1//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAGISel class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/SelectionDAGISel.h"
14#include "ScheduleDAGSDNodes.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/BranchProbabilityInfo.h"
28#include "llvm/Analysis/CFG.h"
29#include "llvm/Analysis/EHPersonalities.h"
30#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/ProfileSummaryInfo.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/Analysis/TargetTransformInfo.h"
36#include "llvm/CodeGen/FastISel.h"
37#include "llvm/CodeGen/FunctionLoweringInfo.h"
38#include "llvm/CodeGen/GCMetadata.h"
39#include "llvm/CodeGen/ISDOpcodes.h"
40#include "llvm/CodeGen/MachineBasicBlock.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineFunction.h"
43#include "llvm/CodeGen/MachineFunctionPass.h"
44#include "llvm/CodeGen/MachineInstr.h"
45#include "llvm/CodeGen/MachineInstrBuilder.h"
46#include "llvm/CodeGen/MachineMemOperand.h"
47#include "llvm/CodeGen/MachineModuleInfo.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachinePassRegistry.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/CodeGen/SchedulerRegistry.h"
52#include "llvm/CodeGen/SelectionDAG.h"
53#include "llvm/CodeGen/SelectionDAGNodes.h"
54#include "llvm/CodeGen/StackProtector.h"
55#include "llvm/CodeGen/SwiftErrorValueTracking.h"
56#include "llvm/CodeGen/TargetInstrInfo.h"
57#include "llvm/CodeGen/TargetLowering.h"
58#include "llvm/CodeGen/TargetRegisterInfo.h"
59#include "llvm/CodeGen/TargetSubtargetInfo.h"
60#include "llvm/CodeGen/ValueTypes.h"
61#include "llvm/IR/BasicBlock.h"
62#include "llvm/IR/Constants.h"
63#include "llvm/IR/DataLayout.h"
64#include "llvm/IR/DebugInfoMetadata.h"
65#include "llvm/IR/DebugLoc.h"
66#include "llvm/IR/DiagnosticInfo.h"
67#include "llvm/IR/Dominators.h"
68#include "llvm/IR/Function.h"
69#include "llvm/IR/InlineAsm.h"
70#include "llvm/IR/InstIterator.h"
71#include "llvm/IR/InstrTypes.h"
72#include "llvm/IR/Instruction.h"
73#include "llvm/IR/Instructions.h"
74#include "llvm/IR/IntrinsicInst.h"
75#include "llvm/IR/Intrinsics.h"
76#include "llvm/IR/IntrinsicsWebAssembly.h"
77#include "llvm/IR/Metadata.h"
78#include "llvm/IR/Type.h"
79#include "llvm/IR/User.h"
80#include "llvm/IR/Value.h"
81#include "llvm/InitializePasses.h"
82#include "llvm/MC/MCInstrDesc.h"
83#include "llvm/MC/MCRegisterInfo.h"
84#include "llvm/Pass.h"
85#include "llvm/Support/BranchProbability.h"
86#include "llvm/Support/Casting.h"
87#include "llvm/Support/CodeGen.h"
88#include "llvm/Support/CommandLine.h"
89#include "llvm/Support/Compiler.h"
90#include "llvm/Support/Debug.h"
91#include "llvm/Support/ErrorHandling.h"
92#include "llvm/Support/KnownBits.h"
93#include "llvm/Support/MachineValueType.h"
94#include "llvm/Support/Timer.h"
95#include "llvm/Support/raw_ostream.h"
96#include "llvm/Target/TargetIntrinsicInfo.h"
97#include "llvm/Target/TargetMachine.h"
98#include "llvm/Target/TargetOptions.h"
99#include "llvm/Transforms/Utils/BasicBlockUtils.h"
100#include <algorithm>
101#include <cassert>
102#include <cstdint>
103#include <iterator>
104#include <limits>
105#include <memory>
106#include <string>
107#include <utility>
108#include <vector>
109
110using namespace llvm;
111
112#define DEBUG_TYPE "isel"
113
114STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
115STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
116STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
117STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
118STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
119STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
120STATISTIC(NumFastIselFailLowerArguments,
121          "Number of entry blocks where fast isel failed to lower arguments");
122
123static cl::opt<int> EnableFastISelAbort(
124    "fast-isel-abort", cl::Hidden,
125    cl::desc("Enable abort calls when \"fast\" instruction selection "
126             "fails to lower an instruction: 0 disable the abort, 1 will "
127             "abort but for args, calls and terminators, 2 will also "
128             "abort for argument lowering, and 3 will never fallback "
129             "to SelectionDAG."));
130
131static cl::opt<bool> EnableFastISelFallbackReport(
132    "fast-isel-report-on-fallback", cl::Hidden,
133    cl::desc("Emit a diagnostic when \"fast\" instruction selection "
134             "falls back to SelectionDAG."));
135
136static cl::opt<bool>
137UseMBPI("use-mbpi",
138        cl::desc("use Machine Branch Probability Info"),
139        cl::init(true), cl::Hidden);
140
141#ifndef NDEBUG
142static cl::opt<std::string>
143FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
144                        cl::desc("Only display the basic block whose name "
145                                 "matches this for all view-*-dags options"));
146static cl::opt<bool>
147ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
148          cl::desc("Pop up a window to show dags before the first "
149                   "dag combine pass"));
150static cl::opt<bool>
151ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
152          cl::desc("Pop up a window to show dags before legalize types"));
153static cl::opt<bool>
154    ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
155                     cl::desc("Pop up a window to show dags before the post "
156                              "legalize types dag combine pass"));
157static cl::opt<bool>
158    ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
159                     cl::desc("Pop up a window to show dags before legalize"));
160static cl::opt<bool>
161ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before the second "
163                   "dag combine pass"));
164static cl::opt<bool>
165ViewISelDAGs("view-isel-dags", cl::Hidden,
166          cl::desc("Pop up a window to show isel dags as they are selected"));
167static cl::opt<bool>
168ViewSchedDAGs("view-sched-dags", cl::Hidden,
169          cl::desc("Pop up a window to show sched dags as they are processed"));
170static cl::opt<bool>
171ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
172      cl::desc("Pop up a window to show SUnit dags after they are processed"));
173#else
174static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
175                  ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
176                  ViewDAGCombine2 = false, ViewISelDAGs = false,
177                  ViewSchedDAGs = false, ViewSUnitDAGs = false;
178#endif
179
180//===---------------------------------------------------------------------===//
181///
182/// RegisterScheduler class - Track the registration of instruction schedulers.
183///
184//===---------------------------------------------------------------------===//
185MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
186    RegisterScheduler::Registry;
187
188//===---------------------------------------------------------------------===//
189///
190/// ISHeuristic command line option for instruction schedulers.
191///
192//===---------------------------------------------------------------------===//
193static cl::opt<RegisterScheduler::FunctionPassCtor, false,
194               RegisterPassParser<RegisterScheduler>>
195ISHeuristic("pre-RA-sched",
196            cl::init(&createDefaultScheduler), cl::Hidden,
197            cl::desc("Instruction schedulers available (before register"
198                     " allocation):"));
199
200static RegisterScheduler
201defaultListDAGScheduler("default", "Best scheduler for the target",
202                        createDefaultScheduler);
203
204namespace llvm {
205
206  //===--------------------------------------------------------------------===//
207  /// This class is used by SelectionDAGISel to temporarily override
208  /// the optimization level on a per-function basis.
209  class OptLevelChanger {
210    SelectionDAGISel &IS;
211    CodeGenOpt::Level SavedOptLevel;
212    bool SavedFastISel;
213
214  public:
215    OptLevelChanger(SelectionDAGISel &ISel,
216                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
217      SavedOptLevel = IS.OptLevel;
218      if (NewOptLevel == SavedOptLevel)
219        return;
220      IS.OptLevel = NewOptLevel;
221      IS.TM.setOptLevel(NewOptLevel);
222      LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
223                        << IS.MF->getFunction().getName() << "\n");
224      LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
225                        << NewOptLevel << "\n");
226      SavedFastISel = IS.TM.Options.EnableFastISel;
227      if (NewOptLevel == CodeGenOpt::None) {
228        IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
229        LLVM_DEBUG(
230            dbgs() << "\tFastISel is "
231                   << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
232                   << "\n");
233      }
234    }
235
236    ~OptLevelChanger() {
237      if (IS.OptLevel == SavedOptLevel)
238        return;
239      LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
240                        << IS.MF->getFunction().getName() << "\n");
241      LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
242                        << SavedOptLevel << "\n");
243      IS.OptLevel = SavedOptLevel;
244      IS.TM.setOptLevel(SavedOptLevel);
245      IS.TM.setFastISel(SavedFastISel);
246    }
247  };
248
249  //===--------------------------------------------------------------------===//
250  /// createDefaultScheduler - This creates an instruction scheduler appropriate
251  /// for the target.
252  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
253                                             CodeGenOpt::Level OptLevel) {
254    const TargetLowering *TLI = IS->TLI;
255    const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
256
257    // Try first to see if the Target has its own way of selecting a scheduler
258    if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
259      return SchedulerCtor(IS, OptLevel);
260    }
261
262    if (OptLevel == CodeGenOpt::None ||
263        (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
264        TLI->getSchedulingPreference() == Sched::Source)
265      return createSourceListDAGScheduler(IS, OptLevel);
266    if (TLI->getSchedulingPreference() == Sched::RegPressure)
267      return createBURRListDAGScheduler(IS, OptLevel);
268    if (TLI->getSchedulingPreference() == Sched::Hybrid)
269      return createHybridListDAGScheduler(IS, OptLevel);
270    if (TLI->getSchedulingPreference() == Sched::VLIW)
271      return createVLIWDAGScheduler(IS, OptLevel);
272    assert(TLI->getSchedulingPreference() == Sched::ILP &&
273           "Unknown sched type!");
274    return createILPListDAGScheduler(IS, OptLevel);
275  }
276
277} // end namespace llvm
278
279// EmitInstrWithCustomInserter - This method should be implemented by targets
280// that mark instructions with the 'usesCustomInserter' flag.  These
281// instructions are special in various ways, which require special support to
282// insert.  The specified MachineInstr is created but not inserted into any
283// basic blocks, and this method is called to expand it into a sequence of
284// instructions, potentially also creating new basic blocks and control flow.
285// When new basic blocks are inserted and the edges from MBB to its successors
286// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
287// DenseMap.
288MachineBasicBlock *
289TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
290                                            MachineBasicBlock *MBB) const {
291#ifndef NDEBUG
292  dbgs() << "If a target marks an instruction with "
293          "'usesCustomInserter', it must implement "
294          "TargetLowering::EmitInstrWithCustomInserter!";
295#endif
296  llvm_unreachable(nullptr);
297}
298
299void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
300                                                   SDNode *Node) const {
301  assert(!MI.hasPostISelHook() &&
302         "If a target marks an instruction with 'hasPostISelHook', "
303         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304}
305
306//===----------------------------------------------------------------------===//
307// SelectionDAGISel code
308//===----------------------------------------------------------------------===//
309
310SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
311    : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
312      SwiftError(new SwiftErrorValueTracking()),
313      CurDAG(new SelectionDAG(tm, OL)),
314      SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
315                                                OL)),
316      AA(), GFI(), OptLevel(OL), DAGSize(0) {
317  initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318  initializeBranchProbabilityInfoWrapperPassPass(
319      *PassRegistry::getPassRegistry());
320  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321  initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
322}
323
324SelectionDAGISel::~SelectionDAGISel() {
325  delete CurDAG;
326  delete SwiftError;
327}
328
329void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330  if (OptLevel != CodeGenOpt::None)
331    AU.addRequired<AAResultsWrapperPass>();
332  AU.addRequired<GCModuleInfo>();
333  AU.addRequired<StackProtector>();
334  AU.addPreserved<GCModuleInfo>();
335  AU.addRequired<TargetLibraryInfoWrapperPass>();
336  AU.addRequired<TargetTransformInfoWrapperPass>();
337  if (UseMBPI && OptLevel != CodeGenOpt::None)
338    AU.addRequired<BranchProbabilityInfoWrapperPass>();
339  AU.addRequired<ProfileSummaryInfoWrapperPass>();
340  LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
341  MachineFunctionPass::getAnalysisUsage(AU);
342}
343
344/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
345/// may trap on it.  In this case we have to split the edge so that the path
346/// through the predecessor block that doesn't go to the phi block doesn't
347/// execute the possibly trapping instruction. If available, we pass domtree
348/// and loop info to be updated when we split critical edges. This is because
349/// SelectionDAGISel preserves these analyses.
350/// This is required for correctness, so it must be done at -O0.
351///
352static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
353                                         LoopInfo *LI) {
354  // Loop for blocks with phi nodes.
355  for (BasicBlock &BB : Fn) {
356    PHINode *PN = dyn_cast<PHINode>(BB.begin());
357    if (!PN) continue;
358
359  ReprocessBlock:
360    // For each block with a PHI node, check to see if any of the input values
361    // are potentially trapping constant expressions.  Constant expressions are
362    // the only potentially trapping value that can occur as the argument to a
363    // PHI.
364    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
365      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
366        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
367        if (!CE || !CE->canTrap()) continue;
368
369        // The only case we have to worry about is when the edge is critical.
370        // Since this block has a PHI Node, we assume it has multiple input
371        // edges: check to see if the pred has multiple successors.
372        BasicBlock *Pred = PN->getIncomingBlock(i);
373        if (Pred->getTerminator()->getNumSuccessors() == 1)
374          continue;
375
376        // Okay, we have to split this edge.
377        SplitCriticalEdge(
378            Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
379            CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
380        goto ReprocessBlock;
381      }
382  }
383}
384
385static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
386                                         MachineModuleInfo &MMI) {
387  // Only needed for MSVC
388  if (!TT.isWindowsMSVCEnvironment())
389    return;
390
391  // If it's already set, nothing to do.
392  if (MMI.usesMSVCFloatingPoint())
393    return;
394
395  for (const Instruction &I : instructions(F)) {
396    if (I.getType()->isFPOrFPVectorTy()) {
397      MMI.setUsesMSVCFloatingPoint(true);
398      return;
399    }
400    for (const auto &Op : I.operands()) {
401      if (Op->getType()->isFPOrFPVectorTy()) {
402        MMI.setUsesMSVCFloatingPoint(true);
403        return;
404      }
405    }
406  }
407}
408
409bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
410  // If we already selected that function, we do not need to run SDISel.
411  if (mf.getProperties().hasProperty(
412          MachineFunctionProperties::Property::Selected))
413    return false;
414  // Do some sanity-checking on the command-line options.
415  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
416         "-fast-isel-abort > 0 requires -fast-isel");
417
418  const Function &Fn = mf.getFunction();
419  MF = &mf;
420
421  // Reset the target options before resetting the optimization
422  // level below.
423  // FIXME: This is a horrible hack and should be processed via
424  // codegen looking at the optimization level explicitly when
425  // it wants to look at it.
426  TM.resetTargetOptions(Fn);
427  // Reset OptLevel to None for optnone functions.
428  CodeGenOpt::Level NewOptLevel = OptLevel;
429  if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
430    NewOptLevel = CodeGenOpt::None;
431  OptLevelChanger OLC(*this, NewOptLevel);
432
433  TII = MF->getSubtarget().getInstrInfo();
434  TLI = MF->getSubtarget().getTargetLowering();
435  RegInfo = &MF->getRegInfo();
436  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
437  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
438  ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
439  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
440  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
441  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
442  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
443  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
444  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
445              &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
446              nullptr;
447
448  LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
449
450  SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
451
452  CurDAG->init(*MF, *ORE, this, LibInfo,
453               getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
454  FuncInfo->set(Fn, *MF, CurDAG);
455  SwiftError->setFunction(*MF);
456
457  // Now get the optional analyzes if we want to.
