1//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass identifies loops where we can generate the Hexagon hardware
10// loop instruction.  The hardware loop can perform loop branches with a
11// zero-cycle overhead.
12//
13// The pattern that defines the induction variable can changed depending on
14// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
15// normalizes induction variables, and the Loop Strength Reduction pass
16// run by 'llc' may also make changes to the induction variable.
17// The pattern detected by this phase is due to running Strength Reduction.
18//
19// Criteria for hardware loops:
20//  - Countable loops (w/ ind. var for a trip count)
21//  - Assumes loops are normalized by IndVarSimplify
22//  - Try inner-most loops first
23//  - No function calls in loops.
24//
25//===----------------------------------------------------------------------===//
26
27#include "HexagonInstrInfo.h"
28#include "HexagonSubtarget.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/CodeGen/MachineBasicBlock.h"
36#include "llvm/CodeGen/MachineDominators.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFunctionPass.h"
39#include "llvm/CodeGen/MachineInstr.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineOperand.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/TargetRegisterInfo.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DebugLoc.h"
47#include "llvm/InitializePasses.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <cassert>
55#include <cstdint>
56#include <cstdlib>
57#include <iterator>
58#include <map>
59#include <set>
60#include <string>
61#include <utility>
62#include <vector>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hwloops"
67
68#ifndef NDEBUG
69static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
70
71// Option to create preheader only for a specific function.
72static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73                                 cl::init(""));
74#endif
75
76// Option to create a preheader if one doesn't exist.
77static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78    cl::Hidden, cl::init(true),
79    cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
80
81// Turn it off by default. If a preheader block is not created here, the
82// software pipeliner may be unable to find a block suitable to serve as
83// a preheader. In that case SWP will not run.
84static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
85  cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader "
86  "instructions"));
87
88STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
89
90namespace llvm {
91
92  FunctionPass *createHexagonHardwareLoops();
93  void initializeHexagonHardwareLoopsPass(PassRegistry&);
94
95} // end namespace llvm
96
97namespace {
98
99  class CountValue;
100
101  struct HexagonHardwareLoops : public MachineFunctionPass {
102    MachineLoopInfo            *MLI;
103    MachineRegisterInfo        *MRI;
104    MachineDominatorTree       *MDT;
105    const HexagonInstrInfo     *TII;
106    const HexagonRegisterInfo  *TRI;
107#ifndef NDEBUG
108    static int Counter;
109#endif
110
111  public:
112    static char ID;
113
114    HexagonHardwareLoops() : MachineFunctionPass(ID) {}
115
116    bool runOnMachineFunction(MachineFunction &MF) override;
117
118    StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
119
120    void getAnalysisUsage(AnalysisUsage &AU) const override {
121      AU.addRequired<MachineDominatorTree>();
122      AU.addRequired<MachineLoopInfo>();
123      MachineFunctionPass::getAnalysisUsage(AU);
124    }
125
126  private:
127    using LoopFeederMap = std::map<unsigned, MachineInstr *>;
128
129    /// Kinds of comparisons in the compare instructions.
130    struct Comparison {
131      enum Kind {
132        EQ  = 0x01,
133        NE  = 0x02,
134        L   = 0x04,
135        G   = 0x08,
136        U   = 0x40,
137        LTs = L,
138        LEs = L | EQ,
139        GTs = G,
140        GEs = G | EQ,
141        LTu = L      | U,
142        LEu = L | EQ | U,
143        GTu = G      | U,
144        GEu = G | EQ | U
145      };
146
147      static Kind getSwappedComparison(Kind Cmp) {
148        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
149        if ((Cmp & L) || (Cmp & G))
150          return (Kind)(Cmp ^ (L|G));
151        return Cmp;
152      }
153
154      static Kind getNegatedComparison(Kind Cmp) {
155        if ((Cmp & L) || (Cmp & G))
156          return (Kind)((Cmp ^ (L | G)) ^ EQ);
157        if ((Cmp & NE) || (Cmp & EQ))
158          return (Kind)(Cmp ^ (EQ | NE));
159        return (Kind)0;
160      }
161
162      static bool isSigned(Kind Cmp) {
163        return (Cmp & (L | G) && !(Cmp & U));
164      }
165
166      static bool isUnsigned(Kind Cmp) {
167        return (Cmp & U);
168      }
169    };
170
171    /// Find the register that contains the loop controlling
172    /// induction variable.
173    /// If successful, it will return true and set the \p Reg, \p IVBump
174    /// and \p IVOp arguments.  Otherwise it will return false.
175    /// The returned induction register is the register R that follows the
176    /// following induction pattern:
177    /// loop:
178    ///   R = phi ..., [ R.next, LatchBlock ]
179    ///   R.next = R + #bump
180    ///   if (R.next < #N) goto loop
181    /// IVBump is the immediate value added to R, and IVOp is the instruction
182    /// "R.next = R + #bump".
183    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
184                               int64_t &IVBump, MachineInstr *&IVOp) const;
185
186    /// Return the comparison kind for the specified opcode.
187    Comparison::Kind getComparisonKind(unsigned CondOpc,
188                                       MachineOperand *InitialValue,
189                                       const MachineOperand *Endvalue,
190                                       int64_t IVBump) const;
191
192    /// Analyze the statements in a loop to determine if the loop
193    /// has a computable trip count and, if so, return a value that represents
194    /// the trip count expression.
195    CountValue *getLoopTripCount(MachineLoop *L,
196                                 SmallVectorImpl<MachineInstr *> &OldInsts);
197
198    /// Return the expression that represents the number of times
199    /// a loop iterates.  The function takes the operands that represent the
200    /// loop start value, loop end value, and induction value.  Based upon
201    /// these operands, the function attempts to compute the trip count.
202    /// If the trip count is not directly available (as an immediate value,
203    /// or a register), the function will attempt to insert computation of it
204    /// to the loop's preheader.
205    CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206                             const MachineOperand *End, unsigned IVReg,
207                             int64_t IVBump, Comparison::Kind Cmp) const;
208
209    /// Return true if the instruction is not valid within a hardware
210    /// loop.
211    bool isInvalidLoopOperation(const MachineInstr *MI,
212                                bool IsInnerHWLoop) const;
213
214    /// Return true if the loop contains an instruction that inhibits
215    /// using the hardware loop.
216    bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
217
218    /// Given a loop, check if we can convert it to a hardware loop.
219    /// If so, then perform the conversion and return true.
220    bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
221
222    /// Return true if the instruction is now dead.
223    bool isDead(const MachineInstr *MI,
224                SmallVectorImpl<MachineInstr *> &DeadPhis) const;
225
226    /// Remove the instruction if it is now dead.
227    void removeIfDead(MachineInstr *MI);
228
229    /// Make sure that the "bump" instruction executes before the
230    /// compare.  We need that for the IV fixup, so that the compare
231    /// instruction would not use a bumped value that has not yet been
232    /// defined.  If the instructions are out of order, try to reorder them.
233    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
234
235    /// Return true if MO and MI pair is visited only once. If visited
236    /// more than once, this indicates there is recursion. In such a case,
237    /// return false.
238    bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239                      const MachineOperand *MO,
240                      LoopFeederMap &LoopFeederPhi) const;
241
242    /// Return true if the Phi may generate a value that may underflow,
243    /// or may wrap.
244    bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
245                               MachineBasicBlock *MBB, MachineLoop *L,
246                               LoopFeederMap &LoopFeederPhi) const;
247
248    /// Return true if the induction variable may underflow an unsigned
249    /// value in the first iteration.
250    bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251                                     const MachineOperand *EndVal,
252                                     MachineBasicBlock *MBB, MachineLoop *L,
253                                     LoopFeederMap &LoopFeederPhi) const;
254
255    /// Check if the given operand has a compile-time known constant
256    /// value. Return true if yes, and false otherwise. When returning true, set
257    /// Val to the corresponding constant value.
258    bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
259
260    /// Check if the operand has a compile-time known constant value.
261    bool isImmediate(const MachineOperand &MO) const {
262      int64_t V;
263      return checkForImmediate(MO, V);
264    }
265
266    /// Return the immediate for the specified operand.
267    int64_t getImmediate(const MachineOperand &MO) const {
268      int64_t V;
269      if (!checkForImmediate(MO, V))
270        llvm_unreachable("Invalid operand");
271      return V;
272    }
273
274    /// Reset the given machine operand to now refer to a new immediate
275    /// value.  Assumes that the operand was already referencing an immediate
276    /// value, either directly, or via a register.
