (false);
249
250	/*
251	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
252	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
253	 */
254	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
255
256	return (true);
257}
258
259int
260__elfN(insert_brand_entry)(Elf_Brandinfo *entry)
261{
262	int i;
263
264	for (i = 0; i < MAX_BRANDS; i++) {
265		if (elf_brand_list[i] == NULL) {
266			elf_brand_list[i] = entry;
267			break;
268		}
269	}
270	if (i == MAX_BRANDS) {
271		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
272			__func__, entry);
273		return (-1);
274	}
275	return (0);
276}
277
278int
279__elfN(remove_brand_entry)(Elf_Brandinfo *entry)
280{
281	int i;
282
283	for (i = 0; i < MAX_BRANDS; i++) {
284		if (elf_brand_list[i] == entry) {
285			elf_brand_list[i] = NULL;
286			break;
287		}
288	}
289	if (i == MAX_BRANDS)
290		return (-1);
291	return (0);
292}
293
294int
295__elfN(brand_inuse)(Elf_Brandinfo *entry)
296{
297	struct proc *p;
298	int rval = FALSE;
299
300	sx_slock(&allproc_lock);
301	FOREACH_PROC_IN_SYSTEM(p) {
302		if (p->p_sysent == entry->sysvec) {
303			rval = TRUE;
304			break;
305		}
306	}
307	sx_sunlock(&allproc_lock);
308
309	return (rval);
310}
311
312static Elf_Brandinfo *
313__elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
314    int32_t *osrel, uint32_t *fctl0)
315{
316	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
317	Elf_Brandinfo *bi, *bi_m;
318	boolean_t ret, has_fctl0;
319	int i, interp_name_len;
320
321	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
322
323	/*
324	 * We support four types of branding -- (1) the ELF EI_OSABI field
325	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
326	 * branding w/in the ELF header, (3) path of the `interp_path'
327	 * field, and (4) the ".note.ABI-tag" ELF section.
328	 */
329
330	/* Look for an ".note.ABI-tag" ELF section */
331	bi_m = NULL;
332	for (i = 0; i < MAX_BRANDS; i++) {
333		bi = elf_brand_list[i];
334		if (bi == NULL)
335			continue;
336		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
337			continue;
338		if (hdr->e_machine == bi->machine && (bi->flags &
339		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
340			has_fctl0 = false;
341			*fctl0 = 0;
342			*osrel = 0;
343			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
344			    &has_fctl0, fctl0);
345			/* Give brand a chance to veto check_note's guess */
346			if (ret && bi->header_supported) {
347				ret = bi->header_supported(imgp, osrel,
348				    has_fctl0 ? fctl0 : NULL);
349			}
350			/*
351			 * If note checker claimed the binary, but the
352			 * interpreter path in the image does not
353			 * match default one for the brand, try to
354			 * search for other brands with the same
355			 * interpreter.  Either there is better brand
356			 * with the right interpreter, or, failing
357			 * this, we return first brand which accepted
358			 * our note and, optionally, header.
359			 */
360			if (ret && bi_m == NULL && interp != NULL &&
361			    (bi->interp_path == NULL ||
362			    (strlen(bi->interp_path) + 1 != interp_name_len ||
363			    strncmp(interp, bi->interp_path, interp_name_len)
364			    != 0))) {
365				bi_m = bi;
366				ret = 0;
367			}
368			if (ret)
369				return (bi);
370		}
371	}
372	if (bi_m != NULL)
373		return (bi_m);
374
375	/* If the executable has a brand, search for it in the brand list. */
376	for (i = 0; i < MAX_BRANDS; i++) {
377		bi = elf_brand_list[i];
378		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
379		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
380			continue;
381		if (hdr->e_machine == bi->machine &&
382		    (hdr->e_ident[EI_OSABI] == bi->brand ||
383		    (bi->compat_3_brand != NULL &&
384		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
385		    bi->compat_3_brand) == 0))) {
386			/* Looks good, but give brand a chance to veto */
387			if (bi->header_supported == NULL ||
388			    bi->header_supported(imgp, NULL, NULL)) {
389				/*
390				 * Again, prefer strictly matching
391				 * interpreter path.
392				 */
393				if (interp_name_len == 0 &&
394				    bi->interp_path == NULL)
395					return (bi);
396				if (bi->interp_path != NULL &&
397				    strlen(bi->interp_path) + 1 ==
398				    interp_name_len && strncmp(interp,
399				    bi->interp_path, interp_name_len) == 0)
400					return (bi);
401				if (bi_m == NULL)
402					bi_m = bi;
403			}
404		}
405	}
406	if (bi_m != NULL)
407		return (bi_m);
408
409	/* No known brand, see if the header is recognized by any brand */
410	for (i = 0; i < MAX_BRANDS; i++) {
411		bi = elf_brand_list[i];
412		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
413		    bi->header_supported == NULL)
414			continue;
415		if (hdr->e_machine == bi->machine) {
416			ret = bi->header_supported(imgp, NULL, NULL);
417			if (ret)
418				return (bi);
419		}
420	}
421
422	/* Lacking a known brand, search for a recognized interpreter. */
423	if (interp != NULL) {
424		for (i = 0; i < MAX_BRANDS; i++) {
425			bi = elf_brand_list[i];
426			if (bi == NULL || (bi->flags &
427			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
428			    != 0)
429				continue;
430			if (hdr->e_machine == bi->machine &&
431			    bi->interp_path != NULL &&
432			    /* ELF image p_filesz includes terminating zero */
433			    strlen(bi->interp_path) + 1 == interp_name_len &&
434			    strncmp(interp, bi->interp_path, interp_name_len)
435			    == 0 && (bi->header_supported == NULL ||
436			    bi->header_supported(imgp, NULL, NULL)))
437				return (bi);
438		}
439	}
440
441	/* Lacking a recognized interpreter, try the default brand */
442	for (i = 0; i < MAX_BRANDS; i++) {
443		bi = elf_brand_list[i];
444		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
445		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
446			continue;
447		if (hdr->e_machine == bi->machine &&
448		    __elfN(fallback_brand) == bi->brand &&
449		    (bi->header_supported == NULL ||
450		    bi->header_supported(imgp, NULL, NULL)))
451			return (bi);
452	}
453	return (NULL);
454}
455
456static bool
457__elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
458{
459	return (hdr->e_phoff <= PAGE_SIZE &&
460	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
461}
462
463static int
464__elfN(check_header)(const Elf_Ehdr *hdr)
465{
466	Elf_Brandinfo *bi;
467	int i;
468
469	if (!IS_ELF(*hdr) ||
470	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
471	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
472	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
473	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
474	    hdr->e_version != ELF_TARG_VER)
475		return (ENOEXEC);
476
477	/*
478	 * Make sure we have at least one brand for this machine.
479	 */
480
481	for (i = 0; i < MAX_BRANDS; i++) {
482		bi = elf_brand_list[i];
483		if (bi != NULL && bi->machine == hdr->e_machine)
484			break;
485	}
486	if (i == MAX_BRANDS)
487		return (ENOEXEC);
488
489	return (0);
490}
491
492static int
493__elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
494    vm_offset_t start, vm_offset_t end, vm_prot_t prot)
495{
496	struct sf_buf *sf;
497	int error;
498	vm_offset_t off;
499
500	/*
501	 * Create the page if it doesn't exist yet. Ignore errors.
502	 */
503	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
504	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
505
506	/*
507	 * Find the page from the underlying object.
508	 */
509	if (object != NULL) {
510		sf = vm_imgact_map_page(object, offset);
511		if (sf == NULL)
512			return (KERN_FAILURE);
513		off = offset - trunc_page(offset);
514		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
515		    end - start);
516		vm_imgact_unmap_page(sf);
517		if (error != 0)
518			return (KERN_FAILURE);
519	}
520
521	return (KERN_SUCCESS);
522}
523
524static int
525__elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
526    vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
527    int cow)
528{
529	struct sf_buf *sf;
530	vm_offset_t off;
531	vm_size_t sz;
532	int error, locked, rv;
533
534	if (start != trunc_page(start)) {
535		rv = __elfN(map_partial)(map, object, offset, start,
536		    round_page(start), prot);
537		if (rv != KERN_SUCCESS)
538			return (rv);
539		offset += round_page(start) - start;
540		start = round_page(start);
541	}
542	if (end != round_page(end)) {
543		rv = __elfN(map_partial)(map, object, offset +
544		    trunc_page(end) - start, trunc_page(end), end, prot);
545		if (rv != KERN_SUCCESS)
546			return (rv);
547		end = trunc_page(end);
548	}
549	if (start >= end)
550		return (KERN_SUCCESS);
551	if ((offset & PAGE_MASK) != 0) {
552		/*
553		 * The mapping is not page aligned.  This means that we have
554		 * to copy the data.
555		 */
556		rv = vm_map_fixed(map, NULL, 0, start, end - start,
557		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
558		if (rv != KERN_SUCCESS)
559			return (rv);
560		if (object == NULL)
561			return (KERN_SUCCESS);
562		for (; start < end; start += sz) {
563			sf = vm_imgact_map_page(object, offset);
564			if (sf == NULL)
565				return (KERN_FAILURE);
566			off = offset - trunc_page(offset);
567			sz = end - start;
568			if (sz > PAGE_SIZE - off)
569				sz = PAGE_SIZE - off;
570			error = copyout((caddr_t)sf_buf_kva(sf) + off,
571			    (caddr_t)start, sz);
572			vm_imgact_unmap_page(sf);
573			if (error != 0)
574				return (KERN_FAILURE);
575			offset += sz;
576		}
577	} else {
578		vm_object_reference(object);
579		rv = vm_map_fixed(map, object, offset, start, end - start,
580		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
581		    (object != NULL ? MAP_VN_EXEC : 0));
582		if (rv != KERN_SUCCESS) {
583			locked = VOP_ISLOCKED(imgp->vp);
584			VOP_UNLOCK(imgp->vp);
585			vm_object_deallocate(object);
586			vn_lock(imgp->vp, locked | LK_RETRY);
587			return (rv);
588		} else if (object != NULL) {
589			MPASS(imgp->vp->v_object == object);
590			VOP_SET_TEXT_CHECKED(imgp->vp);
591		}
592	}
593	return (KERN_SUCCESS);
594}
595
596static int
597__elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
598    caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
599{
600	struct sf_buf *sf;
601	size_t map_len;
602	vm_map_t map;
603	vm_object_t object;
604	vm_offset_t map_addr;
605	int error, rv, cow;
606	size_t copy_len;
607	vm_ooffset_t file_addr;
608
609	/*
610	 * It's necessary to fail if the filsz + offset taken from the
611	 * header is greater than the actual file pager object's size.