458  // This is based on the possibly changed OptLevel (after optnone is taken
459  // into account).  That's unfortunate but OK because it just means we won't
460  // ask for passes that have been required anyway.
461
462  if (UseMBPI && OptLevel != CodeGenOpt::None)
463    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
464  else
465    FuncInfo->BPI = nullptr;
466
467  if (OptLevel != CodeGenOpt::None)
468    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
469  else
470    AA = nullptr;
471
472  SDB->init(GFI, AA, LibInfo);
473
474  MF->setHasInlineAsm(false);
475
476  FuncInfo->SplitCSR = false;
477
478  // We split CSR if the target supports it for the given function
479  // and the function has only return exits.
480  if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
481    FuncInfo->SplitCSR = true;
482
483    // Collect all the return blocks.
484    for (const BasicBlock &BB : Fn) {
485      if (!succ_empty(&BB))
486        continue;
487
488      const Instruction *Term = BB.getTerminator();
489      if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
490        continue;
491
492      // Bail out if the exit block is not Return nor Unreachable.
493      FuncInfo->SplitCSR = false;
494      break;
495    }
496  }
497
498  MachineBasicBlock *EntryMBB = &MF->front();
499  if (FuncInfo->SplitCSR)
500    // This performs initialization so lowering for SplitCSR will be correct.
501    TLI->initializeSplitCSR(EntryMBB);
502
503  SelectAllBasicBlocks(Fn);
504  if (FastISelFailed && EnableFastISelFallbackReport) {
505    DiagnosticInfoISelFallback DiagFallback(Fn);
506    Fn.getContext().diagnose(DiagFallback);
507  }
508
509  // Replace forward-declared registers with the registers containing
510  // the desired value.
511  // Note: it is important that this happens **before** the call to
512  // EmitLiveInCopies, since implementations can skip copies of unused
513  // registers. If we don't apply the reg fixups before, some registers may
514  // appear as unused and will be skipped, resulting in bad MI.
515  MachineRegisterInfo &MRI = MF->getRegInfo();
516  for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
517                                              E = FuncInfo->RegFixups.end();
518       I != E; ++I) {
519    unsigned From = I->first;
520    unsigned To = I->second;
521    // If To is also scheduled to be replaced, find what its ultimate
522    // replacement is.
523    while (true) {
524      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
525      if (J == E)
526        break;
527      To = J->second;
528    }
529    // Make sure the new register has a sufficiently constrained register class.
530    if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
531      MRI.constrainRegClass(To, MRI.getRegClass(From));
532    // Replace it.
533
534    // Replacing one register with another won't touch the kill flags.
535    // We need to conservatively clear the kill flags as a kill on the old
536    // register might dominate existing uses of the new register.
537    if (!MRI.use_empty(To))
538      MRI.clearKillFlags(From);
539    MRI.replaceRegWith(From, To);
540  }
541
542  // If the first basic block in the function has live ins that need to be
543  // copied into vregs, emit the copies into the top of the block before
544  // emitting the code for the block.
545  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
546  RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
547
548  // Insert copies in the entry block and the return blocks.
549  if (FuncInfo->SplitCSR) {
550    SmallVector<MachineBasicBlock*, 4> Returns;
551    // Collect all the return blocks.
552    for (MachineBasicBlock &MBB : mf) {
553      if (!MBB.succ_empty())
554        continue;
555
556      MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
557      if (Term != MBB.end() && Term->isReturn()) {
558        Returns.push_back(&MBB);
559        continue;
560      }
561    }
562    TLI->insertCopiesSplitCSR(EntryMBB, Returns);
563  }
564
565  DenseMap<unsigned, unsigned> LiveInMap;
566  if (!FuncInfo->ArgDbgValues.empty())
567    for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
568      if (LI.second)
569        LiveInMap.insert(LI);
570
571  // Insert DBG_VALUE instructions for function arguments to the entry block.
572  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
573    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
574    bool hasFI = MI->getOperand(0).isFI();
575    Register Reg =
576        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
577    if (Register::isPhysicalRegister(Reg))
578      EntryMBB->insert(EntryMBB->begin(), MI);
579    else {
580      MachineInstr *Def = RegInfo->getVRegDef(Reg);
581      if (Def) {
582        MachineBasicBlock::iterator InsertPos = Def;
583        // FIXME: VR def may not be in entry block.
584        Def->getParent()->insert(std::next(InsertPos), MI);
585      } else
586        LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
587                          << Register::virtReg2Index(Reg) << "\n");
588    }
589
590    // If Reg is live-in then update debug info to track its copy in a vreg.
591    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
592    if (LDI != LiveInMap.end()) {
593      assert(!hasFI && "There's no handling of frame pointer updating here yet "
594                       "- add if needed");
595      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
596      MachineBasicBlock::iterator InsertPos = Def;
597      const MDNode *Variable = MI->getDebugVariable();
598      const MDNode *Expr = MI->getDebugExpression();
599      DebugLoc DL = MI->getDebugLoc();
600      bool IsIndirect = MI->isIndirectDebugValue();
601      if (IsIndirect)
602        assert(MI->getOperand(1).getImm() == 0 &&
603               "DBG_VALUE with nonzero offset");
604      assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
605             "Expected inlined-at fields to agree");
606      // Def is never a terminator here, so it is ok to increment InsertPos.
607      BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
608              IsIndirect, LDI->second, Variable, Expr);
609
610      // If this vreg is directly copied into an exported register then
611      // that COPY instructions also need DBG_VALUE, if it is the only
612      // user of LDI->second.
613      MachineInstr *CopyUseMI = nullptr;
614      for (MachineRegisterInfo::use_instr_iterator
615           UI = RegInfo->use_instr_begin(LDI->second),
616           E = RegInfo->use_instr_end(); UI != E; ) {
617        MachineInstr *UseMI = &*(UI++);
618        if (UseMI->isDebugValue()) continue;
619        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
620          CopyUseMI = UseMI; continue;
621        }
622        // Otherwise this is another use or second copy use.
623        CopyUseMI = nullptr; break;
624      }
625      if (CopyUseMI) {
626        // Use MI's debug location, which describes where Variable was
627        // declared, rather than whatever is attached to CopyUseMI.
628        MachineInstr *NewMI =
629            BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
630                    CopyUseMI->getOperand(0).getReg(), Variable, Expr);
631        MachineBasicBlock::iterator Pos = CopyUseMI;
632        EntryMBB->insertAfter(Pos, NewMI);
633      }
634    }
635  }
636
637  // Determine if there are any calls in this machine function.
638  MachineFrameInfo &MFI = MF->getFrameInfo();
639  for (const auto &MBB : *MF) {
640    if (MFI.hasCalls() && MF->hasInlineAsm())
641      break;
642
643    for (const auto &MI : MBB) {
644      const MCInstrDesc &MCID = TII->get(MI.getOpcode());
645      if ((MCID.isCall() && !MCID.isReturn()) ||
646          MI.isStackAligningInlineAsm()) {
647        MFI.setHasCalls(true);
648      }
649      if (MI.isInlineAsm()) {
650        MF->setHasInlineAsm(true);
651      }
652    }
653  }
654
655  // Determine if there is a call to setjmp in the machine function.
656  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
657
658  // Determine if floating point is used for msvc
659  computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
660
661  // Replace forward-declared registers with the registers containing
662  // the desired value.
663  for (DenseMap<unsigned, unsigned>::iterator
664       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
665       I != E; ++I) {
666    unsigned From = I->first;
667    unsigned To = I->second;
668    // If To is also scheduled to be replaced, find what its ultimate
669    // replacement is.
670    while (true) {
671      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
672      if (J == E) break;
673      To = J->second;
674    }
675    // Make sure the new register has a sufficiently constrained register class.
676    if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
677      MRI.constrainRegClass(To, MRI.getRegClass(From));
678    // Replace it.
679
680
681    // Replacing one register with another won't touch the kill flags.
682    // We need to conservatively clear the kill flags as a kill on the old
683    // register might dominate existing uses of the new register.
684    if (!MRI.use_empty(To))
685      MRI.clearKillFlags(From);
686    MRI.replaceRegWith(From, To);
687  }
688
689  TLI->finalizeLowering(*MF);
690
691  // Release function-specific state. SDB and CurDAG are already cleared
692  // at this point.
693  FuncInfo->clear();
694
695  LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
696  LLVM_DEBUG(MF->print(dbgs()));
697
698  return true;
699}
700
701static void reportFastISelFailure(MachineFunction &MF,
702                                  OptimizationRemarkEmitter &ORE,
703                                  OptimizationRemarkMissed &R,
704                                  bool ShouldAbort) {
705  // Print the function name explicitly if we don't have a debug location (which
706  // makes the diagnostic less useful) or if we're going to emit a raw error.
707  if (!R.getLocation().isValid() || ShouldAbort)
708    R << (" (in function: " + MF.getName() + ")").str();
709
710  if (ShouldAbort)
711    report_fatal_error(R.getMsg());
712
713  ORE.emit(R);
714}
715
716void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
717                                        BasicBlock::const_iterator End,
718                                        bool &HadTailCall) {
719  // Allow creating illegal types during DAG building for the basic block.
720  CurDAG->NewNodesMustHaveLegalTypes = false;
721
722  // Lower the instructions. If a call is emitted as a tail call, cease emitting
723  // nodes for this block.
724  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
725    if (!ElidedArgCopyInstrs.count(&*I))
726      SDB->visit(*I);
727  }
728
729  // Make sure the root of the DAG is up-to-date.
730  CurDAG->setRoot(SDB->getControlRoot());
731  HadTailCall = SDB->HasTailCall;
732  SDB->resolveOrClearDbgInfo();
733  SDB->clear();
734
735  // Final step, emit the lowered DAG as machine code.
736  CodeGenAndEmitDAG();
737}
738
739void SelectionDAGISel::ComputeLiveOutVRegInfo() {
740  SmallPtrSet<SDNode *, 16> Added;
741  SmallVector<SDNode*, 128> Worklist;
742
743  Worklist.push_back(CurDAG->getRoot().getNode());
744  Added.insert(CurDAG->getRoot().getNode());
745
746  KnownBits Known;
747
748  do {
749    SDNode *N = Worklist.pop_back_val();
750
751    // Otherwise, add all chain operands to the worklist.
752    for (const SDValue &Op : N->op_values())
753      if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
754        Worklist.push_back(Op.getNode());
755
756    // If this is a CopyToReg with a vreg dest, process it.
757    if (N->getOpcode() != ISD::CopyToReg)
758      continue;
759
760    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
761    if (!Register::isVirtualRegister(DestReg))
762      continue;
763
764    // Ignore non-integer values.
765    SDValue Src = N->getOperand(2);
766    EVT SrcVT = Src.getValueType();
767    if (!SrcVT.isInteger())
768      continue;
769
770    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
771    Known = CurDAG->computeKnownBits(Src);
772    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
773  } while (!Worklist.empty());
774}
775
776void SelectionDAGISel::CodeGenAndEmitDAG() {
777  StringRef GroupName = "sdag";
778  StringRef GroupDescription = "Instruction Selection and Scheduling";
779  std::string BlockName;
780  bool MatchFilterBB = false; (void)MatchFilterBB;
781#ifndef NDEBUG
782  TargetTransformInfo &TTI =
783      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
784#endif
785
786  // Pre-type legalization allow creation of any node types.
787  CurDAG->NewNodesMustHaveLegalTypes = false;
788
789#ifndef NDEBUG
790  MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
791                   FilterDAGBasicBlockName ==
792                       FuncInfo->MBB->getBasicBlock()->getName());
793#endif
794#ifdef NDEBUG
795  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
796      ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
797      ViewSUnitDAGs)
798#endif
799  {
800    BlockName =
801        (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
802  }
803  LLVM_DEBUG(dbgs() << "Initial selection DAG: "
804                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
805                    << "'\n";
806             CurDAG->dump());
807
808  if (ViewDAGCombine1 && MatchFilterBB)
809    CurDAG->viewGraph("dag-combine1 input for " + BlockName);
810
811  // Run the DAG combiner in pre-legalize mode.
812  {
813    NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
814                       GroupDescription, TimePassesIsEnabled);
815    CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
816  }
817
818#ifndef NDEBUG
819  if (TTI.hasBranchDivergence())
820    CurDAG->VerifyDAGDiverence();
821#endif
822
823  LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
824                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
825                    << "'\n";
826             CurDAG->dump());
827
828  // Second step, hack on the DAG until it only uses operations and types that
829  // the target supports.
830  if (ViewLegalizeTypesDAGs && MatchFilterBB)
831    CurDAG->viewGraph("legalize-types input for " + BlockName);
832
833  bool Changed;
834  {
835    NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
836                       GroupDescription, TimePassesIsEnabled);
837    Changed = CurDAG->LegalizeTypes();
838  }
839
840#ifndef NDEBUG
841  if (TTI.hasBranchDivergence())
842    CurDAG->VerifyDAGDiverence();
843#endif
844
845  LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
846                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
847                    << "'\n";
848             CurDAG->dump());
849
850  // Only allow creation of legal node types.
851  CurDAG->NewNodesMustHaveLegalTypes = true;
852
853  if (Changed) {
854    if (ViewDAGCombineLT && MatchFilterBB)
855      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
856
857    // Run the DAG combiner in post-type-legalize mode.
858    {
859      NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
860                         GroupName, GroupDescription, TimePassesIsEnabled);
861      CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
862    }
863
864#ifndef NDEBUG
865    if (TTI.hasBranchDivergence())
866      CurDAG->VerifyDAGDiverence();
867#endif
868
869    LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
870                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
871                      << "'\n";
872               CurDAG->dump());
873  }
874
875  {
876    NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
877                       GroupDescription, TimePassesIsEnabled);
878    Changed = CurDAG->LegalizeVectors();
879  }
880
881  if (Changed) {
882    LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
883                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
884                      << "'\n";
885               CurDAG->dump());
886
887    {
888      NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
889                         GroupDescription, TimePassesIsEnabled);
890      CurDAG->LegalizeTypes();
891    }
892
893    LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
894                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
895                      << "'\n";
896               CurDAG->dump());
897
898    if (ViewDAGCombineLT && MatchFilterBB)
899      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
900
901    // Run the DAG combiner in post-type-legalize mode.
902    {
903      NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
904                         GroupName, GroupDescription, TimePassesIsEnabled);
905      CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
906    }
907
908    LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
909                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
910                      << "'\n";
911               CurDAG->dump());
912
913#ifndef NDEBUG
914    if (TTI.hasBranchDivergence())
915      CurDAG->VerifyDAGDiverence();
916#endif
917  }
918
919  if (ViewLegalizeDAGs && MatchFilterBB)
920    CurDAG->viewGraph("legalize input for " + BlockName);
921
922  {
923    NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
924                       GroupDescription, TimePassesIsEnabled);
925    CurDAG->Legalize();
926  }
927
928#ifndef NDEBUG
929  if (TTI.hasBranchDivergence())
930    CurDAG->VerifyDAGDiverence();
931#endif
932
933  LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
934                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
935                    << "'\n";
936             CurDAG->dump());
937
938  if (ViewDAGCombine2 && MatchFilterBB)
939    CurDAG->viewGraph("dag-combine2 input for " + BlockName);
940
941  // Run the DAG combiner in post-legalize mode.