277    void setImmediate(MachineOperand &MO, int64_t Val);
278
279    /// Fix the data flow of the induction variable.
280    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281    ///                                     |
282    ///                                     +-> back to phi
283    /// where "bump" is the increment of the induction variable:
284    ///   iv = iv + #const.
285    /// Due to some prior code transformations, the actual flow may look
286    /// like this:
287    ///   phi -+-> bump ---> back to phi
288    ///        |
289    ///        +-> comparison-in-latch (against upper_bound-bump),
290    /// i.e. the comparison that controls the loop execution may be using
291    /// the value of the induction variable from before the increment.
292    ///
293    /// Return true if the loop's flow is the desired one (i.e. it's
294    /// either been fixed, or no fixing was necessary).
295    /// Otherwise, return false.  This can happen if the induction variable
296    /// couldn't be identified, or if the value in the latch's comparison
297    /// cannot be adjusted to reflect the post-bump value.
298    bool fixupInductionVariable(MachineLoop *L);
299
300    /// Given a loop, if it does not have a preheader, create one.
301    /// Return the block that is the preheader.
302    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
303  };
304
305  char HexagonHardwareLoops::ID = 0;
306#ifndef NDEBUG
307  int HexagonHardwareLoops::Counter = 0;
308#endif
309
310  /// Abstraction for a trip count of a loop. A smaller version
311  /// of the MachineOperand class without the concerns of changing the
312  /// operand representation.
313  class CountValue {
314  public:
315    enum CountValueType {
316      CV_Register,
317      CV_Immediate
318    };
319
320  private:
321    CountValueType Kind;
322    union Values {
323      struct {
324        unsigned Reg;
325        unsigned Sub;
326      } R;
327      unsigned ImmVal;
328    } Contents;
329
330  public:
331    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
332      Kind = t;
333      if (Kind == CV_Register) {
334        Contents.R.Reg = v;
335        Contents.R.Sub = u;
336      } else {
337        Contents.ImmVal = v;
338      }
339    }
340
341    bool isReg() const { return Kind == CV_Register; }
342    bool isImm() const { return Kind == CV_Immediate; }
343
344    unsigned getReg() const {
345      assert(isReg() && "Wrong CountValue accessor");
346      return Contents.R.Reg;
347    }
348
349    unsigned getSubReg() const {
350      assert(isReg() && "Wrong CountValue accessor");
351      return Contents.R.Sub;
352    }
353
354    unsigned getImm() const {
355      assert(isImm() && "Wrong CountValue accessor");
356      return Contents.ImmVal;
357    }
358
359    void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
360      if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
361      if (isImm()) { OS << Contents.ImmVal; }
362    }
363  };
364
365} // end anonymous namespace
366
367INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
368                      "Hexagon Hardware Loops", false, false)
369INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
370INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
371INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
372                    "Hexagon Hardware Loops", false, false)
373
374FunctionPass *llvm::createHexagonHardwareLoops() {
375  return new HexagonHardwareLoops();
376}
377
378bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
379  LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
380  if (skipFunction(MF.getFunction()))
381    return false;
382
383  bool Changed = false;
384
385  MLI = &getAnalysis<MachineLoopInfo>();
386  MRI = &MF.getRegInfo();
387  MDT = &getAnalysis<MachineDominatorTree>();
388  const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
389  TII = HST.getInstrInfo();
390  TRI = HST.getRegisterInfo();
391
392  for (auto &L : *MLI)
393    if (!L->getParentLoop()) {
394      bool L0Used = false;
395      bool L1Used = false;
396      Changed |= convertToHardwareLoop(L, L0Used, L1Used);
397    }
398
399  return Changed;
400}
401
402bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
403                                                 unsigned &Reg,
404                                                 int64_t &IVBump,
405                                                 MachineInstr *&IVOp
406                                                 ) const {
407  MachineBasicBlock *Header = L->getHeader();
408  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
409  MachineBasicBlock *Latch = L->getLoopLatch();
410  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
411  if (!Header || !Preheader || !Latch || !ExitingBlock)
412    return false;
413
414  // This pair represents an induction register together with an immediate
415  // value that will be added to it in each loop iteration.
416  using RegisterBump = std::pair<unsigned, int64_t>;
417
418  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
419  // from an induction operation
420  //   R.next = R + bump
421  // where bump is an immediate value.
422  using InductionMap = std::map<unsigned, RegisterBump>;
423
424  InductionMap IndMap;
425
426  using instr_iterator = MachineBasicBlock::instr_iterator;
427
428  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
429       I != E && I->isPHI(); ++I) {
430    MachineInstr *Phi = &*I;
431
432    // Have a PHI instruction.  Get the operand that corresponds to the
433    // latch block, and see if is a result of an addition of form "reg+imm",
434    // where the "reg" is defined by the PHI node we are looking at.
435    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
436      if (Phi->getOperand(i+1).getMBB() != Latch)
437        continue;
438
439      Register PhiOpReg = Phi->getOperand(i).getReg();
440      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
441
442      if (DI->getDesc().isAdd()) {
443        // If the register operand to the add is the PHI we're looking at, this
444        // meets the induction pattern.
445        Register IndReg = DI->getOperand(1).getReg();
446        MachineOperand &Opnd2 = DI->getOperand(2);
447        int64_t V;
448        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
449          Register UpdReg = DI->getOperand(0).getReg();
450          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
451        }
452      }
453    }  // for (i)
454  }  // for (instr)
455
456  SmallVector<MachineOperand,2> Cond;
457  MachineBasicBlock *TB = nullptr, *FB = nullptr;
458  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
459  if (NotAnalyzed)
460    return false;
461
462  unsigned PredR, PredPos, PredRegFlags;
463  if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
464    return false;
465
466  MachineInstr *PredI = MRI->getVRegDef(PredR);
467  if (!PredI->isCompare())
468    return false;
469
470  unsigned CmpReg1 = 0, CmpReg2 = 0;
471  int CmpImm = 0, CmpMask = 0;
472  bool CmpAnalyzed =
473      TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
474  // Fail if the compare was not analyzed, or it's not comparing a register
475  // with an immediate value.  Not checking the mask here, since we handle
476  // the individual compare opcodes (including A4_cmpb*) later on.
477  if (!CmpAnalyzed)
478    return false;
479
480  // Exactly one of the input registers to the comparison should be among
481  // the induction registers.
482  InductionMap::iterator IndMapEnd = IndMap.end();
483  InductionMap::iterator F = IndMapEnd;
484  if (CmpReg1 != 0) {
485    InductionMap::iterator F1 = IndMap.find(CmpReg1);
486    if (F1 != IndMapEnd)
487      F = F1;
488  }
489  if (CmpReg2 != 0) {
490    InductionMap::iterator F2 = IndMap.find(CmpReg2);
491    if (F2 != IndMapEnd) {
492      if (F != IndMapEnd)
493        return false;
494      F = F2;
495    }
496  }
497  if (F == IndMapEnd)
498    return false;
499
500  Reg = F->second.first;
501  IVBump = F->second.second;
502  IVOp = MRI->getVRegDef(F->first);
503  return true;
504}
505
506// Return the comparison kind for the specified opcode.
507HexagonHardwareLoops::Comparison::Kind
508HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
509                                        MachineOperand *InitialValue,
510                                        const MachineOperand *EndValue,
511                                        int64_t IVBump) const {
512  Comparison::Kind Cmp = (Comparison::Kind)0;
513  switch (CondOpc) {
514  case Hexagon::C2_cmpeq:
515  case Hexagon::C2_cmpeqi:
516  case Hexagon::C2_cmpeqp:
517    Cmp = Comparison::EQ;
518    break;
519  case Hexagon::C4_cmpneq:
520  case Hexagon::C4_cmpneqi:
521    Cmp = Comparison::NE;
522    break;
523  case Hexagon::C2_cmplt:
524    Cmp = Comparison::LTs;
525    break;
526  case Hexagon::C2_cmpltu:
527    Cmp = Comparison::LTu;
528    break;
529  case Hexagon::C4_cmplte:
530  case Hexagon::C4_cmpltei:
531    Cmp = Comparison::LEs;
532    break;
533  case Hexagon::C4_cmplteu:
534  case Hexagon::C4_cmplteui:
535    Cmp = Comparison::LEu;
536    break;
537  case Hexagon::C2_cmpgt:
538  case Hexagon::C2_cmpgti:
539  case Hexagon::C2_cmpgtp:
540    Cmp = Comparison::GTs;
541    break;
542  case Hexagon::C2_cmpgtu:
543  case Hexagon::C2_cmpgtui:
544  case Hexagon::C2_cmpgtup:
545    Cmp = Comparison::GTu;
546    break;
547  case Hexagon::C2_cmpgei:
548    Cmp = Comparison::GEs;
549    break;
550  case Hexagon::C2_cmpgeui:
551    Cmp = Comparison::GEs;
552    break;
553  default:
554    return (Comparison::Kind)0;
555  }
556  return Cmp;
557}
558
559/// Analyze the statements in a loop to determine if the loop has
560/// a computable trip count and, if so, return a value that represents
561/// the trip count expression.
