1/*-
2 * CAM IO Scheduler Interface
3 *
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (c) 2015 Netflix, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32#include "opt_cam.h"
33#include "opt_ddb.h"
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <sys/param.h>
39
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/bio.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/sbuf.h>
47#include <sys/sysctl.h>
48
49#include <cam/cam.h>
50#include <cam/cam_ccb.h>
51#include <cam/cam_periph.h>
52#include <cam/cam_xpt_periph.h>
53#include <cam/cam_xpt_internal.h>
54#include <cam/cam_iosched.h>
55
56#include <ddb/ddb.h>
57
58static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
59    "CAM I/O Scheduler buffers");
60
61/*
62 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
63 * over the bioq_* interface, with notions of separate calls for normal I/O and
64 * for trims.
65 *
66 * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically
67 * steer the rate of one type of traffic to help other types of traffic (eg
68 * limit writes when read latency deteriorates on SSDs).
69 */
70
71#ifdef CAM_IOSCHED_DYNAMIC
72
73static int do_dynamic_iosched = 1;
74TUNABLE_INT("kern.cam.do_dynamic_iosched", &do_dynamic_iosched);
75SYSCTL_INT(_kern_cam, OID_AUTO, do_dynamic_iosched, CTLFLAG_RD,
76    &do_dynamic_iosched, 1,
77    "Enable Dynamic I/O scheduler optimizations.");
78
79/*
80 * For an EMA, with an alpha of alpha, we know
81 * 	alpha = 2 / (N + 1)
82 * or
83 * 	N = 1 + (2 / alpha)
84 * where N is the number of samples that 86% of the current
85 * EMA is derived from.
86 *
87 * So we invent[*] alpha_bits:
88 *	alpha_bits = -log_2(alpha)
89 *	alpha = 2^-alpha_bits
90 * So
91 *	N = 1 + 2^(alpha_bits + 1)
92 *
93 * The default 9 gives a 1025 lookback for 86% of the data.
94 * For a brief intro: https://en.wikipedia.org/wiki/Moving_average
95 *
96 * [*] Steal from the load average code and many other places.
97 * Note: See computation of EMA and EMVAR for acceptable ranges of alpha.
98 */
99static int alpha_bits = 9;
100TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
101SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
102    &alpha_bits, 1,
103    "Bits in EMA's alpha.");
104
105struct iop_stats;
106struct cam_iosched_softc;
107
108int iosched_debug = 0;
109
110typedef enum {
111	none = 0,				/* No limits */
112	queue_depth,			/* Limit how many ops we queue to SIM */
113	iops,				/* Limit # of IOPS to the drive */
114	bandwidth,			/* Limit bandwidth to the drive */
115	limiter_max
116} io_limiter;
117
118static const char *cam_iosched_limiter_names[] =
119    { "none", "queue_depth", "iops", "bandwidth" };
120
121/*
122 * Called to initialize the bits of the iop_stats structure relevant to the
123 * limiter. Called just after the limiter is set.
124 */
125typedef int l_init_t(struct iop_stats *);
126
127/*
128 * Called every tick.
129 */
130typedef int l_tick_t(struct iop_stats *);
131
132/*
133 * Called to see if the limiter thinks this IOP can be allowed to
134 * proceed. If so, the limiter assumes that the IOP proceeded
135 * and makes any accounting of it that's needed.
136 */
137typedef int l_iop_t(struct iop_stats *, struct bio *);
138
139/*
140 * Called when an I/O completes so the limiter can update its
141 * accounting. Pending I/Os may complete in any order (even when
142 * sent to the hardware at the same time), so the limiter may not
143 * make any assumptions other than this I/O has completed. If it
144 * returns 1, then xpt_schedule() needs to be called again.
145 */
146typedef int l_iodone_t(struct iop_stats *, struct bio *);
147
148static l_iop_t cam_iosched_qd_iop;
149static l_iop_t cam_iosched_qd_caniop;
150static l_iodone_t cam_iosched_qd_iodone;
151
152static l_init_t cam_iosched_iops_init;
153static l_tick_t cam_iosched_iops_tick;
154static l_iop_t cam_iosched_iops_caniop;
155static l_iop_t cam_iosched_iops_iop;
156
157static l_init_t cam_iosched_bw_init;
158static l_tick_t cam_iosched_bw_tick;
159static l_iop_t cam_iosched_bw_caniop;
160static l_iop_t cam_iosched_bw_iop;
161
162struct limswitch {
163	l_init_t	*l_init;
164	l_tick_t	*l_tick;
165	l_iop_t		*l_iop;
166	l_iop_t		*l_caniop;
167	l_iodone_t	*l_iodone;
168} limsw[] =
169{
170	{	/* none */
171		.l_init = NULL,
172		.l_tick = NULL,
173		.l_iop = NULL,
174		.l_iodone= NULL,
175	},
176	{	/* queue_depth */
177		.l_init = NULL,
178		.l_tick = NULL,
179		.l_caniop = cam_iosched_qd_caniop,
180		.l_iop = cam_iosched_qd_iop,
181		.l_iodone= cam_iosched_qd_iodone,
182	},
183	{	/* iops */
184		.l_init = cam_iosched_iops_init,
185		.l_tick = cam_iosched_iops_tick,
186		.l_caniop = cam_iosched_iops_caniop,
187		.l_iop = cam_iosched_iops_iop,
188		.l_iodone= NULL,
189	},
190	{	/* bandwidth */
191		.l_init = cam_iosched_bw_init,
192		.l_tick = cam_iosched_bw_tick,
193		.l_caniop = cam_iosched_bw_caniop,
194		.l_iop = cam_iosched_bw_iop,
195		.l_iodone= NULL,
196	},
197};
198
199struct iop_stats {
200	/*
201	 * sysctl state for this subnode.
202	 */
203	struct sysctl_ctx_list	sysctl_ctx;
204	struct sysctl_oid	*sysctl_tree;
205
206	/*
207	 * Information about the current rate limiters, if any
208	 */
209	io_limiter	limiter;	/* How are I/Os being limited */
210	int		min;		/* Low range of limit */
211	int		max;		/* High range of limit */
212	int		current;	/* Current rate limiter */
213	int		l_value1;	/* per-limiter scratch value 1. */
214	int		l_value2;	/* per-limiter scratch value 2. */
215
216	/*
217	 * Debug information about counts of I/Os that have gone through the
218	 * scheduler.
219	 */
220	int		pending;	/* I/Os pending in the hardware */
221	int		queued;		/* number currently in the queue */
222	int		total;		/* Total for all time -- wraps */
223	int		in;		/* number queued all time -- wraps */
224	int		out;		/* number completed all time -- wraps */
225	int		errs;		/* Number of I/Os completed with error --  wraps */
226
227	/*
228	 * Statistics on different bits of the process.
229	 */
230		/* Exp Moving Average, see alpha_bits for more details */
231	sbintime_t      ema;
232	sbintime_t      emvar;
233	sbintime_t      sd;		/* Last computed sd */
234
235	uint32_t	state_flags;
236#define IOP_RATE_LIMITED		1u
237
238#define LAT_BUCKETS 15			/* < 1ms < 2ms ... < 2^(n-1)ms >= 2^(n-1)ms*/
239	uint64_t	latencies[LAT_BUCKETS];
240
241	struct cam_iosched_softc *softc;
242};
243
244typedef enum {
245	set_max = 0,			/* current = max */
246	read_latency,			/* Steer read latency by throttling writes */
247	cl_max				/* Keep last */
248} control_type;
249
250static const char *cam_iosched_control_type_names[] =
251    { "set_max", "read_latency" };
252
253struct control_loop {
254	/*
255	 * sysctl state for this subnode.
