1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004-2006 Kip Macy
5 * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35
36#include <sys/param.h>
37#include <sys/sockio.h>
38#include <sys/limits.h>
39#include <sys/mbuf.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/kernel.h>
43#include <sys/socket.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/if_arp.h>
50#include <net/ethernet.h>
51#include <net/if_media.h>
52#include <net/bpf.h>
53#include <net/if_types.h>
54
55#include <netinet/in.h>
56#include <netinet/ip.h>
57#include <netinet/if_ether.h>
58#include <netinet/tcp.h>
59#include <netinet/tcp_lro.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63
64#include <sys/bus.h>
65
66#include <xen/xen-os.h>
67#include <xen/hypervisor.h>
68#include <xen/xen_intr.h>
69#include <xen/gnttab.h>
70#include <xen/interface/memory.h>
71#include <xen/interface/io/netif.h>
72#include <xen/xenbus/xenbusvar.h>
73
74#include "xenbus_if.h"
75
76/* Features supported by all backends.  TSO and LRO can be negotiated */
77#define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79#define NET_TX_RING_SIZE __CONST_RING_SIZE(netif_tx, PAGE_SIZE)
80#define NET_RX_RING_SIZE __CONST_RING_SIZE(netif_rx, PAGE_SIZE)
81
82#define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1)
83
84/*
85 * Should the driver do LRO on the RX end
86 *  this can be toggled on the fly, but the
87 *  interface must be reset (down/up) for it
88 *  to take effect.
89 */
90static int xn_enable_lro = 1;
91TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
92
93/*
94 * Number of pairs of queues.
95 */
96static unsigned long xn_num_queues = 4;
97TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues);
98
99/**
100 * \brief The maximum allowed data fragments in a single transmit
101 *        request.
102 *
103 * This limit is imposed by the backend driver.  We assume here that
104 * we are dealing with a Linux driver domain and have set our limit
105 * to mirror the Linux MAX_SKB_FRAGS constant.
106 */
107#define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
108
109#define RX_COPY_THRESHOLD 256
110
111#define net_ratelimit() 0
112
113struct netfront_rxq;
114struct netfront_txq;
115struct netfront_info;
116struct netfront_rx_info;
117
118static void xn_txeof(struct netfront_txq *);
119static void xn_rxeof(struct netfront_rxq *);
120static void xn_alloc_rx_buffers(struct netfront_rxq *);
121static void xn_alloc_rx_buffers_callout(void *arg);
122
123static void xn_release_rx_bufs(struct netfront_rxq *);
124static void xn_release_tx_bufs(struct netfront_txq *);
125
126static void xn_rxq_intr(struct netfront_rxq *);
127static void xn_txq_intr(struct netfront_txq *);
128static void xn_intr(void *);
129static inline int xn_count_frags(struct mbuf *m);
130static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *);
131static int xn_ioctl(struct ifnet *, u_long, caddr_t);
132static void xn_ifinit_locked(struct netfront_info *);
133static void xn_ifinit(void *);
134static void xn_stop(struct netfront_info *);
135static void xn_query_features(struct netfront_info *np);
136static int xn_configure_features(struct netfront_info *np);
137static void netif_free(struct netfront_info *info);
138static int netfront_detach(device_t dev);
139
140static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *);
141static int xn_txq_mq_start(struct ifnet *, struct mbuf *);
142
143static int talk_to_backend(device_t dev, struct netfront_info *info);
144static int create_netdev(device_t dev);
145static void netif_disconnect_backend(struct netfront_info *info);
146static int setup_device(device_t dev, struct netfront_info *info,
147    unsigned long);
148static int xn_ifmedia_upd(struct ifnet *ifp);
149static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
150
151static int xn_connect(struct netfront_info *);
152static void xn_kick_rings(struct netfront_info *);
153
154static int xn_get_responses(struct netfront_rxq *,
155    struct netfront_rx_info *, RING_IDX, RING_IDX *,
156    struct mbuf **);
157
158#define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
159
160#define INVALID_P2M_ENTRY (~0UL)
161#define XN_QUEUE_NAME_LEN  8	/* xn{t,r}x_%u, allow for two digits */
162struct netfront_rxq {
163	struct netfront_info 	*info;
164	u_int			id;
165	char			name[XN_QUEUE_NAME_LEN];
166	struct mtx		lock;
167
168	int			ring_ref;
169	netif_rx_front_ring_t 	ring;
170	xen_intr_handle_t	xen_intr_handle;
171
172	grant_ref_t 		gref_head;
173	grant_ref_t 		grant_ref[NET_RX_RING_SIZE + 1];
174
175	struct mbuf		*mbufs[NET_RX_RING_SIZE + 1];
176
177	struct lro_ctrl		lro;
178
179	struct callout		rx_refill;
180};
181
182struct netfront_txq {
183	struct netfront_info 	*info;
184	u_int 			id;
185	char			name[XN_QUEUE_NAME_LEN];
186	struct mtx		lock;
187
188	int			ring_ref;
189	netif_tx_front_ring_t	ring;
190	xen_intr_handle_t 	xen_intr_handle;
191
192	grant_ref_t		gref_head;
193	grant_ref_t		grant_ref[NET_TX_RING_SIZE + 1];
194
195	struct mbuf		*mbufs[NET_TX_RING_SIZE + 1];
196	int			mbufs_cnt;
197	struct buf_ring		*br;
198
199	struct taskqueue 	*tq;
200	struct task       	defrtask;
201
202	bool			full;
203};
204
205struct netfront_info {
206	struct ifnet 		*xn_ifp;
207
208	struct mtx   		sc_lock;
209
210	u_int  num_queues;
211	struct netfront_rxq 	*rxq;
212	struct netfront_txq 	*txq;
213
214	u_int			carrier;
215	u_int			maxfrags;
216
217	device_t		xbdev;
218	uint8_t			mac[ETHER_ADDR_LEN];
219
220	int			xn_if_flags;
221
222	struct ifmedia		sc_media;
223
224	bool			xn_reset;
225};
226
227struct netfront_rx_info {
228	struct netif_rx_response rx;
229	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
230};
231
232#define XN_RX_LOCK(_q)         mtx_lock(&(_q)->lock)
233#define XN_RX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
234
235#define XN_TX_LOCK(_q)         mtx_lock(&(_q)->lock)
236#define XN_TX_TRYLOCK(_q)      mtx_trylock(&(_q)->lock)
237#define XN_TX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
238
239#define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
240#define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
241
242#define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
243#define XN_RX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
244#define XN_TX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
245
246#define netfront_carrier_on(netif)	((netif)->carrier = 1)
247#define netfront_carrier_off(netif)	((netif)->carrier = 0)
248#define netfront_carrier_ok(netif)	((netif)->carrier)
249
250/* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
251
252static inline void
253add_id_to_freelist(struct mbuf **list, uintptr_t id)
254{
255
256	KASSERT(id != 0,
257		("%s: the head item (0) must always be free.", __func__));
258	list[id] = list[0];
259	list[0]  = (struct mbuf *)id;
260}
261
262static inline unsigned short
263get_id_from_freelist(struct mbuf **list)
264{
265	uintptr_t id;
266
267	id = (uintptr_t)list[0];
268	KASSERT(id != 0,
269		("%s: the head item (0) must always remain free.", __func__));
270	list[0] = list[id];
271	return (id);
272}
273
274static inline int
275xn_rxidx(RING_IDX idx)
276{
277
278	return idx & (NET_RX_RING_SIZE - 1);
279}
280
281static inline struct mbuf *
282xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri)
283{
284	int i;
285	struct mbuf *m;
286
287	i = xn_rxidx(ri);
288	m = rxq->mbufs[i];
289	rxq->mbufs[i] = NULL;
290	return (m);
291}
292
293static inline grant_ref_t
294xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri)
295{
296	int i = xn_rxidx(ri);
297	grant_ref_t ref = rxq->grant_ref[i];
298
299	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
300	rxq->grant_ref[i] = GRANT_REF_INVALID;
301	return (ref);
302}
303
304#define IPRINTK(fmt, args...) \
305    printf("[XEN] " fmt, ##args)
306#ifdef INVARIANTS
307#define WPRINTK(fmt, args...) \
308    printf("[XEN] " fmt, ##args)
309#else
310#define WPRINTK(fmt, args...)
311#endif
312#ifdef DEBUG
313#define DPRINTK(fmt, args...) \
314    printf("[XEN] %s: " fmt, __func__, ##args)
315#else
316#define DPRINTK(fmt, args...)
317#endif
318
319/**
320 * Read the 'mac' node at the given device's node in the store, and parse that
321 * as colon-separated octets, placing result the given mac array.  mac must be
322 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
323 * Return 0 on success, or errno on error.