562///
563/// This function iterates over the phi nodes in the loop to check for
564/// induction variable patterns that are used in the calculation for
565/// the number of time the loop is executed.
566CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
567    SmallVectorImpl<MachineInstr *> &OldInsts) {
568  MachineBasicBlock *TopMBB = L->getTopBlock();
569  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
570  assert(PI != TopMBB->pred_end() &&
571         "Loop must have more than one incoming edge!");
572  MachineBasicBlock *Backedge = *PI++;
573  if (PI == TopMBB->pred_end())  // dead loop?
574    return nullptr;
575  MachineBasicBlock *Incoming = *PI++;
576  if (PI != TopMBB->pred_end())  // multiple backedges?
577    return nullptr;
578
579  // Make sure there is one incoming and one backedge and determine which
580  // is which.
581  if (L->contains(Incoming)) {
582    if (L->contains(Backedge))
583      return nullptr;
584    std::swap(Incoming, Backedge);
585  } else if (!L->contains(Backedge))
586    return nullptr;
587
588  // Look for the cmp instruction to determine if we can get a useful trip
589  // count.  The trip count can be either a register or an immediate.  The
590  // location of the value depends upon the type (reg or imm).
591  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
592  if (!ExitingBlock)
593    return nullptr;
594
595  unsigned IVReg = 0;
596  int64_t IVBump = 0;
597  MachineInstr *IVOp;
598  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
599  if (!FoundIV)
600    return nullptr;
601
602  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
603
604  MachineOperand *InitialValue = nullptr;
605  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
606  MachineBasicBlock *Latch = L->getLoopLatch();
607  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
608    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
609    if (MBB == Preheader)
610      InitialValue = &IV_Phi->getOperand(i);
611    else if (MBB == Latch)
612      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
613  }
614  if (!InitialValue)
615    return nullptr;
616
617  SmallVector<MachineOperand,2> Cond;
618  MachineBasicBlock *TB = nullptr, *FB = nullptr;
619  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
620  if (NotAnalyzed)
621    return nullptr;
622
623  MachineBasicBlock *Header = L->getHeader();
624  // TB must be non-null.  If FB is also non-null, one of them must be
625  // the header.  Otherwise, branch to TB could be exiting the loop, and
626  // the fall through can go to the header.
627  assert (TB && "Exit block without a branch?");
628  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
629    MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
630    SmallVector<MachineOperand,2> LCond;
631    bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
632    if (NotAnalyzed)
633      return nullptr;
634    if (TB == Latch)
635      TB = (LTB == Header) ? LTB : LFB;
636    else
637      FB = (LTB == Header) ? LTB: LFB;
638  }
639  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
640  if (!TB || (FB && TB != Header && FB != Header))
641    return nullptr;
642
643  // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
644  // to put imm(0), followed by P in the vector Cond.
645  // If TB is not the header, it means that the "not-taken" path must lead
646  // to the header.
647  bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
648  unsigned PredReg, PredPos, PredRegFlags;
649  if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
650    return nullptr;
651  MachineInstr *CondI = MRI->getVRegDef(PredReg);
652  unsigned CondOpc = CondI->getOpcode();
653
654  unsigned CmpReg1 = 0, CmpReg2 = 0;
655  int Mask = 0, ImmValue = 0;
656  bool AnalyzedCmp =
657      TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
658  if (!AnalyzedCmp)
659    return nullptr;
660
661  // The comparison operator type determines how we compute the loop
662  // trip count.
663  OldInsts.push_back(CondI);
664  OldInsts.push_back(IVOp);
665
666  // Sadly, the following code gets information based on the position
667  // of the operands in the compare instruction.  This has to be done
668  // this way, because the comparisons check for a specific relationship
669  // between the operands (e.g. is-less-than), rather than to find out
670  // what relationship the operands are in (as on PPC).
671  Comparison::Kind Cmp;
672  bool isSwapped = false;
673  const MachineOperand &Op1 = CondI->getOperand(1);
674  const MachineOperand &Op2 = CondI->getOperand(2);
675  const MachineOperand *EndValue = nullptr;
676
677  if (Op1.isReg()) {
678    if (Op2.isImm() || Op1.getReg() == IVReg)
679      EndValue = &Op2;
680    else {
681      EndValue = &Op1;
682      isSwapped = true;
683    }
684  }
685
686  if (!EndValue)
687    return nullptr;
688
689  Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
690  if (!Cmp)
691    return nullptr;
692  if (Negated)
693    Cmp = Comparison::getNegatedComparison(Cmp);
694  if (isSwapped)
695    Cmp = Comparison::getSwappedComparison(Cmp);
696
697  if (InitialValue->isReg()) {
698    Register R = InitialValue->getReg();
699    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
700    if (!MDT->properlyDominates(DefBB, Header)) {
701      int64_t V;
702      if (!checkForImmediate(*InitialValue, V))
703        return nullptr;
704    }
705    OldInsts.push_back(MRI->getVRegDef(R));
706  }
707  if (EndValue->isReg()) {
708    Register R = EndValue->getReg();
709    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
710    if (!MDT->properlyDominates(DefBB, Header)) {
711      int64_t V;
712      if (!checkForImmediate(*EndValue, V))
713        return nullptr;
714    }
715    OldInsts.push_back(MRI->getVRegDef(R));
716  }
717
718  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
719}
720
721/// Helper function that returns the expression that represents the
722/// number of times a loop iterates.  The function takes the operands that
723/// represent the loop start value, loop end value, and induction value.
724/// Based upon these operands, the function attempts to compute the trip count.
725CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
726                                               const MachineOperand *Start,
727                                               const MachineOperand *End,
728                                               unsigned IVReg,
729                                               int64_t IVBump,
730                                               Comparison::Kind Cmp) const {
731  // Cannot handle comparison EQ, i.e. while (A == B).
732  if (Cmp == Comparison::EQ)
733    return nullptr;
734
735  // Check if either the start or end values are an assignment of an immediate.
736  // If so, use the immediate value rather than the register.
737  if (Start->isReg()) {
738    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
739    if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
740                          StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
741      Start = &StartValInstr->getOperand(1);
742  }
743  if (End->isReg()) {
744    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
745    if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
746                        EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
747      End = &EndValInstr->getOperand(1);
748  }
749
750  if (!Start->isReg() && !Start->isImm())
751    return nullptr;
752  if (!End->isReg() && !End->isImm())
753    return nullptr;
754
755  bool CmpLess =     Cmp & Comparison::L;
756  bool CmpGreater =  Cmp & Comparison::G;
757  bool CmpHasEqual = Cmp & Comparison::EQ;
758
759  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
760  if (CmpLess && IVBump < 0)
761    // Loop going while iv is "less" with the iv value going down.  Must wrap.
762    return nullptr;
763
764  if (CmpGreater && IVBump > 0)
765    // Loop going while iv is "greater" with the iv value going up.  Must wrap.
766    return nullptr;
767
768  // Phis that may feed into the loop.
769  LoopFeederMap LoopFeederPhi;
770
771  // Check if the initial value may be zero and can be decremented in the first
772  // iteration. If the value is zero, the endloop instruction will not decrement
773  // the loop counter, so we shouldn't generate a hardware loop in this case.
774  if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
775                                  LoopFeederPhi))
776      return nullptr;
777
778  if (Start->isImm() && End->isImm()) {
779    // Both, start and end are immediates.