942  {
943    NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
944                       GroupDescription, TimePassesIsEnabled);
945    CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
946  }
947
948#ifndef NDEBUG
949  if (TTI.hasBranchDivergence())
950    CurDAG->VerifyDAGDiverence();
951#endif
952
953  LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
954                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
955                    << "'\n";
956             CurDAG->dump());
957
958  if (OptLevel != CodeGenOpt::None)
959    ComputeLiveOutVRegInfo();
960
961  if (ViewISelDAGs && MatchFilterBB)
962    CurDAG->viewGraph("isel input for " + BlockName);
963
964  // Third, instruction select all of the operations to machine code, adding the
965  // code to the MachineBasicBlock.
966  {
967    NamedRegionTimer T("isel", "Instruction Selection", GroupName,
968                       GroupDescription, TimePassesIsEnabled);
969    DoInstructionSelection();
970  }
971
972  LLVM_DEBUG(dbgs() << "Selected selection DAG: "
973                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
974                    << "'\n";
975             CurDAG->dump());
976
977  if (ViewSchedDAGs && MatchFilterBB)
978    CurDAG->viewGraph("scheduler input for " + BlockName);
979
980  // Schedule machine code.
981  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
982  {
983    NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
984                       GroupDescription, TimePassesIsEnabled);
985    Scheduler->Run(CurDAG, FuncInfo->MBB);
986  }
987
988  if (ViewSUnitDAGs && MatchFilterBB)
989    Scheduler->viewGraph();
990
991  // Emit machine code to BB.  This can change 'BB' to the last block being
992  // inserted into.
993  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
994  {
995    NamedRegionTimer T("emit", "Instruction Creation", GroupName,
996                       GroupDescription, TimePassesIsEnabled);
997
998    // FuncInfo->InsertPt is passed by reference and set to the end of the
999    // scheduled instructions.
1000    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1001  }
1002
1003  // If the block was split, make sure we update any references that are used to
1004  // update PHI nodes later on.
1005  if (FirstMBB != LastMBB)
1006    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1007
1008  // Free the scheduler state.
1009  {
1010    NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1011                       GroupDescription, TimePassesIsEnabled);
1012    delete Scheduler;
1013  }
1014
1015  // Free the SelectionDAG state, now that we're finished with it.
1016  CurDAG->clear();
1017}
1018
1019namespace {
1020
1021/// ISelUpdater - helper class to handle updates of the instruction selection
1022/// graph.
1023class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1024  SelectionDAG::allnodes_iterator &ISelPosition;
1025
1026public:
1027  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1028    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1029
1030  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1031  /// deleted is the current ISelPosition node, update ISelPosition.
1032  ///
1033  void NodeDeleted(SDNode *N, SDNode *E) override {
1034    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1035      ++ISelPosition;
1036  }
1037};
1038
1039} // end anonymous namespace
1040
1041// This function is used to enforce the topological node id property
1042// property leveraged during Instruction selection. Before selection all
1043// nodes are given a non-negative id such that all nodes have a larger id than
1044// their operands. As this holds transitively we can prune checks that a node N
1045// is a predecessor of M another by not recursively checking through M's
1046// operands if N's ID is larger than M's ID. This is significantly improves
1047// performance of for various legality checks (e.g. IsLegalToFold /
1048// UpdateChains).
1049
1050// However, when we fuse multiple nodes into a single node
1051// during selection we may induce a predecessor relationship between inputs and
1052// outputs of distinct nodes being merged violating the topological property.
1053// Should a fused node have a successor which has yet to be selected, our
1054// legality checks would be incorrect. To avoid this we mark all unselected
1055// sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1056// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1057// We use bit-negation to more clearly enforce that node id -1 can only be
1058// achieved by selected nodes). As the conversion is reversable the original Id,
1059// topological pruning can still be leveraged when looking for unselected nodes.
1060// This method is call internally in all ISel replacement calls.
1061void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1062  SmallVector<SDNode *, 4> Nodes;
1063  Nodes.push_back(Node);
1064
1065  while (!Nodes.empty()) {
1066    SDNode *N = Nodes.pop_back_val();
1067    for (auto *U : N->uses()) {
1068      auto UId = U->getNodeId();
1069      if (UId > 0) {
1070        InvalidateNodeId(U);
1071        Nodes.push_back(U);
1072      }
1073    }
1074  }
1075}
1076
1077// InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1078// NodeId with the equivalent node id which is invalid for topological
1079// pruning.
1080void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1081  int InvalidId = -(N->getNodeId() + 1);
1082  N->setNodeId(InvalidId);
1083}
1084
1085// getUninvalidatedNodeId - get original uninvalidated node id.
1086int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1087  int Id = N->getNodeId();
1088  if (Id < -1)
1089    return -(Id + 1);
1090  return Id;
1091}
1092
1093void SelectionDAGISel::DoInstructionSelection() {
1094  LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1095                    << printMBBReference(*FuncInfo->MBB) << " '"
1096                    << FuncInfo->MBB->getName() << "'\n");
1097
1098  PreprocessISelDAG();
1099
1100  // Select target instructions for the DAG.
1101  {
1102    // Number all nodes with a topological order and set DAGSize.
1103    DAGSize = CurDAG->AssignTopologicalOrder();
1104
1105    // Create a dummy node (which is not added to allnodes), that adds
1106    // a reference to the root node, preventing it from being deleted,
1107    // and tracking any changes of the root.
1108    HandleSDNode Dummy(CurDAG->getRoot());
1109    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1110    ++ISelPosition;
1111
1112    // Make sure that ISelPosition gets properly updated when nodes are deleted
1113    // in calls made from this function.
1114    ISelUpdater ISU(*CurDAG, ISelPosition);
1115
1116    // The AllNodes list is now topological-sorted. Visit the
1117    // nodes by starting at the end of the list (the root of the
1118    // graph) and preceding back toward the beginning (the entry
1119    // node).
1120    while (ISelPosition != CurDAG->allnodes_begin()) {
1121      SDNode *Node = &*--ISelPosition;
1122      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1123      // but there are currently some corner cases that it misses. Also, this
1124      // makes it theoretically possible to disable the DAGCombiner.
1125      if (Node->use_empty())
1126        continue;
1127
1128#ifndef NDEBUG
1129      SmallVector<SDNode *, 4> Nodes;
1130      Nodes.push_back(Node);
1131
1132      while (!Nodes.empty()) {
1133        auto N = Nodes.pop_back_val();
1134        if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1135          continue;
1136        for (const SDValue &Op : N->op_values()) {
1137          if (Op->getOpcode() == ISD::TokenFactor)
1138            Nodes.push_back(Op.getNode());
1139          else {
1140            // We rely on topological ordering of node ids for checking for
1141            // cycles when fusing nodes during selection. All unselected nodes
1142            // successors of an already selected node should have a negative id.
1143            // This assertion will catch such cases. If this assertion triggers
1144            // it is likely you using DAG-level Value/Node replacement functions
1145            // (versus equivalent ISEL replacement) in backend-specific
1146            // selections. See comment in EnforceNodeIdInvariant for more
1147            // details.
1148            assert(Op->getNodeId() != -1 &&
1149                   "Node has already selected predecessor node");
1150          }
1151        }
1152      }
1153#endif
1154
1155      // When we are using non-default rounding modes or FP exception behavior
1156      // FP operations are represented by StrictFP pseudo-operations.  For
1157      // targets that do not (yet) understand strict FP operations directly,
1158      // we convert them to normal FP opcodes instead at this point.  This
1159      // will allow them to be handled by existing target-specific instruction
1160      // selectors.
1161      if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1162        // For some opcodes, we need to call TLI->getOperationAction using
1163        // the first operand type instead of the result type.  Note that this
1164        // must match what SelectionDAGLegalize::LegalizeOp is doing.
1165        EVT ActionVT;
1166        switch (Node->getOpcode()) {
1167        case ISD::STRICT_SINT_TO_FP:
1168        case ISD::STRICT_UINT_TO_FP:
1169        case ISD::STRICT_LRINT:
1170        case ISD::STRICT_LLRINT:
1171        case ISD::STRICT_LROUND:
1172        case ISD::STRICT_LLROUND:
1173        case ISD::STRICT_FSETCC:
1174        case ISD::STRICT_FSETCCS:
1175          ActionVT = Node->getOperand(1).getValueType();
1176          break;
1177        default:
1178          ActionVT = Node->getValueType(0);
1179          break;
1180        }
1181        if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1182            == TargetLowering::Expand)
1183          Node = CurDAG->mutateStrictFPToFP(Node);
1184      }
1185
1186      LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1187                 Node->dump(CurDAG));
1188
1189      Select(Node);
1190    }
1191
1192    CurDAG->setRoot(Dummy.getValue());
1193  }
1194
1195  LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1196
1197  PostprocessISelDAG();
1198}
1199
1200static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1201  for (const User *U : CPI->users()) {
1202    if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1203      Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1204      if (IID == Intrinsic::eh_exceptionpointer ||
1205          IID == Intrinsic::eh_exceptioncode)
1206        return true;
1207    }
1208  }
1209  return false;
1210}
1211
1212// wasm.landingpad.index intrinsic is for associating a landing pad index number
1213// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1214// and store the mapping in the function.
1215static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1216                                   const CatchPadInst *CPI) {
1217  MachineFunction *MF = MBB->getParent();
1218  // In case of single catch (...), we don't emit LSDA, so we don't need
1219  // this information.
1220  bool IsSingleCatchAllClause =
1221      CPI->getNumArgOperands() == 1 &&
1222      cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1223  if (!IsSingleCatchAllClause) {
1224    // Create a mapping from landing pad label to landing pad index.
1225    bool IntrFound = false;
1226    for (const User *U : CPI->users()) {
1227      if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1228        Intrinsic::ID IID = Call->getIntrinsicID();
1229        if (IID == Intrinsic::wasm_landingpad_index) {
1230          Value *IndexArg = Call->getArgOperand(1);
1231          int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1232          MF->setWasmLandingPadIndex(MBB, Index);
1233          IntrFound = true;
1234          break;
1235        }
1236      }
1237    }
1238    assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1239    (void)IntrFound;
1240  }
1241}
1242
1243/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1244/// do other setup for EH landing-pad blocks.
1245bool SelectionDAGISel::PrepareEHLandingPad() {
1246  MachineBasicBlock *MBB = FuncInfo->MBB;
1247  const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1248  const BasicBlock *LLVMBB = MBB->getBasicBlock();
1249  const TargetRegisterClass *PtrRC =
1250      TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1251
1252  auto Pers = classifyEHPersonality(PersonalityFn);
1253
1254  // Catchpads have one live-in register, which typically holds the exception
1255  // pointer or code.
1256  if (isFuncletEHPersonality(Pers)) {
1257    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1258      if (hasExceptionPointerOrCodeUser(CPI)) {
1259        // Get or create the virtual register to hold the pointer or code.  Mark
1260        // the live in physreg and copy into the vreg.
1261        MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1262        assert(EHPhysReg && "target lacks exception pointer register");
1263        MBB->addLiveIn(EHPhysReg);
1264        unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1265        BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1266                TII->get(TargetOpcode::COPY), VReg)
1267            .addReg(EHPhysReg, RegState::Kill);
1268      }
1269    }
1270    return true;
1271  }
1272
1273  // Add a label to mark the beginning of the landing pad.  Deletion of the
1274  // landing pad can thus be detected via the MachineModuleInfo.
1275  MCSymbol *Label = MF->addLandingPad(MBB);
1276
1277  const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1278  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1279    .addSym(Label);
1280
1281  if (Pers == EHPersonality::Wasm_CXX) {
1282    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1283      mapWasmLandingPadIndex(MBB, CPI);
1284  } else {
1285    // Assign the call site to the landing pad's begin label.
1286    MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1287    // Mark exception register as live in.
1288    if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1289      FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1290    // Mark exception selector register as live in.
1291    if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1292      FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1293  }
1294
1295  return true;
1296}
1297
1298/// isFoldedOrDeadInstruction - Return true if the specified instruction is
1299/// side-effect free and is either dead or folded into a generated instruction.
1300/// Return false if it needs to be emitted.
1301static bool isFoldedOrDeadInstruction(const Instruction *I,
1302                                      const FunctionLoweringInfo &FuncInfo) {
1303  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1304         !I->isTerminator() &&     // Terminators aren't folded.
1305         !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1306         !I->isEHPad() &&             // EH pad instructions aren't folded.
1307         !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1308}
1309
1310/// Collect llvm.dbg.declare information. This is done after argument lowering
1311/// in case the declarations refer to arguments.
1312static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1313  MachineFunction *MF = FuncInfo.MF;
1314  const DataLayout &DL = MF->getDataLayout();
1315  for (const BasicBlock &BB : *FuncInfo.Fn) {
1316    for (const Instruction &I : BB) {
1317      const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1318      if (!DI)
1319        continue;
1320
1321      assert(DI->getVariable() && "Missing variable");
1322      assert(DI->getDebugLoc() && "Missing location");
1323      const Value *Address = DI->getAddress();
1324      if (!Address)
1325        continue;
1326
1327      // Look through casts and constant offset GEPs. These mostly come from
1328      // inalloca.
1329      APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1330      Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1331
1332      // Check if the variable is a static alloca or a byval or inalloca
1333      // argument passed in memory. If it is not, then we will ignore this
1334      // intrinsic and handle this during isel like dbg.value.
1335      int FI = std::numeric_limits<int>::max();
1336      if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1337        auto SI = FuncInfo.StaticAllocaMap.find(AI);
1338        if (SI != FuncInfo.StaticAllocaMap.end())
1339          FI = SI->second;
1340      } else if (const auto *Arg = dyn_cast<Argument>(Address))
1341        FI = FuncInfo.getArgumentFrameIndex(Arg);
1342
1343      if (FI == std::numeric_limits<int>::max())
1344        continue;
1345
1346      DIExpression *Expr = DI->getExpression();
1347      if (Offset.getBoolValue())
1348        Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1349                                     Offset.getZExtValue());
1350      MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1351    }
1352  }
1353}
1354
1355void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1356  FastISelFailed = false;
1357  // Initialize the Fast-ISel state, if needed.
1358  FastISel *FastIS = nullptr;
1359  if (TM.Options.EnableFastISel) {
1360    LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1361    FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1362  }
1363
1364  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1365
1366  // Lower arguments up front. An RPO iteration always visits the entry block
1367  // first.
1368  assert(*RPOT.begin() == &Fn.getEntryBlock());
1369  ++NumEntryBlocks;
1370
1371  // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1372  FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1373  FuncInfo->InsertPt = FuncInfo->MBB->begin();
1374
1375  CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1376
1377  if (!FastIS) {
1378    LowerArguments(Fn);
1379  } else {
1380    // See if fast isel can lower the arguments.
1381    FastIS->startNewBlock();
1382    if (!FastIS->lowerArguments()) {
1383      FastISelFailed = true;
1384      // Fast isel failed to lower these arguments
1385      ++NumFastIselFailLowerArguments;
1386
1387      OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1388                                 Fn.getSubprogram(),
1389                                 &Fn.getEntryBlock());
1390      R << "FastISel didn't lower all arguments: "
1391        << ore::NV("Prototype", Fn.getType());
1392      reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1393
1394      // Use SelectionDAG argument lowering
1395      LowerArguments(Fn);
1396      CurDAG->setRoot(SDB->getControlRoot());
1397      SDB->clear();
1398      CodeGenAndEmitDAG();
1399    }
1400
1401    // If we inserted any instructions at the beginning, make a note of
1402    // where they are, so we can be sure to emit subsequent instructions
1403    // after them.