324 */
325static int
326xen_net_read_mac(device_t dev, uint8_t mac[])
327{
328	int error, i;
329	char *s, *e, *macstr;
330	const char *path;
331
332	path = xenbus_get_node(dev);
333	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
334	if (error == ENOENT) {
335		/*
336		 * Deal with missing mac XenStore nodes on devices with
337		 * HVM emulation (the 'ioemu' configuration attribute)
338		 * enabled.
339		 *
340		 * The HVM emulator may execute in a stub device model
341		 * domain which lacks the permission, only given to Dom0,
342		 * to update the guest's XenStore tree.  For this reason,
343		 * the HVM emulator doesn't even attempt to write the
344		 * front-side mac node, even when operating in Dom0.
345		 * However, there should always be a mac listed in the
346		 * backend tree.  Fallback to this version if our query
347		 * of the front side XenStore location doesn't find
348		 * anything.
349		 */
350		path = xenbus_get_otherend_path(dev);
351		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
352	}
353	if (error != 0) {
354		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
355		return (error);
356	}
357
358	s = macstr;
359	for (i = 0; i < ETHER_ADDR_LEN; i++) {
360		mac[i] = strtoul(s, &e, 16);
361		if (s == e || (e[0] != ':' && e[0] != 0)) {
362			free(macstr, M_XENBUS);
363			return (ENOENT);
364		}
365		s = &e[1];
366	}
367	free(macstr, M_XENBUS);
368	return (0);
369}
370
371/**
372 * Entry point to this code when a new device is created.  Allocate the basic
373 * structures and the ring buffers for communication with the backend, and
374 * inform the backend of the appropriate details for those.  Switch to
375 * Connected state.
376 */
377static int
378netfront_probe(device_t dev)
379{
380
381	if (xen_hvm_domain() && xen_disable_pv_nics != 0)
382		return (ENXIO);
383
384	if (!strcmp(xenbus_get_type(dev), "vif")) {
385		device_set_desc(dev, "Virtual Network Interface");
386		return (0);
387	}
388
389	return (ENXIO);
390}
391
392static int
393netfront_attach(device_t dev)
394{
395	int err;
396
397	err = create_netdev(dev);
398	if (err != 0) {
399		xenbus_dev_fatal(dev, err, "creating netdev");
400		return (err);
401	}
402
403	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
404	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
405	    OID_AUTO, "enable_lro", CTLFLAG_RW,
406	    &xn_enable_lro, 0, "Large Receive Offload");
407
408	SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev),
409	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
410	    OID_AUTO, "num_queues", CTLFLAG_RD,
411	    &xn_num_queues, "Number of pairs of queues");
412
413	return (0);
414}
415
416static int
417netfront_suspend(device_t dev)
418{
419	struct netfront_info *np = device_get_softc(dev);
420	u_int i;
421
422	for (i = 0; i < np->num_queues; i++) {
423		XN_RX_LOCK(&np->rxq[i]);
424		XN_TX_LOCK(&np->txq[i]);
425	}
426	netfront_carrier_off(np);
427	for (i = 0; i < np->num_queues; i++) {
428		XN_RX_UNLOCK(&np->rxq[i]);
429		XN_TX_UNLOCK(&np->txq[i]);
430	}
431	return (0);
432}
433
434/**
435 * We are reconnecting to the backend, due to a suspend/resume, or a backend
436 * driver restart.  We tear down our netif structure and recreate it, but
437 * leave the device-layer structures intact so that this is transparent to the
438 * rest of the kernel.
439 */
440static int
441netfront_resume(device_t dev)
442{
443	struct netfront_info *info = device_get_softc(dev);
444	u_int i;
445
446	if (xen_suspend_cancelled) {
447		for (i = 0; i < info->num_queues; i++) {
448			XN_RX_LOCK(&info->rxq[i]);
449			XN_TX_LOCK(&info->txq[i]);
450		}
451		netfront_carrier_on(info);
452		for (i = 0; i < info->num_queues; i++) {
453			XN_RX_UNLOCK(&info->rxq[i]);
454			XN_TX_UNLOCK(&info->txq[i]);
455		}
456		return (0);
457	}
458
459	netif_disconnect_backend(info);
460	return (0);
461}
462
463static int
464write_queue_xenstore_keys(device_t dev,
465    struct netfront_rxq *rxq,
466    struct netfront_txq *txq,
467    struct xs_transaction *xst, bool hierarchy)
468{
469	int err;
470	const char *message;
471	const char *node = xenbus_get_node(dev);
472	char *path;
473	size_t path_size;
474
475	KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids"));
476	/* Split event channel support is not yet there. */
477	KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle,
478	    ("Split event channels are not supported"));
479
480	if (hierarchy) {
481		path_size = strlen(node) + 10;
482		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
483		snprintf(path, path_size, "%s/queue-%u", node, rxq->id);
484	} else {
485		path_size = strlen(node) + 1;
486		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
487		snprintf(path, path_size, "%s", node);
488	}
489
490	err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref);
491	if (err != 0) {
492		message = "writing tx ring-ref";
493		goto error;
494	}
495	err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref);
496	if (err != 0) {
497		message = "writing rx ring-ref";
498		goto error;
499	}
500	err = xs_printf(*xst, path, "event-channel", "%u",
501	    xen_intr_port(rxq->xen_intr_handle));
502	if (err != 0) {
503		message = "writing event-channel";
504		goto error;
505	}
506
507	free(path, M_DEVBUF);
508
509	return (0);
510
511error:
512	free(path, M_DEVBUF);
513	xenbus_dev_fatal(dev, err, "%s", message);
514
515	return (err);
516}
517
518/* Common code used when first setting up, and when resuming. */
519static int
520talk_to_backend(device_t dev, struct netfront_info *info)
521{
522	const char *message;
523	struct xs_transaction xst;
524	const char *node = xenbus_get_node(dev);
525	int err;
526	unsigned long num_queues, max_queues = 0;
527	unsigned int i;
528
529	err = xen_net_read_mac(dev, info->mac);
530	if (err != 0) {
531		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
532		goto out;
533	}
534
535	err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev),
536	    "multi-queue-max-queues", NULL, "%lu", &max_queues);
537	if (err != 0)
538		max_queues = 1;
539	num_queues = xn_num_queues;
540	if (num_queues > max_queues)
541		num_queues = max_queues;
542
543	err = setup_device(dev, info, num_queues);
544	if (err != 0)
545		goto out;
546
547 again:
548	err = xs_transaction_start(&xst);
549	if (err != 0) {
550		xenbus_dev_fatal(dev, err, "starting transaction");
551		goto free;
552	}
553
554	if (info->num_queues == 1) {
555		err = write_queue_xenstore_keys(dev, &info->rxq[0],
556		    &info->txq[0], &xst, false);
557		if (err != 0)
558			goto abort_transaction_no_def_error;
559	} else {
560		err = xs_printf(xst, node, "multi-queue-num-queues",
561		    "%u", info->num_queues);
562		if (err != 0) {
563			message = "writing multi-queue-num-queues";
564			goto abort_transaction;
565		}
566
567		for (i = 0; i < info->num_queues; i++) {
568			err = write_queue_xenstore_keys(dev, &info->rxq[i],
569			    &info->txq[i], &xst, true);
570			if (err != 0)
571				goto abort_transaction_no_def_error;
572		}
573	}
574
575	err = xs_printf(xst, node, "request-rx-copy", "%u", 1);
576	if (err != 0) {
577		message = "writing request-rx-copy";
578		goto abort_transaction;
579	}
580	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
581	if (err != 0) {
582		message = "writing feature-rx-notify";
583		goto abort_transaction;
584	}
585	err = xs_printf(xst, node, "feature-sg", "%d", 1);
586	if (err != 0) {
587		message = "writing feature-sg";
588		goto abort_transaction;
589	}
590	if ((info->xn_ifp->if_capenable & IFCAP_LRO) != 0) {
591		err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
592		if (err != 0) {
593			message = "writing feature-gso-tcpv4";
594			goto abort_transaction;
595		}
596	}
597	if ((info->xn_ifp->if_capenable & IFCAP_RXCSUM) == 0) {
598		err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1);
599		if (err != 0) {
600			message = "writing feature-no-csum-offload";
601			goto abort_transaction;
602		}
603	}
604
605	err = xs_transaction_end(xst, 0);
606	if (err != 0) {
607		if (err == EAGAIN)
608			goto again;
609		xenbus_dev_fatal(dev, err, "completing transaction");
610		goto free;
611	}
612
613	return 0;
614
615 abort_transaction:
616	xenbus_dev_fatal(dev, err, "%s", message);
617 abort_transaction_no_def_error:
618	xs_transaction_end(xst, 1);
619 free:
620	netif_free(info);
621 out:
622	return (err);
623}
624
625static void
626xn_rxq_intr(struct netfront_rxq *rxq)
627{
628
629	XN_RX_LOCK(rxq);
630	xn_rxeof(rxq);
631	XN_RX_UNLOCK(rxq);
632}
633
634static void
635xn_txq_start(struct netfront_txq *txq)
636{
637	struct netfront_info *np = txq->info;
638	struct ifnet *ifp = np->xn_ifp;
639
640	XN_TX_LOCK_ASSERT(txq);
641	if (!drbr_empty(ifp, txq->br))
642		xn_txq_mq_start_locked(txq, NULL);
643}
644
645static void
646xn_txq_intr(struct netfront_txq *txq)
647{
648
649	XN_TX_LOCK(txq);
650	if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring))
651		xn_txeof(txq);
652	xn_txq_start(txq);
653	XN_TX_UNLOCK(txq);
654}
655
656static void
657xn_txq_tq_deferred(void *xtxq, int pending)
658{
659	struct netfront_txq *txq = xtxq;
660
661	XN_TX_LOCK(txq);
662	xn_txq_start(txq);
663	XN_TX_UNLOCK(txq);
664}
665
666static void
667disconnect_rxq(struct netfront_rxq *rxq)
668{
669
670	xn_release_rx_bufs(rxq);
671	gnttab_free_grant_references(rxq->gref_head);
672	gnttab_end_foreign_access(rxq->ring_ref, NULL);
673	/*
674	 * No split event channel support at the moment, handle will
675	 * be unbound in tx. So no need to call xen_intr_unbind here,
676	 * but we do want to reset the handler to 0.