780    int64_t StartV = Start->getImm();
781    int64_t EndV = End->getImm();
782    int64_t Dist = EndV - StartV;
783    if (Dist == 0)
784      return nullptr;
785
786    bool Exact = (Dist % IVBump) == 0;
787
788    if (Cmp == Comparison::NE) {
789      if (!Exact)
790        return nullptr;
791      if ((Dist < 0) ^ (IVBump < 0))
792        return nullptr;
793    }
794
795    // For comparisons that include the final value (i.e. include equality
796    // with the final value), we need to increase the distance by 1.
797    if (CmpHasEqual)
798      Dist = Dist > 0 ? Dist+1 : Dist-1;
799
800    // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
801    // CmpGreater should imply Dist < 0.  These conditions could actually
802    // fail, for example, in unreachable code (which may still appear to be
803    // reachable in the CFG).
804    if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
805      return nullptr;
806
807    // "Normalized" distance, i.e. with the bump set to +-1.
808    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
809                                 : (-Dist + (-IVBump - 1)) / (-IVBump);
810    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
811
812    uint64_t Count = Dist1;
813
814    if (Count > 0xFFFFFFFFULL)
815      return nullptr;
816
817    return new CountValue(CountValue::CV_Immediate, Count);
818  }
819
820  // A general case: Start and End are some values, but the actual
821  // iteration count may not be available.  If it is not, insert
822  // a computation of it into the preheader.
823
824  // If the induction variable bump is not a power of 2, quit.
825  // Othwerise we'd need a general integer division.
826  if (!isPowerOf2_64(std::abs(IVBump)))
827    return nullptr;
828
829  MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
830  assert (PH && "Should have a preheader by now");
831  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
832  DebugLoc DL;
833  if (InsertPos != PH->end())
834    DL = InsertPos->getDebugLoc();
835
836  // If Start is an immediate and End is a register, the trip count
837  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
838  // is actually "reg + -imm".
839
840  // If the loop IV is going downwards, i.e. if the bump is negative,
841  // then the iteration count (computed as End-Start) will need to be
842  // negated.  To avoid the negation, just swap Start and End.
843  if (IVBump < 0) {
844    std::swap(Start, End);
845    IVBump = -IVBump;
846  }
847  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
848  // Signedness, and "including equality" are preserved.
849
850  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
851  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
852
853  int64_t StartV = 0, EndV = 0;
854  if (Start->isImm())
855    StartV = Start->getImm();
856  if (End->isImm())
857    EndV = End->getImm();
858
859  int64_t AdjV = 0;
860  // To compute the iteration count, we would need this computation:
861  //   Count = (End - Start + (IVBump-1)) / IVBump
862  // or, when CmpHasEqual:
863  //   Count = (End - Start + (IVBump-1)+1) / IVBump
864  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
865  // generating an instruction specifically to add it if we can adjust
866  // the immediate values for Start or End.
867
868  if (CmpHasEqual) {
869    // Need to add 1 to the total iteration count.
870    if (Start->isImm())
871      StartV--;
872    else if (End->isImm())
873      EndV++;
874    else
875      AdjV += 1;
876  }
877
878  if (Cmp != Comparison::NE) {
879    if (Start->isImm())
880      StartV -= (IVBump-1);
881    else if (End->isImm())
882      EndV += (IVBump-1);
883    else
884      AdjV += (IVBump-1);
885  }
886
887  unsigned R = 0, SR = 0;
888  if (Start->isReg()) {
889    R = Start->getReg();
890    SR = Start->getSubReg();
891  } else {
892    R = End->getReg();
893    SR = End->getSubReg();
894  }
895  const TargetRegisterClass *RC = MRI->getRegClass(R);
896  // Hardware loops cannot handle 64-bit registers.  If it's a double
897  // register, it has to have a subregister.
898  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
899    return nullptr;
900  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
901
902  // Compute DistR (register with the distance between Start and End).
903  unsigned DistR, DistSR;
904
905  // Avoid special case, where the start value is an imm(0).
906  if (Start->isImm() && StartV == 0) {
907    DistR = End->getReg();
908    DistSR = End->getSubReg();
909  } else {
910    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
911                              (RegToImm ? TII->get(Hexagon::A2_subri) :
912                                          TII->get(Hexagon::A2_addi));
913    if (RegToReg || RegToImm) {
914      Register SubR = MRI->createVirtualRegister(IntRC);
915      MachineInstrBuilder SubIB =
916        BuildMI(*PH, InsertPos, DL, SubD, SubR);
917
918      if (RegToReg)
919        SubIB.addReg(End->getReg(), 0, End->getSubReg())
920          .addReg(Start->getReg(), 0, Start->getSubReg());
921      else
922        SubIB.addImm(EndV)
923          .addReg(Start->getReg(), 0, Start->getSubReg());
924      DistR = SubR;
925    } else {
926      // If the loop has been unrolled, we should use the original loop count
927      // instead of recalculating the value. This will avoid additional
928      // 'Add' instruction.
929      const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
930      if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
931          EndValInstr->getOperand(1).getSubReg() == 0 &&
932          EndValInstr->getOperand(2).getImm() == StartV) {
933        DistR = EndValInstr->getOperand(1).getReg();
934      } else {
935        Register SubR = MRI->createVirtualRegister(IntRC);
936        MachineInstrBuilder SubIB =
937          BuildMI(*PH, InsertPos, DL, SubD, SubR);
938        SubIB.addReg(End->getReg(), 0, End->getSubReg())
939             .addImm(-StartV);
940        DistR = SubR;
941      }
942    }
943    DistSR = 0;
944  }
945
946  // From DistR, compute AdjR (register with the adjusted distance).
947  unsigned AdjR, AdjSR;
948
949  if (AdjV == 0) {
950    AdjR = DistR;
951    AdjSR = DistSR;
952  } else {
953    // Generate CountR = ADD DistR, AdjVal
954    Register AddR = MRI->createVirtualRegister(IntRC);
955    MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
956    BuildMI(*PH, InsertPos, DL, AddD, AddR)
957      .addReg(DistR, 0, DistSR)
958      .addImm(AdjV);
959
960    AdjR = AddR;
961    AdjSR = 0;
962  }
963
964  // From AdjR, compute CountR (register with the final count).
965  unsigned CountR, CountSR;
966
967  if (IVBump == 1) {
968    CountR = AdjR;
969    CountSR = AdjSR;
970  } else {
971    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
972    unsigned Shift = Log2_32(IVBump);
973
974    // Generate NormR = LSR DistR, Shift.
975    Register LsrR = MRI->createVirtualRegister(IntRC);
976    const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
977    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
978      .addReg(AdjR, 0, AdjSR)
979      .addImm(Shift);
980
981    CountR = LsrR;
982    CountSR = 0;
983  }
984
985  return new CountValue(CountValue::CV_Register, CountR, CountSR);
986}
987
988/// Return true if the operation is invalid within hardware loop.
989bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
990                                                  bool IsInnerHWLoop) const {
991  // Call is not allowed because the callee may use a hardware loop except for
992  // the case when the call never returns.
993  if (MI->getDesc().isCall())
994    return !TII->doesNotReturn(*MI);
995
996  // Check if the instruction defines a hardware loop register.
997  using namespace Hexagon;
998
999  static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 };
1000  static const unsigned Regs1[]  = { LC1, SA1 };
1001  auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01))
1002                                 : makeArrayRef(Regs1, array_lengthof(Regs1));
1003  for (unsigned R : CheckRegs)
1004    if (MI->modifiesRegister(R, TRI))
1005      return true;
1006
1007  return false;
1008}
1009
1010/// Return true if the loop contains an instruction that inhibits
1011/// the use of the hardware loop instruction.
1012bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
1013    bool IsInnerHWLoop) const {
1014  LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1015                    << printMBBReference(**L->block_begin()));
1016  for (MachineBasicBlock *MBB : L->getBlocks()) {
1017    for (MachineBasicBlock::iterator
1018           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
1019      const MachineInstr *MI = &*MII;
1020      if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
1021        LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1022                   MI->dump(););
1023        return true;
1024      }
1025    }
1026  }
1027  return false;
1028}
1029
1030/// Returns true if the instruction is dead.  This was essentially
1031/// copied from DeadMachineInstructionElim::isDead, but with special cases
1032/// for inline asm, physical registers and instructions with side effects
1033/// removed.
1034bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1035                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1036  // Examine each operand.