256	 */
257	struct sysctl_ctx_list	sysctl_ctx;
258	struct sysctl_oid	*sysctl_tree;
259
260	sbintime_t	next_steer;		/* Time of next steer */
261	sbintime_t	steer_interval;		/* How often do we steer? */
262	sbintime_t	lolat;
263	sbintime_t	hilat;
264	int		alpha;
265	control_type	type;			/* What type of control? */
266	int		last_count;		/* Last I/O count */
267
268	struct cam_iosched_softc *softc;
269};
270
271#endif
272
273struct cam_iosched_softc {
274	struct bio_queue_head bio_queue;
275	struct bio_queue_head trim_queue;
276				/* scheduler flags < 16, user flags >= 16 */
277	uint32_t	flags;
278	int		sort_io_queue;
279	int		trim_goal;		/* # of trims to queue before sending */
280	int		trim_ticks;		/* Max ticks to hold trims */
281	int		last_trim_tick;		/* Last 'tick' time ld a trim */
282	int		queued_trims;		/* Number of trims in the queue */
283#ifdef CAM_IOSCHED_DYNAMIC
284	int		read_bias;		/* Read bias setting */
285	int		current_read_bias;	/* Current read bias state */
286	int		total_ticks;
287	int		load;			/* EMA of 'load average' of disk / 2^16 */
288
289	struct bio_queue_head write_queue;
290	struct iop_stats read_stats, write_stats, trim_stats;
291	struct sysctl_ctx_list	sysctl_ctx;
292	struct sysctl_oid	*sysctl_tree;
293
294	int		quanta;			/* Number of quanta per second */
295	struct callout	ticker;			/* Callout for our quota system */
296	struct cam_periph *periph;		/* cam periph associated with this device */
297	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
298	sbintime_t	last_time;		/* Last time we ticked */
299	struct control_loop cl;
300	sbintime_t	max_lat;		/* when != 0, if iop latency > max_lat, call max_lat_fcn */
301	cam_iosched_latfcn_t	latfcn;
302	void		*latarg;
303#endif
304};
305
306#ifdef CAM_IOSCHED_DYNAMIC
307/*
308 * helper functions to call the limsw functions.
309 */
310static int
311cam_iosched_limiter_init(struct iop_stats *ios)
312{
313	int lim = ios->limiter;
314
315	/* maybe this should be a kassert */
316	if (lim < none || lim >= limiter_max)
317		return EINVAL;
318
319	if (limsw[lim].l_init)
320		return limsw[lim].l_init(ios);
321
322	return 0;
323}
324
325static int
326cam_iosched_limiter_tick(struct iop_stats *ios)
327{
328	int lim = ios->limiter;
329
330	/* maybe this should be a kassert */
331	if (lim < none || lim >= limiter_max)
332		return EINVAL;
333
334	if (limsw[lim].l_tick)
335		return limsw[lim].l_tick(ios);
336
337	return 0;
338}
339
340static int
341cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
342{
343	int lim = ios->limiter;
344
345	/* maybe this should be a kassert */
346	if (lim < none || lim >= limiter_max)
347		return EINVAL;
348
349	if (limsw[lim].l_iop)
350		return limsw[lim].l_iop(ios, bp);
351
352	return 0;
353}
354
355static int
356cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
357{
358	int lim = ios->limiter;
359
360	/* maybe this should be a kassert */
361	if (lim < none || lim >= limiter_max)
362		return EINVAL;
363
364	if (limsw[lim].l_caniop)
365		return limsw[lim].l_caniop(ios, bp);
366
367	return 0;
368}
369
370static int
371cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
372{
373	int lim = ios->limiter;
374
375	/* maybe this should be a kassert */
376	if (lim < none || lim >= limiter_max)
377		return 0;
378
379	if (limsw[lim].l_iodone)
380		return limsw[lim].l_iodone(ios, bp);
381
382	return 0;
383}
384
385/*
386 * Functions to implement the different kinds of limiters
387 */
388
389static int
390cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
391{
392
393	if (ios->current <= 0 || ios->pending < ios->current)
394		return 0;
395
396	return EAGAIN;
397}
398
399static int
400cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
401{
402
403	if (ios->current <= 0 || ios->pending < ios->current)
404		return 0;
405
406	return EAGAIN;
407}
408
409static int
410cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
411{
412
413	if (ios->current <= 0 || ios->pending != ios->current)
414		return 0;
415
416	return 1;
417}
418
419static int
420cam_iosched_iops_init(struct iop_stats *ios)
421{
422
423	ios->l_value1 = ios->current / ios->softc->quanta;
424	if (ios->l_value1 <= 0)
425		ios->l_value1 = 1;
426	ios->l_value2 = 0;
427
428	return 0;
429}
430
431static int
432cam_iosched_iops_tick(struct iop_stats *ios)
433{
434	int new_ios;
435
436	/*
437	 * Allow at least one IO per tick until all
438	 * the IOs for this interval have been spent.
439	 */
440	new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
441	if (new_ios < 1 && ios->l_value2 < ios->current) {
442		new_ios = 1;
443		ios->l_value2++;
444	}
445
446	/*
447	 * If this a new accounting interval, discard any "unspent" ios
448	 * granted in the previous interval.  Otherwise add the new ios to
449	 * the previously granted ones that haven't been spent yet.
450	 */
451	if ((ios->softc->total_ticks % ios->softc->quanta) == 0) {
452		ios->l_value1 = new_ios;
453		ios->l_value2 = 1;
454	} else {
455		ios->l_value1 += new_ios;
456	}
457
458	return 0;
459}
460
461static int
462cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
463{
464
465	/*
466	 * So if we have any more IOPs left, allow it,
467	 * otherwise wait. If current iops is 0, treat that
468	 * as unlimited as a failsafe.
469	 */
470	if (ios->current > 0 && ios->l_value1 <= 0)
471		return EAGAIN;
472	return 0;
473}
474
475static int
476cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
477{
478	int rv;
479
480	rv = cam_iosched_limiter_caniop(ios, bp);
481	if (rv == 0)
482		ios->l_value1--;
483
484	return rv;
485}
486
487static int
488cam_iosched_bw_init(struct iop_stats *ios)
489{
490
491	/* ios->current is in kB/s, so scale to bytes */
492	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;
493
494	return 0;
495}
496
497static int
498cam_iosched_bw_tick(struct iop_stats *ios)
499{
500	int bw;
501
502	/*
503	 * If we're in the hole for available quota from
504	 * the last time, then add the quantum for this.
505	 * If we have any left over from last quantum,
506	 * then too bad, that's lost. Also, ios->current
507	 * is in kB/s, so scale.
508	 *
509	 * We also allow up to 4 quanta of credits to
510	 * accumulate to deal with burstiness. 4 is extremely
511	 * arbitrary.
512	 */
513	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
514	if (ios->l_value1 < bw * 4)
515		ios->l_value1 += bw;
516
517	return 0;
518}
519
520static int
521cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
522{
523	/*
524	 * So if we have any more bw quota left, allow it,
525	 * otherwise wait. Note, we'll go negative and that's
526	 * OK. We'll just get a little less next quota.
527	 *
528	 * Note on going negative: that allows us to process
529	 * requests in order better, since we won't allow
530	 * shorter reads to get around the long one that we
531	 * don't have the quota to do just yet. It also prevents
532	 * starvation by being a little more permissive about
533	 * what we let through this quantum (to prevent the
534	 * starvation), at the cost of getting a little less
535	 * next quantum.
536	 *
537	 * Also note that if the current limit is <= 0,
538	 * we treat it as unlimited as a failsafe.