677	 */
678	rxq->xen_intr_handle = 0;
679}
680
681static void
682destroy_rxq(struct netfront_rxq *rxq)
683{
684
685	callout_drain(&rxq->rx_refill);
686	free(rxq->ring.sring, M_DEVBUF);
687}
688
689static void
690destroy_rxqs(struct netfront_info *np)
691{
692	int i;
693
694	for (i = 0; i < np->num_queues; i++)
695		destroy_rxq(&np->rxq[i]);
696
697	free(np->rxq, M_DEVBUF);
698	np->rxq = NULL;
699}
700
701static int
702setup_rxqs(device_t dev, struct netfront_info *info,
703	   unsigned long num_queues)
704{
705	int q, i;
706	int error;
707	netif_rx_sring_t *rxs;
708	struct netfront_rxq *rxq;
709
710	info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues,
711	    M_DEVBUF, M_WAITOK|M_ZERO);
712
713	for (q = 0; q < num_queues; q++) {
714		rxq = &info->rxq[q];
715
716		rxq->id = q;
717		rxq->info = info;
718		rxq->ring_ref = GRANT_REF_INVALID;
719		rxq->ring.sring = NULL;
720		snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q);
721		mtx_init(&rxq->lock, rxq->name, "netfront receive lock",
722		    MTX_DEF);
723
724		for (i = 0; i <= NET_RX_RING_SIZE; i++) {
725			rxq->mbufs[i] = NULL;
726			rxq->grant_ref[i] = GRANT_REF_INVALID;
727		}
728
729		/* Start resources allocation */
730
731		if (gnttab_alloc_grant_references(NET_RX_RING_SIZE,
732		    &rxq->gref_head) != 0) {
733			device_printf(dev, "allocating rx gref");
734			error = ENOMEM;
735			goto fail;
736		}
737
738		rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
739		    M_WAITOK|M_ZERO);
740		SHARED_RING_INIT(rxs);
741		FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE);
742
743		error = xenbus_grant_ring(dev, virt_to_mfn(rxs),
744		    &rxq->ring_ref);
745		if (error != 0) {
746			device_printf(dev, "granting rx ring page");
747			goto fail_grant_ring;
748		}
749
750		callout_init(&rxq->rx_refill, 1);
751	}
752
753	return (0);
754
755fail_grant_ring:
756	gnttab_free_grant_references(rxq->gref_head);
757	free(rxq->ring.sring, M_DEVBUF);
758fail:
759	for (; q >= 0; q--) {
760		disconnect_rxq(&info->rxq[q]);
761		destroy_rxq(&info->rxq[q]);
762	}
763
764	free(info->rxq, M_DEVBUF);
765	return (error);
766}
767
768static void
769disconnect_txq(struct netfront_txq *txq)
770{
771
772	xn_release_tx_bufs(txq);
773	gnttab_free_grant_references(txq->gref_head);
774	gnttab_end_foreign_access(txq->ring_ref, NULL);
775	xen_intr_unbind(&txq->xen_intr_handle);
776}
777
778static void
779destroy_txq(struct netfront_txq *txq)
780{
781
782	free(txq->ring.sring, M_DEVBUF);
783	buf_ring_free(txq->br, M_DEVBUF);
784	taskqueue_drain_all(txq->tq);
785	taskqueue_free(txq->tq);
786}
787
788static void
789destroy_txqs(struct netfront_info *np)
790{
791	int i;
792
793	for (i = 0; i < np->num_queues; i++)
794		destroy_txq(&np->txq[i]);
795
796	free(np->txq, M_DEVBUF);
797	np->txq = NULL;
798}
799
800static int
801setup_txqs(device_t dev, struct netfront_info *info,
802	   unsigned long num_queues)
803{
804	int q, i;
805	int error;
806	netif_tx_sring_t *txs;
807	struct netfront_txq *txq;
808
809	info->txq = malloc(sizeof(struct netfront_txq) * num_queues,
810	    M_DEVBUF, M_WAITOK|M_ZERO);
811
812	for (q = 0; q < num_queues; q++) {
813		txq = &info->txq[q];
814
815		txq->id = q;
816		txq->info = info;
817
818		txq->ring_ref = GRANT_REF_INVALID;
819		txq->ring.sring = NULL;
820
821		snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q);
822
823		mtx_init(&txq->lock, txq->name, "netfront transmit lock",
824		    MTX_DEF);
825
826		for (i = 0; i <= NET_TX_RING_SIZE; i++) {
827			txq->mbufs[i] = (void *) ((u_long) i+1);
828			txq->grant_ref[i] = GRANT_REF_INVALID;
829		}
830		txq->mbufs[NET_TX_RING_SIZE] = (void *)0;
831
832		/* Start resources allocation. */
833
834		if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
835		    &txq->gref_head) != 0) {
836			device_printf(dev, "failed to allocate tx grant refs\n");
837			error = ENOMEM;
838			goto fail;
839		}
840
841		txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
842		    M_WAITOK|M_ZERO);
843		SHARED_RING_INIT(txs);
844		FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE);
845
846		error = xenbus_grant_ring(dev, virt_to_mfn(txs),
847		    &txq->ring_ref);
848		if (error != 0) {
849			device_printf(dev, "failed to grant tx ring\n");
850			goto fail_grant_ring;
851		}
852
853		txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF,
854		    M_WAITOK, &txq->lock);
855		TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq);
856
857		txq->tq = taskqueue_create(txq->name, M_WAITOK,
858		    taskqueue_thread_enqueue, &txq->tq);
859
860		error = taskqueue_start_threads(&txq->tq, 1, PI_NET,
861		    "%s txq %d", device_get_nameunit(dev), txq->id);
862		if (error != 0) {
863			device_printf(dev, "failed to start tx taskq %d\n",
864			    txq->id);
865			goto fail_start_thread;
866		}
867
868		error = xen_intr_alloc_and_bind_local_port(dev,
869		    xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr,
870		    &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY,
871		    &txq->xen_intr_handle);
872
873		if (error != 0) {
874			device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n");
875			goto fail_bind_port;
876		}
877	}
878
879	return (0);
880
881fail_bind_port:
882	taskqueue_drain_all(txq->tq);
883fail_start_thread:
884	buf_ring_free(txq->br, M_DEVBUF);
885	taskqueue_free(txq->tq);
886	gnttab_end_foreign_access(txq->ring_ref, NULL);
887fail_grant_ring:
888	gnttab_free_grant_references(txq->gref_head);
889	free(txq->ring.sring, M_DEVBUF);
890fail:
891	for (; q >= 0; q--) {
892		disconnect_txq(&info->txq[q]);
893		destroy_txq(&info->txq[q]);
894	}
895
896	free(info->txq, M_DEVBUF);
897	return (error);
898}
899
900static int
901setup_device(device_t dev, struct netfront_info *info,
902    unsigned long num_queues)
903{
904	int error;
905	int q;
906
907	if (info->txq)
908		destroy_txqs(info);
909
910	if (info->rxq)
911		destroy_rxqs(info);
912
913	info->num_queues = 0;
914
915	error = setup_rxqs(dev, info, num_queues);
916	if (error != 0)
917		goto out;
918	error = setup_txqs(dev, info, num_queues);
919	if (error != 0)
920		goto out;
921
922	info->num_queues = num_queues;
923
924	/* No split event channel at the moment. */
925	for (q = 0; q < num_queues; q++)
926		info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle;
927
928	return (0);
929
930out:
931	KASSERT(error != 0, ("Error path taken without providing an error code"));
932	return (error);
933}
934
935#ifdef INET
936/**
937 * If this interface has an ipv4 address, send an arp for it. This
938 * helps to get the network going again after migrating hosts.