1404    if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1405      FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1406    else
1407      FastIS->setLastLocalValue(nullptr);
1408  }
1409
1410  bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1411
1412  if (FastIS && Inserted)
1413    FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1414
1415  processDbgDeclares(*FuncInfo);
1416
1417  // Iterate over all basic blocks in the function.
1418  StackProtector &SP = getAnalysis<StackProtector>();
1419  for (const BasicBlock *LLVMBB : RPOT) {
1420    if (OptLevel != CodeGenOpt::None) {
1421      bool AllPredsVisited = true;
1422      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1423           PI != PE; ++PI) {
1424        if (!FuncInfo->VisitedBBs.count(*PI)) {
1425          AllPredsVisited = false;
1426          break;
1427        }
1428      }
1429
1430      if (AllPredsVisited) {
1431        for (const PHINode &PN : LLVMBB->phis())
1432          FuncInfo->ComputePHILiveOutRegInfo(&PN);
1433      } else {
1434        for (const PHINode &PN : LLVMBB->phis())
1435          FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1436      }
1437
1438      FuncInfo->VisitedBBs.insert(LLVMBB);
1439    }
1440
1441    BasicBlock::const_iterator const Begin =
1442        LLVMBB->getFirstNonPHI()->getIterator();
1443    BasicBlock::const_iterator const End = LLVMBB->end();
1444    BasicBlock::const_iterator BI = End;
1445
1446    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1447    if (!FuncInfo->MBB)
1448      continue; // Some blocks like catchpads have no code or MBB.
1449
1450    // Insert new instructions after any phi or argument setup code.
1451    FuncInfo->InsertPt = FuncInfo->MBB->end();
1452
1453    // Setup an EH landing-pad block.
1454    FuncInfo->ExceptionPointerVirtReg = 0;
1455    FuncInfo->ExceptionSelectorVirtReg = 0;
1456    if (LLVMBB->isEHPad())
1457      if (!PrepareEHLandingPad())
1458        continue;
1459
1460    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1461    if (FastIS) {
1462      if (LLVMBB != &Fn.getEntryBlock())
1463        FastIS->startNewBlock();
1464
1465      unsigned NumFastIselRemaining = std::distance(Begin, End);
1466
1467      // Pre-assign swifterror vregs.
1468      SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1469
1470      // Do FastISel on as many instructions as possible.
1471      for (; BI != Begin; --BI) {
1472        const Instruction *Inst = &*std::prev(BI);
1473
1474        // If we no longer require this instruction, skip it.
1475        if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1476            ElidedArgCopyInstrs.count(Inst)) {
1477          --NumFastIselRemaining;
1478          continue;
1479        }
1480
1481        // Bottom-up: reset the insert pos at the top, after any local-value
1482        // instructions.
1483        FastIS->recomputeInsertPt();
1484
1485        // Try to select the instruction with FastISel.
1486        if (FastIS->selectInstruction(Inst)) {
1487          --NumFastIselRemaining;
1488          ++NumFastIselSuccess;
1489          // If fast isel succeeded, skip over all the folded instructions, and
1490          // then see if there is a load right before the selected instructions.
1491          // Try to fold the load if so.
1492          const Instruction *BeforeInst = Inst;
1493          while (BeforeInst != &*Begin) {
1494            BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1495            if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1496              break;
1497          }
1498          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1499              BeforeInst->hasOneUse() &&
1500              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1501            // If we succeeded, don't re-select the load.
1502            BI = std::next(BasicBlock::const_iterator(BeforeInst));
1503            --NumFastIselRemaining;
1504            ++NumFastIselSuccess;
1505          }
1506          continue;
1507        }
1508
1509        FastISelFailed = true;
1510
1511        // Then handle certain instructions as single-LLVM-Instruction blocks.
1512        // We cannot separate out GCrelocates to their own blocks since we need
1513        // to keep track of gc-relocates for a particular gc-statepoint. This is
1514        // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1515        // visitGCRelocate.
1516        if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
1517            !isGCResult(Inst)) {
1518          OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1519                                     Inst->getDebugLoc(), LLVMBB);
1520
1521          R << "FastISel missed call";
1522
1523          if (R.isEnabled() || EnableFastISelAbort) {
1524            std::string InstStrStorage;
1525            raw_string_ostream InstStr(InstStrStorage);
1526            InstStr << *Inst;
1527
1528            R << ": " << InstStr.str();
1529          }
1530
1531          reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1532
1533          if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1534              !Inst->use_empty()) {
1535            unsigned &R = FuncInfo->ValueMap[Inst];
1536            if (!R)
1537              R = FuncInfo->CreateRegs(Inst);
1538          }
1539
1540          bool HadTailCall = false;
1541          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1542          SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1543
1544          // If the call was emitted as a tail call, we're done with the block.
1545          // We also need to delete any previously emitted instructions.
1546          if (HadTailCall) {
1547            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1548            --BI;
1549            break;
1550          }
1551
1552          // Recompute NumFastIselRemaining as Selection DAG instruction
1553          // selection may have handled the call, input args, etc.
1554          unsigned RemainingNow = std::distance(Begin, BI);
1555          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1556          NumFastIselRemaining = RemainingNow;
1557          continue;
1558        }
1559
1560        OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1561                                   Inst->getDebugLoc(), LLVMBB);
1562
1563        bool ShouldAbort = EnableFastISelAbort;
1564        if (Inst->isTerminator()) {
1565          // Use a different message for terminator misses.
1566          R << "FastISel missed terminator";
1567          // Don't abort for terminator unless the level is really high
1568          ShouldAbort = (EnableFastISelAbort > 2);
1569        } else {
1570          R << "FastISel missed";
1571        }
1572
1573        if (R.isEnabled() || EnableFastISelAbort) {
1574          std::string InstStrStorage;
1575          raw_string_ostream InstStr(InstStrStorage);
1576          InstStr << *Inst;
1577          R << ": " << InstStr.str();
1578        }
1579
1580        reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1581
1582        NumFastIselFailures += NumFastIselRemaining;
1583        break;
1584      }
1585
1586      FastIS->recomputeInsertPt();
1587    }
1588
1589    if (SP.shouldEmitSDCheck(*LLVMBB)) {
1590      bool FunctionBasedInstrumentation =
1591          TLI->getSSPStackGuardCheck(*Fn.getParent());
1592      SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1593                                   FunctionBasedInstrumentation);
1594    }
1595
1596    if (Begin != BI)
1597      ++NumDAGBlocks;
1598    else
1599      ++NumFastIselBlocks;
1600
1601    if (Begin != BI) {
1602      // Run SelectionDAG instruction selection on the remainder of the block
1603      // not handled by FastISel. If FastISel is not run, this is the entire
1604      // block.
1605      bool HadTailCall;
1606      SelectBasicBlock(Begin, BI, HadTailCall);
1607
1608      // But if FastISel was run, we already selected some of the block.
1609      // If we emitted a tail-call, we need to delete any previously emitted
1610      // instruction that follows it.
1611      if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1612        FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1613    }
1614
1615    if (FastIS)
1616      FastIS->finishBasicBlock();
1617    FinishBasicBlock();
1618    FuncInfo->PHINodesToUpdate.clear();
1619    ElidedArgCopyInstrs.clear();
1620  }
1621
1622  SP.copyToMachineFrameInfo(MF->getFrameInfo());
1623
1624  SwiftError->propagateVRegs();
1625
1626  delete FastIS;
1627  SDB->clearDanglingDebugInfo();
1628  SDB->SPDescriptor.resetPerFunctionState();
1629}
1630
1631/// Given that the input MI is before a partial terminator sequence TSeq, return
1632/// true if M + TSeq also a partial terminator sequence.
1633///
1634/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1635/// lowering copy vregs into physical registers, which are then passed into
1636/// terminator instructors so we can satisfy ABI constraints. A partial
1637/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1638/// may be the whole terminator sequence).
1639static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1640  // If we do not have a copy or an implicit def, we return true if and only if
1641  // MI is a debug value.
1642  if (!MI.isCopy() && !MI.isImplicitDef())
1643    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1644    // physical registers if there is debug info associated with the terminator
1645    // of our mbb. We want to include said debug info in our terminator
1646    // sequence, so we return true in that case.
1647    return MI.isDebugValue();
1648
1649  // We have left the terminator sequence if we are not doing one of the
1650  // following:
1651  //
1652  // 1. Copying a vreg into a physical register.
1653  // 2. Copying a vreg into a vreg.
1654  // 3. Defining a register via an implicit def.
1655
1656  // OPI should always be a register definition...
1657  MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1658  if (!OPI->isReg() || !OPI->isDef())
1659    return false;
1660
1661  // Defining any register via an implicit def is always ok.
1662  if (MI.isImplicitDef())
1663    return true;
1664
1665  // Grab the copy source...
1666  MachineInstr::const_mop_iterator OPI2 = OPI;
1667  ++OPI2;
1668  assert(OPI2 != MI.operands_end()
1669         && "Should have a copy implying we should have 2 arguments.");
1670
1671  // Make sure that the copy dest is not a vreg when the copy source is a
1672  // physical register.
1673  if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1674                         Register::isPhysicalRegister(OPI2->getReg())))
1675    return false;
1676
1677  return true;
1678}
1679
1680/// Find the split point at which to splice the end of BB into its success stack
1681/// protector check machine basic block.
1682///
1683/// On many platforms, due to ABI constraints, terminators, even before register
1684/// allocation, use physical registers. This creates an issue for us since
1685/// physical registers at this point can not travel across basic
1686/// blocks. Luckily, selectiondag always moves physical registers into vregs
1687/// when they enter functions and moves them through a sequence of copies back
1688/// into the physical registers right before the terminator creating a
1689/// ``Terminator Sequence''. This function is searching for the beginning of the
1690/// terminator sequence so that we can ensure that we splice off not just the
1691/// terminator, but additionally the copies that move the vregs into the
1692/// physical registers.
1693static MachineBasicBlock::iterator
1694FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1695  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1696  //
1697  if (SplitPoint == BB->begin())
1698    return SplitPoint;
1699
1700  MachineBasicBlock::iterator Start = BB->begin();
1701  MachineBasicBlock::iterator Previous = SplitPoint;
1702  --Previous;
1703
1704  while (MIIsInTerminatorSequence(*Previous)) {
1705    SplitPoint = Previous;
1706    if (Previous == Start)
1707      break;
1708    --Previous;
1709  }
1710
1711  return SplitPoint;
1712}
1713
1714void
1715SelectionDAGISel::FinishBasicBlock() {
1716  LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1717                    << FuncInfo->PHINodesToUpdate.size() << "\n";
1718             for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1719                  ++i) dbgs()
1720             << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1721             << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1722
1723  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1724  // PHI nodes in successors.
1725  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1726    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1727    assert(PHI->isPHI() &&
1728           "This is not a machine PHI node that we are updating!");
1729    if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1730      continue;
1731    PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1732  }
1733
1734  // Handle stack protector.
1735  if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1736    // The target provides a guard check function. There is no need to
1737    // generate error handling code or to split current basic block.
1738    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1739
1740    // Add load and check to the basicblock.
1741    FuncInfo->MBB = ParentMBB;
1742    FuncInfo->InsertPt =
1743        FindSplitPointForStackProtector(ParentMBB);
1744    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1745    CurDAG->setRoot(SDB->getRoot());
1746    SDB->clear();
1747    CodeGenAndEmitDAG();
1748
1749    // Clear the Per-BB State.
1750    SDB->SPDescriptor.resetPerBBState();
1751  } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1752    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1753    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1754
1755    // Find the split point to split the parent mbb. At the same time copy all
1756    // physical registers used in the tail of parent mbb into virtual registers
1757    // before the split point and back into physical registers after the split
1758    // point. This prevents us needing to deal with Live-ins and many other
1759    // register allocation issues caused by us splitting the parent mbb. The
1760    // register allocator will clean up said virtual copies later on.
1761    MachineBasicBlock::iterator SplitPoint =
1762        FindSplitPointForStackProtector(ParentMBB);
1763
1764    // Splice the terminator of ParentMBB into SuccessMBB.
1765    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1766                       SplitPoint,
1767                       ParentMBB->end());
1768
1769    // Add compare/jump on neq/jump to the parent BB.
1770    FuncInfo->MBB = ParentMBB;
1771    FuncInfo->InsertPt = ParentMBB->end();
1772    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1773    CurDAG->setRoot(SDB->getRoot());
1774    SDB->clear();
1775    CodeGenAndEmitDAG();
1776
1777    // CodeGen Failure MBB if we have not codegened it yet.
1778    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1779    if (FailureMBB->empty()) {
1780      FuncInfo->MBB = FailureMBB;
1781      FuncInfo->InsertPt = FailureMBB->end();
1782      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1783      CurDAG->setRoot(SDB->getRoot());
1784      SDB->clear();
1785      CodeGenAndEmitDAG();
1786    }
1787
1788    // Clear the Per-BB State.
1789    SDB->SPDescriptor.resetPerBBState();
1790  }
1791
1792  // Lower each BitTestBlock.
1793  for (auto &BTB : SDB->SL->BitTestCases) {
1794    // Lower header first, if it wasn't already lowered
1795    if (!BTB.Emitted) {
1796      // Set the current basic block to the mbb we wish to insert the code into
1797      FuncInfo->MBB = BTB.Parent;
1798      FuncInfo->InsertPt = FuncInfo->MBB->end();
1799      // Emit the code
1800      SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1801      CurDAG->setRoot(SDB->getRoot());
1802      SDB->clear();
1803      CodeGenAndEmitDAG();
1804    }
1805
1806    BranchProbability UnhandledProb = BTB.Prob;
1807    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1808      UnhandledProb -= BTB.Cases[j].ExtraProb;
1809      // Set the current basic block to the mbb we wish to insert the code into
1810      FuncInfo->MBB = BTB.Cases[j].ThisBB;
1811      FuncInfo->InsertPt = FuncInfo->MBB->end();
1812      // Emit the code
1813
1814      // If all cases cover a contiguous range, it is not necessary to jump to
1815      // the default block after the last bit test fails. This is because the
1816      // range check during bit test header creation has guaranteed that every
1817      // case here doesn't go outside the range. In this case, there is no need
1818      // to perform the last bit test, as it will always be true. Instead, make
1819      // the second-to-last bit-test fall through to the target of the last bit
1820      // test, and delete the last bit test.
1821
1822      MachineBasicBlock *NextMBB;
1823      if (BTB.ContiguousRange && j + 2 == ej) {
1824        // Second-to-last bit-test with contiguous range: fall through to the
1825        // target of the final bit test.
1826        NextMBB = BTB.Cases[j + 1].TargetBB;
1827      } else if (j + 1 == ej) {
1828        // For the last bit test, fall through to Default.
1829        NextMBB = BTB.Default;
1830      } else {
1831        // Otherwise, fall through to the next bit test.
1832        NextMBB = BTB.Cases[j + 1].ThisBB;
1833      }
1834
1835      SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1836                            FuncInfo->MBB);
1837
1838      CurDAG->setRoot(SDB->getRoot());
1839      SDB->clear();
1840      CodeGenAndEmitDAG();
1841
1842      if (BTB.ContiguousRange && j + 2 == ej) {
1843        // Since we're not going to use the final bit test, remove it.
1844        BTB.Cases.pop_back();
1845        break;
1846      }
1847    }
1848
1849    // Update PHI Nodes
1850    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1851         pi != pe; ++pi) {
1852      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1853      MachineBasicBlock *PHIBB = PHI->getParent();
1854      assert(PHI->isPHI() &&
1855             "This is not a machine PHI node that we are updating!");
1856      // This is "default" BB. We have two jumps to it. From "header" BB and
1857      // from last "case" BB, unless the latter was skipped.