612	 * If we were to allow this, then the vm_map_find() below would
613	 * walk right off the end of the file object and into the ether.
614	 *
615	 * While I'm here, might as well check for something else that
616	 * is invalid: filsz cannot be greater than memsz.
617	 */
618	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
619	    filsz > memsz) {
620		uprintf("elf_load_section: truncated ELF file\n");
621		return (ENOEXEC);
622	}
623
624	object = imgp->object;
625	map = &imgp->proc->p_vmspace->vm_map;
626	map_addr = trunc_page((vm_offset_t)vmaddr);
627	file_addr = trunc_page(offset);
628
629	/*
630	 * We have two choices.  We can either clear the data in the last page
631	 * of an oversized mapping, or we can start the anon mapping a page
632	 * early and copy the initialized data into that first page.  We
633	 * choose the second.
634	 */
635	if (filsz == 0)
636		map_len = 0;
637	else if (memsz > filsz)
638		map_len = trunc_page(offset + filsz) - file_addr;
639	else
640		map_len = round_page(offset + filsz) - file_addr;
641
642	if (map_len != 0) {
643		/* cow flags: don't dump readonly sections in core */
644		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
645		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
646
647		rv = __elfN(map_insert)(imgp, map, object, file_addr,
648		    map_addr, map_addr + map_len, prot, cow);
649		if (rv != KERN_SUCCESS)
650			return (EINVAL);
651
652		/* we can stop now if we've covered it all */
653		if (memsz == filsz)
654			return (0);
655	}
656
657	/*
658	 * We have to get the remaining bit of the file into the first part
659	 * of the oversized map segment.  This is normally because the .data
660	 * segment in the file is extended to provide bss.  It's a neat idea
661	 * to try and save a page, but it's a pain in the behind to implement.
662	 */
663	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
664	    filsz);
665	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
666	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
667
668	/* This had damn well better be true! */
669	if (map_len != 0) {
670		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
671		    map_addr + map_len, prot, 0);
672		if (rv != KERN_SUCCESS)
673			return (EINVAL);
674	}
675
676	if (copy_len != 0) {
677		sf = vm_imgact_map_page(object, offset + filsz);
678		if (sf == NULL)
679			return (EIO);
680
681		/* send the page fragment to user space */
682		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
683		    copy_len);
684		vm_imgact_unmap_page(sf);
685		if (error != 0)
686			return (error);
687	}
688
689	/*
690	 * Remove write access to the page if it was only granted by map_insert
691	 * to allow copyout.
692	 */
693	if ((prot & VM_PROT_WRITE) == 0)
694		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
695		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
696
697	return (0);
698}
699
700static int
701__elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
702    const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
703{
704	vm_prot_t prot;
705	u_long base_addr;
706	bool first;
707	int error, i;
708
709	ASSERT_VOP_LOCKED(imgp->vp, __func__);
710
711	base_addr = 0;
712	first = true;
713
714	for (i = 0; i < hdr->e_phnum; i++) {
715		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
716			continue;
717
718		/* Loadable segment */
719		prot = __elfN(trans_prot)(phdr[i].p_flags);
720		error = __elfN(load_section)(imgp, phdr[i].p_offset,
721		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
722		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
723		if (error != 0)
724			return (error);
725
726		/*
727		 * Establish the base address if this is the first segment.
728		 */
729		if (first) {
730  			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
731			first = false;
732		}
733	}
734
735	if (base_addrp != NULL)
736		*base_addrp = base_addr;
737
738	return (0);
739}
740
741/*
742 * Load the file "file" into memory.  It may be either a shared object
743 * or an executable.
744 *
745 * The "addr" reference parameter is in/out.  On entry, it specifies
746 * the address where a shared object should be loaded.  If the file is
747 * an executable, this value is ignored.  On exit, "addr" specifies
748 * where the file was actually loaded.
749 *
750 * The "entry" reference parameter is out only.  On exit, it specifies
751 * the entry point for the loaded file.
752 */
753static int
754__elfN(load_file)(struct proc *p, const char *file, u_long *addr,
755	u_long *entry)
756{
757	struct {
758		struct nameidata nd;
759		struct vattr attr;
760		struct image_params image_params;
761	} *tempdata;
762	const Elf_Ehdr *hdr = NULL;
763	const Elf_Phdr *phdr = NULL;
764	struct nameidata *nd;
765	struct vattr *attr;
766	struct image_params *imgp;
767	u_long rbase;
768	u_long base_addr = 0;
769	int error;
770
771#ifdef CAPABILITY_MODE
772	/*
773	 * XXXJA: This check can go away once we are sufficiently confident
774	 * that the checks in namei() are correct.
775	 */
776	if (IN_CAPABILITY_MODE(curthread))
777		return (ECAPMODE);
778#endif
779
780	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
781	nd = &tempdata->nd;
782	attr = &tempdata->attr;
783	imgp = &tempdata->image_params;
784
785	/*
786	 * Initialize part of the common data
787	 */
788	imgp->proc = p;
789	imgp->attr = attr;
790
791	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
792	    UIO_SYSSPACE, file, curthread);
793	if ((error = namei(nd)) != 0) {
794		nd->ni_vp = NULL;
795		goto fail;
796	}
797	NDFREE(nd, NDF_ONLY_PNBUF);
798	imgp->vp = nd->ni_vp;
799
800	/*
801	 * Check permissions, modes, uid, etc on the file, and "open" it.
802	 */
803	error = exec_check_permissions(imgp);
804	if (error)
805		goto fail;
806
807	error = exec_map_first_page(imgp);
808	if (error)
809		goto fail;
810
811	imgp->object = nd->ni_vp->v_object;
812
813	hdr = (const Elf_Ehdr *)imgp->image_header;
814	if ((error = __elfN(check_header)(hdr)) != 0)
815		goto fail;
816	if (hdr->e_type == ET_DYN)
817		rbase = *addr;
818	else if (hdr->e_type == ET_EXEC)
819		rbase = 0;
820	else {
821		error = ENOEXEC;
822		goto fail;
823	}
824
825	/* Only support headers that fit within first page for now      */
826	if (!__elfN(phdr_in_zero_page)(hdr)) {
827		error = ENOEXEC;
828		goto fail;
829	}
830
831	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
832	if (!aligned(phdr, Elf_Addr)) {
833		error = ENOEXEC;
834		goto fail;
835	}
836
837	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
838	if (error != 0)
839		goto fail;
840
841	*addr = base_addr;
842	*entry = (unsigned long)hdr->e_entry + rbase;
843
844fail:
845	if (imgp->firstpage)
846		exec_unmap_first_page(imgp);
847
848	if (nd->ni_vp) {
849		if (imgp->textset)
850			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
851		vput(nd->ni_vp);
852	}
853	free(tempdata, M_TEMP);
854
855	return (error);
856}
857
858static u_long
859__CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
860    u_int align)
861{
862	u_long rbase, res;
863
864	MPASS(vm_map_min(map) <= minv);
865	MPASS(maxv <= vm_map_max(map));
866	MPASS(minv < maxv);
867	MPASS(minv + align < maxv);
868	arc4rand(&rbase, sizeof(rbase), 0);
869	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
870	res &= ~((u_long)align - 1);
871	if (res >= maxv)
872		res -= align;
873	KASSERT(res >= minv,
874	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
875	    res, minv, maxv, rbase));
876	KASSERT(res < maxv,
877	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
878	    res, maxv, minv, rbase));
879	return (res);
880}
881
882static int
883__elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
884    const Elf_Phdr *phdr, u_long et_dyn_addr)
885{
886	struct vmspace *vmspace;
887	const char *err_str;
888	u_long text_size, data_size, total_size, text_addr, data_addr;
889	u_long seg_size, seg_addr;
890	int i;
891
892	err_str = NULL;
893	text_size = data_size = total_size = text_addr = data_addr = 0;
894
895	for (i = 0; i < hdr->e_phnum; i++) {
896		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
897			continue;
898
899		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
900		seg_size = round_page(phdr[i].p_memsz +
901		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
902
903		/*
904		 * Make the largest executable segment the official
905		 * text segment and all others data.
906		 *
907		 * Note that obreak() assumes that data_addr + data_size == end
908		 * of data load area, and the ELF file format expects segments
909		 * to be sorted by address.  If multiple data segments exist,
910		 * the last one will be used.
911		 */
912
913		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
914			text_size = seg_size;
915			text_addr = seg_addr;
916		} else {
917			data_size = seg_size;
918			data_addr = seg_addr;
919		}
920		total_size += seg_size;
921	}
922
923	if (data_addr == 0 && data_size == 0) {
924		data_addr = text_addr;
925		data_size = text_size;
926	}
927
928	/*
929	 * Check limits.  It should be safe to check the
930	 * limits after loading the segments since we do
931	 * not actually fault in all the segments pages.