939 */
940static void
941netfront_send_fake_arp(device_t dev, struct netfront_info *info)
942{
943	struct ifnet *ifp;
944	struct ifaddr *ifa;
945
946	ifp = info->xn_ifp;
947	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
948		if (ifa->ifa_addr->sa_family == AF_INET) {
949			arp_ifinit(ifp, ifa);
950		}
951	}
952}
953#endif
954
955/**
956 * Callback received when the backend's state changes.
957 */
958static void
959netfront_backend_changed(device_t dev, XenbusState newstate)
960{
961	struct netfront_info *sc = device_get_softc(dev);
962
963	DPRINTK("newstate=%d\n", newstate);
964
965	CURVNET_SET(sc->xn_ifp->if_vnet);
966
967	switch (newstate) {
968	case XenbusStateInitialising:
969	case XenbusStateInitialised:
970	case XenbusStateUnknown:
971	case XenbusStateReconfigured:
972	case XenbusStateReconfiguring:
973		break;
974	case XenbusStateInitWait:
975		if (xenbus_get_state(dev) != XenbusStateInitialising)
976			break;
977		if (xn_connect(sc) != 0)
978			break;
979		/* Switch to connected state before kicking the rings. */
980		xenbus_set_state(sc->xbdev, XenbusStateConnected);
981		xn_kick_rings(sc);
982		break;
983	case XenbusStateClosing:
984		xenbus_set_state(dev, XenbusStateClosed);
985		break;
986	case XenbusStateClosed:
987		if (sc->xn_reset) {
988			netif_disconnect_backend(sc);
989			xenbus_set_state(dev, XenbusStateInitialising);
990			sc->xn_reset = false;
991		}
992		break;
993	case XenbusStateConnected:
994#ifdef INET
995		netfront_send_fake_arp(dev, sc);
996#endif
997		break;
998	}
999
1000	CURVNET_RESTORE();
1001}
1002
1003/**
1004 * \brief Verify that there is sufficient space in the Tx ring
1005 *        buffer for a maximally sized request to be enqueued.
1006 *
1007 * A transmit request requires a transmit descriptor for each packet
1008 * fragment, plus up to 2 entries for "options" (e.g. TSO).
1009 */
1010static inline int
1011xn_tx_slot_available(struct netfront_txq *txq)
1012{
1013
1014	return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2));
1015}
1016
1017static void
1018xn_release_tx_bufs(struct netfront_txq *txq)
1019{
1020	int i;
1021
1022	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
1023		struct mbuf *m;
1024
1025		m = txq->mbufs[i];
1026
1027		/*
1028		 * We assume that no kernel addresses are
1029		 * less than NET_TX_RING_SIZE.  Any entry
1030		 * in the table that is below this number
1031		 * must be an index from free-list tracking.
1032		 */
1033		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
1034			continue;
1035		gnttab_end_foreign_access_ref(txq->grant_ref[i]);
1036		gnttab_release_grant_reference(&txq->gref_head,
1037		    txq->grant_ref[i]);
1038		txq->grant_ref[i] = GRANT_REF_INVALID;
1039		add_id_to_freelist(txq->mbufs, i);
1040		txq->mbufs_cnt--;
1041		if (txq->mbufs_cnt < 0) {
1042			panic("%s: tx_chain_cnt must be >= 0", __func__);
1043		}
1044		m_free(m);
1045	}
1046}
1047
1048static struct mbuf *
1049xn_alloc_one_rx_buffer(struct netfront_rxq *rxq)
1050{
1051	struct mbuf *m;
1052
1053	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1054	if (m == NULL)
1055		return NULL;
1056	m->m_len = m->m_pkthdr.len = MJUMPAGESIZE;
1057
1058	return (m);
1059}
1060
1061static void
1062xn_alloc_rx_buffers(struct netfront_rxq *rxq)
1063{
1064	RING_IDX req_prod;
1065	int notify;
1066
1067	XN_RX_LOCK_ASSERT(rxq);
1068
1069	if (__predict_false(rxq->info->carrier == 0))
1070		return;
1071
1072	for (req_prod = rxq->ring.req_prod_pvt;
1073	     req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE;
1074	     req_prod++) {
1075		struct mbuf *m;
1076		unsigned short id;
1077		grant_ref_t ref;
1078		struct netif_rx_request *req;
1079		unsigned long pfn;
1080
1081		m = xn_alloc_one_rx_buffer(rxq);
1082		if (m == NULL)
1083			break;
1084
1085		id = xn_rxidx(req_prod);
1086
1087		KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain"));
1088		rxq->mbufs[id] = m;
1089
1090		ref = gnttab_claim_grant_reference(&rxq->gref_head);
1091		KASSERT(ref != GNTTAB_LIST_END,
1092		    ("reserved grant references exhuasted"));
1093		rxq->grant_ref[id] = ref;
1094
1095		pfn = atop(vtophys(mtod(m, vm_offset_t)));
1096		req = RING_GET_REQUEST(&rxq->ring, req_prod);
1097
1098		gnttab_grant_foreign_access_ref(ref,
1099		    xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0);
1100		req->id = id;
1101		req->gref = ref;
1102	}
1103
1104	rxq->ring.req_prod_pvt = req_prod;
1105
1106	/* Not enough requests? Try again later. */
1107	if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) {
1108		callout_reset_curcpu(&rxq->rx_refill, hz/10,
1109		    xn_alloc_rx_buffers_callout, rxq);
1110		return;
1111	}
1112
1113	wmb();		/* barrier so backend seens requests */
1114
1115	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify);
1116	if (notify)
1117		xen_intr_signal(rxq->xen_intr_handle);
1118}
1119
1120static void xn_alloc_rx_buffers_callout(void *arg)
1121{
1122	struct netfront_rxq *rxq;
1123
1124	rxq = (struct netfront_rxq *)arg;
1125	XN_RX_LOCK(rxq);
1126	xn_alloc_rx_buffers(rxq);
1127	XN_RX_UNLOCK(rxq);
1128}
1129
1130static void
1131xn_release_rx_bufs(struct netfront_rxq *rxq)
1132{
1133	int i,  ref;
1134	struct mbuf *m;
1135
1136	for (i = 0; i < NET_RX_RING_SIZE; i++) {
1137		m = rxq->mbufs[i];
1138
1139		if (m == NULL)
1140			continue;
1141
1142		ref = rxq->grant_ref[i];
1143		if (ref == GRANT_REF_INVALID)
1144			continue;
1145
1146		gnttab_end_foreign_access_ref(ref);
1147		gnttab_release_grant_reference(&rxq->gref_head, ref);
1148		rxq->mbufs[i] = NULL;
1149		rxq->grant_ref[i] = GRANT_REF_INVALID;
1150		m_freem(m);
1151	}
1152}
1153
1154static void
1155xn_rxeof(struct netfront_rxq *rxq)
1156{
1157	struct ifnet *ifp;
1158	struct netfront_info *np = rxq->info;
1159#if (defined(INET) || defined(INET6))
1160	struct lro_ctrl *lro = &rxq->lro;
1161#endif
1162	struct netfront_rx_info rinfo;
1163	struct netif_rx_response *rx = &rinfo.rx;
1164	struct netif_extra_info *extras = rinfo.extras;
1165	RING_IDX i, rp;
1166	struct mbuf *m;
1167	struct mbufq mbufq_rxq, mbufq_errq;
1168	int err, work_to_do;
1169
1170	XN_RX_LOCK_ASSERT(rxq);
1171
1172	if (!netfront_carrier_ok(np))
1173		return;
1174
1175	/* XXX: there should be some sane limit. */
1176	mbufq_init(&mbufq_errq, INT_MAX);
1177	mbufq_init(&mbufq_rxq, INT_MAX);
1178
1179	ifp = np->xn_ifp;
1180
1181	do {
1182		rp = rxq->ring.sring->rsp_prod;
1183		rmb();	/* Ensure we see queued responses up to 'rp'. */
1184
1185		i = rxq->ring.rsp_cons;
1186		while ((i != rp)) {
1187			memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx));
1188			memset(extras, 0, sizeof(rinfo.extras));
1189
1190			m = NULL;
1191			err = xn_get_responses(rxq, &rinfo, rp, &i, &m);
1192
1193			if (__predict_false(err)) {
1194				if (m)
1195					(void )mbufq_enqueue(&mbufq_errq, m);
1196				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1197				continue;
1198			}
1199
1200			m->m_pkthdr.rcvif = ifp;
1201			if (rx->flags & NETRXF_data_validated) {
1202				/*
1203				 * According to mbuf(9) the correct way to tell
1204				 * the stack that the checksum of an inbound
1205				 * packet is correct, without it actually being
1206				 * present (because the underlying interface
1207				 * doesn't provide it), is to set the
1208				 * CSUM_DATA_VALID and CSUM_PSEUDO_HDR flags,
1209				 * and the csum_data field to 0xffff.