539	 */
540	if (ios->current > 0 && ios->l_value1 <= 0)
541		return EAGAIN;
542
543	return 0;
544}
545
546static int
547cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
548{
549	int rv;
550
551	rv = cam_iosched_limiter_caniop(ios, bp);
552	if (rv == 0)
553		ios->l_value1 -= bp->bio_length;
554
555	return rv;
556}
557
558static void cam_iosched_cl_maybe_steer(struct control_loop *clp);
559
560static void
561cam_iosched_ticker(void *arg)
562{
563	struct cam_iosched_softc *isc = arg;
564	sbintime_t now, delta;
565	int pending;
566
567	callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
568
569	now = sbinuptime();
570	delta = now - isc->last_time;
571	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
572	isc->last_time = now;
573
574	cam_iosched_cl_maybe_steer(&isc->cl);
575
576	cam_iosched_limiter_tick(&isc->read_stats);
577	cam_iosched_limiter_tick(&isc->write_stats);
578	cam_iosched_limiter_tick(&isc->trim_stats);
579
580	cam_iosched_schedule(isc, isc->periph);
581
582	/*
583	 * isc->load is an EMA of the pending I/Os at each tick. The number of
584	 * pending I/Os is the sum of the I/Os queued to the hardware, and those
585	 * in the software queue that could be queued to the hardware if there
586	 * were slots.
587	 *
588	 * ios_stats.pending is a count of requests in the SIM right now for
589	 * each of these types of I/O. So the total pending count is the sum of
590	 * these I/Os and the sum of the queued I/Os still in the software queue
591	 * for those operations that aren't being rate limited at the moment.
592	 *
593	 * The reason for the rate limiting bit is because those I/Os
594	 * aren't part of the software queued load (since we could
595	 * give them to hardware, but choose not to).
596	 *
597	 * Note: due to a bug in counting pending TRIM in the device, we
598	 * don't include them in this count. We count each BIO_DELETE in
599	 * the pending count, but the periph drivers collapse them down
600	 * into one TRIM command. That one trim command gets the completion
601	 * so the counts get off.
602	 */
603	pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */;
604	pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued +
605	    !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* +
606	    !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ;
607	pending <<= 16;
608	pending /= isc->periph->path->device->ccbq.total_openings;
609
610	isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */
611
612	isc->total_ticks++;
613}
614
615static void
616cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
617{
618
619	clp->next_steer = sbinuptime();
620	clp->softc = isc;
621	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
622	clp->lolat = 5 * SBT_1MS;
623	clp->hilat = 15 * SBT_1MS;
624	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
625	clp->type = set_max;
626}
627
628static void
629cam_iosched_cl_maybe_steer(struct control_loop *clp)
630{
631	struct cam_iosched_softc *isc;
632	sbintime_t now, lat;
633	int old;
634
635	isc = clp->softc;
636	now = isc->last_time;
637	if (now < clp->next_steer)
638		return;
639
640	clp->next_steer = now + clp->steer_interval;
641	switch (clp->type) {
642	case set_max:
643		if (isc->write_stats.current != isc->write_stats.max)
644			printf("Steering write from %d kBps to %d kBps\n",
645			    isc->write_stats.current, isc->write_stats.max);
646		isc->read_stats.current = isc->read_stats.max;
647		isc->write_stats.current = isc->write_stats.max;
648		isc->trim_stats.current = isc->trim_stats.max;
649		break;
650	case read_latency:
651		old = isc->write_stats.current;
652		lat = isc->read_stats.ema;
653		/*
654		 * Simple PLL-like engine. Since we're steering to a range for
655		 * the SP (set point) that makes things a little more
656		 * complicated. In addition, we're not directly controlling our
657		 * PV (process variable), the read latency, but instead are
658		 * manipulating the write bandwidth limit for our MV
659		 * (manipulation variable), analysis of this code gets a bit
660		 * messy. Also, the MV is a very noisy control surface for read
661		 * latency since it is affected by many hidden processes inside
662		 * the device which change how responsive read latency will be
663		 * in reaction to changes in write bandwidth. Unlike the classic
664		 * boiler control PLL. this may result in over-steering while
665		 * the SSD takes its time to react to the new, lower load. This
666		 * is why we use a relatively low alpha of between .1 and .25 to
667		 * compensate for this effect. At .1, it takes ~22 steering
668		 * intervals to back off by a factor of 10. At .2 it only takes
669		 * ~10. At .25 it only takes ~8. However some preliminary data
670		 * from the SSD drives suggests a reasponse time in 10's of
671		 * seconds before latency drops regardless of the new write
672		 * rate. Careful observation will be required to tune this
673		 * effectively.
674		 *
675		 * Also, when there's no read traffic, we jack up the write
676		 * limit too regardless of the last read latency.  10 is
677		 * somewhat arbitrary.
678		 */
679		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
680			isc->write_stats.current = isc->write_stats.current *
681			    (100 + clp->alpha) / 100;	/* Scale up */
682		else if (lat > clp->hilat)
683			isc->write_stats.current = isc->write_stats.current *
684			    (100 - clp->alpha) / 100;	/* Scale down */
685		clp->last_count = isc->read_stats.total;
686
687		/*
688		 * Even if we don't steer, per se, enforce the min/max limits as
689		 * those may have changed.
690		 */
691		if (isc->write_stats.current < isc->write_stats.min)
692			isc->write_stats.current = isc->write_stats.min;
693		if (isc->write_stats.current > isc->write_stats.max)
694			isc->write_stats.current = isc->write_stats.max;
695		if (old != isc->write_stats.current && 	iosched_debug)
696			printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n",
697			    old, isc->write_stats.current,
698			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
699		break;
700	case cl_max:
701		break;
702	}
703}
704#endif
705
706/*
707 * Trim or similar currently pending completion. Should only be set for
708 * those drivers wishing only one Trim active at a time.
709 */
710#define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
711			/* Callout active, and needs to be torn down */
712#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)
713
714			/* Periph drivers set these flags to indicate work */
715#define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)
716
717#ifdef CAM_IOSCHED_DYNAMIC
718static void
719cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
720    sbintime_t sim_latency, int cmd, size_t size);
721#endif
722
723static inline bool
724cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
725{
726	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
727}
728
729static inline bool
730cam_iosched_has_io(struct cam_iosched_softc *isc)
731{
732#ifdef CAM_IOSCHED_DYNAMIC
733	if (do_dynamic_iosched) {
734		struct bio *rbp = bioq_first(&isc->bio_queue);
735		struct bio *wbp = bioq_first(&isc->write_queue);
736		bool can_write = wbp != NULL &&
737		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
738		bool can_read = rbp != NULL &&
739		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
740		if (iosched_debug > 2) {
741			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
742			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
743			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
744		}
745		return can_read || can_write;
746	}
747#endif
748	return bioq_first(&isc->bio_queue) != NULL;
749}
750
751static inline bool
752cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
753{
754	struct bio *bp;
755
756	bp = bioq_first(&isc->trim_queue);
757#ifdef CAM_IOSCHED_DYNAMIC
758	if (do_dynamic_iosched) {
759		/*
760		 * If we're limiting trims, then defer action on trims
761		 * for a bit.
762		 */
763		if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0)
764			return false;
765	}
766#endif
767
768	/*
769	 * If we've set a trim_goal, then if we exceed that allow trims
770	 * to be passed back to the driver. If we've also set a tick timeout
771	 * allow trims back to the driver. Otherwise, don't allow trims yet.