932	 */
933	PROC_LOCK(imgp->proc);
934	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
935		err_str = "Data segment size exceeds process limit";
936	else if (text_size > maxtsiz)
937		err_str = "Text segment size exceeds system limit";
938	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
939		err_str = "Total segment size exceeds process limit";
940	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
941		err_str = "Data segment size exceeds resource limit";
942	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
943		err_str = "Total segment size exceeds resource limit";
944	PROC_UNLOCK(imgp->proc);
945	if (err_str != NULL) {
946		uprintf("%s\n", err_str);
947		return (ENOMEM);
948	}
949
950	vmspace = imgp->proc->p_vmspace;
951	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
952	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
953	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
954	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
955
956	return (0);
957}
958
959static int
960__elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
961    char **interpp, bool *free_interpp)
962{
963	struct thread *td;
964	char *interp;
965	int error, interp_name_len;
966
967	KASSERT(phdr->p_type == PT_INTERP,
968	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
969	ASSERT_VOP_LOCKED(imgp->vp, __func__);
970
971	td = curthread;
972
973	/* Path to interpreter */
974	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
975		uprintf("Invalid PT_INTERP\n");
976		return (ENOEXEC);
977	}
978
979	interp_name_len = phdr->p_filesz;
980	if (phdr->p_offset > PAGE_SIZE ||
981	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
982		/*
983		 * The vnode lock might be needed by the pagedaemon to
984		 * clean pages owned by the vnode.  Do not allow sleep
985		 * waiting for memory with the vnode locked, instead
986		 * try non-sleepable allocation first, and if it
987		 * fails, go to the slow path were we drop the lock
988		 * and do M_WAITOK.  A text reference prevents
989		 * modifications to the vnode content.
990		 */
991		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
992		if (interp == NULL) {
993			VOP_UNLOCK(imgp->vp);
994			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
995			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
996		}
997
998		error = vn_rdwr(UIO_READ, imgp->vp, interp,
999		    interp_name_len, phdr->p_offset,
1000		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1001		    NOCRED, NULL, td);
1002		if (error != 0) {
1003			free(interp, M_TEMP);
1004			uprintf("i/o error PT_INTERP %d\n", error);
1005			return (error);
1006		}
1007		interp[interp_name_len] = '\0';
1008
1009		*interpp = interp;
1010		*free_interpp = true;
1011		return (0);
1012	}
1013
1014	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1015	if (interp[interp_name_len - 1] != '\0') {
1016		uprintf("Invalid PT_INTERP\n");
1017		return (ENOEXEC);
1018	}
1019
1020	*interpp = interp;
1021	*free_interpp = false;
1022	return (0);
1023}
1024
1025static int
1026__elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1027    const char *interp, u_long *addr, u_long *entry)
1028{
1029	char *path;
1030	int error;
1031
1032	if (brand_info->emul_path != NULL &&
1033	    brand_info->emul_path[0] != '\0') {
1034		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1035		snprintf(path, MAXPATHLEN, "%s%s",
1036		    brand_info->emul_path, interp);
1037		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1038		free(path, M_TEMP);
1039		if (error == 0)
1040			return (0);
1041	}
1042
1043	if (brand_info->interp_newpath != NULL &&
1044	    (brand_info->interp_path == NULL ||
1045	    strcmp(interp, brand_info->interp_path) == 0)) {
1046		error = __elfN(load_file)(imgp->proc,
1047		    brand_info->interp_newpath, addr, entry);
1048		if (error == 0)
1049			return (0);
1050	}
1051
1052	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1053	if (error == 0)
1054		return (0);
1055
1056	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1057	return (error);
1058}
1059
1060/*
1061 * Impossible et_dyn_addr initial value indicating that the real base
1062 * must be calculated later with some randomization applied.
1063 */
1064#define	ET_DYN_ADDR_RAND	1
1065
1066static int
1067__CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1068{
1069	struct thread *td;
1070	const Elf_Ehdr *hdr;
1071	const Elf_Phdr *phdr;
1072	Elf_Auxargs *elf_auxargs;
1073	struct vmspace *vmspace;
1074	vm_map_t map;
1075	char *interp;
1076	Elf_Brandinfo *brand_info;
1077	struct sysentvec *sv;
1078	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1079	u_long maxalign, mapsz, maxv, maxv1;
1080	uint32_t fctl0;
1081	int32_t osrel;
1082	bool free_interp;
1083	int error, i, n;
1084
1085	hdr = (const Elf_Ehdr *)imgp->image_header;
1086
1087	/*
1088	 * Do we have a valid ELF header ?
1089	 *
1090	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1091	 * if particular brand doesn't support it.
1092	 */
1093	if (__elfN(check_header)(hdr) != 0 ||
1094	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1095		return (-1);
1096
1097	/*
1098	 * From here on down, we return an errno, not -1, as we've
1099	 * detected an ELF file.
1100	 */
1101
1102	if (!__elfN(phdr_in_zero_page)(hdr)) {
1103		uprintf("Program headers not in the first page\n");
1104		return (ENOEXEC);
1105	}
1106	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1107	if (!aligned(phdr, Elf_Addr)) {
1108		uprintf("Unaligned program headers\n");
1109		return (ENOEXEC);
1110	}
1111
1112	n = error = 0;
1113	baddr = 0;
1114	osrel = 0;
1115	fctl0 = 0;
1116	entry = proghdr = 0;
1117	interp = NULL;
1118	free_interp = false;
1119	td = curthread;
1120	maxalign = PAGE_SIZE;
1121	mapsz = 0;
1122
1123	for (i = 0; i < hdr->e_phnum; i++) {
1124		switch (phdr[i].p_type) {
1125		case PT_LOAD:
1126			if (n == 0)
1127				baddr = phdr[i].p_vaddr;
1128			if (phdr[i].p_align > maxalign)
1129				maxalign = phdr[i].p_align;
1130			mapsz += phdr[i].p_memsz;
1131			n++;
1132
1133			/*
1134			 * If this segment contains the program headers,
1135			 * remember their virtual address for the AT_PHDR
1136			 * aux entry. Static binaries don't usually include
1137			 * a PT_PHDR entry.
1138			 */
1139			if (phdr[i].p_offset == 0 &&
1140			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
1141				<= phdr[i].p_filesz)
1142				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1143			break;
1144		case PT_INTERP:
1145			/* Path to interpreter */
1146			if (interp != NULL) {
1147				uprintf("Multiple PT_INTERP headers\n");
1148				error = ENOEXEC;
1149				goto ret;
1150			}
1151			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1152			    &free_interp);
1153			if (error != 0)
1154				goto ret;
1155			break;
1156		case PT_GNU_STACK:
1157			if (__elfN(nxstack))
1158				imgp->stack_prot =
1159				    __elfN(trans_prot)(phdr[i].p_flags);
1160			imgp->stack_sz = phdr[i].p_memsz;
1161			break;
1162		case PT_PHDR: 	/* Program header table info */
1163			proghdr = phdr[i].p_vaddr;
1164			break;
1165		}
1166	}
1167
1168	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1169	if (brand_info == NULL) {
1170		uprintf("ELF binary type \"%u\" not known.\n",
1171		    hdr->e_ident[EI_OSABI]);
1172		error = ENOEXEC;
1173		goto ret;
1174	}
1175	sv = brand_info->sysvec;
1176	et_dyn_addr = 0;
1177	if (hdr->e_type == ET_DYN) {
1178		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1179			uprintf("Cannot execute shared object\n");
1180			error = ENOEXEC;
1181			goto ret;
1182		}
1183		/*
1184		 * Honour the base load address from the dso if it is
1185		 * non-zero for some reason.
1186		 */
1187		if (baddr == 0) {
1188			if ((sv->sv_flags & SV_ASLR) == 0 ||
1189			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1190				et_dyn_addr = __elfN(pie_base);
1191			else if ((__elfN(pie_aslr_enabled) &&
1192			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1193			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1194				et_dyn_addr = ET_DYN_ADDR_RAND;
1195			else
1196				et_dyn_addr = __elfN(pie_base);
1197		}
1198	}
1199
1200	/*
1201	 * Avoid a possible deadlock if the current address space is destroyed
1202	 * and that address space maps the locked vnode.  In the common case,
1203	 * the locked vnode's v_usecount is decremented but remains greater
1204	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1205	 * However, in cases where the vnode lock is external, such as nullfs,
1206	 * v_usecount may become zero.
1207	 *
1208	 * The VV_TEXT flag prevents modifications to the executable while
1209	 * the vnode is unlocked.
1210	 */
1211	VOP_UNLOCK(imgp->vp);
1212
1213	/*
1214	 * Decide whether to enable randomization of user mappings.
1215	 * First, reset user preferences for the setid binaries.
1216	 * Then, account for the support of the randomization by the
1217	 * ABI, by user preferences, and make special treatment for
1218	 * PIE binaries.
1219	 */
1220	if (imgp->credential_setid) {
1221		PROC_LOCK(imgp->proc);
1222		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
1223		PROC_UNLOCK(imgp->proc);
1224	}
1225	if ((sv->sv_flags & SV_ASLR) == 0 ||
1226	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1227	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1228		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1229		    ("et_dyn_addr == RAND and !ASLR"));
1230	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1231	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1232	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1233		imgp->map_flags |= MAP_ASLR;
1234		/*
1235		 * If user does not care about sbrk, utilize the bss
1236		 * grow region for mappings as well.  We can select
1237		 * the base for the image anywere and still not suffer
1238		 * from the fragmentation.