1210				 */
1211				m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
1212				    | CSUM_PSEUDO_HDR);
1213				m->m_pkthdr.csum_data = 0xffff;
1214			}
1215			if ((rx->flags & NETRXF_extra_info) != 0 &&
1216			    (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type ==
1217			    XEN_NETIF_EXTRA_TYPE_GSO)) {
1218				m->m_pkthdr.tso_segsz =
1219				extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size;
1220				m->m_pkthdr.csum_flags |= CSUM_TSO;
1221			}
1222
1223			(void )mbufq_enqueue(&mbufq_rxq, m);
1224		}
1225
1226		rxq->ring.rsp_cons = i;
1227
1228		xn_alloc_rx_buffers(rxq);
1229
1230		RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do);
1231	} while (work_to_do);
1232
1233	mbufq_drain(&mbufq_errq);
1234	/*
1235	 * Process all the mbufs after the remapping is complete.
1236	 * Break the mbuf chain first though.
1237	 */
1238	while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) {
1239		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1240#if (defined(INET) || defined(INET6))
1241		/* Use LRO if possible */
1242		if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1243		    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1244			/*
1245			 * If LRO fails, pass up to the stack
1246			 * directly.
1247			 */
1248			(*ifp->if_input)(ifp, m);
1249		}
1250#else
1251		(*ifp->if_input)(ifp, m);
1252#endif
1253	}
1254
1255#if (defined(INET) || defined(INET6))
1256	/*
1257	 * Flush any outstanding LRO work
1258	 */
1259	tcp_lro_flush_all(lro);
1260#endif
1261}
1262
1263static void
1264xn_txeof(struct netfront_txq *txq)
1265{
1266	RING_IDX i, prod;
1267	unsigned short id;
1268	struct ifnet *ifp;
1269	netif_tx_response_t *txr;
1270	struct mbuf *m;
1271	struct netfront_info *np = txq->info;
1272
1273	XN_TX_LOCK_ASSERT(txq);
1274
1275	if (!netfront_carrier_ok(np))
1276		return;
1277
1278	ifp = np->xn_ifp;
1279
1280	do {
1281		prod = txq->ring.sring->rsp_prod;
1282		rmb(); /* Ensure we see responses up to 'rp'. */
1283
1284		for (i = txq->ring.rsp_cons; i != prod; i++) {
1285			txr = RING_GET_RESPONSE(&txq->ring, i);
1286			if (txr->status == NETIF_RSP_NULL)
1287				continue;
1288
1289			if (txr->status != NETIF_RSP_OKAY) {
1290				printf("%s: WARNING: response is %d!\n",
1291				       __func__, txr->status);
1292			}
1293			id = txr->id;
1294			m = txq->mbufs[id];
1295			KASSERT(m != NULL, ("mbuf not found in chain"));
1296			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1297				("mbuf already on the free list, but we're "
1298				"trying to free it again!"));
1299			M_ASSERTVALID(m);
1300
1301			if (__predict_false(gnttab_query_foreign_access(
1302			    txq->grant_ref[id]) != 0)) {
1303				panic("%s: grant id %u still in use by the "
1304				    "backend", __func__, id);
1305			}
1306			gnttab_end_foreign_access_ref(txq->grant_ref[id]);
1307			gnttab_release_grant_reference(
1308				&txq->gref_head, txq->grant_ref[id]);
1309			txq->grant_ref[id] = GRANT_REF_INVALID;
1310
1311			txq->mbufs[id] = NULL;
1312			add_id_to_freelist(txq->mbufs, id);
1313			txq->mbufs_cnt--;
1314			m_free(m);
1315			/* Only mark the txq active if we've freed up at least one slot to try */
1316			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1317		}
1318		txq->ring.rsp_cons = prod;
1319
1320		/*
1321		 * Set a new event, then check for race with update of
1322		 * tx_cons. Note that it is essential to schedule a
1323		 * callback, no matter how few buffers are pending. Even if
1324		 * there is space in the transmit ring, higher layers may
1325		 * be blocked because too much data is outstanding: in such
1326		 * cases notification from Xen is likely to be the only kick
1327		 * that we'll get.
1328		 */
1329		txq->ring.sring->rsp_event =
1330		    prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1;
1331
1332		mb();
1333	} while (prod != txq->ring.sring->rsp_prod);
1334
1335	if (txq->full &&
1336	    ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1337		txq->full = false;
1338		xn_txq_start(txq);
1339	}
1340}
1341
1342static void
1343xn_intr(void *xsc)
1344{
1345	struct netfront_txq *txq = xsc;
1346	struct netfront_info *np = txq->info;
1347	struct netfront_rxq *rxq = &np->rxq[txq->id];
1348
1349	/* kick both tx and rx */
1350	xn_rxq_intr(rxq);
1351	xn_txq_intr(txq);
1352}
1353
1354static void
1355xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m,
1356    grant_ref_t ref)
1357{
1358	int new = xn_rxidx(rxq->ring.req_prod_pvt);
1359
1360	KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL"));
1361	rxq->mbufs[new] = m;
1362	rxq->grant_ref[new] = ref;
1363	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new;
1364	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref;
1365	rxq->ring.req_prod_pvt++;
1366}
1367
1368static int
1369xn_get_extras(struct netfront_rxq *rxq,
1370    struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1371{
1372	struct netif_extra_info *extra;
1373
1374	int err = 0;
1375
1376	do {
1377		struct mbuf *m;
1378		grant_ref_t ref;
1379
1380		if (__predict_false(*cons + 1 == rp)) {
1381			err = EINVAL;
1382			break;
1383		}
1384
1385		extra = (struct netif_extra_info *)
1386		RING_GET_RESPONSE(&rxq->ring, ++(*cons));
1387
1388		if (__predict_false(!extra->type ||
1389			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1390			err = EINVAL;
1391		} else {
1392			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1393		}
1394
1395		m = xn_get_rx_mbuf(rxq, *cons);
1396		ref = xn_get_rx_ref(rxq,  *cons);
1397		xn_move_rx_slot(rxq, m, ref);
1398	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1399
1400	return err;
1401}
1402
1403static int
1404xn_get_responses(struct netfront_rxq *rxq,
1405    struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1406    struct mbuf  **list)
1407{
1408	struct netif_rx_response *rx = &rinfo->rx;
1409	struct netif_extra_info *extras = rinfo->extras;
1410	struct mbuf *m, *m0, *m_prev;
1411	grant_ref_t ref = xn_get_rx_ref(rxq, *cons);
1412	RING_IDX ref_cons = *cons;
1413	int frags = 1;
1414	int err = 0;
1415	u_long ret;
1416
1417	m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons);
1418
1419	if (rx->flags & NETRXF_extra_info) {
1420		err = xn_get_extras(rxq, extras, rp, cons);
1421	}
1422
1423	if (m0 != NULL) {
1424		m0->m_pkthdr.len = 0;
1425		m0->m_next = NULL;
1426	}
1427
1428	for (;;) {
1429#if 0
1430		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1431			rx->status, rx->offset, frags);
1432#endif
1433		if (__predict_false(rx->status < 0 ||
1434			rx->offset + rx->status > PAGE_SIZE)) {
1435			xn_move_rx_slot(rxq, m, ref);
1436			if (m0 == m)
1437				m0 = NULL;
1438			m = NULL;
1439			err = EINVAL;
1440			goto next_skip_queue;
1441		}
1442
1443		/*
1444		 * This definitely indicates a bug, either in this driver or in
1445		 * the backend driver. In future this should flag the bad
1446		 * situation to the system controller to reboot the backed.
1447		 */
1448		if (ref == GRANT_REF_INVALID) {
1449			printf("%s: Bad rx response id %d.\n", __func__, rx->id);
1450			err = EINVAL;
1451			goto next;
1452		}
1453
1454		ret = gnttab_end_foreign_access_ref(ref);
1455		KASSERT(ret, ("Unable to end access to grant references"));
1456
1457		gnttab_release_grant_reference(&rxq->gref_head, ref);
1458
1459next:
1460		if (m == NULL)
1461			break;
1462
1463		m->m_len = rx->status;
1464		m->m_data += rx->offset;
1465		m0->m_pkthdr.len += rx->status;
1466
1467next_skip_queue:
1468		if (!(rx->flags & NETRXF_more_data))
1469			break;
1470
1471		if (*cons + frags == rp) {
1472			if (net_ratelimit())
1473				WPRINTK("Need more frags\n");
1474			err = ENOENT;
1475			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1476			       __func__, *cons, frags, rp);
1477			break;
1478		}
1479		/*
1480		 * Note that m can be NULL, if rx->status < 0 or if
1481		 * rx->offset + rx->status > PAGE_SIZE above.