1037  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1038    const MachineOperand &MO = MI->getOperand(i);
1039    if (!MO.isReg() || !MO.isDef())
1040      continue;
1041
1042    Register Reg = MO.getReg();
1043    if (MRI->use_nodbg_empty(Reg))
1044      continue;
1045
1046    using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1047
1048    // This instruction has users, but if the only user is the phi node for the
1049    // parent block, and the only use of that phi node is this instruction, then
1050    // this instruction is dead: both it (and the phi node) can be removed.
1051    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1052    use_nodbg_iterator End = MRI->use_nodbg_end();
1053    if (std::next(I) != End || !I->getParent()->isPHI())
1054      return false;
1055
1056    MachineInstr *OnePhi = I->getParent();
1057    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
1058      const MachineOperand &OPO = OnePhi->getOperand(j);
1059      if (!OPO.isReg() || !OPO.isDef())
1060        continue;
1061
1062      Register OPReg = OPO.getReg();
1063      use_nodbg_iterator nextJ;
1064      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1065           J != End; J = nextJ) {
1066        nextJ = std::next(J);
1067        MachineOperand &Use = *J;
1068        MachineInstr *UseMI = Use.getParent();
1069
1070        // If the phi node has a user that is not MI, bail.
1071        if (MI != UseMI)
1072          return false;
1073      }
1074    }
1075    DeadPhis.push_back(OnePhi);
1076  }
1077
1078  // If there are no defs with uses, the instruction is dead.
1079  return true;
1080}
1081
1082void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1083  // This procedure was essentially copied from DeadMachineInstructionElim.
1084
1085  SmallVector<MachineInstr*, 1> DeadPhis;
1086  if (isDead(MI, DeadPhis)) {
1087    LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);
1088
1089    // It is possible that some DBG_VALUE instructions refer to this
1090    // instruction.  Examine each def operand for such references;
1091    // if found, mark the DBG_VALUE as undef (but don't delete it).
1092    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1093      const MachineOperand &MO = MI->getOperand(i);
1094      if (!MO.isReg() || !MO.isDef())
1095        continue;
1096      Register Reg = MO.getReg();
1097      MachineRegisterInfo::use_iterator nextI;
1098      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
1099           E = MRI->use_end(); I != E; I = nextI) {
1100        nextI = std::next(I);  // I is invalidated by the setReg
1101        MachineOperand &Use = *I;
1102        MachineInstr *UseMI = I->getParent();
1103        if (UseMI == MI)
1104          continue;
1105        if (Use.isDebug())
1106          UseMI->getOperand(0).setReg(0U);
1107      }
1108    }
1109
1110    MI->eraseFromParent();
1111    for (unsigned i = 0; i < DeadPhis.size(); ++i)
1112      DeadPhis[i]->eraseFromParent();
1113  }
1114}
1115
1116/// Check if the loop is a candidate for converting to a hardware
1117/// loop.  If so, then perform the transformation.
1118///
1119/// This function works on innermost loops first.  A loop can be converted
1120/// if it is a counting loop; either a register value or an immediate.
1121///
1122/// The code makes several assumptions about the representation of the loop
1123/// in llvm.
1124bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1125                                                 bool &RecL0used,
1126                                                 bool &RecL1used) {
1127  // This is just for sanity.
1128  assert(L->getHeader() && "Loop without a header?");
1129
1130  bool Changed = false;
1131  bool L0Used = false;
1132  bool L1Used = false;
1133
1134  // Process nested loops first.
1135  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
1136    Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
1137    L0Used |= RecL0used;
1138    L1Used |= RecL1used;
1139  }
1140
1141  // If a nested loop has been converted, then we can't convert this loop.
1142  if (Changed && L0Used && L1Used)
1143    return Changed;
1144
1145  unsigned LOOP_i;
1146  unsigned LOOP_r;
1147  unsigned ENDLOOP;
1148
1149  // Flag used to track loopN instruction:
1150  // 1 - Hardware loop is being generated for the inner most loop.
1151  // 0 - Hardware loop is being generated for the outer loop.
1152  unsigned IsInnerHWLoop = 1;
1153
1154  if (L0Used) {
1155    LOOP_i = Hexagon::J2_loop1i;
1156    LOOP_r = Hexagon::J2_loop1r;
1157    ENDLOOP = Hexagon::ENDLOOP1;
1158    IsInnerHWLoop = 0;
1159  } else {
1160    LOOP_i = Hexagon::J2_loop0i;
1161    LOOP_r = Hexagon::J2_loop0r;
1162    ENDLOOP = Hexagon::ENDLOOP0;
1163  }
1164
1165#ifndef NDEBUG
1166  // Stop trying after reaching the limit (if any).
1167  int Limit = HWLoopLimit;
1168  if (Limit >= 0) {
1169    if (Counter >= HWLoopLimit)
1170      return false;
1171    Counter++;
1172  }
1173#endif
1174
1175  // Does the loop contain any invalid instructions?
1176  if (containsInvalidInstruction(L, IsInnerHWLoop))
1177    return false;
1178
1179  MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1180  // Don't generate hw loop if the loop has more than one exit.
1181  if (!LastMBB)
1182    return false;
1183
1184  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1185  if (LastI == LastMBB->end())
1186    return false;
1187
1188  // Is the induction variable bump feeding the latch condition?
1189  if (!fixupInductionVariable(L))
1190    return false;
1191
1192  // Ensure the loop has a preheader: the loop instruction will be
1193  // placed there.
1194  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1195  if (!Preheader) {
1196    Preheader = createPreheaderForLoop(L);
1197    if (!Preheader)
1198      return false;
1199  }
1200
1201  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1202
1203  SmallVector<MachineInstr*, 2> OldInsts;
1204  // Are we able to determine the trip count for the loop?
1205  CountValue *TripCount = getLoopTripCount(L, OldInsts);
1206  if (!TripCount)
1207    return false;
1208
1209  // Is the trip count available in the preheader?
1210  if (TripCount->isReg()) {
1211    // There will be a use of the register inserted into the preheader,
1212    // so make sure that the register is actually defined at that point.
1213    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1214    MachineBasicBlock *BBDef = TCDef->getParent();
1215    if (!MDT->dominates(BBDef, Preheader))
1216      return false;
1217  }
1218
1219  // Determine the loop start.
1220  MachineBasicBlock *TopBlock = L->getTopBlock();
1221  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1222  MachineBasicBlock *LoopStart = nullptr;
1223  if (ExitingBlock !=  L->getLoopLatch()) {
1224    MachineBasicBlock *TB = nullptr, *FB = nullptr;
1225    SmallVector<MachineOperand, 2> Cond;
1226
1227    if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1228      return false;
1229
1230    if (L->contains(TB))
1231      LoopStart = TB;
1232    else if (L->contains(FB))
1233      LoopStart = FB;
1234    else
1235      return false;
1236  }
1237  else
1238    LoopStart = TopBlock;
1239
1240  // Convert the loop to a hardware loop.
1241  LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1242  DebugLoc DL;
1243  if (InsertPos != Preheader->end())
1244    DL = InsertPos->getDebugLoc();
1245
1246  if (TripCount->isReg()) {
1247    // Create a copy of the loop count register.
1248    Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1249    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1250      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1251    // Add the Loop instruction to the beginning of the loop.
1252    BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1253      .addReg(CountReg);
1254  } else {
1255    assert(TripCount->isImm() && "Expecting immediate value for trip count");
1256    // Add the Loop immediate instruction to the beginning of the loop,
1257    // if the immediate fits in the instructions.  Otherwise, we need to
1258    // create a new virtual register.
1259    int64_t CountImm = TripCount->getImm();
1260    if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1261      Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1262      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1263        .addImm(CountImm);
1264      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1265        .addMBB(LoopStart).addReg(CountReg);
1266    } else
1267      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1268        .addMBB(LoopStart).addImm(CountImm);
1269  }
1270
1271  // Make sure the loop start always has a reference in the CFG.  We need
1272  // to create a BlockAddress operand to get this mechanism to work both the
1273  // MachineBasicBlock and BasicBlock objects need the flag set.
1274  LoopStart->setHasAddressTaken();
1275  // This line is needed to set the hasAddressTaken flag on the BasicBlock
1276  // object.
1277  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1278
1279  // Replace the loop branch with an endloop instruction.
1280  DebugLoc LastIDL = LastI->getDebugLoc();
1281  BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1282
1283  // The loop ends with either:
1284  //  - a conditional branch followed by an unconditional branch, or
1285  //  - a conditional branch to the loop start.