1239		 */
1240		if (!__elfN(aslr_honor_sbrk) ||
1241		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1242			imgp->map_flags |= MAP_ASLR_IGNSTART;
1243	}
1244
1245	if (!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0)
1246		imgp->map_flags |= MAP_WXORX;
1247
1248	error = exec_new_vmspace(imgp, sv);
1249	vmspace = imgp->proc->p_vmspace;
1250	map = &vmspace->vm_map;
1251
1252	imgp->proc->p_sysent = sv;
1253
1254	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1255	if (et_dyn_addr == ET_DYN_ADDR_RAND) {
1256		KASSERT((map->flags & MAP_ASLR) != 0,
1257		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1258		et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
1259		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1260		    /* reserve half of the address space to interpreter */
1261		    maxv / 2, 1UL << flsl(maxalign));
1262	}
1263
1264	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1265	if (error != 0)
1266		goto ret;
1267
1268	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1269	if (error != 0)
1270		goto ret;
1271
1272	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1273	if (error != 0)
1274		goto ret;
1275
1276	entry = (u_long)hdr->e_entry + et_dyn_addr;
1277
1278	/*
1279	 * We load the dynamic linker where a userland call
1280	 * to mmap(0, ...) would put it.  The rationale behind this
1281	 * calculation is that it leaves room for the heap to grow to
1282	 * its maximum allowed size.
1283	 */
1284	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1285	    RLIMIT_DATA));
1286	if ((map->flags & MAP_ASLR) != 0) {
1287		maxv1 = maxv / 2 + addr / 2;
1288		MPASS(maxv1 >= addr);	/* No overflow */
1289		map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1290		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1291		    pagesizes[1] : pagesizes[0]);
1292	} else {
1293		map->anon_loc = addr;
1294	}
1295
1296	imgp->entry_addr = entry;
1297
1298	if (interp != NULL) {
1299		VOP_UNLOCK(imgp->vp);
1300		if ((map->flags & MAP_ASLR) != 0) {
1301			/* Assume that interpreter fits into 1/4 of AS */
1302			maxv1 = maxv / 2 + addr / 2;
1303			MPASS(maxv1 >= addr);	/* No overflow */
1304			addr = __CONCAT(rnd_, __elfN(base))(map, addr,
1305			    maxv1, PAGE_SIZE);
1306		}
1307		error = __elfN(load_interp)(imgp, brand_info, interp, &addr,
1308		    &imgp->entry_addr);
1309		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1310		if (error != 0)
1311			goto ret;
1312	} else
1313		addr = et_dyn_addr;
1314
1315	/*
1316	 * Construct auxargs table (used by the copyout_auxargs routine)
1317	 */
1318	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1319	if (elf_auxargs == NULL) {
1320		VOP_UNLOCK(imgp->vp);
1321		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1322		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1323	}
1324	elf_auxargs->execfd = -1;
1325	elf_auxargs->phdr = proghdr + et_dyn_addr;
1326	elf_auxargs->phent = hdr->e_phentsize;
1327	elf_auxargs->phnum = hdr->e_phnum;
1328	elf_auxargs->pagesz = PAGE_SIZE;
1329	elf_auxargs->base = addr;
1330	elf_auxargs->flags = 0;
1331	elf_auxargs->entry = entry;
1332	elf_auxargs->hdr_eflags = hdr->e_flags;
1333
1334	imgp->auxargs = elf_auxargs;
1335	imgp->interpreted = 0;
1336	imgp->reloc_base = addr;
1337	imgp->proc->p_osrel = osrel;
1338	imgp->proc->p_fctl0 = fctl0;
1339	imgp->proc->p_elf_machine = hdr->e_machine;
1340	imgp->proc->p_elf_flags = hdr->e_flags;
1341
1342ret:
1343	if (free_interp)
1344		free(interp, M_TEMP);
1345	return (error);
1346}
1347
1348#define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1349
1350int
1351__elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1352{
1353	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1354	Elf_Auxinfo *argarray, *pos;
1355	int error;
1356
1357	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1358	    M_WAITOK | M_ZERO);
1359
1360	if (args->execfd != -1)
1361		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1362	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1363	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1364	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1365	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1366	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1367	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1368	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1369	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1370	if (imgp->execpathp != 0)
1371		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1372	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1373	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1374	if (imgp->canary != 0) {
1375		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1376		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1377	}
1378	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1379	if (imgp->pagesizes != 0) {
1380		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1381		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1382	}
1383	if (imgp->sysent->sv_timekeep_base != 0) {
1384		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1385		    imgp->sysent->sv_timekeep_base);
1386	}
1387	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1388	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1389	    imgp->sysent->sv_stackprot);
1390	if (imgp->sysent->sv_hwcap != NULL)
1391		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1392	if (imgp->sysent->sv_hwcap2 != NULL)
1393		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1394	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1395	    ELF_BSDF_SIGFASTBLK : 0);
1396	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1397	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1398	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1399	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1400	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1401	if (imgp->sysent->sv_fxrng_gen_base != 0)
1402		AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base);
1403	AUXARGS_ENTRY(pos, AT_NULL, 0);
1404
1405	free(imgp->auxargs, M_TEMP);
1406	imgp->auxargs = NULL;
1407	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1408
1409	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1410	free(argarray, M_TEMP);
1411	return (error);
1412}
1413
1414int
1415__elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1416{
1417	Elf_Addr *base;
1418
1419	base = (Elf_Addr *)*stack_base;
1420	base--;
1421	if (suword(base, imgp->args->argc) == -1)
1422		return (EFAULT);
1423	*stack_base = (uintptr_t)base;
1424	return (0);
1425}
1426
1427/*
1428 * Code for generating ELF core dumps.
1429 */
1430
1431typedef void (*segment_callback)(vm_map_entry_t, void *);
1432
1433/* Closure for cb_put_phdr(). */
1434struct phdr_closure {
1435	Elf_Phdr *phdr;		/* Program header to fill in */
1436	Elf_Off offset;		/* Offset of segment in core file */
1437};
1438
1439/* Closure for cb_size_segment(). */
1440struct sseg_closure {
1441	int count;		/* Count of writable segments. */
1442	size_t size;		/* Total size of all writable segments. */
1443};
1444
1445typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1446
1447struct note_info {
1448	int		type;		/* Note type. */
1449	outfunc_t 	outfunc; 	/* Output function. */
1450	void		*outarg;	/* Argument for the output function. */
1451	size_t		outsize;	/* Output size. */
1452	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1453};
1454
1455TAILQ_HEAD(note_info_list, note_info);
1456
1457/* Coredump output parameters. */
1458struct coredump_params {
1459	off_t		offset;
1460	struct ucred	*active_cred;
1461	struct ucred	*file_cred;
1462	struct thread	*td;
1463	struct vnode	*vp;
1464	struct compressor *comp;
1465};
1466
1467extern int compress_user_cores;
1468extern int compress_user_cores_level;
1469
1470static void cb_put_phdr(vm_map_entry_t, void *);
1471static void cb_size_segment(vm_map_entry_t, void *);
1472static int core_write(struct coredump_params *, const void *, size_t, off_t,
1473    enum uio_seg, size_t *);
1474static void each_dumpable_segment(struct thread *, segment_callback, void *,
1475    int);
1476static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1477    struct note_info_list *, size_t, int);
1478static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1479    size_t *);
1480static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t, int);
1481static void __elfN(putnote)(struct note_info *, struct sbuf *);
1482static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1483static int sbuf_drain_core_output(void *, const char *, int);
1484
1485static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1486static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1487static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1488static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1489static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1490static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1491static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1492static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1493static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1494static void note_procstat_files(void *, struct sbuf *, size_t *);
1495static void note_procstat_groups(void *, struct sbuf *, size_t *);
1496static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1497static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1498static void note_procstat_umask(void *, struct sbuf *, size_t *);
1499static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1500
1501/*
1502 * Write out a core segment to the compression stream.
1503 */
1504static int
1505compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1506{
1507	u_int chunk_len;
1508	int error;
1509
1510	while (len > 0) {
1511		chunk_len = MIN(len, CORE_BUF_SIZE);
1512
1513		/*
1514		 * We can get EFAULT error here.
1515		 * In that case zero out the current chunk of the segment.
1516		 */
1517		error = copyin(base, buf, chunk_len);
1518		if (error != 0)
1519			bzero(buf, chunk_len);
1520		error = compressor_write(p->comp, buf, chunk_len);
1521		if (error != 0)
1522			break;
1523		base += chunk_len;
1524		len -= chunk_len;
1525	}
1526	return (error);
1527}
1528
1529static int
1530core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1531{
1532
1533	return (core_write((struct coredump_params *)arg, base, len, offset,
1534	    UIO_SYSSPACE, NULL));
1535}
1536
1537static int
1538core_write(struct coredump_params *p, const void *base, size_t len,
1539    off_t offset, enum uio_seg seg, size_t *resid)
1540{
1541
1542	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1543	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1544	    p->active_cred, p->file_cred, resid, p->td));
1545}
1546
1547static int
1548core_output(char *base, size_t len, off_t offset, struct coredump_params *p,
1549    void *tmpbuf)
1550{
1551	vm_map_t map;
1552	struct mount *mp;
1553	size_t resid, runlen;
1554	int error;
1555	bool success;
1556
1557	KASSERT((uintptr_t)base % PAGE_SIZE == 0,
1558	    ("%s: user address %p is not page-aligned", __func__, base));
1559
1560	if (p->comp != NULL)
1561		return (compress_chunk(p, base, tmpbuf, len));
1562
1563	map = &p->td->td_proc->p_vmspace->vm_map;
1564	for (; len > 0; base += runlen, offset += runlen, len -= runlen) {
1565		/*
1566		 * Attempt to page in all virtual pages in the range.  If a
1567		 * virtual page is not backed by the pager, it is represented as
1568		 * a hole in the file.  This can occur with zero-filled
1569		 * anonymous memory or truncated files, for example.
1570		 */
1571		for (runlen = 0; runlen < len; runlen += PAGE_SIZE) {
1572			error = vm_fault(map, (uintptr_t)base + runlen,
1573			    VM_PROT_READ, VM_FAULT_NOFILL, NULL);
1574			if (runlen == 0)
1575				success = error == KERN_SUCCESS;
1576			else if ((error == KERN_SUCCESS) != success)
1577				break;
1578		}
1579
1580		if (success) {
1581			error = core_write(p, base, runlen, offset,
1582			    UIO_USERSPACE, &resid);
1583			if (error != 0) {
1584				if (error != EFAULT)
1585					break;
1586
1587				/*
1588				 * EFAULT may be returned if the user mapping
1589				 * could not be accessed, e.g., because a mapped
1590				 * file has been truncated.  Skip the page if no
1591				 * progress was made, to protect against a
1592				 * hypothetical scenario where vm_fault() was
1593				 * successful but core_write() returns EFAULT
1594				 * anyway.