1482		 */
1483		m_prev = m;
1484
1485		rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags);
1486		m = xn_get_rx_mbuf(rxq, *cons + frags);
1487
1488		/*
1489		 * m_prev == NULL can happen if rx->status < 0 or if
1490		 * rx->offset + * rx->status > PAGE_SIZE above.
1491		 */
1492		if (m_prev != NULL)
1493			m_prev->m_next = m;
1494
1495		/*
1496		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1497		 * rx->status > PAGE_SIZE above.
1498		 */
1499		if (m0 == NULL)
1500			m0 = m;
1501		m->m_next = NULL;
1502		ref = xn_get_rx_ref(rxq, *cons + frags);
1503		ref_cons = *cons + frags;
1504		frags++;
1505	}
1506	*list = m0;
1507	*cons += frags;
1508
1509	return (err);
1510}
1511
1512/**
1513 * \brief Count the number of fragments in an mbuf chain.
1514 *
1515 * Surprisingly, there isn't an M* macro for this.
1516 */
1517static inline int
1518xn_count_frags(struct mbuf *m)
1519{
1520	int nfrags;
1521
1522	for (nfrags = 0; m != NULL; m = m->m_next)
1523		nfrags++;
1524
1525	return (nfrags);
1526}
1527
1528/**
1529 * Given an mbuf chain, make sure we have enough room and then push
1530 * it onto the transmit ring.
1531 */
1532static int
1533xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head)
1534{
1535	struct mbuf *m;
1536	struct netfront_info *np = txq->info;
1537	struct ifnet *ifp = np->xn_ifp;
1538	u_int nfrags;
1539	int otherend_id;
1540
1541	/**
1542	 * Defragment the mbuf if necessary.
1543	 */
1544	nfrags = xn_count_frags(m_head);
1545
1546	/*
1547	 * Check to see whether this request is longer than netback
1548	 * can handle, and try to defrag it.
1549	 */
1550	/**
1551	 * It is a bit lame, but the netback driver in Linux can't
1552	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1553	 * the Linux network stack.
1554	 */
1555	if (nfrags > np->maxfrags) {
1556		m = m_defrag(m_head, M_NOWAIT);
1557		if (!m) {
1558			/*
1559			 * Defrag failed, so free the mbuf and
1560			 * therefore drop the packet.
1561			 */
1562			m_freem(m_head);
1563			return (EMSGSIZE);
1564		}
1565		m_head = m;
1566	}
1567
1568	/* Determine how many fragments now exist */
1569	nfrags = xn_count_frags(m_head);
1570
1571	/*
1572	 * Check to see whether the defragmented packet has too many
1573	 * segments for the Linux netback driver.
1574	 */
1575	/**
1576	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1577	 * of mbufs longer than Linux can handle.  Make sure we don't
1578	 * pass a too-long chain over to the other side by dropping the
1579	 * packet.  It doesn't look like there is currently a way to
1580	 * tell the TCP stack to generate a shorter chain of packets.
1581	 */
1582	if (nfrags > MAX_TX_REQ_FRAGS) {
1583#ifdef DEBUG
1584		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1585		       "won't be able to handle it, dropping\n",
1586		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1587#endif
1588		m_freem(m_head);
1589		return (EMSGSIZE);
1590	}
1591
1592	/*
1593	 * This check should be redundant.  We've already verified that we
1594	 * have enough slots in the ring to handle a packet of maximum
1595	 * size, and that our packet is less than the maximum size.  Keep
1596	 * it in here as an assert for now just to make certain that
1597	 * chain_cnt is accurate.
1598	 */
1599	KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE,
1600		("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1601		 "(%d)!", __func__, (int) txq->mbufs_cnt,
1602                    (int) nfrags, (int) NET_TX_RING_SIZE));
1603
1604	/*
1605	 * Start packing the mbufs in this chain into
1606	 * the fragment pointers. Stop when we run out
1607	 * of fragments or hit the end of the mbuf chain.
1608	 */
1609	m = m_head;
1610	otherend_id = xenbus_get_otherend_id(np->xbdev);
1611	for (m = m_head; m; m = m->m_next) {
1612		netif_tx_request_t *tx;
1613		uintptr_t id;
1614		grant_ref_t ref;
1615		u_long mfn; /* XXX Wrong type? */
1616
1617		tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt);
1618		id = get_id_from_freelist(txq->mbufs);
1619		if (id == 0)
1620			panic("%s: was allocated the freelist head!\n",
1621			    __func__);
1622		txq->mbufs_cnt++;
1623		if (txq->mbufs_cnt > NET_TX_RING_SIZE)
1624			panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
1625			    __func__);
1626		txq->mbufs[id] = m;
1627		tx->id = id;
1628		ref = gnttab_claim_grant_reference(&txq->gref_head);
1629		KASSERT((short)ref >= 0, ("Negative ref"));
1630		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1631		gnttab_grant_foreign_access_ref(ref, otherend_id,
1632		    mfn, GNTMAP_readonly);
1633		tx->gref = txq->grant_ref[id] = ref;
1634		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1635		tx->flags = 0;
1636		if (m == m_head) {
1637			/*
1638			 * The first fragment has the entire packet
1639			 * size, subsequent fragments have just the
1640			 * fragment size. The backend works out the
1641			 * true size of the first fragment by
1642			 * subtracting the sizes of the other
1643			 * fragments.
1644			 */
1645			tx->size = m->m_pkthdr.len;
1646
1647			/*
1648			 * The first fragment contains the checksum flags
1649			 * and is optionally followed by extra data for
1650			 * TSO etc.
1651			 */
1652			/**
1653			 * CSUM_TSO requires checksum offloading.
1654			 * Some versions of FreeBSD fail to
1655			 * set CSUM_TCP in the CSUM_TSO case,
1656			 * so we have to test for CSUM_TSO
1657			 * explicitly.
1658			 */
1659			if (m->m_pkthdr.csum_flags
1660			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1661				tx->flags |= (NETTXF_csum_blank
1662				    | NETTXF_data_validated);
1663			}
1664			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1665				struct netif_extra_info *gso =
1666					(struct netif_extra_info *)
1667					RING_GET_REQUEST(&txq->ring,
1668							 ++txq->ring.req_prod_pvt);
1669
1670				tx->flags |= NETTXF_extra_info;
1671
1672				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1673				gso->u.gso.type =
1674					XEN_NETIF_GSO_TYPE_TCPV4;
1675				gso->u.gso.pad = 0;
1676				gso->u.gso.features = 0;
1677
1678				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1679				gso->flags = 0;
1680			}
1681		} else {
1682			tx->size = m->m_len;
1683		}
1684		if (m->m_next)
1685			tx->flags |= NETTXF_more_data;
1686
1687		txq->ring.req_prod_pvt++;
1688	}
1689	BPF_MTAP(ifp, m_head);
1690
1691	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1692	if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len);
1693	if (m_head->m_flags & M_MCAST)
1694		if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
1695
1696	xn_txeof(txq);
1697
1698	return (0);
1699}
1700
1701/* equivalent of network_open() in Linux */
1702static void
1703xn_ifinit_locked(struct netfront_info *np)
1704{
1705	struct ifnet *ifp;
1706	int i;
1707	struct netfront_rxq *rxq;
1708
1709	XN_LOCK_ASSERT(np);
1710
1711	ifp = np->xn_ifp;
1712
1713	if (ifp->if_drv_flags & IFF_DRV_RUNNING || !netfront_carrier_ok(np))
1714		return;
1715
1716	xn_stop(np);
1717
1718	for (i = 0; i < np->num_queues; i++) {
1719		rxq = &np->rxq[i];
1720		XN_RX_LOCK(rxq);
1721		xn_alloc_rx_buffers(rxq);
1722		rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1;
1723		if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring))
1724			xn_rxeof(rxq);
1725		XN_RX_UNLOCK(rxq);
1726	}
1727
1728	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1729	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1730	if_link_state_change(ifp, LINK_STATE_UP);
1731}
1732
1733static void
1734xn_ifinit(void *xsc)
1735{
1736	struct netfront_info *sc = xsc;
1737
1738	XN_LOCK(sc);
1739	xn_ifinit_locked(sc);
1740	XN_UNLOCK(sc);
1741}
1742
1743static int
1744xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1745{
1746	struct netfront_info *sc = ifp->if_softc;
1747	struct ifreq *ifr = (struct ifreq *) data;
1748	device_t dev;
1749#ifdef INET
1750	struct ifaddr *ifa = (struct ifaddr *)data;
1751#endif
1752	int mask, error = 0, reinit;
1753
1754	dev = sc->xbdev;
1755
1756	switch(cmd) {
1757	case SIOCSIFADDR:
1758#ifdef INET
1759		XN_LOCK(sc);
1760		if (ifa->ifa_addr->sa_family == AF_INET) {
1761			ifp->if_flags |= IFF_UP;
1762			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1763				xn_ifinit_locked(sc);
1764			arp_ifinit(ifp, ifa);
1765			XN_UNLOCK(sc);
1766		} else {
1767			XN_UNLOCK(sc);
1768#endif
1769			error = ether_ioctl(ifp, cmd, data);
1770#ifdef INET
1771		}
1772#endif
1773		break;
1774	case SIOCSIFMTU:
1775		if (ifp->if_mtu == ifr->ifr_mtu)
1776			break;
1777
1778		ifp->if_mtu = ifr->ifr_mtu;
1779		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1780		xn_ifinit(sc);
1781		break;
1782	case SIOCSIFFLAGS:
1783		XN_LOCK(sc);
1784		if (ifp->if_flags & IFF_UP) {
1785			/*
1786			 * If only the state of the PROMISC flag changed,
1787			 * then just use the 'set promisc mode' command
1788			 * instead of reinitializing the entire NIC. Doing
1789			 * a full re-init means reloading the firmware and
1790			 * waiting for it to start up, which may take a
1791			 * second or two.