1286  if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1287      LastI->getOpcode() == Hexagon::J2_jumpf) {
1288    // Delete one and change/add an uncond. branch to out of the loop.
1289    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1290    LastI = LastMBB->erase(LastI);
1291    if (!L->contains(BranchTarget)) {
1292      if (LastI != LastMBB->end())
1293        LastI = LastMBB->erase(LastI);
1294      SmallVector<MachineOperand, 0> Cond;
1295      TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1296    }
1297  } else {
1298    // Conditional branch to loop start; just delete it.
1299    LastMBB->erase(LastI);
1300  }
1301  delete TripCount;
1302
1303  // The induction operation and the comparison may now be
1304  // unneeded. If these are unneeded, then remove them.
1305  for (unsigned i = 0; i < OldInsts.size(); ++i)
1306    removeIfDead(OldInsts[i]);
1307
1308  ++NumHWLoops;
1309
1310  // Set RecL1used and RecL0used only after hardware loop has been
1311  // successfully generated. Doing it earlier can cause wrong loop instruction
1312  // to be used.
1313  if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1314    RecL1used = true;
1315  else
1316    RecL0used = true;
1317
1318  return true;
1319}
1320
1321bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1322                                            MachineInstr *CmpI) {
1323  assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1324
1325  MachineBasicBlock *BB = BumpI->getParent();
1326  if (CmpI->getParent() != BB)
1327    return false;
1328
1329  using instr_iterator = MachineBasicBlock::instr_iterator;
1330
1331  // Check if things are in order to begin with.
1332  for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1333    if (&*I == CmpI)
1334      return true;
1335
1336  // Out of order.
1337  Register PredR = CmpI->getOperand(0).getReg();
1338  bool FoundBump = false;
1339  instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1340  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1341    MachineInstr *In = &*I;
1342    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1343      MachineOperand &MO = In->getOperand(i);
1344      if (MO.isReg() && MO.isUse()) {
1345        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
1346          return false;
1347      }
1348    }
1349
1350    if (In == BumpI) {
1351      BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1352      FoundBump = true;
1353      break;
1354    }
1355  }
1356  assert (FoundBump && "Cannot determine instruction order");
1357  return FoundBump;
1358}
1359
1360/// This function is required to break recursion. Visiting phis in a loop may
1361/// result in recursion during compilation. We break the recursion by making
1362/// sure that we visit a MachineOperand and its definition in a
1363/// MachineInstruction only once. If we attempt to visit more than once, then
1364/// there is recursion, and will return false.
1365bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1366                                        MachineInstr *MI,
1367                                        const MachineOperand *MO,
1368                                        LoopFeederMap &LoopFeederPhi) const {
1369  if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1370    LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1371                      << printMBBReference(**L->block_begin()));
1372    // Ignore all BBs that form Loop.
1373    for (MachineBasicBlock *MBB : L->getBlocks()) {
1374      if (A == MBB)
1375        return false;
1376    }
1377    MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1378    LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1379    return true;
1380  } else
1381    // Already visited node.
1382    return false;
1383}
1384
1385/// Return true if a Phi may generate a value that can underflow.
1386/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1387bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1388    MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1389    MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1390  assert(Phi->isPHI() && "Expecting a Phi.");
1391  // Walk through each Phi, and its used operands. Make sure that
1392  // if there is recursion in Phi, we won't generate hardware loops.
1393  for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1394    if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1395      if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1396                                      Phi->getParent(), L, LoopFeederPhi))
1397        return true;
1398  return false;
1399}
1400
1401/// Return true if the induction variable can underflow in the first iteration.
1402/// An example, is an initial unsigned value that is 0 and is decrement in the
1403/// first itertion of a do-while loop.  In this case, we cannot generate a
1404/// hardware loop because the endloop instruction does not decrement the loop
1405/// counter if it is <= 1. We only need to perform this analysis if the
1406/// initial value is a register.
1407///
1408/// This function assumes the initial value may underfow unless proven
1409/// otherwise. If the type is signed, then we don't care because signed
1410/// underflow is undefined. We attempt to prove the initial value is not
1411/// zero by perfoming a crude analysis of the loop counter. This function
1412/// checks if the initial value is used in any comparison prior to the loop
1413/// and, if so, assumes the comparison is a range check. This is inexact,
1414/// but will catch the simple cases.
1415bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1416    const MachineOperand *InitVal, const MachineOperand *EndVal,
1417    MachineBasicBlock *MBB, MachineLoop *L,
1418    LoopFeederMap &LoopFeederPhi) const {
1419  // Only check register values since they are unknown.
1420  if (!InitVal->isReg())
1421    return false;
1422
1423  if (!EndVal->isImm())
1424    return false;
1425
1426  // A register value that is assigned an immediate is a known value, and it
1427  // won't underflow in the first iteration.
1428  int64_t Imm;
1429  if (checkForImmediate(*InitVal, Imm))
1430    return (EndVal->getImm() == Imm);
1431
1432  Register Reg = InitVal->getReg();
1433
1434  // We don't know the value of a physical register.
1435  if (!Register::isVirtualRegister(Reg))
1436    return true;
1437
1438  MachineInstr *Def = MRI->getVRegDef(Reg);
1439  if (!Def)
1440    return true;
1441
1442  // If the initial value is a Phi or copy and the operands may not underflow,
1443  // then the definition cannot be underflow either.
1444  if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1445                                             L, LoopFeederPhi))
1446    return false;
1447  if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1448                                                    EndVal, Def->getParent(),
1449                                                    L, LoopFeederPhi))
1450    return false;
1451
1452  // Iterate over the uses of the initial value. If the initial value is used
1453  // in a compare, then we assume this is a range check that ensures the loop
1454  // doesn't underflow. This is not an exact test and should be improved.
1455  for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1456         E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1457    MachineInstr *MI = &*I;
1458    unsigned CmpReg1 = 0, CmpReg2 = 0;
1459    int CmpMask = 0, CmpValue = 0;
1460
1461    if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1462      continue;
1463
1464    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1465    SmallVector<MachineOperand, 2> Cond;
1466    if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1467      continue;
1468
1469    Comparison::Kind Cmp =
1470        getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1471    if (Cmp == 0)
1472      continue;
1473    if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1474      Cmp = Comparison::getNegatedComparison(Cmp);
1475    if (CmpReg2 != 0 && CmpReg2 == Reg)
1476      Cmp = Comparison::getSwappedComparison(Cmp);
1477
1478    // Signed underflow is undefined.
1479    if (Comparison::isSigned(Cmp))
1480      return false;
1481
1482    // Check if there is a comparison of the initial value. If the initial value
1483    // is greater than or not equal to another value, then assume this is a
1484    // range check.
1485    if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1486      return false;
1487  }
1488
1489  // OK - this is a hack that needs to be improved. We really need to analyze
1490  // the instructions performed on the initial value. This works on the simplest
1491  // cases only.
1492  if (!Def->isCopy() && !Def->isPHI())
1493    return false;
1494
1495  return true;
1496}
1497
1498bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1499                                             int64_t &Val) const {
1500  if (MO.isImm()) {
1501    Val = MO.getImm();
1502    return true;
1503  }
1504  if (!MO.isReg())
1505    return false;
1506
1507  // MO is a register. Check whether it is defined as an immediate value,
1508  // and if so, get the value of it in TV. That value will then need to be
1509  // processed to handle potential subregisters in MO.
1510  int64_t TV;
1511
1512  Register R = MO.getReg();
1513  if (!Register::isVirtualRegister(R))
1514    return false;
1515  MachineInstr *DI = MRI->getVRegDef(R);
1516  unsigned DOpc = DI->getOpcode();
1517  switch (DOpc) {
1518    case TargetOpcode::COPY:
1519    case Hexagon::A2_tfrsi:
1520    case Hexagon::A2_tfrpi:
1521    case Hexagon::CONST32:
1522    case Hexagon::CONST64:
1523      // Call recursively to avoid an extra check whether operand(1) is
1524      // indeed an immediate (it could be a global address, for example),
1525      // plus we can handle COPY at the same time.