1595				 */
1596				runlen -= resid;
1597				if (runlen == 0) {
1598					success = false;
1599					runlen = PAGE_SIZE;
1600				}
1601			}
1602		}
1603		if (!success) {
1604			error = vn_start_write(p->vp, &mp, V_WAIT);
1605			if (error != 0)
1606				break;
1607			vn_lock(p->vp, LK_EXCLUSIVE | LK_RETRY);
1608			error = vn_truncate_locked(p->vp, offset + runlen,
1609			    false, p->td->td_ucred);
1610			VOP_UNLOCK(p->vp);
1611			vn_finished_write(mp);
1612			if (error != 0)
1613				break;
1614		}
1615	}
1616	return (error);
1617}
1618
1619/*
1620 * Drain into a core file.
1621 */
1622static int
1623sbuf_drain_core_output(void *arg, const char *data, int len)
1624{
1625	struct coredump_params *p;
1626	int error, locked;
1627
1628	p = (struct coredump_params *)arg;
1629
1630	/*
1631	 * Some kern_proc out routines that print to this sbuf may
1632	 * call us with the process lock held. Draining with the
1633	 * non-sleepable lock held is unsafe. The lock is needed for
1634	 * those routines when dumping a live process. In our case we
1635	 * can safely release the lock before draining and acquire
1636	 * again after.
1637	 */
1638	locked = PROC_LOCKED(p->td->td_proc);
1639	if (locked)
1640		PROC_UNLOCK(p->td->td_proc);
1641	if (p->comp != NULL)
1642		error = compressor_write(p->comp, __DECONST(char *, data), len);
1643	else
1644		error = core_write(p, __DECONST(void *, data), len, p->offset,
1645		    UIO_SYSSPACE, NULL);
1646	if (locked)
1647		PROC_LOCK(p->td->td_proc);
1648	if (error != 0)
1649		return (-error);
1650	p->offset += len;
1651	return (len);
1652}
1653
1654int
1655__elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1656{
1657	struct ucred *cred = td->td_ucred;
1658	int compm, error = 0;
1659	struct sseg_closure seginfo;
1660	struct note_info_list notelst;
1661	struct coredump_params params;
1662	struct note_info *ninfo;
1663	void *hdr, *tmpbuf;
1664	size_t hdrsize, notesz, coresize;
1665
1666	hdr = NULL;
1667	tmpbuf = NULL;
1668	TAILQ_INIT(&notelst);
1669
1670	/* Size the program segments. */
1671	seginfo.count = 0;
1672	seginfo.size = 0;
1673	each_dumpable_segment(td, cb_size_segment, &seginfo, flags);
1674
1675	/*
1676	 * Collect info about the core file header area.
1677	 */
1678	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1679	if (seginfo.count + 1 >= PN_XNUM)
1680		hdrsize += sizeof(Elf_Shdr);
1681	__elfN(prepare_notes)(td, &notelst, &notesz);
1682	coresize = round_page(hdrsize + notesz) + seginfo.size;
1683
1684	/* Set up core dump parameters. */
1685	params.offset = 0;
1686	params.active_cred = cred;
1687	params.file_cred = NOCRED;
1688	params.td = td;
1689	params.vp = vp;
1690	params.comp = NULL;
1691
1692#ifdef RACCT
1693	if (racct_enable) {
1694		PROC_LOCK(td->td_proc);
1695		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1696		PROC_UNLOCK(td->td_proc);
1697		if (error != 0) {
1698			error = EFAULT;
1699			goto done;
1700		}
1701	}
1702#endif
1703	if (coresize >= limit) {
1704		error = EFAULT;
1705		goto done;
1706	}
1707
1708	/* Create a compression stream if necessary. */
1709	compm = compress_user_cores;
1710	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1711	    compm == 0)
1712		compm = COMPRESS_GZIP;
1713	if (compm != 0) {
1714		params.comp = compressor_init(core_compressed_write,
1715		    compm, CORE_BUF_SIZE,
1716		    compress_user_cores_level, &params);
1717		if (params.comp == NULL) {
1718			error = EFAULT;
1719			goto done;
1720		}
1721		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1722        }
1723
1724	/*
1725	 * Allocate memory for building the header, fill it up,
1726	 * and write it out following the notes.
1727	 */
1728	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1729	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1730	    notesz, flags);
1731
1732	/* Write the contents of all of the writable segments. */
1733	if (error == 0) {
1734		Elf_Phdr *php;
1735		off_t offset;
1736		int i;
1737
1738		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1739		offset = round_page(hdrsize + notesz);
1740		for (i = 0; i < seginfo.count; i++) {
1741			error = core_output((char *)(uintptr_t)php->p_vaddr,
1742			    php->p_filesz, offset, &params, tmpbuf);
1743			if (error != 0)
1744				break;
1745			offset += php->p_filesz;
1746			php++;
1747		}
1748		if (error == 0 && params.comp != NULL)
1749			error = compressor_flush(params.comp);
1750	}
1751	if (error) {
1752		log(LOG_WARNING,
1753		    "Failed to write core file for process %s (error %d)\n",
1754		    curproc->p_comm, error);
1755	}
1756
1757done:
1758	free(tmpbuf, M_TEMP);
1759	if (params.comp != NULL)
1760		compressor_fini(params.comp);
1761	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1762		TAILQ_REMOVE(&notelst, ninfo, link);
1763		free(ninfo, M_TEMP);
1764	}
1765	if (hdr != NULL)
1766		free(hdr, M_TEMP);
1767
1768	return (error);
1769}
1770
1771/*
1772 * A callback for each_dumpable_segment() to write out the segment's
1773 * program header entry.
1774 */
1775static void
1776cb_put_phdr(vm_map_entry_t entry, void *closure)
1777{
1778	struct phdr_closure *phc = (struct phdr_closure *)closure;
1779	Elf_Phdr *phdr = phc->phdr;
1780
1781	phc->offset = round_page(phc->offset);
1782
1783	phdr->p_type = PT_LOAD;
1784	phdr->p_offset = phc->offset;
1785	phdr->p_vaddr = entry->start;
1786	phdr->p_paddr = 0;
1787	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1788	phdr->p_align = PAGE_SIZE;
1789	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1790
1791	phc->offset += phdr->p_filesz;
1792	phc->phdr++;
1793}
1794
1795/*
1796 * A callback for each_dumpable_segment() to gather information about
1797 * the number of segments and their total size.
1798 */
1799static void
1800cb_size_segment(vm_map_entry_t entry, void *closure)
1801{
1802	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1803
1804	ssc->count++;
1805	ssc->size += entry->end - entry->start;
1806}
1807
1808/*
1809 * For each writable segment in the process's memory map, call the given
1810 * function with a pointer to the map entry and some arbitrary
1811 * caller-supplied data.
1812 */
1813static void
1814each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1815    int flags)
1816{
1817	struct proc *p = td->td_proc;
1818	vm_map_t map = &p->p_vmspace->vm_map;
1819	vm_map_entry_t entry;
1820	vm_object_t backing_object, object;
1821	bool ignore_entry;
1822
1823	vm_map_lock_read(map);
1824	VM_MAP_ENTRY_FOREACH(entry, map) {
1825		/*
1826		 * Don't dump inaccessible mappings, deal with legacy
1827		 * coredump mode.
1828		 *
1829		 * Note that read-only segments related to the elf binary
1830		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1831		 * need to arbitrarily ignore such segments.
1832		 */
1833		if ((flags & SVC_ALL) == 0) {
1834			if (elf_legacy_coredump) {
1835				if ((entry->protection & VM_PROT_RW) !=
1836				    VM_PROT_RW)
1837					continue;
1838			} else {
1839				if ((entry->protection & VM_PROT_ALL) == 0)
1840					continue;
1841			}
1842		}
1843
1844		/*
1845		 * Dont include memory segment in the coredump if
1846		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1847		 * madvise(2).  Do not dump submaps (i.e. parts of the
1848		 * kernel map).
1849		 */
1850		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1851			continue;
1852		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1853		    (flags & SVC_ALL) == 0)
1854			continue;
1855		if ((object = entry->object.vm_object) == NULL)
1856			continue;
1857
1858		/* Ignore memory-mapped devices and such things. */
1859		VM_OBJECT_RLOCK(object);
1860		while ((backing_object = object->backing_object) != NULL) {
1861			VM_OBJECT_RLOCK(backing_object);
1862			VM_OBJECT_RUNLOCK(object);
1863			object = backing_object;
1864		}
1865		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1866		VM_OBJECT_RUNLOCK(object);
1867		if (ignore_entry)
1868			continue;
1869
1870		(*func)(entry, closure);
1871	}
1872	vm_map_unlock_read(map);
1873}
1874
1875/*
1876 * Write the core file header to the file, including padding up to
1877 * the page boundary.
1878 */
1879static int
1880__elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1881    size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1882    int flags)
1883{
1884	struct note_info *ninfo;
1885	struct sbuf *sb;
1886	int error;
1887
1888	/* Fill in the header. */
1889	bzero(hdr, hdrsize);
1890	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1891
1892	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1893	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1894	sbuf_start_section(sb, NULL);
1895	sbuf_bcat(sb, hdr, hdrsize);
1896	TAILQ_FOREACH(ninfo, notelst, link)
1897	    __elfN(putnote)(ninfo, sb);
1898	/* Align up to a page boundary for the program segments. */
1899	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1900	error = sbuf_finish(sb);
1901	sbuf_delete(sb);
1902
1903	return (error);
1904}
1905
1906static void
1907__elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1908    size_t *sizep)
1909{
1910	struct proc *p;
1911	struct thread *thr;
1912	size_t size;
1913
1914	p = td->td_proc;
1915	size = 0;
1916
1917	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1918
1919	/*
1920	 * To have the debugger select the right thread (LWP) as the initial
1921	 * thread, we dump the state of the thread passed to us in td first.