1792			 */
1793			xn_ifinit_locked(sc);
1794		} else {
1795			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1796				xn_stop(sc);
1797			}
1798		}
1799		sc->xn_if_flags = ifp->if_flags;
1800		XN_UNLOCK(sc);
1801		break;
1802	case SIOCSIFCAP:
1803		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1804		reinit = 0;
1805
1806		if (mask & IFCAP_TXCSUM) {
1807			ifp->if_capenable ^= IFCAP_TXCSUM;
1808			ifp->if_hwassist ^= XN_CSUM_FEATURES;
1809		}
1810		if (mask & IFCAP_TSO4) {
1811			ifp->if_capenable ^= IFCAP_TSO4;
1812			ifp->if_hwassist ^= CSUM_TSO;
1813		}
1814
1815		if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) {
1816			/* These Rx features require us to renegotiate. */
1817			reinit = 1;
1818
1819			if (mask & IFCAP_RXCSUM)
1820				ifp->if_capenable ^= IFCAP_RXCSUM;
1821			if (mask & IFCAP_LRO)
1822				ifp->if_capenable ^= IFCAP_LRO;
1823		}
1824
1825		if (reinit == 0)
1826			break;
1827
1828		/*
1829		 * We must reset the interface so the backend picks up the
1830		 * new features.
1831		 */
1832		device_printf(sc->xbdev,
1833		    "performing interface reset due to feature change\n");
1834		XN_LOCK(sc);
1835		netfront_carrier_off(sc);
1836		sc->xn_reset = true;
1837		/*
1838		 * NB: the pending packet queue is not flushed, since
1839		 * the interface should still support the old options.
1840		 */
1841		XN_UNLOCK(sc);
1842		/*
1843		 * Delete the xenstore nodes that export features.
1844		 *
1845		 * NB: There's a xenbus state called
1846		 * "XenbusStateReconfiguring", which is what we should set
1847		 * here. Sadly none of the backends know how to handle it,
1848		 * and simply disconnect from the frontend, so we will just
1849		 * switch back to XenbusStateInitialising in order to force
1850		 * a reconnection.
1851		 */
1852		xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4");
1853		xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload");
1854		xenbus_set_state(dev, XenbusStateClosing);
1855
1856		/*
1857		 * Wait for the frontend to reconnect before returning
1858		 * from the ioctl. 30s should be more than enough for any
1859		 * sane backend to reconnect.
1860		 */
1861		error = tsleep(sc, 0, "xn_rst", 30*hz);
1862		break;
1863	case SIOCADDMULTI:
1864	case SIOCDELMULTI:
1865		break;
1866	case SIOCSIFMEDIA:
1867	case SIOCGIFMEDIA:
1868		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1869		break;
1870	default:
1871		error = ether_ioctl(ifp, cmd, data);
1872	}
1873
1874	return (error);
1875}
1876
1877static void
1878xn_stop(struct netfront_info *sc)
1879{
1880	struct ifnet *ifp;
1881
1882	XN_LOCK_ASSERT(sc);
1883
1884	ifp = sc->xn_ifp;
1885
1886	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1887	if_link_state_change(ifp, LINK_STATE_DOWN);
1888}
1889
1890static void
1891xn_rebuild_rx_bufs(struct netfront_rxq *rxq)
1892{
1893	int requeue_idx, i;
1894	grant_ref_t ref;
1895	netif_rx_request_t *req;
1896
1897	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1898		struct mbuf *m;
1899		u_long pfn;
1900
1901		if (rxq->mbufs[i] == NULL)
1902			continue;
1903
1904		m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i);
1905		ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i);
1906
1907		req = RING_GET_REQUEST(&rxq->ring, requeue_idx);
1908		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1909
1910		gnttab_grant_foreign_access_ref(ref,
1911		    xenbus_get_otherend_id(rxq->info->xbdev),
1912		    pfn, 0);
1913
1914		req->gref = ref;
1915		req->id   = requeue_idx;
1916
1917		requeue_idx++;
1918	}
1919
1920	rxq->ring.req_prod_pvt = requeue_idx;
1921}
1922
1923/* START of Xenolinux helper functions adapted to FreeBSD */
1924static int
1925xn_connect(struct netfront_info *np)
1926{
1927	int i, error;
1928	u_int feature_rx_copy;
1929	struct netfront_rxq *rxq;
1930	struct netfront_txq *txq;
1931
1932	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1933	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1934	if (error != 0)
1935		feature_rx_copy = 0;
1936
1937	/* We only support rx copy. */
1938	if (!feature_rx_copy)
1939		return (EPROTONOSUPPORT);
1940
1941	/* Recovery procedure: */
1942	error = talk_to_backend(np->xbdev, np);
1943	if (error != 0)
1944		return (error);
1945
1946	/* Step 1: Reinitialise variables. */
1947	xn_query_features(np);
1948	xn_configure_features(np);
1949
1950	/* Step 2: Release TX buffer */
1951	for (i = 0; i < np->num_queues; i++) {
1952		txq = &np->txq[i];
1953		xn_release_tx_bufs(txq);
1954	}
1955
1956	/* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */
1957	for (i = 0; i < np->num_queues; i++) {
1958		rxq = &np->rxq[i];
1959		xn_rebuild_rx_bufs(rxq);
1960	}
1961
1962	/* Step 4: All public and private state should now be sane.  Get
1963	 * ready to start sending and receiving packets and give the driver
1964	 * domain a kick because we've probably just requeued some
1965	 * packets.
1966	 */
1967	netfront_carrier_on(np);
1968	wakeup(np);
1969
1970	return (0);
1971}
1972
1973static void
1974xn_kick_rings(struct netfront_info *np)
1975{
1976	struct netfront_rxq *rxq;
1977	struct netfront_txq *txq;
1978	int i;
1979
1980	for (i = 0; i < np->num_queues; i++) {
1981		txq = &np->txq[i];
1982		rxq = &np->rxq[i];
1983		xen_intr_signal(txq->xen_intr_handle);
1984		XN_TX_LOCK(txq);
1985		xn_txeof(txq);
1986		XN_TX_UNLOCK(txq);
1987		XN_RX_LOCK(rxq);
1988		xn_alloc_rx_buffers(rxq);
1989		XN_RX_UNLOCK(rxq);
1990	}
1991}
1992
1993static void
1994xn_query_features(struct netfront_info *np)
1995{
1996	int val;
1997
1998	device_printf(np->xbdev, "backend features:");
1999
2000	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2001		"feature-sg", NULL, "%d", &val) != 0)
2002		val = 0;
2003
2004	np->maxfrags = 1;
2005	if (val) {
2006		np->maxfrags = MAX_TX_REQ_FRAGS;
2007		printf(" feature-sg");
2008	}
2009
2010	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2011		"feature-gso-tcpv4", NULL, "%d", &val) != 0)
2012		val = 0;
2013
2014	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2015	if (val) {
2016		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2017		printf(" feature-gso-tcp4");
2018	}
2019
2020	/*
2021	 * HW CSUM offload is assumed to be available unless
2022	 * feature-no-csum-offload is set in xenstore.