772	 */
773	if (isc->trim_goal > 0) {
774		if (isc->queued_trims >= isc->trim_goal)
775			return true;
776		if (isc->queued_trims > 0 &&
777		    isc->trim_ticks > 0 &&
778		    ticks - isc->last_trim_tick > isc->trim_ticks)
779			return true;
780		return false;
781	}
782
783	/* NB: Should perhaps have a max trim active independent of I/O limiters */
784	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL;
785}
786
787#define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
788    (isc)->sort_io_queue : cam_sort_io_queues)
789
790static inline bool
791cam_iosched_has_work(struct cam_iosched_softc *isc)
792{
793#ifdef CAM_IOSCHED_DYNAMIC
794	if (iosched_debug > 2)
795		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
796		    cam_iosched_has_more_trim(isc),
797		    cam_iosched_has_flagged_work(isc));
798#endif
799
800	return cam_iosched_has_io(isc) ||
801		cam_iosched_has_more_trim(isc) ||
802		cam_iosched_has_flagged_work(isc);
803}
804
805#ifdef CAM_IOSCHED_DYNAMIC
806static void
807cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
808{
809
810	ios->limiter = none;
811	ios->in = 0;
812	ios->max = ios->current = 300000;
813	ios->min = 1;
814	ios->out = 0;
815	ios->errs = 0;
816	ios->pending = 0;
817	ios->queued = 0;
818	ios->total = 0;
819	ios->ema = 0;
820	ios->emvar = 0;
821	ios->softc = isc;
822	cam_iosched_limiter_init(ios);
823}
824
825static int
826cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
827{
828	char buf[16];
829	struct iop_stats *ios;
830	struct cam_iosched_softc *isc;
831	int value, i, error;
832	const char *p;
833
834	ios = arg1;
835	isc = ios->softc;
836	value = ios->limiter;
837	if (value < none || value >= limiter_max)
838		p = "UNKNOWN";
839	else
840		p = cam_iosched_limiter_names[value];
841
842	strlcpy(buf, p, sizeof(buf));
843	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
844	if (error != 0 || req->newptr == NULL)
845		return error;
846
847	cam_periph_lock(isc->periph);
848
849	for (i = none; i < limiter_max; i++) {
850		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
851			continue;
852		ios->limiter = i;
853		error = cam_iosched_limiter_init(ios);
854		if (error != 0) {
855			ios->limiter = value;
856			cam_periph_unlock(isc->periph);
857			return error;
858		}
859		/* Note: disk load averate requires ticker to be always running */
860		callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc);
861		isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
862
863		cam_periph_unlock(isc->periph);
864		return 0;
865	}
866
867	cam_periph_unlock(isc->periph);
868	return EINVAL;
869}
870
871static int
872cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
873{
874	char buf[16];
875	struct control_loop *clp;
876	struct cam_iosched_softc *isc;
877	int value, i, error;
878	const char *p;
879
880	clp = arg1;
881	isc = clp->softc;
882	value = clp->type;
883	if (value < none || value >= cl_max)
884		p = "UNKNOWN";
885	else
886		p = cam_iosched_control_type_names[value];
887
888	strlcpy(buf, p, sizeof(buf));
889	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
890	if (error != 0 || req->newptr == NULL)
891		return error;
892
893	for (i = set_max; i < cl_max; i++) {
894		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
895			continue;
896		cam_periph_lock(isc->periph);
897		clp->type = i;
898		cam_periph_unlock(isc->periph);
899		return 0;
900	}
901
902	return EINVAL;
903}
904
905static int
906cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
907{
908	char buf[16];
909	sbintime_t value;
910	int error;
911	uint64_t us;
912
913	value = *(sbintime_t *)arg1;
914	us = (uint64_t)value / SBT_1US;
915	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
916	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
917	if (error != 0 || req->newptr == NULL)
918		return error;
919	us = strtoul(buf, NULL, 10);
920	if (us == 0)
921		return EINVAL;
922	*(sbintime_t *)arg1 = us * SBT_1US;
923	return 0;
924}
925
926static int
927cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS)
928{
929	int i, error;
930	struct sbuf sb;
931	uint64_t *latencies;
932
933	latencies = arg1;
934	sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req);
935
936	for (i = 0; i < LAT_BUCKETS - 1; i++)
937		sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]);
938	sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]);
939	error = sbuf_finish(&sb);
940	sbuf_delete(&sb);
941
942	return (error);
943}
944
945static int
946cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS)
947{
948	int *quanta;
949	int error, value;
950
951	quanta = (unsigned *)arg1;
952	value = *quanta;
953
954	error = sysctl_handle_int(oidp, (int *)&value, 0, req);
955	if ((error != 0) || (req->newptr == NULL))
956		return (error);
957
958	if (value < 1 || value > hz)
959		return (EINVAL);
960
961	*quanta = value;
962
963	return (0);
964}
965
966static void
967cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
968{
969	struct sysctl_oid_list *n;
970	struct sysctl_ctx_list *ctx;
971
972	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
973	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
974	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name);
975	n = SYSCTL_CHILDREN(ios->sysctl_tree);
976	ctx = &ios->sysctl_ctx;
977
978	SYSCTL_ADD_UQUAD(ctx, n,
979	    OID_AUTO, "ema", CTLFLAG_RD,
980	    &ios->ema,
981	    "Fast Exponentially Weighted Moving Average");
982	SYSCTL_ADD_UQUAD(ctx, n,
983	    OID_AUTO, "emvar", CTLFLAG_RD,
984	    &ios->emvar,
985	    "Fast Exponentially Weighted Moving Variance");
986
987	SYSCTL_ADD_INT(ctx, n,
988	    OID_AUTO, "pending", CTLFLAG_RD,
989	    &ios->pending, 0,
990	    "Instantaneous # of pending transactions");
991	SYSCTL_ADD_INT(ctx, n,
992	    OID_AUTO, "count", CTLFLAG_RD,
993	    &ios->total, 0,
994	    "# of transactions submitted to hardware");
995	SYSCTL_ADD_INT(ctx, n,
996	    OID_AUTO, "queued", CTLFLAG_RD,
997	    &ios->queued, 0,
998	    "# of transactions in the queue");
999	SYSCTL_ADD_INT(ctx, n,
1000	    OID_AUTO, "in", CTLFLAG_RD,
1001	    &ios->in, 0,
1002	    "# of transactions queued to driver");
1003	SYSCTL_ADD_INT(ctx, n,
1004	    OID_AUTO, "out", CTLFLAG_RD,
1005	    &ios->out, 0,
1006	    "# of transactions completed (including with error)");
1007	SYSCTL_ADD_INT(ctx, n,
1008	    OID_AUTO, "errs", CTLFLAG_RD,
1009	    &ios->errs, 0,
1010	    "# of transactions completed with an error");
1011
1012	SYSCTL_ADD_PROC(ctx, n,
1013	    OID_AUTO, "limiter",
1014	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1015	    ios, 0, cam_iosched_limiter_sysctl, "A",
1016	    "Current limiting type.");
1017	SYSCTL_ADD_INT(ctx, n,
1018	    OID_AUTO, "min", CTLFLAG_RW,
1019	    &ios->min, 0,
1020	    "min resource");
1021	SYSCTL_ADD_INT(ctx, n,
1022	    OID_AUTO, "max", CTLFLAG_RW,
1023	    &ios->max, 0,
1024	    "max resource");
1025	SYSCTL_ADD_INT(ctx, n,
1026	    OID_AUTO, "current", CTLFLAG_RW,
1027	    &ios->current, 0,
1028	    "current resource");
1029
1030	SYSCTL_ADD_PROC(ctx, n,
1031	    OID_AUTO, "latencies",
1032	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1033	    &ios->latencies, 0,
1034	    cam_iosched_sysctl_latencies, "A",
1035	    "Array of power of 2 latency from 1ms to 1.024s");
1036}
1037
1038static void
1039cam_iosched_iop_stats_fini(struct iop_stats *ios)
1040{
1041	if (ios->sysctl_tree)
1042		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
1043			printf("can't remove iosched sysctl stats context\n");
1044}
1045
1046static void
1047cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
1048{
1049	struct sysctl_oid_list *n;
1050	struct sysctl_ctx_list *ctx;
1051	struct control_loop *clp;
1052
1053	clp = &isc->cl;
1054	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1055	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
1056	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info");
1057	n = SYSCTL_CHILDREN(clp->sysctl_tree);
1058	ctx = &clp->sysctl_ctx;
1059
1060	SYSCTL_ADD_PROC(ctx, n,
1061	    OID_AUTO, "type",
1062	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1063	    clp, 0, cam_iosched_control_type_sysctl, "A",
1064	    "Control loop algorithm");
1065	SYSCTL_ADD_PROC(ctx, n,
1066	    OID_AUTO, "steer_interval",
1067	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1068	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
1069	    "How often to steer (in us)");
1070	SYSCTL_ADD_PROC(ctx, n,
1071	    OID_AUTO, "lolat",
1072	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1073	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
1074	    "Low water mark for Latency (in us)");
1075	SYSCTL_ADD_PROC(ctx, n,
1076	    OID_AUTO, "hilat",
1077	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1078	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
1079	    "Hi water mark for Latency (in us)");
1080	SYSCTL_ADD_INT(ctx, n,
1081	    OID_AUTO, "alpha", CTLFLAG_RW,
1082	    &clp->alpha, 0,
1083	    "Alpha for PLL (x100) aka gain");
1084}
1085
1086static void
1087cam_iosched_cl_sysctl_fini(struct control_loop *clp)
1088{
1089	if (clp->sysctl_tree)
1090		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
1091			printf("can't remove iosched sysctl control loop context\n");
1092}
1093#endif
1094
1095/*
1096 * Allocate the iosched structure. This also insulates callers from knowing
1097 * sizeof struct cam_iosched_softc.