1922	 * This is the thread that causes the core dump and thus likely to
1923	 * be the right thread one wants to have selected in the debugger.
1924	 */
1925	thr = td;
1926	while (thr != NULL) {
1927		size += register_note(list, NT_PRSTATUS,
1928		    __elfN(note_prstatus), thr);
1929		size += register_note(list, NT_FPREGSET,
1930		    __elfN(note_fpregset), thr);
1931		size += register_note(list, NT_THRMISC,
1932		    __elfN(note_thrmisc), thr);
1933		size += register_note(list, NT_PTLWPINFO,
1934		    __elfN(note_ptlwpinfo), thr);
1935		size += register_note(list, -1,
1936		    __elfN(note_threadmd), thr);
1937
1938		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1939		    TAILQ_NEXT(thr, td_plist);
1940		if (thr == td)
1941			thr = TAILQ_NEXT(thr, td_plist);
1942	}
1943
1944	size += register_note(list, NT_PROCSTAT_PROC,
1945	    __elfN(note_procstat_proc), p);
1946	size += register_note(list, NT_PROCSTAT_FILES,
1947	    note_procstat_files, p);
1948	size += register_note(list, NT_PROCSTAT_VMMAP,
1949	    note_procstat_vmmap, p);
1950	size += register_note(list, NT_PROCSTAT_GROUPS,
1951	    note_procstat_groups, p);
1952	size += register_note(list, NT_PROCSTAT_UMASK,
1953	    note_procstat_umask, p);
1954	size += register_note(list, NT_PROCSTAT_RLIMIT,
1955	    note_procstat_rlimit, p);
1956	size += register_note(list, NT_PROCSTAT_OSREL,
1957	    note_procstat_osrel, p);
1958	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1959	    __elfN(note_procstat_psstrings), p);
1960	size += register_note(list, NT_PROCSTAT_AUXV,
1961	    __elfN(note_procstat_auxv), p);
1962
1963	*sizep = size;
1964}
1965
1966static void
1967__elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1968    size_t notesz, int flags)
1969{
1970	Elf_Ehdr *ehdr;
1971	Elf_Phdr *phdr;
1972	Elf_Shdr *shdr;
1973	struct phdr_closure phc;
1974
1975	ehdr = (Elf_Ehdr *)hdr;
1976
1977	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1978	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1979	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1980	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1981	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1982	ehdr->e_ident[EI_DATA] = ELF_DATA;
1983	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1984	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1985	ehdr->e_ident[EI_ABIVERSION] = 0;
1986	ehdr->e_ident[EI_PAD] = 0;
1987	ehdr->e_type = ET_CORE;
1988	ehdr->e_machine = td->td_proc->p_elf_machine;
1989	ehdr->e_version = EV_CURRENT;
1990	ehdr->e_entry = 0;
1991	ehdr->e_phoff = sizeof(Elf_Ehdr);
1992	ehdr->e_flags = td->td_proc->p_elf_flags;
1993	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1994	ehdr->e_phentsize = sizeof(Elf_Phdr);
1995	ehdr->e_shentsize = sizeof(Elf_Shdr);
1996	ehdr->e_shstrndx = SHN_UNDEF;
1997	if (numsegs + 1 < PN_XNUM) {
1998		ehdr->e_phnum = numsegs + 1;
1999		ehdr->e_shnum = 0;
2000	} else {
2001		ehdr->e_phnum = PN_XNUM;
2002		ehdr->e_shnum = 1;
2003
2004		ehdr->e_shoff = ehdr->e_phoff +
2005		    (numsegs + 1) * ehdr->e_phentsize;
2006		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
2007		    ("e_shoff: %zu, hdrsize - shdr: %zu",
2008		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
2009
2010		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
2011		memset(shdr, 0, sizeof(*shdr));
2012		/*
2013		 * A special first section is used to hold large segment and
2014		 * section counts.  This was proposed by Sun Microsystems in
2015		 * Solaris and has been adopted by Linux; the standard ELF
2016		 * tools are already familiar with the technique.
2017		 *
2018		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
2019		 * (or 12-7 depending on the version of the document) for more
2020		 * details.
2021		 */
2022		shdr->sh_type = SHT_NULL;
2023		shdr->sh_size = ehdr->e_shnum;
2024		shdr->sh_link = ehdr->e_shstrndx;
2025		shdr->sh_info = numsegs + 1;
2026	}
2027
2028	/*
2029	 * Fill in the program header entries.
2030	 */
2031	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
2032
2033	/* The note segement. */
2034	phdr->p_type = PT_NOTE;
2035	phdr->p_offset = hdrsize;
2036	phdr->p_vaddr = 0;
2037	phdr->p_paddr = 0;
2038	phdr->p_filesz = notesz;
2039	phdr->p_memsz = 0;
2040	phdr->p_flags = PF_R;
2041	phdr->p_align = ELF_NOTE_ROUNDSIZE;
2042	phdr++;
2043
2044	/* All the writable segments from the program. */
2045	phc.phdr = phdr;
2046	phc.offset = round_page(hdrsize + notesz);
2047	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
2048}
2049
2050static size_t
2051register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
2052{
2053	struct note_info *ninfo;
2054	size_t size, notesize;
2055
2056	size = 0;
2057	out(arg, NULL, &size);
2058	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2059	ninfo->type = type;
2060	ninfo->outfunc = out;
2061	ninfo->outarg = arg;
2062	ninfo->outsize = size;
2063	TAILQ_INSERT_TAIL(list, ninfo, link);
2064
2065	if (type == -1)
2066		return (size);
2067
2068	notesize = sizeof(Elf_Note) +		/* note header */
2069	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2070						/* note name */
2071	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2072
2073	return (notesize);
2074}
2075
2076static size_t
2077append_note_data(const void *src, void *dst, size_t len)
2078{
2079	size_t padded_len;
2080
2081	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2082	if (dst != NULL) {
2083		bcopy(src, dst, len);
2084		bzero((char *)dst + len, padded_len - len);
2085	}
2086	return (padded_len);
2087}
2088
2089size_t
2090__elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2091{
2092	Elf_Note *note;
2093	char *buf;
2094	size_t notesize;
2095
2096	buf = dst;
2097	if (buf != NULL) {
2098		note = (Elf_Note *)buf;
2099		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2100		note->n_descsz = size;
2101		note->n_type = type;
2102		buf += sizeof(*note);
2103		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2104		    sizeof(FREEBSD_ABI_VENDOR));
2105		append_note_data(src, buf, size);
2106		if (descp != NULL)
2107			*descp = buf;
2108	}
2109
2110	notesize = sizeof(Elf_Note) +		/* note header */
2111	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2112						/* note name */
2113	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2114
2115	return (notesize);
2116}
2117
2118static void
2119__elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
2120{
2121	Elf_Note note;
2122	ssize_t old_len, sect_len;
2123	size_t new_len, descsz, i;
2124
2125	if (ninfo->type == -1) {
2126		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2127		return;
2128	}
2129
2130	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2131	note.n_descsz = ninfo->outsize;
2132	note.n_type = ninfo->type;
2133
2134	sbuf_bcat(sb, &note, sizeof(note));
2135	sbuf_start_section(sb, &old_len);
2136	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
2137	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2138	if (note.n_descsz == 0)
2139		return;
2140	sbuf_start_section(sb, &old_len);
2141	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2142	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2143	if (sect_len < 0)
2144		return;
2145
2146	new_len = (size_t)sect_len;
2147	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2148	if (new_len < descsz) {
2149		/*
2150		 * It is expected that individual note emitters will correctly
2151		 * predict their expected output size and fill up to that size
2152		 * themselves, padding in a format-specific way if needed.
2153		 * However, in case they don't, just do it here with zeros.
2154		 */
2155		for (i = 0; i < descsz - new_len; i++)
2156			sbuf_putc(sb, 0);
2157	} else if (new_len > descsz) {
2158		/*
2159		 * We can't always truncate sb -- we may have drained some
2160		 * of it already.
2161		 */
2162		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2163		    "read it (%zu > %zu).  Since it is longer than "
2164		    "expected, this coredump's notes are corrupt.  THIS "
2165		    "IS A BUG in the note_procstat routine for type %u.\n",
2166		    __func__, (unsigned)note.n_type, new_len, descsz,
2167		    (unsigned)note.n_type));
2168	}
2169}
2170
2171/*
2172 * Miscellaneous note out functions.