2023	 */
2024	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2025		"feature-no-csum-offload", NULL, "%d", &val) != 0)
2026		val = 0;
2027
2028	np->xn_ifp->if_capabilities |= IFCAP_HWCSUM;
2029	if (val) {
2030		np->xn_ifp->if_capabilities &= ~(IFCAP_HWCSUM);
2031		printf(" feature-no-csum-offload");
2032	}
2033
2034	printf("\n");
2035}
2036
2037static int
2038xn_configure_features(struct netfront_info *np)
2039{
2040	int err, cap_enabled;
2041#if (defined(INET) || defined(INET6))
2042	int i;
2043#endif
2044	struct ifnet *ifp;
2045
2046	ifp = np->xn_ifp;
2047	err = 0;
2048
2049	if ((ifp->if_capenable & ifp->if_capabilities) == ifp->if_capenable) {
2050		/* Current options are available, no need to do anything. */
2051		return (0);
2052	}
2053
2054	/* Try to preserve as many options as possible. */
2055	cap_enabled = ifp->if_capenable;
2056	ifp->if_capenable = ifp->if_hwassist = 0;
2057
2058#if (defined(INET) || defined(INET6))
2059	if ((cap_enabled & IFCAP_LRO) != 0)
2060		for (i = 0; i < np->num_queues; i++)
2061			tcp_lro_free(&np->rxq[i].lro);
2062	if (xn_enable_lro &&
2063	    (ifp->if_capabilities & cap_enabled & IFCAP_LRO) != 0) {
2064	    	ifp->if_capenable |= IFCAP_LRO;
2065		for (i = 0; i < np->num_queues; i++) {
2066			err = tcp_lro_init(&np->rxq[i].lro);
2067			if (err != 0) {
2068				device_printf(np->xbdev,
2069				    "LRO initialization failed\n");
2070				ifp->if_capenable &= ~IFCAP_LRO;
2071				break;
2072			}
2073			np->rxq[i].lro.ifp = ifp;
2074		}
2075	}
2076	if ((ifp->if_capabilities & cap_enabled & IFCAP_TSO4) != 0) {
2077		ifp->if_capenable |= IFCAP_TSO4;
2078		ifp->if_hwassist |= CSUM_TSO;
2079	}
2080#endif
2081	if ((ifp->if_capabilities & cap_enabled & IFCAP_TXCSUM) != 0) {
2082		ifp->if_capenable |= IFCAP_TXCSUM;
2083		ifp->if_hwassist |= XN_CSUM_FEATURES;
2084	}
2085	if ((ifp->if_capabilities & cap_enabled & IFCAP_RXCSUM) != 0)
2086		ifp->if_capenable |= IFCAP_RXCSUM;
2087
2088	return (err);
2089}
2090
2091static int
2092xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m)
2093{
2094	struct netfront_info *np;
2095	struct ifnet *ifp;
2096	struct buf_ring *br;
2097	int error, notify;
2098
2099	np = txq->info;
2100	br = txq->br;
2101	ifp = np->xn_ifp;
2102	error = 0;
2103
2104	XN_TX_LOCK_ASSERT(txq);
2105
2106	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2107	    !netfront_carrier_ok(np)) {
2108		if (m != NULL)
2109			error = drbr_enqueue(ifp, br, m);
2110		return (error);
2111	}
2112
2113	if (m != NULL) {
2114		error = drbr_enqueue(ifp, br, m);
2115		if (error != 0)
2116			return (error);
2117	}
2118
2119	while ((m = drbr_peek(ifp, br)) != NULL) {
2120		if (!xn_tx_slot_available(txq)) {
2121			drbr_putback(ifp, br, m);
2122			break;
2123		}
2124
2125		error = xn_assemble_tx_request(txq, m);
2126		/* xn_assemble_tx_request always consumes the mbuf*/
2127		if (error != 0) {
2128			drbr_advance(ifp, br);
2129			break;
2130		}
2131
2132		RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify);
2133		if (notify)
2134			xen_intr_signal(txq->xen_intr_handle);
2135
2136		drbr_advance(ifp, br);
2137	}
2138
2139	if (RING_FULL(&txq->ring))
2140		txq->full = true;
2141
2142	return (0);
2143}
2144
2145static int
2146xn_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
2147{
2148	struct netfront_info *np;
2149	struct netfront_txq *txq;
2150	int i, npairs, error;
2151
2152	np = ifp->if_softc;
2153	npairs = np->num_queues;
2154
2155	if (!netfront_carrier_ok(np))
2156		return (ENOBUFS);
2157
2158	KASSERT(npairs != 0, ("called with 0 available queues"));
2159
2160	/* check if flowid is set */
2161	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2162		i = m->m_pkthdr.flowid % npairs;
2163	else
2164		i = curcpu % npairs;
2165
2166	txq = &np->txq[i];
2167
2168	if (XN_TX_TRYLOCK(txq) != 0) {
2169		error = xn_txq_mq_start_locked(txq, m);
2170		XN_TX_UNLOCK(txq);
2171	} else {
2172		error = drbr_enqueue(ifp, txq->br, m);
2173		taskqueue_enqueue(txq->tq, &txq->defrtask);
2174	}
2175
2176	return (error);
2177}
2178
2179static void
2180xn_qflush(struct ifnet *ifp)
2181{
2182	struct netfront_info *np;
2183	struct netfront_txq *txq;
2184	struct mbuf *m;
2185	int i;
2186
2187	np = ifp->if_softc;
2188
2189	for (i = 0; i < np->num_queues; i++) {
2190		txq = &np->txq[i];
2191
2192		XN_TX_LOCK(txq);
2193		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
2194			m_freem(m);
2195		XN_TX_UNLOCK(txq);
2196	}
2197
2198	if_qflush(ifp);
2199}
2200
2201/**
2202 * Create a network device.
2203 * @param dev  Newbus device representing this virtual NIC.
2204 */
2205int
2206create_netdev(device_t dev)
2207{
2208	struct netfront_info *np;
2209	int err;
2210	struct ifnet *ifp;
2211
2212	np = device_get_softc(dev);
2213
2214	np->xbdev         = dev;
2215
2216	mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF);
2217
2218	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2219	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2220	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2221
2222	err = xen_net_read_mac(dev, np->mac);
2223	if (err != 0)
2224		goto error;
2225
2226	/* Set up ifnet structure */
2227	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2228    	ifp->if_softc = np;
2229    	if_initname(ifp, "xn",  device_get_unit(dev));
2230    	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2231    	ifp->if_ioctl = xn_ioctl;
2232
2233	ifp->if_transmit = xn_txq_mq_start;
2234	ifp->if_qflush = xn_qflush;
2235
2236    	ifp->if_init = xn_ifinit;
2237
2238    	ifp->if_hwassist = XN_CSUM_FEATURES;
2239	/* Enable all supported features at device creation. */
2240	ifp->if_capenable = ifp->if_capabilities =
2241	    IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO;
2242	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2243	ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS;
2244	ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
2245
2246    	ether_ifattach(ifp, np->mac);
2247	netfront_carrier_off(np);
2248
2249	return (0);
2250
2251error:
2252	KASSERT(err != 0, ("Error path with no error code specified"));
2253	return (err);
2254}
2255
2256static int
2257netfront_detach(device_t dev)
2258{
2259	struct netfront_info *info = device_get_softc(dev);
2260
2261	DPRINTK("%s\n", xenbus_get_node(dev));
2262
2263	netif_free(info);
2264
2265	return 0;
2266}
2267
2268static void
2269netif_free(struct netfront_info *np)
2270{
2271
2272	XN_LOCK(np);
2273	xn_stop(np);
2274	XN_UNLOCK(np);
2275	netif_disconnect_backend(np);
2276	ether_ifdetach(np->xn_ifp);
2277	free(np->rxq, M_DEVBUF);
2278	free(np->txq, M_DEVBUF);
2279	if_free(np->xn_ifp);
2280	np->xn_ifp = NULL;
2281	ifmedia_removeall(&np->sc_media);
2282}
2283
2284static void
2285netif_disconnect_backend(struct netfront_info *np)
2286{
2287	u_int i;
2288
2289	for (i = 0; i < np->num_queues; i++) {
2290		XN_RX_LOCK(&np->rxq[i]);
2291		XN_TX_LOCK(&np->txq[i]);
2292	}
2293	netfront_carrier_off(np);
2294	for (i = 0; i < np->num_queues; i++) {
2295		XN_RX_UNLOCK(&np->rxq[i]);
2296		XN_TX_UNLOCK(&np->txq[i]);
2297	}
2298
2299	for (i = 0; i < np->num_queues; i++) {
2300		disconnect_rxq(&np->rxq[i]);
2301		disconnect_txq(&np->txq[i]);
2302	}
2303}
2304
2305static int
2306xn_ifmedia_upd(struct ifnet *ifp)
2307{
2308
2309	return (0);
2310}
2311
2312static void
2313xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2314{
2315
2316	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2317	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2318}
2319
2320/* ** Driver registration ** */
2321static device_method_t netfront_methods[] = {
2322	/* Device interface */
2323	DEVMETHOD(device_probe,         netfront_probe),
2324	DEVMETHOD(device_attach,        netfront_attach),
2325	DEVMETHOD(device_detach,        netfront_detach),
2326	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2327	DEVMETHOD(device_suspend,       netfront_suspend),
2328	DEVMETHOD(device_resume,        netfront_resume),
2329
2330	/* Xenbus interface */
2331	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2332
2333	DEVMETHOD_END
2334};
2335
2336static driver_t netfront_driver = {
2337	"xn",
2338	netfront_methods,
2339	sizeof(struct netfront_info),
2340};
2341devclass_t netfront_devclass;
2342
2343DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL,
2344    NULL);
2345