1098 */
1099int
1100cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
1101{
1102
1103	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
1104	if (*iscp == NULL)
1105		return ENOMEM;
1106#ifdef CAM_IOSCHED_DYNAMIC
1107	if (iosched_debug)
1108		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
1109#endif
1110	(*iscp)->sort_io_queue = -1;
1111	bioq_init(&(*iscp)->bio_queue);
1112	bioq_init(&(*iscp)->trim_queue);
1113#ifdef CAM_IOSCHED_DYNAMIC
1114	if (do_dynamic_iosched) {
1115		bioq_init(&(*iscp)->write_queue);
1116		(*iscp)->read_bias = 100;
1117		(*iscp)->current_read_bias = 100;
1118		(*iscp)->quanta = min(hz, 200);
1119		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
1120		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
1121		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
1122		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
1123		(*iscp)->last_time = sbinuptime();
1124		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
1125		(*iscp)->periph = periph;
1126		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
1127		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp);
1128		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1129	}
1130#endif
1131
1132	return 0;
1133}
1134
1135/*
1136 * Reclaim all used resources. This assumes that other folks have
1137 * drained the requests in the hardware. Maybe an unwise assumption.
1138 */
1139void
1140cam_iosched_fini(struct cam_iosched_softc *isc)
1141{
1142	if (isc) {
1143		cam_iosched_flush(isc, NULL, ENXIO);
1144#ifdef CAM_IOSCHED_DYNAMIC
1145		cam_iosched_iop_stats_fini(&isc->read_stats);
1146		cam_iosched_iop_stats_fini(&isc->write_stats);
1147		cam_iosched_iop_stats_fini(&isc->trim_stats);
1148		cam_iosched_cl_sysctl_fini(&isc->cl);
1149		if (isc->sysctl_tree)
1150			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
1151				printf("can't remove iosched sysctl stats context\n");
1152		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
1153			callout_drain(&isc->ticker);
1154			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
1155		}
1156#endif
1157		free(isc, M_CAMSCHED);
1158	}
1159}
1160
1161/*
1162 * After we're sure we're attaching a device, go ahead and add
1163 * hooks for any sysctl we may wish to honor.
1164 */
1165void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
1166    struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
1167{
1168	struct sysctl_oid_list *n;
1169
1170	n = SYSCTL_CHILDREN(node);
1171	SYSCTL_ADD_INT(ctx, n,
1172		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
1173		&isc->sort_io_queue, 0,
1174		"Sort IO queue to try and optimise disk access patterns");
1175	SYSCTL_ADD_INT(ctx, n,
1176	    OID_AUTO, "trim_goal", CTLFLAG_RW,
1177	    &isc->trim_goal, 0,
1178	    "Number of trims to try to accumulate before sending to hardware");
1179	SYSCTL_ADD_INT(ctx, n,
1180	    OID_AUTO, "trim_ticks", CTLFLAG_RW,
1181	    &isc->trim_goal, 0,
1182	    "IO Schedul qaunta to hold back trims for when accumulating");
1183
1184#ifdef CAM_IOSCHED_DYNAMIC
1185	if (!do_dynamic_iosched)
1186		return;
1187
1188	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
1189	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
1190	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics");
1191	n = SYSCTL_CHILDREN(isc->sysctl_tree);
1192	ctx = &isc->sysctl_ctx;
1193
1194	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
1195	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
1196	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
1197	cam_iosched_cl_sysctl_init(isc);
1198
1199	SYSCTL_ADD_INT(ctx, n,
1200	    OID_AUTO, "read_bias", CTLFLAG_RW,
1201	    &isc->read_bias, 100,
1202	    "How biased towards read should we be independent of limits");
1203
1204	SYSCTL_ADD_PROC(ctx, n,
1205	    OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1206	    &isc->quanta, 0, cam_iosched_quanta_sysctl, "I",
1207	    "How many quanta per second do we slice the I/O up into");
1208
1209	SYSCTL_ADD_INT(ctx, n,
1210	    OID_AUTO, "total_ticks", CTLFLAG_RD,
1211	    &isc->total_ticks, 0,
1212	    "Total number of ticks we've done");
1213
1214	SYSCTL_ADD_INT(ctx, n,
1215	    OID_AUTO, "load", CTLFLAG_RD,
1216	    &isc->load, 0,
1217	    "scaled load average / 100");
1218
1219	SYSCTL_ADD_U64(ctx, n,
1220	    OID_AUTO, "latency_trigger", CTLFLAG_RW,
1221	    &isc->max_lat, 0,
1222	    "Latency treshold to trigger callbacks");
1223#endif
1224}
1225
1226void
1227cam_iosched_set_latfcn(struct cam_iosched_softc *isc,
1228    cam_iosched_latfcn_t fnp, void *argp)
1229{
1230#ifdef CAM_IOSCHED_DYNAMIC
1231	isc->latfcn = fnp;
1232	isc->latarg = argp;
1233#endif
1234}
1235
1236/*
1237 * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs
1238 * that will be queued up before iosched will "release" the trims to the client
1239 * driver to wo with what they will (usually combine as many as possible). If we
1240 * don't get this many, after trim_ticks we'll submit the I/O anyway with
1241 * whatever we have.  We do need an I/O of some kind of to clock the deferred
1242 * trims out to disk. Since we will eventually get a write for the super block
1243 * or something before we shutdown, the trims will complete. To be safe, when a
1244 * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far
1245 * enough in the past so we'll present the BIO_DELETEs to the client driver.
1246 * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in
1247 * and then a BIO_DELETE is sent down. No know client does this, and there's
1248 * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight,
1249 * but no client depends on the ordering being honored.
1250 *
1251 * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF
1252 * flushing on shutdown. I think there's bufs that would be dependent on the BIO
1253 * finishing to write out at least metadata, so we'll be fine. To be safe, keep
1254 * the number of ticks low (less than maybe 10s) to avoid shutdown races.
1255 */
1256
1257void
1258cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal)
1259{
1260
1261	isc->trim_goal = goal;
1262}
1263
1264void
1265cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks)
1266{
1267
1268	isc->trim_ticks = trim_ticks;
1269}
1270
1271/*
1272 * Flush outstanding I/O. Consumers of this library don't know all the
1273 * queues we may keep, so this allows all I/O to be flushed in one
1274 * convenient call.
1275 */
1276void
1277cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
1278{
1279	bioq_flush(&isc->bio_queue, stp, err);
1280	bioq_flush(&isc->trim_queue, stp, err);
1281#ifdef CAM_IOSCHED_DYNAMIC
1282	if (do_dynamic_iosched)
1283		bioq_flush(&isc->write_queue, stp, err);
1284#endif
1285}
1286
1287#ifdef CAM_IOSCHED_DYNAMIC
1288static struct bio *
1289cam_iosched_get_write(struct cam_iosched_softc *isc)
1290{
1291	struct bio *bp;
1292
1293	/*
1294	 * We control the write rate by controlling how many requests we send
1295	 * down to the drive at any one time. Fewer requests limits the
1296	 * effects of both starvation when the requests take a while and write
1297	 * amplification when each request is causing more than one write to
1298	 * the NAND media. Limiting the queue depth like this will also limit
1299	 * the write throughput and give and reads that want to compete to
1300	 * compete unfairly.