1858      if (PHIBB == BTB.Default) {
1859        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1860        if (!BTB.ContiguousRange) {
1861          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1862              .addMBB(BTB.Cases.back().ThisBB);
1863         }
1864      }
1865      // One of "cases" BB.
1866      for (unsigned j = 0, ej = BTB.Cases.size();
1867           j != ej; ++j) {
1868        MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1869        if (cBB->isSuccessor(PHIBB))
1870          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1871      }
1872    }
1873  }
1874  SDB->SL->BitTestCases.clear();
1875
1876  // If the JumpTable record is filled in, then we need to emit a jump table.
1877  // Updating the PHI nodes is tricky in this case, since we need to determine
1878  // whether the PHI is a successor of the range check MBB or the jump table MBB
1879  for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1880    // Lower header first, if it wasn't already lowered
1881    if (!SDB->SL->JTCases[i].first.Emitted) {
1882      // Set the current basic block to the mbb we wish to insert the code into
1883      FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1884      FuncInfo->InsertPt = FuncInfo->MBB->end();
1885      // Emit the code
1886      SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1887                                SDB->SL->JTCases[i].first, FuncInfo->MBB);
1888      CurDAG->setRoot(SDB->getRoot());
1889      SDB->clear();
1890      CodeGenAndEmitDAG();
1891    }
1892
1893    // Set the current basic block to the mbb we wish to insert the code into
1894    FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1895    FuncInfo->InsertPt = FuncInfo->MBB->end();
1896    // Emit the code
1897    SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1898    CurDAG->setRoot(SDB->getRoot());
1899    SDB->clear();
1900    CodeGenAndEmitDAG();
1901
1902    // Update PHI Nodes
1903    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1904         pi != pe; ++pi) {
1905      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1906      MachineBasicBlock *PHIBB = PHI->getParent();
1907      assert(PHI->isPHI() &&
1908             "This is not a machine PHI node that we are updating!");
1909      // "default" BB. We can go there only from header BB.
1910      if (PHIBB == SDB->SL->JTCases[i].second.Default)
1911        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1912           .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1913      // JT BB. Just iterate over successors here
1914      if (FuncInfo->MBB->isSuccessor(PHIBB))
1915        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1916    }
1917  }
1918  SDB->SL->JTCases.clear();
1919
1920  // If we generated any switch lowering information, build and codegen any
1921  // additional DAGs necessary.
1922  for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1923    // Set the current basic block to the mbb we wish to insert the code into
1924    FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1925    FuncInfo->InsertPt = FuncInfo->MBB->end();
1926
1927    // Determine the unique successors.
1928    SmallVector<MachineBasicBlock *, 2> Succs;
1929    Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1930    if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1931      Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1932
1933    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1934    SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1935    CurDAG->setRoot(SDB->getRoot());
1936    SDB->clear();
1937    CodeGenAndEmitDAG();
1938
1939    // Remember the last block, now that any splitting is done, for use in
1940    // populating PHI nodes in successors.
1941    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1942
1943    // Handle any PHI nodes in successors of this chunk, as if we were coming
1944    // from the original BB before switch expansion.  Note that PHI nodes can
1945    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1946    // handle them the right number of times.
1947    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1948      FuncInfo->MBB = Succs[i];
1949      FuncInfo->InsertPt = FuncInfo->MBB->end();
1950      // FuncInfo->MBB may have been removed from the CFG if a branch was
1951      // constant folded.
1952      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1953        for (MachineBasicBlock::iterator
1954             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1955             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1956          MachineInstrBuilder PHI(*MF, MBBI);
1957          // This value for this PHI node is recorded in PHINodesToUpdate.
1958          for (unsigned pn = 0; ; ++pn) {
1959            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1960                   "Didn't find PHI entry!");
1961            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1962              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1963              break;
1964            }
1965          }
1966        }
1967      }
1968    }
1969  }
1970  SDB->SL->SwitchCases.clear();
1971}
1972
1973/// Create the scheduler. If a specific scheduler was specified
1974/// via the SchedulerRegistry, use it, otherwise select the
1975/// one preferred by the target.
1976///
1977ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1978  return ISHeuristic(this, OptLevel);
1979}
1980
1981//===----------------------------------------------------------------------===//
1982// Helper functions used by the generated instruction selector.
1983//===----------------------------------------------------------------------===//
1984// Calls to these methods are generated by tblgen.
1985
1986/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1987/// the dag combiner simplified the 255, we still want to match.  RHS is the
1988/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1989/// specified in the .td file (e.g. 255).
1990bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1991                                    int64_t DesiredMaskS) const {
1992  const APInt &ActualMask = RHS->getAPIntValue();
1993  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1994
1995  // If the actual mask exactly matches, success!
1996  if (ActualMask == DesiredMask)
1997    return true;
1998
1999  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2000  if (!ActualMask.isSubsetOf(DesiredMask))
2001    return false;
2002
2003  // Otherwise, the DAG Combiner may have proven that the value coming in is
2004  // either already zero or is not demanded.  Check for known zero input bits.
2005  APInt NeededMask = DesiredMask & ~ActualMask;
2006  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2007    return true;
2008
2009  // TODO: check to see if missing bits are just not demanded.
2010
2011  // Otherwise, this pattern doesn't match.
2012  return false;
2013}
2014
2015/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2016/// the dag combiner simplified the 255, we still want to match.  RHS is the
2017/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2018/// specified in the .td file (e.g. 255).
2019bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2020                                   int64_t DesiredMaskS) const {
2021  const APInt &ActualMask = RHS->getAPIntValue();
2022  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2023
2024  // If the actual mask exactly matches, success!
2025  if (ActualMask == DesiredMask)
2026    return true;
2027
2028  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2029  if (!ActualMask.isSubsetOf(DesiredMask))
2030    return false;
2031
2032  // Otherwise, the DAG Combiner may have proven that the value coming in is
2033  // either already zero or is not demanded.  Check for known zero input bits.
2034  APInt NeededMask = DesiredMask & ~ActualMask;
2035  KnownBits Known = CurDAG->computeKnownBits(LHS);
2036
2037  // If all the missing bits in the or are already known to be set, match!
2038  if (NeededMask.isSubsetOf(Known.One))
2039    return true;
2040
2041  // TODO: check to see if missing bits are just not demanded.
2042
2043  // Otherwise, this pattern doesn't match.
2044  return false;
2045}
2046
2047/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2048/// by tblgen.  Others should not call it.
2049void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2050                                                     const SDLoc &DL) {
2051  std::vector<SDValue> InOps;
2052  std::swap(InOps, Ops);
2053
2054  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2055  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2056  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2057  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2058
2059  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2060  if (InOps[e-1].getValueType() == MVT::Glue)
2061    --e;  // Don't process a glue operand if it is here.
2062
2063  while (i != e) {
2064    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2065    if (!InlineAsm::isMemKind(Flags)) {
2066      // Just skip over this operand, copying the operands verbatim.
2067      Ops.insert(Ops.end(), InOps.begin()+i,
2068                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2069      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2070    } else {
2071      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2072             "Memory operand with multiple values?");
2073
2074      unsigned TiedToOperand;
2075      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2076        // We need the constraint ID from the operand this is tied to.
2077        unsigned CurOp = InlineAsm::Op_FirstOperand;
2078        Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2079        for (; TiedToOperand; --TiedToOperand) {
2080          CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2081          Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2082        }
2083      }
2084
2085      // Otherwise, this is a memory operand.  Ask the target to select it.
2086      std::vector<SDValue> SelOps;
2087      unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2088      if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2089        report_fatal_error("Could not match memory address.  Inline asm"
2090                           " failure!");
2091
2092      // Add this to the output node.
2093      unsigned NewFlags =
2094        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2095      NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2096      Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2097      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2098      i += 2;
2099    }
2100  }
2101
2102  // Add the glue input back if present.
2103  if (e != InOps.size())
2104    Ops.push_back(InOps.back());
2105}
2106
2107/// findGlueUse - Return use of MVT::Glue value produced by the specified
2108/// SDNode.
2109///
2110static SDNode *findGlueUse(SDNode *N) {
2111  unsigned FlagResNo = N->getNumValues()-1;
2112  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2113    SDUse &Use = I.getUse();
2114    if (Use.getResNo() == FlagResNo)
2115      return Use.getUser();
2116  }
2117  return nullptr;
2118}
2119
2120/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2121/// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2122static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2123                          bool IgnoreChains) {
2124  SmallPtrSet<const SDNode *, 16> Visited;
2125  SmallVector<const SDNode *, 16> WorkList;
2126  // Only check if we have non-immediate uses of Def.
2127  if (ImmedUse->isOnlyUserOf(Def))
2128    return false;
2129
2130  // We don't care about paths to Def that go through ImmedUse so mark it
2131  // visited and mark non-def operands as used.
2132  Visited.insert(ImmedUse);
2133  for (const SDValue &Op : ImmedUse->op_values()) {
2134    SDNode *N = Op.getNode();
2135    // Ignore chain deps (they are validated by
2136    // HandleMergeInputChains) and immediate uses
2137    if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2138      continue;
2139    if (!Visited.insert(N).second)
2140      continue;
2141    WorkList.push_back(N);
2142  }
2143
2144  // Initialize worklist to operands of Root.
2145  if (Root != ImmedUse) {
2146    for (const SDValue &Op : Root->op_values()) {
2147      SDNode *N = Op.getNode();
2148      // Ignore chains (they are validated by HandleMergeInputChains)
2149      if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2150        continue;
2151      if (!Visited.insert(N).second)
2152        continue;
2153      WorkList.push_back(N);
2154    }
2155  }
2156
2157  return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2158}
2159
2160/// IsProfitableToFold - Returns true if it's profitable to fold the specific
2161/// operand node N of U during instruction selection that starts at Root.
2162bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2163                                          SDNode *Root) const {
2164  if (OptLevel == CodeGenOpt::None) return false;
2165  return N.hasOneUse();
2166}
2167
2168/// IsLegalToFold - Returns true if the specific operand node N of
2169/// U can be folded during instruction selection that starts at Root.
2170bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2171                                     CodeGenOpt::Level OptLevel,
2172                                     bool IgnoreChains) {
2173  if (OptLevel == CodeGenOpt::None) return false;
2174
2175  // If Root use can somehow reach N through a path that that doesn't contain
2176  // U then folding N would create a cycle. e.g. In the following
2177  // diagram, Root can reach N through X. If N is folded into Root, then
2178  // X is both a predecessor and a successor of U.
2179  //
2180  //          [N*]           //
2181  //         ^   ^           //
2182  //        /     \          //
2183  //      [U*]    [X]?       //
2184  //        ^     ^          //
2185  //         \   /           //
2186  //          \ /            //
2187  //         [Root*]         //
2188  //
2189  // * indicates nodes to be folded together.
2190  //
2191  // If Root produces glue, then it gets (even more) interesting. Since it
2192  // will be "glued" together with its glue use in the scheduler, we need to
2193  // check if it might reach N.
2194  //
2195  //          [N*]           //
2196  //         ^   ^           //
2197  //        /     \          //
2198  //      [U*]    [X]?       //
2199  //        ^       ^        //
2200  //         \       \       //
2201  //          \      |       //
2202  //         [Root*] |       //
2203  //          ^      |       //
2204  //          f      |       //
2205  //          |      /       //
2206  //         [Y]    /        //
2207  //           ^   /         //
2208  //           f  /          //
2209  //           | /           //
2210  //          [GU]           //
2211  //
2212  // If GU (glue use) indirectly reaches N (the load), and Root folds N
2213  // (call it Fold), then X is a predecessor of GU and a successor of
2214  // Fold. But since Fold and GU are glued together, this will create
2215  // a cycle in the scheduling graph.
2216
2217  // If the node has glue, walk down the graph to the "lowest" node in the
2218  // glueged set.
2219  EVT VT = Root->getValueType(Root->getNumValues()-1);
2220  while (VT == MVT::Glue) {
2221    SDNode *GU = findGlueUse(Root);
2222    if (!GU)
2223      break;
2224    Root = GU;
2225    VT = Root->getValueType(Root->getNumValues()-1);
2226
2227    // If our query node has a glue result with a use, we've walked up it.  If
2228    // the user (which has already been selected) has a chain or indirectly uses
2229    // the chain, HandleMergeInputChains will not consider it.  Because of
2230    // this, we cannot ignore chains in this predicate.
2231    IgnoreChains = false;
2232  }
2233
2234  return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2235}
2236
2237void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2238  SDLoc DL(N);
2239
2240  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2241  SelectInlineAsmMemoryOperands(Ops, DL);
2242
2243  const EVT VTs[] = {MVT::Other, MVT::Glue};
2244  SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2245  New->setNodeId(-1);
2246  ReplaceUses(N, New.getNode());
2247  CurDAG->RemoveDeadNode(N);
2248}
2249
2250void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2251  SDLoc dl(Op);
2252  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2253  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2254
2255  EVT VT = Op->getValueType(0);
2256  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2257  Register Reg =
2258      TLI->getRegisterByName(RegStr->getString().data(), Ty,
2259                             CurDAG->getMachineFunction());
2260  SDValue New = CurDAG->getCopyFromReg(
2261                        Op->getOperand(0), dl, Reg, Op->getValueType(0));
2262  New->setNodeId(-1);
2263  ReplaceUses(Op, New.getNode());
2264  CurDAG->RemoveDeadNode(Op);
2265}
2266
2267void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2268  SDLoc dl(Op);
2269  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2270  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2271
2272  EVT VT = Op->getOperand(2).getValueType();
2273  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2274
2275  Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2276                                        CurDAG->getMachineFunction());
2277  SDValue New = CurDAG->getCopyToReg(
2278                        Op->getOperand(0), dl, Reg, Op->getOperand(2));
2279  New->setNodeId(-1);
2280  ReplaceUses(Op, New.getNode());
2281  CurDAG->RemoveDeadNode(Op);
2282}
2283
2284void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2285  CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2286}
2287
2288/// GetVBR - decode a vbr encoding whose top bit is set.
2289LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2290GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2291  assert(Val >= 128 && "Not a VBR");
2292  Val &= 127;  // Remove first vbr bit.
2293
2294  unsigned Shift = 7;
2295  uint64_t NextBits;
2296  do {
2297    NextBits = MatcherTable[Idx++];
2298    Val |= (NextBits&127) << Shift;
2299    Shift += 7;
2300  } while (NextBits & 128);
2301
2302  return Val;
2303}
2304
2305/// When a match is complete, this method updates uses of interior chain results
2306/// to use the new results.
2307void SelectionDAGISel::UpdateChains(
2308    SDNode *NodeToMatch, SDValue InputChain,
2309    SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2310  SmallVector<SDNode*, 4> NowDeadNodes;
2311
2312  // Now that all the normal results are replaced, we replace the chain and
2313  // glue results if present.
2314  if (!ChainNodesMatched.empty()) {
2315    assert(InputChain.getNode() &&
2316           "Matched input chains but didn't produce a chain");
2317    // Loop over all of the nodes we matched that produced a chain result.
2318    // Replace all the chain results with the final chain we ended up with.
2319    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2320      SDNode *ChainNode = ChainNodesMatched[i];
2321      // If ChainNode is null, it's because we replaced it on a previous
2322      // iteration and we cleared it out of the map. Just skip it.