2173 */
2174
2175#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2176#include <compat/freebsd32/freebsd32.h>
2177#include <compat/freebsd32/freebsd32_signal.h>
2178
2179typedef struct prstatus32 elf_prstatus_t;
2180typedef struct prpsinfo32 elf_prpsinfo_t;
2181typedef struct fpreg32 elf_prfpregset_t;
2182typedef struct fpreg32 elf_fpregset_t;
2183typedef struct reg32 elf_gregset_t;
2184typedef struct thrmisc32 elf_thrmisc_t;
2185#define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2186typedef struct kinfo_proc32 elf_kinfo_proc_t;
2187typedef uint32_t elf_ps_strings_t;
2188#else
2189typedef prstatus_t elf_prstatus_t;
2190typedef prpsinfo_t elf_prpsinfo_t;
2191typedef prfpregset_t elf_prfpregset_t;
2192typedef prfpregset_t elf_fpregset_t;
2193typedef gregset_t elf_gregset_t;
2194typedef thrmisc_t elf_thrmisc_t;
2195#define ELF_KERN_PROC_MASK	0
2196typedef struct kinfo_proc elf_kinfo_proc_t;
2197typedef vm_offset_t elf_ps_strings_t;
2198#endif
2199
2200static void
2201__elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2202{
2203	struct sbuf sbarg;
2204	size_t len;
2205	char *cp, *end;
2206	struct proc *p;
2207	elf_prpsinfo_t *psinfo;
2208	int error;
2209
2210	p = (struct proc *)arg;
2211	if (sb != NULL) {
2212		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2213		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2214		psinfo->pr_version = PRPSINFO_VERSION;
2215		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2216		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2217		PROC_LOCK(p);
2218		if (p->p_args != NULL) {
2219			len = sizeof(psinfo->pr_psargs) - 1;
2220			if (len > p->p_args->ar_length)
2221				len = p->p_args->ar_length;
2222			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2223			PROC_UNLOCK(p);
2224			error = 0;
2225		} else {
2226			_PHOLD(p);
2227			PROC_UNLOCK(p);
2228			sbuf_new(&sbarg, psinfo->pr_psargs,
2229			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2230			error = proc_getargv(curthread, p, &sbarg);
2231			PRELE(p);
2232			if (sbuf_finish(&sbarg) == 0)
2233				len = sbuf_len(&sbarg) - 1;
2234			else
2235				len = sizeof(psinfo->pr_psargs) - 1;
2236			sbuf_delete(&sbarg);
2237		}
2238		if (error || len == 0)
2239			strlcpy(psinfo->pr_psargs, p->p_comm,
2240			    sizeof(psinfo->pr_psargs));
2241		else {
2242			KASSERT(len < sizeof(psinfo->pr_psargs),
2243			    ("len is too long: %zu vs %zu", len,
2244			    sizeof(psinfo->pr_psargs)));
2245			cp = psinfo->pr_psargs;
2246			end = cp + len - 1;
2247			for (;;) {
2248				cp = memchr(cp, '\0', end - cp);
2249				if (cp == NULL)
2250					break;
2251				*cp = ' ';
2252			}
2253		}
2254		psinfo->pr_pid = p->p_pid;
2255		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2256		free(psinfo, M_TEMP);
2257	}
2258	*sizep = sizeof(*psinfo);
2259}
2260
2261static void
2262__elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2263{
2264	struct thread *td;
2265	elf_prstatus_t *status;
2266
2267	td = (struct thread *)arg;
2268	if (sb != NULL) {
2269		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2270		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2271		status->pr_version = PRSTATUS_VERSION;
2272		status->pr_statussz = sizeof(elf_prstatus_t);
2273		status->pr_gregsetsz = sizeof(elf_gregset_t);
2274		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2275		status->pr_osreldate = osreldate;
2276		status->pr_cursig = td->td_proc->p_sig;
2277		status->pr_pid = td->td_tid;
2278#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2279		fill_regs32(td, &status->pr_reg);
2280#else
2281		fill_regs(td, &status->pr_reg);
2282#endif
2283		sbuf_bcat(sb, status, sizeof(*status));
2284		free(status, M_TEMP);
2285	}
2286	*sizep = sizeof(*status);
2287}
2288
2289static void
2290__elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2291{
2292	struct thread *td;
2293	elf_prfpregset_t *fpregset;
2294
2295	td = (struct thread *)arg;
2296	if (sb != NULL) {
2297		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2298		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2299#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2300		fill_fpregs32(td, fpregset);
2301#else
2302		fill_fpregs(td, fpregset);
2303#endif
2304		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2305		free(fpregset, M_TEMP);
2306	}
2307	*sizep = sizeof(*fpregset);
2308}
2309
2310static void
2311__elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2312{
2313	struct thread *td;
2314	elf_thrmisc_t thrmisc;
2315
2316	td = (struct thread *)arg;
2317	if (sb != NULL) {
2318		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2319		bzero(&thrmisc, sizeof(thrmisc));
2320		strcpy(thrmisc.pr_tname, td->td_name);
2321		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2322	}
2323	*sizep = sizeof(thrmisc);
2324}
2325
2326static void
2327__elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2328{
2329	struct thread *td;
2330	size_t size;
2331	int structsize;
2332#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2333	struct ptrace_lwpinfo32 pl;
2334#else
2335	struct ptrace_lwpinfo pl;
2336#endif
2337
2338	td = (struct thread *)arg;
2339	size = sizeof(structsize) + sizeof(pl);
2340	if (sb != NULL) {
2341		KASSERT(*sizep == size, ("invalid size"));
2342		structsize = sizeof(pl);
2343		sbuf_bcat(sb, &structsize, sizeof(structsize));
2344		bzero(&pl, sizeof(pl));
2345		pl.pl_lwpid = td->td_tid;
2346		pl.pl_event = PL_EVENT_NONE;
2347		pl.pl_sigmask = td->td_sigmask;
2348		pl.pl_siglist = td->td_siglist;
2349		if (td->td_si.si_signo != 0) {
2350			pl.pl_event = PL_EVENT_SIGNAL;
2351			pl.pl_flags |= PL_FLAG_SI;
2352#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2353			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2354#else
2355			pl.pl_siginfo = td->td_si;
2356#endif
2357		}
2358		strcpy(pl.pl_tdname, td->td_name);
2359		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2360		sbuf_bcat(sb, &pl, sizeof(pl));
2361	}
2362	*sizep = size;
2363}
2364
2365/*
2366 * Allow for MD specific notes, as well as any MD
2367 * specific preparations for writing MI notes.
2368 */
2369static void
2370__elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2371{
2372	struct thread *td;
2373	void *buf;
2374	size_t size;
2375
2376	td = (struct thread *)arg;
2377	size = *sizep;
2378	if (size != 0 && sb != NULL)
2379		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2380	else
2381		buf = NULL;
2382	size = 0;
2383	__elfN(dump_thread)(td, buf, &size);
2384	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2385	if (size != 0 && sb != NULL)
2386		sbuf_bcat(sb, buf, size);
2387	free(buf, M_TEMP);
2388	*sizep = size;
2389}
2390
2391#ifdef KINFO_PROC_SIZE
2392CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2393#endif
2394
2395static void
2396__elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2397{
2398	struct proc *p;
2399	size_t size;
2400	int structsize;
2401
2402	p = (struct proc *)arg;
2403	size = sizeof(structsize) + p->p_numthreads *
2404	    sizeof(elf_kinfo_proc_t);
2405
2406	if (sb != NULL) {
2407		KASSERT(*sizep == size, ("invalid size"));
2408		structsize = sizeof(elf_kinfo_proc_t);
2409		sbuf_bcat(sb, &structsize, sizeof(structsize));
2410		sx_slock(&proctree_lock);
2411		PROC_LOCK(p);
2412		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2413		sx_sunlock(&proctree_lock);
2414	}
2415	*sizep = size;
2416}
2417
2418#ifdef KINFO_FILE_SIZE
2419CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2420#endif
2421
2422static void
2423note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2424{
2425	struct proc *p;
2426	size_t size, sect_sz, i;
2427	ssize_t start_len, sect_len;
2428	int structsize, filedesc_flags;
2429
2430	if (coredump_pack_fileinfo)
2431		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2432	else
2433		filedesc_flags = 0;
2434
2435	p = (struct proc *)arg;
2436	structsize = sizeof(struct kinfo_file);
2437	if (sb == NULL) {
2438		size = 0;
2439		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2440		sbuf_set_drain(sb, sbuf_count_drain, &size);
2441		sbuf_bcat(sb, &structsize, sizeof(structsize));
2442		PROC_LOCK(p);
2443		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2444		sbuf_finish(sb);
2445		sbuf_delete(sb);
2446		*sizep = size;
2447	} else {
2448		sbuf_start_section(sb, &start_len);
2449
2450		sbuf_bcat(sb, &structsize, sizeof(structsize));
2451		PROC_LOCK(p);
2452		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2453		    filedesc_flags);
2454
2455		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2456		if (sect_len < 0)
2457			return;
2458		sect_sz = sect_len;
2459
2460		KASSERT(sect_sz <= *sizep,
2461		    ("kern_proc_filedesc_out did not respect maxlen; "
2462		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2463		     sect_sz - sizeof(structsize)));
2464
2465		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2466			sbuf_putc(sb, 0);
2467	}
2468}
2469
2470#ifdef KINFO_VMENTRY_SIZE
2471CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2472#endif
2473
2474static void
2475note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2476{
2477	struct proc *p;
2478	size_t size;
2479	int structsize, vmmap_flags;
2480
2481	if (coredump_pack_vmmapinfo)
2482		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2483	else
2484		vmmap_flags = 0;
2485
2486	p = (struct proc *)arg;
2487	structsize = sizeof(struct kinfo_vmentry);
2488	if (sb == NULL) {
2489		size = 0;
2490		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2491		sbuf_set_drain(sb, sbuf_count_drain, &size);
2492		sbuf_bcat(sb, &structsize, sizeof(structsize));
2493		PROC_LOCK(p);
2494		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2495		sbuf_finish(sb);
2496		sbuf_delete(sb);
2497		*sizep = size;
2498	} else {
2499		sbuf_bcat(sb, &structsize, sizeof(structsize));
2500		PROC_LOCK(p);
2501		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2502		    vmmap_flags);
2503	}
2504}
2505
2506static void