1301	 */
1302	bp = bioq_first(&isc->write_queue);
1303	if (bp == NULL) {
1304		if (iosched_debug > 3)
1305			printf("No writes present in write_queue\n");
1306		return NULL;
1307	}
1308
1309	/*
1310	 * If pending read, prefer that based on current read bias
1311	 * setting.
1312	 */
1313	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1314		if (iosched_debug)
1315			printf(
1316			    "Reads present and current_read_bias is %d queued "
1317			    "writes %d queued reads %d\n",
1318			    isc->current_read_bias, isc->write_stats.queued,
1319			    isc->read_stats.queued);
1320		isc->current_read_bias--;
1321		/* We're not limiting writes, per se, just doing reads first */
1322		return NULL;
1323	}
1324
1325	/*
1326	 * See if our current limiter allows this I/O.
1327	 */
1328	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
1329		if (iosched_debug)
1330			printf("Can't write because limiter says no.\n");
1331		isc->write_stats.state_flags |= IOP_RATE_LIMITED;
1332		return NULL;
1333	}
1334
1335	/*
1336	 * Let's do this: We've passed all the gates and we're a go
1337	 * to schedule the I/O in the SIM.
1338	 */
1339	isc->current_read_bias = isc->read_bias;
1340	bioq_remove(&isc->write_queue, bp);
1341	if (bp->bio_cmd == BIO_WRITE) {
1342		isc->write_stats.queued--;
1343		isc->write_stats.total++;
1344		isc->write_stats.pending++;
1345	}
1346	if (iosched_debug > 9)
1347		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1348	isc->write_stats.state_flags &= ~IOP_RATE_LIMITED;
1349	return bp;
1350}
1351#endif
1352
1353/*
1354 * Put back a trim that you weren't able to actually schedule this time.
1355 */
1356void
1357cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
1358{
1359	bioq_insert_head(&isc->trim_queue, bp);
1360	if (isc->queued_trims == 0)
1361		isc->last_trim_tick = ticks;
1362	isc->queued_trims++;
1363#ifdef CAM_IOSCHED_DYNAMIC
1364	isc->trim_stats.queued++;
1365	isc->trim_stats.total--;		/* since we put it back, don't double count */
1366	isc->trim_stats.pending--;
1367#endif
1368}
1369
1370/*
1371 * gets the next trim from the trim queue.
1372 *
1373 * Assumes we're called with the periph lock held.  It removes this
1374 * trim from the queue and the device must explicitly reinsert it
1375 * should the need arise.
1376 */
1377struct bio *
1378cam_iosched_next_trim(struct cam_iosched_softc *isc)
1379{
1380	struct bio *bp;
1381
1382	bp  = bioq_first(&isc->trim_queue);
1383	if (bp == NULL)
1384		return NULL;
1385	bioq_remove(&isc->trim_queue, bp);
1386	isc->queued_trims--;
1387	isc->last_trim_tick = ticks;	/* Reset the tick timer when we take trims */
1388#ifdef CAM_IOSCHED_DYNAMIC
1389	isc->trim_stats.queued--;
1390	isc->trim_stats.total++;
1391	isc->trim_stats.pending++;
1392#endif
1393	return bp;
1394}
1395
1396/*
1397 * gets an available trim from the trim queue, if there's no trim
1398 * already pending. It removes this trim from the queue and the device
1399 * must explicitly reinsert it should the need arise.
1400 *
1401 * Assumes we're called with the periph lock held.
1402 */
1403struct bio *
1404cam_iosched_get_trim(struct cam_iosched_softc *isc)
1405{
1406#ifdef CAM_IOSCHED_DYNAMIC
1407	struct bio *bp;
1408#endif
1409
1410	if (!cam_iosched_has_more_trim(isc))
1411		return NULL;
1412#ifdef CAM_IOSCHED_DYNAMIC
1413	bp  = bioq_first(&isc->trim_queue);
1414	if (bp == NULL)
1415		return NULL;
1416
1417	/*
1418	 * If pending read, prefer that based on current read bias setting. The
1419	 * read bias is shared for both writes and TRIMs, but on TRIMs the bias
1420	 * is for a combined TRIM not a single TRIM request that's come in.
1421	 */
1422	if (do_dynamic_iosched) {
1423		if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
1424			if (iosched_debug)
1425				printf("Reads present and current_read_bias is %d"
1426				    " queued trims %d queued reads %d\n",
1427				    isc->current_read_bias, isc->trim_stats.queued,
1428				    isc->read_stats.queued);
1429			isc->current_read_bias--;
1430			/* We're not limiting TRIMS, per se, just doing reads first */
1431			return NULL;
1432		}
1433		/*
1434		 * We're going to do a trim, so reset the bias.
1435		 */
1436		isc->current_read_bias = isc->read_bias;
1437	}
1438
1439	/*
1440	 * See if our current limiter allows this I/O. Because we only call this
1441	 * here, and not in next_trim, the 'bandwidth' limits for trims won't
1442	 * work, while the iops or max queued limits will work. It's tricky
1443	 * because we want the limits to be from the perspective of the
1444	 * "commands sent to the device." To make iops work, we need to check
1445	 * only here (since we want all the ops we combine to count as one). To
1446	 * make bw limits work, we'd need to check in next_trim, but that would
1447	 * have the effect of limiting the iops as seen from the upper layers.
1448	 */
1449	if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) {
1450		if (iosched_debug)
1451			printf("Can't trim because limiter says no.\n");
1452		isc->trim_stats.state_flags |= IOP_RATE_LIMITED;
1453		return NULL;
1454	}
1455	isc->current_read_bias = isc->read_bias;
1456	isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED;
1457	/* cam_iosched_next_trim below keeps proper book */
1458#endif
1459	return cam_iosched_next_trim(isc);
1460}
1461
1462/*
1463 * Determine what the next bit of work to do is for the periph. The
1464 * default implementation looks to see if we have trims to do, but no
1465 * trims outstanding. If so, we do that. Otherwise we see if we have
1466 * other work. If we do, then we do that. Otherwise why were we called?
1467 */
1468struct bio *
1469cam_iosched_next_bio(struct cam_iosched_softc *isc)
1470{
1471	struct bio *bp;
1472
1473	/*
1474	 * See if we have a trim that can be scheduled. We can only send one
1475	 * at a time down, so this takes that into account.
1476	 *
1477	 * XXX newer TRIM commands are queueable. Revisit this when we
1478	 * implement them.
1479	 */
1480	if ((bp = cam_iosched_get_trim(isc)) != NULL)
1481		return bp;
1482
1483#ifdef CAM_IOSCHED_DYNAMIC
1484	/*
1485	 * See if we have any pending writes, and room in the queue for them,
1486	 * and if so, those are next.
1487	 */
1488	if (do_dynamic_iosched) {
1489		if ((bp = cam_iosched_get_write(isc)) != NULL)
1490			return bp;
1491	}
1492#endif
1493
1494	/*
1495	 * next, see if there's other, normal I/O waiting. If so return that.
1496	 */
1497	if ((bp = bioq_first(&isc->bio_queue)) == NULL)
1498		return NULL;
1499
1500#ifdef CAM_IOSCHED_DYNAMIC
1501	/*
1502	 * For the dynamic scheduler, bio_queue is only for reads, so enforce
1503	 * the limits here. Enforce only for reads.