1526      if (!checkForImmediate(DI->getOperand(1), TV))
1527        return false;
1528      break;
1529    case Hexagon::A2_combineii:
1530    case Hexagon::A4_combineir:
1531    case Hexagon::A4_combineii:
1532    case Hexagon::A4_combineri:
1533    case Hexagon::A2_combinew: {
1534      const MachineOperand &S1 = DI->getOperand(1);
1535      const MachineOperand &S2 = DI->getOperand(2);
1536      int64_t V1, V2;
1537      if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1538        return false;
1539      TV = V2 | (static_cast<uint64_t>(V1) << 32);
1540      break;
1541    }
1542    case TargetOpcode::REG_SEQUENCE: {
1543      const MachineOperand &S1 = DI->getOperand(1);
1544      const MachineOperand &S3 = DI->getOperand(3);
1545      int64_t V1, V3;
1546      if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1547        return false;
1548      unsigned Sub2 = DI->getOperand(2).getImm();
1549      unsigned Sub4 = DI->getOperand(4).getImm();
1550      if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1551        TV = V1 | (V3 << 32);
1552      else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1553        TV = V3 | (V1 << 32);
1554      else
1555        llvm_unreachable("Unexpected form of REG_SEQUENCE");
1556      break;
1557    }
1558
1559    default:
1560      return false;
1561  }
1562
1563  // By now, we should have successfully obtained the immediate value defining
1564  // the register referenced in MO. Handle a potential use of a subregister.
1565  switch (MO.getSubReg()) {
1566    case Hexagon::isub_lo:
1567      Val = TV & 0xFFFFFFFFULL;
1568      break;
1569    case Hexagon::isub_hi:
1570      Val = (TV >> 32) & 0xFFFFFFFFULL;
1571      break;
1572    default:
1573      Val = TV;
1574      break;
1575  }
1576  return true;
1577}
1578
1579void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1580  if (MO.isImm()) {
1581    MO.setImm(Val);
1582    return;
1583  }
1584
1585  assert(MO.isReg());
1586  Register R = MO.getReg();
1587  MachineInstr *DI = MRI->getVRegDef(R);
1588
1589  const TargetRegisterClass *RC = MRI->getRegClass(R);
1590  Register NewR = MRI->createVirtualRegister(RC);
1591  MachineBasicBlock &B = *DI->getParent();
1592  DebugLoc DL = DI->getDebugLoc();
1593  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1594  MO.setReg(NewR);
1595}
1596
1597static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
1598  // These two instructions are not extendable.
1599  if (CmpOpc == Hexagon::A4_cmpbeqi)
1600    return isUInt<8>(Imm);
1601  if (CmpOpc == Hexagon::A4_cmpbgti)
1602    return isInt<8>(Imm);
1603  // The rest of the comparison-with-immediate instructions are extendable.
1604  return true;
1605}
1606
1607bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1608  MachineBasicBlock *Header = L->getHeader();
1609  MachineBasicBlock *Latch = L->getLoopLatch();
1610  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1611
1612  if (!(Header && Latch && ExitingBlock))
1613    return false;
1614
1615  // These data structures follow the same concept as the corresponding
1616  // ones in findInductionRegister (where some comments are).
1617  using RegisterBump = std::pair<unsigned, int64_t>;
1618  using RegisterInduction = std::pair<unsigned, RegisterBump>;
1619  using RegisterInductionSet = std::set<RegisterInduction>;
1620
1621  // Register candidates for induction variables, with their associated bumps.
1622  RegisterInductionSet IndRegs;
1623
1624  // Look for induction patterns:
1625  //   %1 = PHI ..., [ latch, %2 ]
1626  //   %2 = ADD %1, imm
1627  using instr_iterator = MachineBasicBlock::instr_iterator;
1628
1629  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1630       I != E && I->isPHI(); ++I) {
1631    MachineInstr *Phi = &*I;
1632
1633    // Have a PHI instruction.
1634    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1635      if (Phi->getOperand(i+1).getMBB() != Latch)
1636        continue;
1637
1638      Register PhiReg = Phi->getOperand(i).getReg();
1639      MachineInstr *DI = MRI->getVRegDef(PhiReg);
1640
1641      if (DI->getDesc().isAdd()) {
1642        // If the register operand to the add/sub is the PHI we are looking
1643        // at, this meets the induction pattern.
1644        Register IndReg = DI->getOperand(1).getReg();
1645        MachineOperand &Opnd2 = DI->getOperand(2);
1646        int64_t V;
1647        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1648          Register UpdReg = DI->getOperand(0).getReg();
1649          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1650        }
1651      }
1652    }  // for (i)
1653  }  // for (instr)
1654
1655  if (IndRegs.empty())
1656    return false;
1657
1658  MachineBasicBlock *TB = nullptr, *FB = nullptr;
1659  SmallVector<MachineOperand,2> Cond;
1660  // AnalyzeBranch returns true if it fails to analyze branch.
1661  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1662  if (NotAnalyzed || Cond.empty())
1663    return false;
1664
1665  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1666    MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1667    SmallVector<MachineOperand,2> LCond;
1668    bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1669    if (NotAnalyzed)
1670      return false;
1671
1672    // Since latch is not the exiting block, the latch branch should be an
1673    // unconditional branch to the loop header.
1674    if (TB == Latch)
1675      TB = (LTB == Header) ? LTB : LFB;
1676    else
1677      FB = (LTB == Header) ? LTB : LFB;
1678  }
1679  if (TB != Header) {
1680    if (FB != Header) {
1681      // The latch/exit block does not go back to the header.
1682      return false;
1683    }
1684    // FB is the header (i.e., uncond. jump to branch header)
1685    // In this case, the LoopBody -> TB should not be a back edge otherwise
1686    // it could result in an infinite loop after conversion to hw_loop.
1687    // This case can happen when the Latch has two jumps like this:
1688    // Jmp_c OuterLoopHeader <-- TB
1689    // Jmp   InnerLoopHeader <-- FB
1690    if (MDT->dominates(TB, FB))
1691      return false;
1692  }
1693
1694  // Expecting a predicate register as a condition.  It won't be a hardware
1695  // predicate register at this point yet, just a vreg.
1696  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1697  // into Cond, followed by the predicate register.  For non-negated branches
1698  // it's just the register.
1699  unsigned CSz = Cond.size();
1700  if (CSz != 1 && CSz != 2)
1701    return false;
1702
1703  if (!Cond[CSz-1].isReg())
1704    return false;
1705
1706  Register P = Cond[CSz - 1].getReg();
1707  MachineInstr *PredDef = MRI->getVRegDef(P);
1708
1709  if (!PredDef->isCompare())
1710    return false;
1711
1712  SmallSet<unsigned,2> CmpRegs;
1713  MachineOperand *CmpImmOp = nullptr;
1714
1715  // Go over all operands to the compare and look for immediate and register
1716  // operands.  Assume that if the compare has a single register use and a
1717  // single immediate operand, then the register is being compared with the
1718  // immediate value.
1719  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1720    MachineOperand &MO = PredDef->getOperand(i);
1721    if (MO.isReg()) {
1722      // Skip all implicit references.  In one case there was:
1723      //   %140 = FCMPUGT32_rr %138, %139, implicit %usr
1724      if (MO.isImplicit())
1725        continue;
1726      if (MO.isUse()) {
1727        if (!isImmediate(MO)) {
1728          CmpRegs.insert(MO.getReg());
1729          continue;
1730        }
1731        // Consider the register to be the "immediate" operand.
1732        if (CmpImmOp)
1733          return false;
1734        CmpImmOp = &MO;
1735      }
1736    } else if (MO.isImm()) {
1737      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
1738        return false;
1739      CmpImmOp = &MO;
1740    }
1741  }
1742
1743  if (CmpRegs.empty())
1744    return false;
1745
1746  // Check if the compared register follows the order we want.  Fix if needed.
1747  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1748       I != E; ++I) {
1749    // This is a success.  If the register used in the comparison is one that
1750    // we have identified as a bumped (updated) induction register, there is
1751    // nothing to do.
1752    if (CmpRegs.count(I->first))
1753      return true;
1754
1755    // Otherwise, if the register being compared comes out of a PHI node,
1756    // and has been recognized as following the induction pattern, and is
1757    // compared against an immediate, we can fix it.
1758    const RegisterBump &RB = I->second;
1759    if (CmpRegs.count(RB.first)) {
1760      if (!CmpImmOp) {
1761        // If both operands to the compare instruction are registers, see if
1762        // it can be changed to use induction register as one of the operands.