2323      if (!ChainNode)
2324        continue;
2325
2326      assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2327             "Deleted node left in chain");
2328
2329      // Don't replace the results of the root node if we're doing a
2330      // MorphNodeTo.
2331      if (ChainNode == NodeToMatch && isMorphNodeTo)
2332        continue;
2333
2334      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2335      if (ChainVal.getValueType() == MVT::Glue)
2336        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2337      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2338      SelectionDAG::DAGNodeDeletedListener NDL(
2339          *CurDAG, [&](SDNode *N, SDNode *E) {
2340            std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2341                         static_cast<SDNode *>(nullptr));
2342          });
2343      if (ChainNode->getOpcode() != ISD::TokenFactor)
2344        ReplaceUses(ChainVal, InputChain);
2345
2346      // If the node became dead and we haven't already seen it, delete it.
2347      if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2348          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2349        NowDeadNodes.push_back(ChainNode);
2350    }
2351  }
2352
2353  if (!NowDeadNodes.empty())
2354    CurDAG->RemoveDeadNodes(NowDeadNodes);
2355
2356  LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2357}
2358
2359/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2360/// operation for when the pattern matched at least one node with a chains.  The
2361/// input vector contains a list of all of the chained nodes that we match.  We
2362/// must determine if this is a valid thing to cover (i.e. matching it won't
2363/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2364/// be used as the input node chain for the generated nodes.
2365static SDValue
2366HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2367                       SelectionDAG *CurDAG) {
2368
2369  SmallPtrSet<const SDNode *, 16> Visited;
2370  SmallVector<const SDNode *, 8> Worklist;
2371  SmallVector<SDValue, 3> InputChains;
2372  unsigned int Max = 8192;
2373
2374  // Quick exit on trivial merge.
2375  if (ChainNodesMatched.size() == 1)
2376    return ChainNodesMatched[0]->getOperand(0);
2377
2378  // Add chains that aren't already added (internal). Peek through
2379  // token factors.
2380  std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2381    if (V.getValueType() != MVT::Other)
2382      return;
2383    if (V->getOpcode() == ISD::EntryToken)
2384      return;
2385    if (!Visited.insert(V.getNode()).second)
2386      return;
2387    if (V->getOpcode() == ISD::TokenFactor) {
2388      for (const SDValue &Op : V->op_values())
2389        AddChains(Op);
2390    } else
2391      InputChains.push_back(V);
2392  };
2393
2394  for (auto *N : ChainNodesMatched) {
2395    Worklist.push_back(N);
2396    Visited.insert(N);
2397  }
2398
2399  while (!Worklist.empty())
2400    AddChains(Worklist.pop_back_val()->getOperand(0));
2401
2402  // Skip the search if there are no chain dependencies.
2403  if (InputChains.size() == 0)
2404    return CurDAG->getEntryNode();
2405
2406  // If one of these chains is a successor of input, we must have a
2407  // node that is both the predecessor and successor of the
2408  // to-be-merged nodes. Fail.
2409  Visited.clear();
2410  for (SDValue V : InputChains)
2411    Worklist.push_back(V.getNode());
2412
2413  for (auto *N : ChainNodesMatched)
2414    if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2415      return SDValue();
2416
2417  // Return merged chain.
2418  if (InputChains.size() == 1)
2419    return InputChains[0];
2420  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2421                         MVT::Other, InputChains);
2422}
2423
2424/// MorphNode - Handle morphing a node in place for the selector.
2425SDNode *SelectionDAGISel::
2426MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2427          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2428  // It is possible we're using MorphNodeTo to replace a node with no
2429  // normal results with one that has a normal result (or we could be
2430  // adding a chain) and the input could have glue and chains as well.
2431  // In this case we need to shift the operands down.
2432  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2433  // than the old isel though.
2434  int OldGlueResultNo = -1, OldChainResultNo = -1;
2435
2436  unsigned NTMNumResults = Node->getNumValues();
2437  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2438    OldGlueResultNo = NTMNumResults-1;
2439    if (NTMNumResults != 1 &&
2440        Node->getValueType(NTMNumResults-2) == MVT::Other)
2441      OldChainResultNo = NTMNumResults-2;
2442  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2443    OldChainResultNo = NTMNumResults-1;
2444
2445  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2446  // that this deletes operands of the old node that become dead.
2447  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2448
2449  // MorphNodeTo can operate in two ways: if an existing node with the
2450  // specified operands exists, it can just return it.  Otherwise, it
2451  // updates the node in place to have the requested operands.
2452  if (Res == Node) {
2453    // If we updated the node in place, reset the node ID.  To the isel,
2454    // this should be just like a newly allocated machine node.
2455    Res->setNodeId(-1);
2456  }
2457
2458  unsigned ResNumResults = Res->getNumValues();
2459  // Move the glue if needed.
2460  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2461      (unsigned)OldGlueResultNo != ResNumResults-1)
2462    ReplaceUses(SDValue(Node, OldGlueResultNo),
2463                SDValue(Res, ResNumResults - 1));
2464
2465  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2466    --ResNumResults;
2467
2468  // Move the chain reference if needed.
2469  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2470      (unsigned)OldChainResultNo != ResNumResults-1)
2471    ReplaceUses(SDValue(Node, OldChainResultNo),
2472                SDValue(Res, ResNumResults - 1));
2473
2474  // Otherwise, no replacement happened because the node already exists. Replace
2475  // Uses of the old node with the new one.
2476  if (Res != Node) {
2477    ReplaceNode(Node, Res);
2478  } else {
2479    EnforceNodeIdInvariant(Res);
2480  }
2481
2482  return Res;
2483}
2484
2485/// CheckSame - Implements OP_CheckSame.
2486LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2487CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2488          SDValue N,
2489          const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2490  // Accept if it is exactly the same as a previously recorded node.
2491  unsigned RecNo = MatcherTable[MatcherIndex++];
2492  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2493  return N == RecordedNodes[RecNo].first;
2494}
2495
2496/// CheckChildSame - Implements OP_CheckChildXSame.
2497LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2498CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2499              SDValue N,
2500              const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2501              unsigned ChildNo) {
2502  if (ChildNo >= N.getNumOperands())
2503    return false;  // Match fails if out of range child #.
2504  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2505                     RecordedNodes);
2506}
2507
2508/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2509LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2510CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2511                      const SelectionDAGISel &SDISel) {
2512  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2513}
2514
2515/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2516LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2517CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2518                   const SelectionDAGISel &SDISel, SDNode *N) {
2519  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2520}
2521
2522LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2523CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2524            SDNode *N) {
2525  uint16_t Opc = MatcherTable[MatcherIndex++];
2526  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2527  return N->getOpcode() == Opc;
2528}
2529
2530LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2531CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2532          const TargetLowering *TLI, const DataLayout &DL) {
2533  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2534  if (N.getValueType() == VT) return true;
2535
2536  // Handle the case when VT is iPTR.
2537  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2538}
2539
2540LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2541CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2542               SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2543               unsigned ChildNo) {
2544  if (ChildNo >= N.getNumOperands())
2545    return false;  // Match fails if out of range child #.
2546  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2547                     DL);
2548}
2549
2550LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2551CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2552              SDValue N) {
2553  return cast<CondCodeSDNode>(N)->get() ==
2554      (ISD::CondCode)MatcherTable[MatcherIndex++];
2555}
2556
2557LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2558CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2559                    SDValue N) {
2560  if (2 >= N.getNumOperands())
2561    return false;
2562  return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2563}
2564
2565LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2566CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2567               SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2568  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2569  if (cast<VTSDNode>(N)->getVT() == VT)
2570    return true;
2571
2572  // Handle the case when VT is iPTR.
2573  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2574}
2575
2576LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2577CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2578             SDValue N) {
2579  int64_t Val = MatcherTable[MatcherIndex++];
2580  if (Val & 128)
2581    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2582
2583  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2584  return C && C->getSExtValue() == Val;
2585}
2586
2587LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2588CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2589                  SDValue N, unsigned ChildNo) {
2590  if (ChildNo >= N.getNumOperands())
2591    return false;  // Match fails if out of range child #.
2592  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2593}
2594
2595LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2596CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2597            SDValue N, const SelectionDAGISel &SDISel) {
2598  int64_t Val = MatcherTable[MatcherIndex++];
2599  if (Val & 128)
2600    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2601
2602  if (N->getOpcode() != ISD::AND) return false;
2603
2604  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2605  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2606}
2607
2608LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2609CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2610           SDValue N, const SelectionDAGISel &SDISel) {
2611  int64_t Val = MatcherTable[MatcherIndex++];
2612  if (Val & 128)
2613    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2614
2615  if (N->getOpcode() != ISD::OR) return false;
2616
2617  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2618  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2619}
2620
2621/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2622/// scope, evaluate the current node.  If the current predicate is known to
2623/// fail, set Result=true and return anything.  If the current predicate is
2624/// known to pass, set Result=false and return the MatcherIndex to continue
2625/// with.  If the current predicate is unknown, set Result=false and return the
2626/// MatcherIndex to continue with.
2627static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2628                                       unsigned Index, SDValue N,
2629                                       bool &Result,
2630                                       const SelectionDAGISel &SDISel,
2631                  SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2632  switch (Table[Index++]) {
2633  default:
2634    Result = false;
2635    return Index-1;  // Could not evaluate this predicate.
2636  case SelectionDAGISel::OPC_CheckSame:
2637    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2638    return Index;
2639  case SelectionDAGISel::OPC_CheckChild0Same:
2640  case SelectionDAGISel::OPC_CheckChild1Same:
2641  case SelectionDAGISel::OPC_CheckChild2Same:
2642  case SelectionDAGISel::OPC_CheckChild3Same:
2643    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2644                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2645    return Index;
2646  case SelectionDAGISel::OPC_CheckPatternPredicate:
2647    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2648    return Index;
2649  case SelectionDAGISel::OPC_CheckPredicate:
2650    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2651    return Index;
2652  case SelectionDAGISel::OPC_CheckOpcode:
2653    Result = !::CheckOpcode(Table, Index, N.getNode());
2654    return Index;
2655  case SelectionDAGISel::OPC_CheckType:
2656    Result = !::CheckType(Table, Index, N, SDISel.TLI,
2657                          SDISel.CurDAG->getDataLayout());
2658    return Index;
2659  case SelectionDAGISel::OPC_CheckTypeRes: {
2660    unsigned Res = Table[Index++];
2661    Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2662                          SDISel.CurDAG->getDataLayout());
2663    return Index;
2664  }
2665  case SelectionDAGISel::OPC_CheckChild0Type:
2666  case SelectionDAGISel::OPC_CheckChild1Type:
2667  case SelectionDAGISel::OPC_CheckChild2Type:
2668  case SelectionDAGISel::OPC_CheckChild3Type:
2669  case SelectionDAGISel::OPC_CheckChild4Type:
2670  case SelectionDAGISel::OPC_CheckChild5Type:
2671  case SelectionDAGISel::OPC_CheckChild6Type:
2672  case SelectionDAGISel::OPC_CheckChild7Type:
2673    Result = !::CheckChildType(
2674                 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2675                 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2676    return Index;
2677  case SelectionDAGISel::OPC_CheckCondCode:
2678    Result = !::CheckCondCode(Table, Index, N);
2679    return Index;
2680  case SelectionDAGISel::OPC_CheckChild2CondCode:
2681    Result = !::CheckChild2CondCode(Table, Index, N);
2682    return Index;
2683  case SelectionDAGISel::OPC_CheckValueType:
2684    Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2685                               SDISel.CurDAG->getDataLayout());
2686    return Index;
2687  case SelectionDAGISel::OPC_CheckInteger:
2688    Result = !::CheckInteger(Table, Index, N);
2689    return Index;
2690  case SelectionDAGISel::OPC_CheckChild0Integer:
2691  case SelectionDAGISel::OPC_CheckChild1Integer:
2692  case SelectionDAGISel::OPC_CheckChild2Integer:
2693  case SelectionDAGISel::OPC_CheckChild3Integer:
2694  case SelectionDAGISel::OPC_CheckChild4Integer:
2695    Result = !::CheckChildInteger(Table, Index, N,
2696                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2697    return Index;
2698  case SelectionDAGISel::OPC_CheckAndImm:
2699    Result = !::CheckAndImm(Table, Index, N, SDISel);
2700    return Index;
2701  case SelectionDAGISel::OPC_CheckOrImm:
2702    Result = !::CheckOrImm(Table, Index, N, SDISel);
2703    return Index;
2704  }
2705}
2706
2707namespace {
2708
2709struct MatchScope {
2710  /// FailIndex - If this match fails, this is the index to continue with.
2711  unsigned FailIndex;
2712
2713  /// NodeStack - The node stack when the scope was formed.
2714  SmallVector<SDValue, 4> NodeStack;
2715
2716  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2717  unsigned NumRecordedNodes;
2718
2719  /// NumMatchedMemRefs - The number of matched memref entries.
2720  unsigned NumMatchedMemRefs;
2721
2722  /// InputChain/InputGlue - The current chain/glue
2723  SDValue InputChain, InputGlue;
2724
2725  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2726  bool HasChainNodesMatched;
2727};
2728
2729/// \A DAG update listener to keep the matching state
2730/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2731/// change the DAG while matching.  X86 addressing mode matcher is an example
2732/// for this.
2733class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2734{
2735  SDNode **NodeToMatch;
2736  SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2737  SmallVectorImpl<MatchScope> &MatchScopes;
2738
2739public:
2740  MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2741                    SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2742                    SmallVectorImpl<MatchScope> &MS)
2743      : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2744        RecordedNodes(RN), MatchScopes(MS) {}
2745
2746  void NodeDeleted(SDNode *N, SDNode *E) override {
2747    // Some early-returns here to avoid the search if we deleted the node or
2748    // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2749    // do, so it's unnecessary to update matching state at that point).
2750    // Neither of these can occur currently because we only install this
2751    // update listener during matching a complex patterns.
2752    if (!E || E->isMachineOpcode())
2753      return;
2754    // Check if NodeToMatch was updated.
2755    if (N == *NodeToMatch)
2756      *NodeToMatch = E;
2757    // Performing linear search here does not matter because we almost never
2758    // run this code.  You'd have to have a CSE during complex pattern
2759    // matching.
2760    for (auto &I : RecordedNodes)
2761      if (I.first.getNode() == N)
2762        I.first.setNode(E);
2763
2764    for (auto &I : MatchScopes)
2765      for (auto &J : I.NodeStack)
2766        if (J.getNode() == N)
2767          J.setNode(E);
2768  }
2769};
2770
2771} // end anonymous namespace
2772
2773void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2774                                        const unsigned char *MatcherTable,
2775                                        unsigned TableSize) {
2776  // FIXME: Should these even be selected?  Handle these cases in the caller?
2777  switch (NodeToMatch->getOpcode()) {
2778  default:
2779    break;
2780  case ISD::EntryToken:       // These nodes remain the same.