1504	 */
1505	if (do_dynamic_iosched) {
1506		if (bp->bio_cmd == BIO_READ &&
1507		    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) {
1508			isc->read_stats.state_flags |= IOP_RATE_LIMITED;
1509			return NULL;
1510		}
1511	}
1512	isc->read_stats.state_flags &= ~IOP_RATE_LIMITED;
1513#endif
1514	bioq_remove(&isc->bio_queue, bp);
1515#ifdef CAM_IOSCHED_DYNAMIC
1516	if (do_dynamic_iosched) {
1517		if (bp->bio_cmd == BIO_READ) {
1518			isc->read_stats.queued--;
1519			isc->read_stats.total++;
1520			isc->read_stats.pending++;
1521		} else
1522			printf("Found bio_cmd = %#x\n", bp->bio_cmd);
1523	}
1524	if (iosched_debug > 9)
1525		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
1526#endif
1527	return bp;
1528}
1529
1530/*
1531 * Driver has been given some work to do by the block layer. Tell the
1532 * scheduler about it and have it queue the work up. The scheduler module
1533 * will then return the currently most useful bit of work later, possibly
1534 * deferring work for various reasons.
1535 */
1536void
1537cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
1538{
1539
1540	/*
1541	 * A BIO_SPEEDUP from the uppper layers means that they have a block
1542	 * shortage. At the present, this is only sent when we're trying to
1543	 * allocate blocks, but have a shortage before giving up. bio_length is
1544	 * the size of their shortage. We will complete just enough BIO_DELETEs
1545	 * in the queue to satisfy the need. If bio_length is 0, we'll complete
1546	 * them all. This allows the scheduler to delay BIO_DELETEs to improve
1547	 * read/write performance without worrying about the upper layers. When
1548	 * it's possibly a problem, we respond by pretending the BIO_DELETEs
1549	 * just worked. We can't do anything about the BIO_DELETEs in the
1550	 * hardware, though. We have to wait for them to complete.
1551	 */
1552	if (bp->bio_cmd == BIO_SPEEDUP) {
1553		off_t len;
1554		struct bio *nbp;
1555
1556		len = 0;
1557		while (bioq_first(&isc->trim_queue) &&
1558		    (bp->bio_length == 0 || len < bp->bio_length)) {
1559			nbp = bioq_takefirst(&isc->trim_queue);
1560			len += nbp->bio_length;
1561			nbp->bio_error = 0;
1562			biodone(nbp);
1563		}
1564		if (bp->bio_length > 0) {
1565			if (bp->bio_length > len)
1566				bp->bio_resid = bp->bio_length - len;
1567			else
1568				bp->bio_resid = 0;
1569		}
1570		bp->bio_error = 0;
1571		biodone(bp);
1572		return;
1573	}
1574
1575	/*
1576	 * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we
1577	 * set the last tick time to one less than the current ticks minus the
1578	 * delay to force the BIO_DELETEs to be presented to the client driver.
1579	 */
1580	if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0)
1581		isc->last_trim_tick = ticks - isc->trim_ticks - 1;
1582
1583	/*
1584	 * Put all trims on the trim queue. Otherwise put the work on the bio
1585	 * queue.
1586	 */
1587	if (bp->bio_cmd == BIO_DELETE) {
1588		bioq_insert_tail(&isc->trim_queue, bp);
1589		if (isc->queued_trims == 0)
1590			isc->last_trim_tick = ticks;
1591		isc->queued_trims++;
1592#ifdef CAM_IOSCHED_DYNAMIC
1593		isc->trim_stats.in++;
1594		isc->trim_stats.queued++;
1595#endif
1596	}
1597#ifdef CAM_IOSCHED_DYNAMIC
1598	else if (do_dynamic_iosched && (bp->bio_cmd != BIO_READ)) {
1599		if (cam_iosched_sort_queue(isc))
1600			bioq_disksort(&isc->write_queue, bp);
1601		else
1602			bioq_insert_tail(&isc->write_queue, bp);
1603		if (iosched_debug > 9)
1604			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
1605		if (bp->bio_cmd == BIO_WRITE) {
1606			isc->write_stats.in++;
1607			isc->write_stats.queued++;
1608		}
1609	}
1610#endif
1611	else {
1612		if (cam_iosched_sort_queue(isc))
1613			bioq_disksort(&isc->bio_queue, bp);
1614		else
1615			bioq_insert_tail(&isc->bio_queue, bp);
1616#ifdef CAM_IOSCHED_DYNAMIC
1617		if (iosched_debug > 9)
1618			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
1619		if (bp->bio_cmd == BIO_READ) {
1620			isc->read_stats.in++;
1621			isc->read_stats.queued++;
1622		} else if (bp->bio_cmd == BIO_WRITE) {
1623			isc->write_stats.in++;
1624			isc->write_stats.queued++;
1625		}
1626#endif
1627	}
1628}
1629
1630/*
1631 * If we have work, get it scheduled. Called with the periph lock held.
1632 */
1633void
1634cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
1635{
1636
1637	if (cam_iosched_has_work(isc))
1638		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
1639}
1640
1641/*
1642 * Complete a trim request. Mark that we no longer have one in flight.
1643 */
1644void
1645cam_iosched_trim_done(struct cam_iosched_softc *isc)
1646{
1647
1648	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1649}
1650
1651/*
1652 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
1653 * might use notes in the ccb for statistics.
1654 */
1655int
1656cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
1657    union ccb *done_ccb)
1658{
1659	int retval = 0;
1660#ifdef CAM_IOSCHED_DYNAMIC
1661	if (!do_dynamic_iosched)
1662		return retval;
1663
1664	if (iosched_debug > 10)
1665		printf("done: %p %#x\n", bp, bp->bio_cmd);
1666	if (bp->bio_cmd == BIO_WRITE) {
1667		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
1668		if ((bp->bio_flags & BIO_ERROR) != 0)
1669			isc->write_stats.errs++;
1670		isc->write_stats.out++;
1671		isc->write_stats.pending--;
1672	} else if (bp->bio_cmd == BIO_READ) {
1673		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
1674		if ((bp->bio_flags & BIO_ERROR) != 0)
1675			isc->read_stats.errs++;
1676		isc->read_stats.out++;
1677		isc->read_stats.pending--;
1678	} else if (bp->bio_cmd == BIO_DELETE) {
1679		if ((bp->bio_flags & BIO_ERROR) != 0)
1680			isc->trim_stats.errs++;
1681		isc->trim_stats.out++;
1682		isc->trim_stats.pending--;
1683	} else if (bp->bio_cmd != BIO_FLUSH) {
1684		if (iosched_debug)
1685			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
1686	}
1687
1688	if (!(bp->bio_flags & BIO_ERROR) && done_ccb != NULL) {
1689		sbintime_t sim_latency;
1690
1691		sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data);
1692
1693		cam_iosched_io_metric_update(isc, sim_latency,
1694		    bp->bio_cmd, bp->bio_bcount);
1695		/*
1696		 * Debugging code: allow callbacks to the periph driver when latency max
1697		 * is exceeded. This can be useful for triggering external debugging actions.
1698		 */
1699		if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat)
1700			isc->latfcn(isc->latarg, sim_latency, bp);
1701	}
1702
1703#endif
1704	return retval;
1705}
1706
1707/*
1708 * Tell the io scheduler that you've pushed a trim down into the sim.
1709 * This also tells the I/O scheduler not to push any more trims down, so
1710 * some periphs do not call it if they can cope with multiple trims in flight.
1711 */
1712void
1713cam_iosched_submit_trim(struct cam_iosched_softc *isc)
1714{
1715
1716	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
1717}
1718
1719/*
1720 * Change the sorting policy hint for I/O transactions for this device.
1721 */
1722void
1723cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
1724{
1725
1726	isc->sort_io_queue = val;
1727}
1728
1729int
1730cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1731{
1732	return isc->flags & flags;
1733}
1734
1735void
1736cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1737{
1738	isc->flags |= flags;
1739}
1740
1741void
1742cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
1743{
1744	isc->flags &= ~flags;
1745}
1746
1747#ifdef CAM_IOSCHED_DYNAMIC
1748/*
1749 * After the method presented in Jack Crenshaw's 1998 article "Integer
1750 * Square Roots," reprinted at
1751 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
1752 * and well worth the read. Briefly, we find the power of 4 that's the
1753 * largest smaller than val. We then check each smaller power of 4 to
1754 * see if val is still bigger. The right shifts at each step divide
1755 * the result by 2 which after successive application winds up
1756 * accumulating the right answer. It could also have been accumulated
1757 * using a separate root counter, but this code is smaller and faster
1758 * than that method. This method is also integer size invariant.