1763        MachineInstr *IndI = nullptr;
1764        MachineInstr *nonIndI = nullptr;
1765        MachineOperand *IndMO = nullptr;
1766        MachineOperand *nonIndMO = nullptr;
1767
1768        for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1769          MachineOperand &MO = PredDef->getOperand(i);
1770          if (MO.isReg() && MO.getReg() == RB.first) {
1771            LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1772                              << ") = " << *(MRI->getVRegDef(I->first)));
1773            if (IndI)
1774              return false;
1775
1776            IndI = MRI->getVRegDef(I->first);
1777            IndMO = &MO;
1778          } else if (MO.isReg()) {
1779            LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1780                              << ") = " << *(MRI->getVRegDef(MO.getReg())));
1781            if (nonIndI)
1782              return false;
1783
1784            nonIndI = MRI->getVRegDef(MO.getReg());
1785            nonIndMO = &MO;
1786          }
1787        }
1788        if (IndI && nonIndI &&
1789            nonIndI->getOpcode() == Hexagon::A2_addi &&
1790            nonIndI->getOperand(2).isImm() &&
1791            nonIndI->getOperand(2).getImm() == - RB.second) {
1792          bool Order = orderBumpCompare(IndI, PredDef);
1793          if (Order) {
1794            IndMO->setReg(I->first);
1795            nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1796            return true;
1797          }
1798        }
1799        return false;
1800      }
1801
1802      // It is not valid to do this transformation on an unsigned comparison
1803      // because it may underflow.
1804      Comparison::Kind Cmp =
1805          getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1806      if (!Cmp || Comparison::isUnsigned(Cmp))
1807        return false;
1808
1809      // If the register is being compared against an immediate, try changing
1810      // the compare instruction to use induction register and adjust the
1811      // immediate operand.
1812      int64_t CmpImm = getImmediate(*CmpImmOp);
1813      int64_t V = RB.second;
1814      // Handle Overflow (64-bit).
1815      if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
1816          ((V < 0) && (CmpImm < INT64_MIN - V)))
1817        return false;
1818      CmpImm += V;
1819      // Most comparisons of register against an immediate value allow
1820      // the immediate to be constant-extended. There are some exceptions
1821      // though. Make sure the new combination will work.
1822      if (CmpImmOp->isImm())
1823        if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
1824          return false;
1825
1826      // Make sure that the compare happens after the bump.  Otherwise,
1827      // after the fixup, the compare would use a yet-undefined register.
1828      MachineInstr *BumpI = MRI->getVRegDef(I->first);
1829      bool Order = orderBumpCompare(BumpI, PredDef);
1830      if (!Order)
1831        return false;
1832
1833      // Finally, fix the compare instruction.
1834      setImmediate(*CmpImmOp, CmpImm);
1835      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1836        MachineOperand &MO = PredDef->getOperand(i);
1837        if (MO.isReg() && MO.getReg() == RB.first) {
1838          MO.setReg(I->first);
1839          return true;
1840        }
1841      }
1842    }
1843  }
1844
1845  return false;
1846}
1847
1848/// createPreheaderForLoop - Create a preheader for a given loop.
1849MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1850      MachineLoop *L) {
1851  if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1852    return TmpPH;
1853  if (!HWCreatePreheader)
1854    return nullptr;
1855
1856  MachineBasicBlock *Header = L->getHeader();
1857  MachineBasicBlock *Latch = L->getLoopLatch();
1858  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1859  MachineFunction *MF = Header->getParent();
1860  DebugLoc DL;
1861
1862#ifndef NDEBUG
1863  if ((!PHFn.empty()) && (PHFn != MF->getName()))
1864    return nullptr;
1865#endif
1866
1867  if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1868    return nullptr;
1869
1870  using instr_iterator = MachineBasicBlock::instr_iterator;
1871
1872  // Verify that all existing predecessors have analyzable branches
1873  // (or no branches at all).
1874  using MBBVector = std::vector<MachineBasicBlock *>;
1875
1876  MBBVector Preds(Header->pred_begin(), Header->pred_end());
1877  SmallVector<MachineOperand,2> Tmp1;
1878  MachineBasicBlock *TB = nullptr, *FB = nullptr;
1879
1880  if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1881    return nullptr;
1882
1883  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1884    MachineBasicBlock *PB = *I;
1885    bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1886    if (NotAnalyzed)
1887      return nullptr;
1888  }
1889
1890  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1891  MF->insert(Header->getIterator(), NewPH);
1892
1893  if (Header->pred_size() > 2) {
1894    // Ensure that the header has only two predecessors: the preheader and
1895    // the loop latch.  Any additional predecessors of the header should
1896    // join at the newly created preheader. Inspect all PHI nodes from the
1897    // header and create appropriate corresponding PHI nodes in the preheader.
1898
1899    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1900         I != E && I->isPHI(); ++I) {
1901      MachineInstr *PN = &*I;
1902
1903      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1904      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1905      NewPH->insert(NewPH->end(), NewPN);
1906
1907      Register PR = PN->getOperand(0).getReg();
1908      const TargetRegisterClass *RC = MRI->getRegClass(PR);
1909      Register NewPR = MRI->createVirtualRegister(RC);
1910      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1911
1912      // Copy all non-latch operands of a header's PHI node to the newly
1913      // created PHI node in the preheader.
1914      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1915        Register PredR = PN->getOperand(i).getReg();
1916        unsigned PredRSub = PN->getOperand(i).getSubReg();
1917        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1918        if (PredB == Latch)
1919          continue;
1920
1921        MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1922        MO.setSubReg(PredRSub);
1923        NewPN->addOperand(MO);
1924        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1925      }
1926
1927      // Remove copied operands from the old PHI node and add the value
1928      // coming from the preheader's PHI.
1929      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1930        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1931        if (PredB != Latch) {
1932          PN->RemoveOperand(i+1);
1933          PN->RemoveOperand(i);
1934        }
1935      }
1936      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1937      PN->addOperand(MachineOperand::CreateMBB(NewPH));
1938    }
1939  } else {
1940    assert(Header->pred_size() == 2);
1941
1942    // The header has only two predecessors, but the non-latch predecessor
1943    // is not a preheader (e.g. it has other successors, etc.)
1944    // In such a case we don't need any extra PHI nodes in the new preheader,
1945    // all we need is to adjust existing PHIs in the header to now refer to
1946    // the new preheader.
1947    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1948         I != E && I->isPHI(); ++I) {
1949      MachineInstr *PN = &*I;
1950      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1951        MachineOperand &MO = PN->getOperand(i+1);
1952        if (MO.getMBB() != Latch)
1953          MO.setMBB(NewPH);
1954      }
1955    }
1956  }
1957
1958  // "Reroute" the CFG edges to link in the new preheader.
1959  // If any of the predecessors falls through to the header, insert a branch
1960  // to the new preheader in that place.
1961  SmallVector<MachineOperand,1> Tmp2;
1962  SmallVector<MachineOperand,1> EmptyCond;
1963
1964  TB = FB = nullptr;
1965
1966  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1967    MachineBasicBlock *PB = *I;
1968    if (PB != Latch) {
1969      Tmp2.clear();
1970      bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1971      (void)NotAnalyzed; // suppress compiler warning
1972      assert (!NotAnalyzed && "Should be analyzable!");
1973      if (TB != Header && (Tmp2.empty() || FB != Header))
1974        TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1975      PB->ReplaceUsesOfBlockWith(Header, NewPH);
1976    }
1977  }
1978
1979  // It can happen that the latch block will fall through into the header.
1980  // Insert an unconditional branch to the header.
1981  TB = FB = nullptr;
1982  bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1983  (void)LatchNotAnalyzed; // suppress compiler warning
1984  assert (!LatchNotAnalyzed && "Should be analyzable!");
1985  if (!TB && !FB)
1986    TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1987
1988  // Finally, the branch from the preheader to the header.
1989  TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1990  NewPH->addSuccessor(Header);
1991
1992  MachineLoop *ParentLoop = L->getParentLoop();
1993  if (ParentLoop)
1994    ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
1995
1996  // Update the dominator information with the new preheader.
1997  if (MDT) {
1998    if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1999      if (MachineDomTreeNode *DHN = HN->getIDom()) {
2000        MDT->addNewBlock(NewPH, DHN->getBlock());
2001        MDT->changeImmediateDominator(Header, NewPH);
2002      }
2003    }
2004  }
2005
2006  return NewPH;
2007}
2008