2507note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2508{
2509	struct proc *p;
2510	size_t size;
2511	int structsize;
2512
2513	p = (struct proc *)arg;
2514	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2515	if (sb != NULL) {
2516		KASSERT(*sizep == size, ("invalid size"));
2517		structsize = sizeof(gid_t);
2518		sbuf_bcat(sb, &structsize, sizeof(structsize));
2519		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2520		    sizeof(gid_t));
2521	}
2522	*sizep = size;
2523}
2524
2525static void
2526note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2527{
2528	struct proc *p;
2529	size_t size;
2530	int structsize;
2531
2532	p = (struct proc *)arg;
2533	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2534	if (sb != NULL) {
2535		KASSERT(*sizep == size, ("invalid size"));
2536		structsize = sizeof(p->p_pd->pd_cmask);
2537		sbuf_bcat(sb, &structsize, sizeof(structsize));
2538		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2539	}
2540	*sizep = size;
2541}
2542
2543static void
2544note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2545{
2546	struct proc *p;
2547	struct rlimit rlim[RLIM_NLIMITS];
2548	size_t size;
2549	int structsize, i;
2550
2551	p = (struct proc *)arg;
2552	size = sizeof(structsize) + sizeof(rlim);
2553	if (sb != NULL) {
2554		KASSERT(*sizep == size, ("invalid size"));
2555		structsize = sizeof(rlim);
2556		sbuf_bcat(sb, &structsize, sizeof(structsize));
2557		PROC_LOCK(p);
2558		for (i = 0; i < RLIM_NLIMITS; i++)
2559			lim_rlimit_proc(p, i, &rlim[i]);
2560		PROC_UNLOCK(p);
2561		sbuf_bcat(sb, rlim, sizeof(rlim));
2562	}
2563	*sizep = size;
2564}
2565
2566static void
2567note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2568{
2569	struct proc *p;
2570	size_t size;
2571	int structsize;
2572
2573	p = (struct proc *)arg;
2574	size = sizeof(structsize) + sizeof(p->p_osrel);
2575	if (sb != NULL) {
2576		KASSERT(*sizep == size, ("invalid size"));
2577		structsize = sizeof(p->p_osrel);
2578		sbuf_bcat(sb, &structsize, sizeof(structsize));
2579		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2580	}
2581	*sizep = size;
2582}
2583
2584static void
2585__elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2586{
2587	struct proc *p;
2588	elf_ps_strings_t ps_strings;
2589	size_t size;
2590	int structsize;
2591
2592	p = (struct proc *)arg;
2593	size = sizeof(structsize) + sizeof(ps_strings);
2594	if (sb != NULL) {
2595		KASSERT(*sizep == size, ("invalid size"));
2596		structsize = sizeof(ps_strings);
2597#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2598		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2599#else
2600		ps_strings = p->p_sysent->sv_psstrings;
2601#endif
2602		sbuf_bcat(sb, &structsize, sizeof(structsize));
2603		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2604	}
2605	*sizep = size;
2606}
2607
2608static void
2609__elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2610{
2611	struct proc *p;
2612	size_t size;
2613	int structsize;
2614
2615	p = (struct proc *)arg;
2616	if (sb == NULL) {
2617		size = 0;
2618		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2619		sbuf_set_drain(sb, sbuf_count_drain, &size);
2620		sbuf_bcat(sb, &structsize, sizeof(structsize));
2621		PHOLD(p);
2622		proc_getauxv(curthread, p, sb);
2623		PRELE(p);
2624		sbuf_finish(sb);
2625		sbuf_delete(sb);
2626		*sizep = size;
2627	} else {
2628		structsize = sizeof(Elf_Auxinfo);
2629		sbuf_bcat(sb, &structsize, sizeof(structsize));
2630		PHOLD(p);
2631		proc_getauxv(curthread, p, sb);
2632		PRELE(p);
2633	}
2634}
2635
2636static boolean_t
2637__elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2638    const char *note_vendor, const Elf_Phdr *pnote,
2639    boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
2640{
2641	const Elf_Note *note, *note0, *note_end;
2642	const char *note_name;
2643	char *buf;
2644	int i, error;
2645	boolean_t res;
2646
2647	/* We need some limit, might as well use PAGE_SIZE. */
2648	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2649		return (FALSE);
2650	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2651	if (pnote->p_offset > PAGE_SIZE ||
2652	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2653		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2654		if (buf == NULL) {
2655			VOP_UNLOCK(imgp->vp);
2656			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2657			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2658		}
2659		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2660		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2661		    curthread->td_ucred, NOCRED, NULL, curthread);
2662		if (error != 0) {
2663			uprintf("i/o error PT_NOTE\n");
2664			goto retf;
2665		}
2666		note = note0 = (const Elf_Note *)buf;
2667		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2668	} else {
2669		note = note0 = (const Elf_Note *)(imgp->image_header +
2670		    pnote->p_offset);
2671		note_end = (const Elf_Note *)(imgp->image_header +
2672		    pnote->p_offset + pnote->p_filesz);
2673		buf = NULL;
2674	}
2675	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2676		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2677		    (const char *)note < sizeof(Elf_Note)) {
2678			goto retf;
2679		}
2680		if (note->n_namesz != checknote->n_namesz ||
2681		    note->n_descsz != checknote->n_descsz ||
2682		    note->n_type != checknote->n_type)
2683			goto nextnote;
2684		note_name = (const char *)(note + 1);
2685		if (note_name + checknote->n_namesz >=
2686		    (const char *)note_end || strncmp(note_vendor,
2687		    note_name, checknote->n_namesz) != 0)
2688			goto nextnote;
2689
2690		if (cb(note, cb_arg, &res))
2691			goto ret;
2692nextnote:
2693		note = (const Elf_Note *)((const char *)(note + 1) +
2694		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2695		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2696	}
2697retf:
2698	res = FALSE;
2699ret:
2700	free(buf, M_TEMP);
2701	return (res);
2702}
2703
2704struct brandnote_cb_arg {
2705	Elf_Brandnote *brandnote;
2706	int32_t *osrel;
2707};
2708
2709static boolean_t
2710brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2711{
2712	struct brandnote_cb_arg *arg;
2713
2714	arg = arg0;
2715
2716	/*
2717	 * Fetch the osreldate for binary from the ELF OSABI-note if
2718	 * necessary.
2719	 */
2720	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2721	    arg->brandnote->trans_osrel != NULL ?
2722	    arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
2723
2724	return (TRUE);
2725}
2726
2727static Elf_Note fctl_note = {
2728	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2729	.n_descsz = sizeof(uint32_t),
2730	.n_type = NT_FREEBSD_FEATURE_CTL,
2731};
2732
2733struct fctl_cb_arg {
2734	boolean_t *has_fctl0;
2735	uint32_t *fctl0;
2736};
2737
2738static boolean_t
2739note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2740{
2741	struct fctl_cb_arg *arg;
2742	const Elf32_Word *desc;
2743	uintptr_t p;
2744
2745	arg = arg0;
2746	p = (uintptr_t)(note + 1);
2747	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2748	desc = (const Elf32_Word *)p;
2749	*arg->has_fctl0 = TRUE;
2750	*arg->fctl0 = desc[0];
2751	*res = TRUE;
2752	return (TRUE);
2753}
2754
2755/*
2756 * Try to find the appropriate ABI-note section for checknote, fetch
2757 * the osreldate and feature control flags for binary from the ELF
2758 * OSABI-note.  Only the first page of the image is searched, the same
2759 * as for headers.
2760 */
2761static boolean_t
2762__elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2763    int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0)
2764{
2765	const Elf_Phdr *phdr;
2766	const Elf_Ehdr *hdr;
2767	struct brandnote_cb_arg b_arg;
2768	struct fctl_cb_arg f_arg;
2769	int i, j;
2770
2771	hdr = (const Elf_Ehdr *)imgp->image_header;
2772	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2773	b_arg.brandnote = brandnote;
2774	b_arg.osrel = osrel;
2775	f_arg.has_fctl0 = has_fctl0;
2776	f_arg.fctl0 = fctl0;
2777
2778	for (i = 0; i < hdr->e_phnum; i++) {
2779		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2780		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2781		    &b_arg)) {
2782			for (j = 0; j < hdr->e_phnum; j++) {
2783				if (phdr[j].p_type == PT_NOTE &&
2784				    __elfN(parse_notes)(imgp, &fctl_note,
2785				    FREEBSD_ABI_VENDOR, &phdr[j],
2786				    note_fctl_cb, &f_arg))
2787					break;
2788			}
2789			return (TRUE);
2790		}
2791	}
2792	return (FALSE);
2793
2794}
2795
2796/*
2797 * Tell kern_execve.c about it, with a little help from the linker.
2798 */
2799static struct execsw __elfN(execsw) = {
2800	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2801	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2802};
2803EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2804
2805static vm_prot_t
2806__elfN(trans_prot)(Elf_Word flags)
2807{
2808	vm_prot_t prot;
2809
2810	prot = 0;
2811	if (flags & PF_X)
2812		prot |= VM_PROT_EXECUTE;
2813	if (flags & PF_W)
2814		prot |= VM_PROT_WRITE;
2815	if (flags & PF_R)
2816		prot |= VM_PROT_READ;
2817#if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2818	if (i386_read_exec && (flags & PF_R))
2819		prot |= VM_PROT_EXECUTE;
2820#endif
2821	return (prot);
2822}
2823
2824static Elf_Word
2825__elfN(untrans_prot)(vm_prot_t prot)
2826{
2827	Elf_Word flags;
2828
2829	flags = 0;
2830	if (prot & VM_PROT_EXECUTE)
2831		flags |= PF_X;
2832	if (prot & VM_PROT_READ)
2833		flags |= PF_R;
2834	if (prot & VM_PROT_WRITE)
2835		flags |= PF_W;
2836	return (flags);
2837}
2838
2839void
2840__elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base)
2841{
2842	uintptr_t range, rbase, gap;
2843	int pct;
2844
2845	pct = __elfN(aslr_stack_gap);
2846	if (pct == 0)
2847		return;
2848	if (pct > 50)
2849		pct = 50;
2850	range = imgp->eff_stack_sz * pct / 100;
2851	arc4rand(&rbase, sizeof(rbase), 0);
2852	gap = rbase % range;
2853	gap &= ~(sizeof(u_long) - 1);
2854	*stack_base -= gap;
2855}
2856