1759 * It returns floor(sqrt((float)val)), or the largest integer less than
1760 * or equal to the square root.
1761 */
1762static uint64_t
1763isqrt64(uint64_t val)
1764{
1765	uint64_t res = 0;
1766	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);
1767
1768	/*
1769	 * Find the largest power of 4 smaller than val.
1770	 */
1771	while (bit > val)
1772		bit >>= 2;
1773
1774	/*
1775	 * Accumulate the answer, one bit at a time (we keep moving
1776	 * them over since 2 is the square root of 4 and we test
1777	 * powers of 4). We accumulate where we find the bit, but
1778	 * the successive shifts land the bit in the right place
1779	 * by the end.
1780	 */
1781	while (bit != 0) {
1782		if (val >= res + bit) {
1783			val -= res + bit;
1784			res = (res >> 1) + bit;
1785		} else
1786			res >>= 1;
1787		bit >>= 2;
1788	}
1789
1790	return res;
1791}
1792
1793static sbintime_t latencies[LAT_BUCKETS - 1] = {
1794	SBT_1MS <<  0,
1795	SBT_1MS <<  1,
1796	SBT_1MS <<  2,
1797	SBT_1MS <<  3,
1798	SBT_1MS <<  4,
1799	SBT_1MS <<  5,
1800	SBT_1MS <<  6,
1801	SBT_1MS <<  7,
1802	SBT_1MS <<  8,
1803	SBT_1MS <<  9,
1804	SBT_1MS << 10,
1805	SBT_1MS << 11,
1806	SBT_1MS << 12,
1807	SBT_1MS << 13		/* 8.192s */
1808};
1809
1810static void
1811cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
1812{
1813	sbintime_t y, deltasq, delta;
1814	int i;
1815
1816	/*
1817	 * Keep counts for latency. We do it by power of two buckets.
1818	 * This helps us spot outlier behavior obscured by averages.
1819	 */
1820	for (i = 0; i < LAT_BUCKETS - 1; i++) {
1821		if (sim_latency < latencies[i]) {
1822			iop->latencies[i]++;
1823			break;
1824		}
1825	}
1826	if (i == LAT_BUCKETS - 1)
1827		iop->latencies[i]++; 	 /* Put all > 1024ms values into the last bucket. */
1828
1829	/*
1830	 * Classic exponentially decaying average with a tiny alpha
1831	 * (2 ^ -alpha_bits). For more info see the NIST statistical
1832	 * handbook.
1833	 *
1834	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)		[nist]
1835	 * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1
1836	 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1
1837	 * alpha = 1 / (1 << alpha_bits)
1838	 * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1
1839	 *	= y_t/b - e/b + be/b
1840	 *      = (y_t - e + be) / b
1841	 *	= (e + d) / b
1842	 *
1843	 * Since alpha is a power of two, we can compute this w/o any mult or
1844	 * division.
1845	 *
1846	 * Variance can also be computed. Usually, it would be expressed as follows:
1847	 *	diff_t = y_t - ema_t-1
1848	 *	emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha)
1849	 *	  = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2
1850	 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2
1851	 *	  = e - e/b + dd/b + dd/bb
1852	 *	  = (bbe - be + bdd + dd) / bb
1853	 *	  = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits))
1854	 */
1855	/*
1856	 * XXX possible numeric issues
1857	 *	o We assume right shifted integers do the right thing, since that's
1858	 *	  implementation defined. You can change the right shifts to / (1LL << alpha).
1859	 *	o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits
1860	 *	  for emvar. This puts a ceiling of 13 bits on alpha since we need a
1861	 *	  few tens of seconds of representation.
1862	 *	o We mitigate alpha issues by never setting it too high.
1863	 */
1864	y = sim_latency;
1865	delta = (y - iop->ema);					/* d */
1866	iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits;
1867
1868	/*
1869	 * Were we to naively plow ahead at this point, we wind up with many numerical
1870	 * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves
1871	 * us with microsecond level precision in the input, so the same in the
1872	 * output. It means we can't overflow deltasq unless delta > 4k seconds. It
1873	 * also means that emvar can be up 46 bits 40 of which are fraction, which
1874	 * gives us a way to measure up to ~8s in the SD before the computation goes
1875	 * unstable. Even the worst hard disk rarely has > 1s service time in the
1876	 * drive. It does mean we have to shift left 12 bits after taking the
1877	 * square root to compute the actual standard deviation estimate. This loss of
1878	 * precision is preferable to needing int128 types to work. The above numbers
1879	 * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12,
1880	 * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases.
1881	 */
1882	delta >>= 12;
1883	deltasq = delta * delta;				/* dd */
1884	iop->emvar = ((iop->emvar << (2 * alpha_bits)) +	/* bbe */
1885	    ((deltasq - iop->emvar) << alpha_bits) +		/* b(dd-e) */
1886	    deltasq)						/* dd */
1887	    >> (2 * alpha_bits);				/* div bb */
1888	iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12;
1889}
1890
1891static void
1892cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
1893    sbintime_t sim_latency, int cmd, size_t size)
1894{
1895	/* xxx Do we need to scale based on the size of the I/O ? */
1896	switch (cmd) {
1897	case BIO_READ:
1898		cam_iosched_update(&isc->read_stats, sim_latency);
1899		break;
1900	case BIO_WRITE:
1901		cam_iosched_update(&isc->write_stats, sim_latency);
1902		break;
1903	case BIO_DELETE:
1904		cam_iosched_update(&isc->trim_stats, sim_latency);
1905		break;
1906	default:
1907		break;
1908	}
1909}
1910
1911#ifdef DDB
1912static int biolen(struct bio_queue_head *bq)
1913{
1914	int i = 0;
1915	struct bio *bp;
1916
1917	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
1918		i++;
1919	}
1920	return i;
1921}
1922
1923/*
1924 * Show the internal state of the I/O scheduler.
1925 */
1926DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
1927{
1928	struct cam_iosched_softc *isc;
1929
1930	if (!have_addr) {
1931		db_printf("Need addr\n");
1932		return;
1933	}
1934	isc = (struct cam_iosched_softc *)addr;
1935	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
1936	db_printf("min_reads:         %d\n", isc->read_stats.min);
1937	db_printf("max_reads:         %d\n", isc->read_stats.max);
1938	db_printf("reads:             %d\n", isc->read_stats.total);
1939	db_printf("in_reads:          %d\n", isc->read_stats.in);
1940	db_printf("out_reads:         %d\n", isc->read_stats.out);
1941	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
1942	db_printf("Read Q len         %d\n", biolen(&isc->bio_queue));
1943	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
1944	db_printf("min_writes:        %d\n", isc->write_stats.min);
1945	db_printf("max_writes:        %d\n", isc->write_stats.max);
1946	db_printf("writes:            %d\n", isc->write_stats.total);
1947	db_printf("in_writes:         %d\n", isc->write_stats.in);
1948	db_printf("out_writes:        %d\n", isc->write_stats.out);
1949	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
1950	db_printf("Write Q len        %d\n", biolen(&isc->write_queue));
1951	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
1952	db_printf("min_trims:         %d\n", isc->trim_stats.min);
1953	db_printf("max_trims:         %d\n", isc->trim_stats.max);
1954	db_printf("trims:             %d\n", isc->trim_stats.total);
1955	db_printf("in_trims:          %d\n", isc->trim_stats.in);
1956	db_printf("out_trims:         %d\n", isc->trim_stats.out);
1957	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
1958	db_printf("Trim Q len         %d\n", biolen(&isc->trim_queue));
1959	db_printf("read_bias:         %d\n", isc->read_bias);
1960	db_printf("current_read_bias: %d\n", isc->current_read_bias);
1961	db_printf("Trim active?       %s\n",
1962	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
1963}
1964#endif
1965#endif
1966