2781  case ISD::BasicBlock:
2782  case ISD::Register:
2783  case ISD::RegisterMask:
2784  case ISD::HANDLENODE:
2785  case ISD::MDNODE_SDNODE:
2786  case ISD::TargetConstant:
2787  case ISD::TargetConstantFP:
2788  case ISD::TargetConstantPool:
2789  case ISD::TargetFrameIndex:
2790  case ISD::TargetExternalSymbol:
2791  case ISD::MCSymbol:
2792  case ISD::TargetBlockAddress:
2793  case ISD::TargetJumpTable:
2794  case ISD::TargetGlobalTLSAddress:
2795  case ISD::TargetGlobalAddress:
2796  case ISD::TokenFactor:
2797  case ISD::CopyFromReg:
2798  case ISD::CopyToReg:
2799  case ISD::EH_LABEL:
2800  case ISD::ANNOTATION_LABEL:
2801  case ISD::LIFETIME_START:
2802  case ISD::LIFETIME_END:
2803    NodeToMatch->setNodeId(-1); // Mark selected.
2804    return;
2805  case ISD::AssertSext:
2806  case ISD::AssertZext:
2807    ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2808    CurDAG->RemoveDeadNode(NodeToMatch);
2809    return;
2810  case ISD::INLINEASM:
2811  case ISD::INLINEASM_BR:
2812    Select_INLINEASM(NodeToMatch,
2813                     NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
2814    return;
2815  case ISD::READ_REGISTER:
2816    Select_READ_REGISTER(NodeToMatch);
2817    return;
2818  case ISD::WRITE_REGISTER:
2819    Select_WRITE_REGISTER(NodeToMatch);
2820    return;
2821  case ISD::UNDEF:
2822    Select_UNDEF(NodeToMatch);
2823    return;
2824  }
2825
2826  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2827
2828  // Set up the node stack with NodeToMatch as the only node on the stack.
2829  SmallVector<SDValue, 8> NodeStack;
2830  SDValue N = SDValue(NodeToMatch, 0);
2831  NodeStack.push_back(N);
2832
2833  // MatchScopes - Scopes used when matching, if a match failure happens, this
2834  // indicates where to continue checking.
2835  SmallVector<MatchScope, 8> MatchScopes;
2836
2837  // RecordedNodes - This is the set of nodes that have been recorded by the
2838  // state machine.  The second value is the parent of the node, or null if the
2839  // root is recorded.
2840  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2841
2842  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2843  // pattern.
2844  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2845
2846  // These are the current input chain and glue for use when generating nodes.
2847  // Various Emit operations change these.  For example, emitting a copytoreg
2848  // uses and updates these.
2849  SDValue InputChain, InputGlue;
2850
2851  // ChainNodesMatched - If a pattern matches nodes that have input/output
2852  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2853  // which ones they are.  The result is captured into this list so that we can
2854  // update the chain results when the pattern is complete.
2855  SmallVector<SDNode*, 3> ChainNodesMatched;
2856
2857  LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2858
2859  // Determine where to start the interpreter.  Normally we start at opcode #0,
2860  // but if the state machine starts with an OPC_SwitchOpcode, then we
2861  // accelerate the first lookup (which is guaranteed to be hot) with the
2862  // OpcodeOffset table.
2863  unsigned MatcherIndex = 0;
2864
2865  if (!OpcodeOffset.empty()) {
2866    // Already computed the OpcodeOffset table, just index into it.
2867    if (N.getOpcode() < OpcodeOffset.size())
2868      MatcherIndex = OpcodeOffset[N.getOpcode()];
2869    LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2870
2871  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2872    // Otherwise, the table isn't computed, but the state machine does start
2873    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2874    // is the first time we're selecting an instruction.
2875    unsigned Idx = 1;
2876    while (true) {
2877      // Get the size of this case.
2878      unsigned CaseSize = MatcherTable[Idx++];
2879      if (CaseSize & 128)
2880        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2881      if (CaseSize == 0) break;
2882
2883      // Get the opcode, add the index to the table.
2884      uint16_t Opc = MatcherTable[Idx++];
2885      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2886      if (Opc >= OpcodeOffset.size())
2887        OpcodeOffset.resize((Opc+1)*2);
2888      OpcodeOffset[Opc] = Idx;
2889      Idx += CaseSize;
2890    }
2891
2892    // Okay, do the lookup for the first opcode.
2893    if (N.getOpcode() < OpcodeOffset.size())
2894      MatcherIndex = OpcodeOffset[N.getOpcode()];
2895  }
2896
2897  while (true) {
2898    assert(MatcherIndex < TableSize && "Invalid index");
2899#ifndef NDEBUG
2900    unsigned CurrentOpcodeIndex = MatcherIndex;
2901#endif
2902    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2903    switch (Opcode) {
2904    case OPC_Scope: {
2905      // Okay, the semantics of this operation are that we should push a scope
2906      // then evaluate the first child.  However, pushing a scope only to have
2907      // the first check fail (which then pops it) is inefficient.  If we can
2908      // determine immediately that the first check (or first several) will
2909      // immediately fail, don't even bother pushing a scope for them.
2910      unsigned FailIndex;
2911
2912      while (true) {
2913        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2914        if (NumToSkip & 128)
2915          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2916        // Found the end of the scope with no match.
2917        if (NumToSkip == 0) {
2918          FailIndex = 0;
2919          break;
2920        }
2921
2922        FailIndex = MatcherIndex+NumToSkip;
2923
2924        unsigned MatcherIndexOfPredicate = MatcherIndex;
2925        (void)MatcherIndexOfPredicate; // silence warning.
2926
2927        // If we can't evaluate this predicate without pushing a scope (e.g. if
2928        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2929        // push the scope and evaluate the full predicate chain.
2930        bool Result;
2931        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2932                                              Result, *this, RecordedNodes);
2933        if (!Result)
2934          break;
2935
2936        LLVM_DEBUG(
2937            dbgs() << "  Skipped scope entry (due to false predicate) at "
2938                   << "index " << MatcherIndexOfPredicate << ", continuing at "
2939                   << FailIndex << "\n");
2940        ++NumDAGIselRetries;
2941
2942        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2943        // move to the next case.
2944        MatcherIndex = FailIndex;
2945      }
2946
2947      // If the whole scope failed to match, bail.
2948      if (FailIndex == 0) break;
2949
2950      // Push a MatchScope which indicates where to go if the first child fails
2951      // to match.
2952      MatchScope NewEntry;
2953      NewEntry.FailIndex = FailIndex;
2954      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2955      NewEntry.NumRecordedNodes = RecordedNodes.size();
2956      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2957      NewEntry.InputChain = InputChain;
2958      NewEntry.InputGlue = InputGlue;
2959      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2960      MatchScopes.push_back(NewEntry);
2961      continue;
2962    }
2963    case OPC_RecordNode: {
2964      // Remember this node, it may end up being an operand in the pattern.
2965      SDNode *Parent = nullptr;
2966      if (NodeStack.size() > 1)
2967        Parent = NodeStack[NodeStack.size()-2].getNode();
2968      RecordedNodes.push_back(std::make_pair(N, Parent));
2969      continue;
2970    }
2971
2972    case OPC_RecordChild0: case OPC_RecordChild1:
2973    case OPC_RecordChild2: case OPC_RecordChild3:
2974    case OPC_RecordChild4: case OPC_RecordChild5:
2975    case OPC_RecordChild6: case OPC_RecordChild7: {
2976      unsigned ChildNo = Opcode-OPC_RecordChild0;
2977      if (ChildNo >= N.getNumOperands())
2978        break;  // Match fails if out of range child #.
2979
2980      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2981                                             N.getNode()));
2982      continue;
2983    }
2984    case OPC_RecordMemRef:
2985      if (auto *MN = dyn_cast<MemSDNode>(N))
2986        MatchedMemRefs.push_back(MN->getMemOperand());
2987      else {
2988        LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2989                   dbgs() << '\n');
2990      }
2991
2992      continue;
2993
2994    case OPC_CaptureGlueInput:
2995      // If the current node has an input glue, capture it in InputGlue.
2996      if (N->getNumOperands() != 0 &&
2997          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2998        InputGlue = N->getOperand(N->getNumOperands()-1);
2999      continue;
3000
3001    case OPC_MoveChild: {
3002      unsigned ChildNo = MatcherTable[MatcherIndex++];
3003      if (ChildNo >= N.getNumOperands())
3004        break;  // Match fails if out of range child #.
3005      N = N.getOperand(ChildNo);
3006      NodeStack.push_back(N);
3007      continue;
3008    }
3009
3010    case OPC_MoveChild0: case OPC_MoveChild1:
3011    case OPC_MoveChild2: case OPC_MoveChild3:
3012    case OPC_MoveChild4: case OPC_MoveChild5:
3013    case OPC_MoveChild6: case OPC_MoveChild7: {
3014      unsigned ChildNo = Opcode-OPC_MoveChild0;
3015      if (ChildNo >= N.getNumOperands())
3016        break;  // Match fails if out of range child #.
3017      N = N.getOperand(ChildNo);
3018      NodeStack.push_back(N);
3019      continue;
3020    }
3021
3022    case OPC_MoveParent:
3023      // Pop the current node off the NodeStack.
3024      NodeStack.pop_back();
3025      assert(!NodeStack.empty() && "Node stack imbalance!");
3026      N = NodeStack.back();
3027      continue;
3028
3029    case OPC_CheckSame:
3030      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3031      continue;
3032
3033    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3034    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3035      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3036                            Opcode-OPC_CheckChild0Same))
3037        break;
3038      continue;
3039
3040    case OPC_CheckPatternPredicate:
3041      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3042      continue;
3043    case OPC_CheckPredicate:
3044      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3045                                N.getNode()))
3046        break;
3047      continue;
3048    case OPC_CheckPredicateWithOperands: {
3049      unsigned OpNum = MatcherTable[MatcherIndex++];
3050      SmallVector<SDValue, 8> Operands;
3051
3052      for (unsigned i = 0; i < OpNum; ++i)
3053        Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3054
3055      unsigned PredNo = MatcherTable[MatcherIndex++];
3056      if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3057        break;
3058      continue;
3059    }
3060    case OPC_CheckComplexPat: {
3061      unsigned CPNum = MatcherTable[MatcherIndex++];
3062      unsigned RecNo = MatcherTable[MatcherIndex++];
3063      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3064
3065      // If target can modify DAG during matching, keep the matching state
3066      // consistent.
3067      std::unique_ptr<MatchStateUpdater> MSU;
3068      if (ComplexPatternFuncMutatesDAG())
3069        MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3070                                        MatchScopes));
3071
3072      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3073                               RecordedNodes[RecNo].first, CPNum,
3074                               RecordedNodes))
3075        break;
3076      continue;
3077    }
3078    case OPC_CheckOpcode:
3079      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3080      continue;
3081
3082    case OPC_CheckType:
3083      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3084                       CurDAG->getDataLayout()))
3085        break;
3086      continue;
3087
3088    case OPC_CheckTypeRes: {
3089      unsigned Res = MatcherTable[MatcherIndex++];
3090      if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3091                       CurDAG->getDataLayout()))
3092        break;
3093      continue;
3094    }
3095
3096    case OPC_SwitchOpcode: {
3097      unsigned CurNodeOpcode = N.getOpcode();
3098      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3099      unsigned CaseSize;
3100      while (true) {
3101        // Get the size of this case.
3102        CaseSize = MatcherTable[MatcherIndex++];
3103        if (CaseSize & 128)
3104          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3105        if (CaseSize == 0) break;
3106
3107        uint16_t Opc = MatcherTable[MatcherIndex++];
3108        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3109
3110        // If the opcode matches, then we will execute this case.
3111        if (CurNodeOpcode == Opc)
3112          break;
3113
3114        // Otherwise, skip over this case.
3115        MatcherIndex += CaseSize;
3116      }
3117
3118      // If no cases matched, bail out.
3119      if (CaseSize == 0) break;
3120
3121      // Otherwise, execute the case we found.
3122      LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3123                        << MatcherIndex << "\n");
3124      continue;
3125    }
3126
3127    case OPC_SwitchType: {
3128      MVT CurNodeVT = N.getSimpleValueType();
3129      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3130      unsigned CaseSize;
3131      while (true) {
3132        // Get the size of this case.
3133        CaseSize = MatcherTable[MatcherIndex++];
3134        if (CaseSize & 128)
3135          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3136        if (CaseSize == 0) break;
3137
3138        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3139        if (CaseVT == MVT::iPTR)
3140          CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3141
3142        // If the VT matches, then we will execute this case.
3143        if (CurNodeVT == CaseVT)
3144          break;
3145
3146        // Otherwise, skip over this case.
3147        MatcherIndex += CaseSize;
3148      }
3149
3150      // If no cases matched, bail out.
3151      if (CaseSize == 0) break;
3152
3153      // Otherwise, execute the case we found.
3154      LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3155                        << "] from " << SwitchStart << " to " << MatcherIndex
3156                        << '\n');
3157      continue;
3158    }
3159    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3160    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3161    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3162    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3163      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3164                            CurDAG->getDataLayout(),
3165                            Opcode - OPC_CheckChild0Type))
3166        break;
3167      continue;
3168    case OPC_CheckCondCode:
3169      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3170      continue;
3171    case OPC_CheckChild2CondCode:
3172      if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3173      continue;
3174    case OPC_CheckValueType:
3175      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3176                            CurDAG->getDataLayout()))
3177        break;
3178      continue;
3179    case OPC_CheckInteger:
3180      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3181      continue;
3182    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3183    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3184    case OPC_CheckChild4Integer:
3185      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3186                               Opcode-OPC_CheckChild0Integer)) break;
3187      continue;
3188    case OPC_CheckAndImm:
3189      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3190      continue;
3191    case OPC_CheckOrImm:
3192      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3193      continue;
3194    case OPC_CheckImmAllOnesV:
3195      if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3196      continue;
3197    case OPC_CheckImmAllZerosV:
3198      if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3199      continue;
3200
3201    case OPC_CheckFoldableChainNode: {
3202      assert(NodeStack.size() != 1 && "No parent node");
3203      // Verify that all intermediate nodes between the root and this one have
3204      // a single use (ignoring chains, which are handled in UpdateChains).
3205      bool HasMultipleUses = false;
3206      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3207        unsigned NNonChainUses = 0;
3208        SDNode *NS = NodeStack[i].getNode();
3209        for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3210          if (UI.getUse().getValueType() != MVT::Other)
3211            if (++NNonChainUses > 1) {
3212              HasMultipleUses = true;
3213              break;
3214            }
3215        if (HasMultipleUses) break;
3216      }
3217      if (HasMultipleUses) break;
3218
3219      // Check to see that the target thinks this is profitable to fold and that
3220      // we can fold it without inducing cycles in the graph.
3221      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3222                              NodeToMatch) ||
3223          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3224                         NodeToMatch, OptLevel,
3225                         true/*We validate our own chains*/))
3226        break;
3227
3228      continue;
3229    }
3230    case OPC_EmitInteger: {
3231      MVT::SimpleValueType VT =
3232        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3233      int64_t Val = MatcherTable[MatcherIndex++];
3234      if (Val & 128)
3235        Val = GetVBR(Val, MatcherTable, MatcherIndex);
3236      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3237                              CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3238                                                        VT), nullptr));
3239      continue;
3240    }
3241    case OPC_EmitRegister: {
3242      MVT::SimpleValueType VT =
3243        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3244      unsigned RegNo = MatcherTable[MatcherIndex++];
3245      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3246                              CurDAG->getRegister(RegNo, VT), nullptr));
3247      continue;
3248    }
3249    case OPC_EmitRegister2: {
3250      // For targets w/ more than 256 register names, the register enum
3251      // values are stored in two bytes in the matcher table (just like
3252      // opcodes).
3253      MVT::SimpleValueType VT =
3254        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3255      unsigned RegNo = MatcherTable[MatcherIndex++];
3256      RegNo |= MatcherTable[MatcherIndex++] << 8;
3257      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3258                              CurDAG->getRegister(RegNo, VT), nullptr));
3259      continue;
3260    }
3261
3262    case OPC_EmitConvertToTarget:  {
3263      // Convert from IMM/FPIMM to target version.
3264      unsigned RecNo = MatcherTable[MatcherIndex++];
3265      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3266      SDValue Imm = RecordedNodes[RecNo].first;
3267
3268      if (Imm->getOpcode() == ISD::Constant) {
3269        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3270        Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3271                                        Imm.getValueType());
3272      } else if (Imm->getOpcode() == ISD::ConstantFP) {
3273        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3274        Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3275                                          Imm.getValueType());
3276      }
3277
3278      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3279      continue;
3280    }
3281
3282    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3283    case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3284    case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3285      // These are space-optimized forms of OPC_EmitMergeInputChains.
3286      assert(!InputChain.getNode() &&
3287             "EmitMergeInputChains should be the first chain producing node");
3288      assert(ChainNodesMatched.empty() &&
3289             "Should only have one EmitMergeInputChains per match");
3290
3291      // Read all of the chained nodes.
3292      unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3293      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3294      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3295
3296      // FIXME: What if other value results of the node have uses not matched
3297      // by this pattern?
3298      if (ChainNodesMatched.back() != NodeToMatch &&
3299          !RecordedNodes[RecNo].first.hasOneUse()) {
3300        ChainNodesMatched.clear();
3301        break;
3302      }
3303
3304      // Merge the input chains if they are not intra-pattern references.
3305      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3306
3307      if (!InputChain.getNode())
3308        break;  // Failed to merge.
3309      continue;
3310    }
3311
3312    case OPC_EmitMergeInputChains: {
3313      assert(!InputChain.getNode() &&
3314             "EmitMergeInputChains should be the first chain producing node");
3315      // This node gets a list of nodes we matched in the input that have
3316      // chains.  We want to token factor all of the input chains to these nodes
3317      // together.  However, if any of the input chains is actually one of the
3318      // nodes matched in this pattern, then we have an intra-match reference.
3319      // Ignore these because the newly token factored chain should not refer to
3320      // the old nodes.
3321      unsigned NumChains = MatcherTable[MatcherIndex++];
3322      assert(NumChains != 0 && "Can't TF zero chains");
3323
3324      assert(ChainNodesMatched.empty() &&
3325             "Should only have one EmitMergeInputChains per match");
3326
3327      // Read all of the chained nodes.
3328      for (unsigned i = 0; i != NumChains; ++i) {
3329        unsigned RecNo = MatcherTable[MatcherIndex++];
3330        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3331        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3332
3333        // FIXME: What if other value results of the node have uses not matched
3334        // by this pattern?
3335        if (ChainNodesMatched.back() != NodeToMatch &&
3336            !RecordedNodes[RecNo].first.hasOneUse()) {
3337          ChainNodesMatched.clear();
3338          break;
3339        }
3340      }
3341
3342      // If the inner loop broke out, the match fails.
3343      if (ChainNodesMatched.empty())
3344        break;
3345
3346      // Merge the input chains if they are not intra-pattern references.
3347      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3348
3349      if (!InputChain.getNode())
3350        break;  // Failed to merge.
3351
3352      continue;
3353    }
3354
3355    case OPC_EmitCopyToReg:
3356    case OPC_EmitCopyToReg2: {
3357      unsigned RecNo = MatcherTable[MatcherIndex++];
3358      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3359      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3360      if (Opcode == OPC_EmitCopyToReg2)
3361        DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3362
3363      if (!InputChain.getNode())
3364        InputChain = CurDAG->getEntryNode();
3365
3366      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3367                                        DestPhysReg, RecordedNodes[RecNo].first,
3368                                        InputGlue);
3369
3370      InputGlue = InputChain.getValue(1);
3371      continue;
3372    }
3373
3374    case OPC_EmitNodeXForm: {
3375      unsigned XFormNo = MatcherTable[MatcherIndex++];
3376      unsigned RecNo = MatcherTable[MatcherIndex++];
3377      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3378      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3379      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3380      continue;
3381    }
3382    case OPC_Coverage: {
3383      // This is emitted right before MorphNode/EmitNode.
3384      // So it should be safe to assume that this node has been selected
3385      unsigned index = MatcherTable[MatcherIndex++];
3386      index |= (MatcherTable[MatcherIndex++] << 8);
3387      dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3388      dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3389      continue;
3390    }
3391
3392    case OPC_EmitNode:     case OPC_MorphNodeTo:
3393    case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3394    case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3395      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3396      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3397      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3398      // Get the result VT list.
3399      unsigned NumVTs;
3400      // If this is one of the compressed forms, get the number of VTs based
3401      // on the Opcode. Otherwise read the next byte from the table.
3402      if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3403        NumVTs = Opcode - OPC_MorphNodeTo0;
3404      else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3405        NumVTs = Opcode - OPC_EmitNode0;
3406      else
3407        NumVTs = MatcherTable[MatcherIndex++];
3408      SmallVector<EVT, 4> VTs;
3409      for (unsigned i = 0; i != NumVTs; ++i) {
3410        MVT::SimpleValueType VT =
3411          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3412        if (VT == MVT::iPTR)
3413          VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3414        VTs.push_back(VT);
3415      }
3416
3417      if (EmitNodeInfo & OPFL_Chain)
3418        VTs.push_back(MVT::Other);
3419      if (EmitNodeInfo & OPFL_GlueOutput)
3420        VTs.push_back(MVT::Glue);
3421
3422      // This is hot code, so optimize the two most common cases of 1 and 2
3423      // results.
3424      SDVTList VTList;
3425      if (VTs.size() == 1)
3426        VTList = CurDAG->getVTList(VTs[0]);
3427      else if (VTs.size() == 2)
3428        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3429      else
3430        VTList = CurDAG->getVTList(VTs);
3431
3432      // Get the operand list.
3433      unsigned NumOps = MatcherTable[MatcherIndex++];
3434      SmallVector<SDValue, 8> Ops;
3435      for (unsigned i = 0; i != NumOps; ++i) {
3436        unsigned RecNo = MatcherTable[MatcherIndex++];
3437        if (RecNo & 128)
3438          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3439
3440        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3441        Ops.push_back(RecordedNodes[RecNo].first);
3442      }
3443
3444      // If there are variadic operands to add, handle them now.
3445      if (EmitNodeInfo & OPFL_VariadicInfo) {
3446        // Determine the start index to copy from.
3447        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3448        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3449        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3450               "Invalid variadic node");
3451        // Copy all of the variadic operands, not including a potential glue
3452        // input.
3453        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3454             i != e; ++i) {
3455          SDValue V = NodeToMatch->getOperand(i);
3456          if (V.getValueType() == MVT::Glue) break;
3457          Ops.push_back(V);
3458        }
3459      }
3460
3461      // If this has chain/glue inputs, add them.
3462      if (EmitNodeInfo & OPFL_Chain)
3463        Ops.push_back(InputChain);
3464      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3465        Ops.push_back(InputGlue);
3466
3467      // Check whether any matched node could raise an FP exception.  Since all
3468      // such nodes must have a chain, it suffices to check ChainNodesMatched.
3469      // We need to perform this check before potentially modifying one of the
3470      // nodes via MorphNode.
3471      bool MayRaiseFPException = false;
3472      for (auto *N : ChainNodesMatched)
3473        if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3474          MayRaiseFPException = true;
3475          break;
3476        }
3477
3478      // Create the node.
3479      MachineSDNode *Res = nullptr;
3480      bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3481                     (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3482      if (!IsMorphNodeTo) {
3483        // If this is a normal EmitNode command, just create the new node and
3484        // add the results to the RecordedNodes list.
3485        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3486                                     VTList, Ops);
3487
3488        // Add all the non-glue/non-chain results to the RecordedNodes list.
3489        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3490          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3491          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3492                                                             nullptr));
3493        }
3494      } else {
3495        assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3496               "NodeToMatch was removed partway through selection");
3497        SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3498                                                              SDNode *E) {
3499          CurDAG->salvageDebugInfo(*N);
3500          auto &Chain = ChainNodesMatched;
3501          assert((!E || !is_contained(Chain, N)) &&
3502                 "Chain node replaced during MorphNode");
3503          Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3504        });
3505        Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3506                                            Ops, EmitNodeInfo));
3507      }
3508
3509      // Set the NoFPExcept flag when no original matched node could
3510      // raise an FP exception, but the new node potentially might.
3511      if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3512        SDNodeFlags Flags = Res->getFlags();
3513        Flags.setNoFPExcept(true);
3514        Res->setFlags(Flags);
3515      }
3516
3517      // If the node had chain/glue results, update our notion of the current
3518      // chain and glue.
3519      if (EmitNodeInfo & OPFL_GlueOutput) {
3520        InputGlue = SDValue(Res, VTs.size()-1);
3521        if (EmitNodeInfo & OPFL_Chain)
3522          InputChain = SDValue(Res, VTs.size()-2);
3523      } else if (EmitNodeInfo & OPFL_Chain)
3524        InputChain = SDValue(Res, VTs.size()-1);
3525
3526      // If the OPFL_MemRefs glue is set on this node, slap all of the
3527      // accumulated memrefs onto it.
3528      //
3529      // FIXME: This is vastly incorrect for patterns with multiple outputs
3530      // instructions that access memory and for ComplexPatterns that match
3531      // loads.
3532      if (EmitNodeInfo & OPFL_MemRefs) {
3533        // Only attach load or store memory operands if the generated
3534        // instruction may load or store.
3535        const MCInstrDesc &MCID = TII->get(TargetOpc);
3536        bool mayLoad = MCID.mayLoad();
3537        bool mayStore = MCID.mayStore();
3538
3539        // We expect to have relatively few of these so just filter them into a
3540        // temporary buffer so that we can easily add them to the instruction.
3541        SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3542        for (MachineMemOperand *MMO : MatchedMemRefs) {
3543          if (MMO->isLoad()) {
3544            if (mayLoad)
3545              FilteredMemRefs.push_back(MMO);
3546          } else if (MMO->isStore()) {
3547            if (mayStore)
3548              FilteredMemRefs.push_back(MMO);
3549          } else {
3550            FilteredMemRefs.push_back(MMO);
3551          }
3552        }
3553
3554        CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3555      }
3556
3557      LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3558                     << "  Dropping mem operands\n";
3559                 dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3560                        << " node: ";
3561                 Res->dump(CurDAG););
3562
3563      // If this was a MorphNodeTo then we're completely done!
3564      if (IsMorphNodeTo) {
3565        // Update chain uses.
3566        UpdateChains(Res, InputChain, ChainNodesMatched, true);
3567        return;
3568      }
3569      continue;
3570    }
3571
3572    case OPC_CompleteMatch: {
3573      // The match has been completed, and any new nodes (if any) have been
3574      // created.  Patch up references to the matched dag to use the newly
3575      // created nodes.
3576      unsigned NumResults = MatcherTable[MatcherIndex++];
3577
3578      for (unsigned i = 0; i != NumResults; ++i) {
3579        unsigned ResSlot = MatcherTable[MatcherIndex++];
3580        if (ResSlot & 128)
3581          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3582
3583        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3584        SDValue Res = RecordedNodes[ResSlot].first;
3585
3586        assert(i < NodeToMatch->getNumValues() &&
3587               NodeToMatch->getValueType(i) != MVT::Other &&
3588               NodeToMatch->getValueType(i) != MVT::Glue &&
3589               "Invalid number of results to complete!");
3590        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3591                NodeToMatch->getValueType(i) == MVT::iPTR ||
3592                Res.getValueType() == MVT::iPTR ||
3593                NodeToMatch->getValueType(i).getSizeInBits() ==
3594                    Res.getValueSizeInBits()) &&
3595               "invalid replacement");
3596        ReplaceUses(SDValue(NodeToMatch, i), Res);
3597      }
3598
3599      // Update chain uses.
3600      UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3601
3602      // If the root node defines glue, we need to update it to the glue result.
3603      // TODO: This never happens in our tests and I think it can be removed /
3604      // replaced with an assert, but if we do it this the way the change is
3605      // NFC.
3606      if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3607              MVT::Glue &&
3608          InputGlue.getNode())
3609        ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3610                    InputGlue);
3611
3612      assert(NodeToMatch->use_empty() &&
3613             "Didn't replace all uses of the node?");
3614      CurDAG->RemoveDeadNode(NodeToMatch);
3615
3616      return;
3617    }
3618    }
3619
3620    // If the code reached this point, then the match failed.  See if there is
3621    // another child to try in the current 'Scope', otherwise pop it until we
3622    // find a case to check.
3623    LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3624                      << "\n");
3625    ++NumDAGIselRetries;
3626    while (true) {
3627      if (MatchScopes.empty()) {
3628        CannotYetSelect(NodeToMatch);
3629        return;
3630      }
3631
3632      // Restore the interpreter state back to the point where the scope was
3633      // formed.
3634      MatchScope &LastScope = MatchScopes.back();
3635      RecordedNodes.resize(LastScope.NumRecordedNodes);
3636      NodeStack.clear();
3637      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3638      N = NodeStack.back();
3639
3640      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3641        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3642      MatcherIndex = LastScope.FailIndex;
3643
3644      LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3645
3646      InputChain = LastScope.InputChain;
3647      InputGlue = LastScope.InputGlue;
3648      if (!LastScope.HasChainNodesMatched)
3649        ChainNodesMatched.clear();
3650
3651      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3652      // we have reached the end of this scope, otherwise we have another child
3653      // in the current scope to try.
3654      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3655      if (NumToSkip & 128)
3656        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3657
3658      // If we have another child in this scope to match, update FailIndex and
3659      // try it.
3660      if (NumToSkip != 0) {
3661        LastScope.FailIndex = MatcherIndex+NumToSkip;
3662        break;
3663      }
3664
3665      // End of this scope, pop it and try the next child in the containing
3666      // scope.
3667      MatchScopes.pop_back();
3668    }
3669  }
3670}
3671
3672/// Return whether the node may raise an FP exception.
3673bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3674  // For machine opcodes, consult the MCID flag.
3675  if (N->isMachineOpcode()) {
3676    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3677    return MCID.mayRaiseFPException();
3678  }
3679
3680  // For ISD opcodes, only StrictFP opcodes may raise an FP
3681  // exception.
3682  if (N->isTargetOpcode())
3683    return N->isTargetStrictFPOpcode();
3684  return N->isStrictFPOpcode();
3685}
3686
3687bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3688  assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3689  auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3690  if (!C)
3691    return false;
3692
3693  // Detect when "or" is used to add an offset to a stack object.
3694  if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3695    MachineFrameInfo &MFI = MF->getFrameInfo();
3696    unsigned A = MFI.getObjectAlignment(FN->getIndex());
3697    assert(isPowerOf2_32(A) && "Unexpected alignment");
3698    int32_t Off = C->getSExtValue();
3699    // If the alleged offset fits in the zero bits guaranteed by
3700    // the alignment, then this or is really an add.
3701    return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3702  }
3703  return false;
3704}
3705
3706void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3707  std::string msg;
3708  raw_string_ostream Msg(msg);
3709  Msg << "Cannot select: ";
3710
3711  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3712      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3713      N->getOpcode() != ISD::INTRINSIC_VOID) {
3714    N->printrFull(Msg, CurDAG);
3715    Msg << "\nIn function: " << MF->getName();
3716  } else {
3717    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3718    unsigned iid =
3719      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3720    if (iid < Intrinsic::num_intrinsics)
3721      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3722    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3723      Msg << "target intrinsic %" << TII->getName(iid);
3724    else
3725      Msg << "unknown intrinsic #" << iid;
3726  }
3727  report_fatal_error(Msg.str());
3728}
3729
3730char SelectionDAGISel::ID = 0;
3731