1/*-
2 * Copyright (c) 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
30 * $FreeBSD: stable/11/sys/net/rtsock.c 341678 2018-12-07 09:39:37Z ae $
31 */
32#include "opt_compat.h"
33#include "opt_mpath.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36
37#include <sys/param.h>
38#include <sys/jail.h>
39#include <sys/kernel.h>
40#include <sys/domain.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/protosw.h>
47#include <sys/rwlock.h>
48#include <sys/signalvar.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/sysctl.h>
52#include <sys/systm.h>
53
54#include <net/if.h>
55#include <net/if_var.h>
56#include <net/if_dl.h>
57#include <net/if_llatbl.h>
58#include <net/if_types.h>
59#include <net/netisr.h>
60#include <net/raw_cb.h>
61#include <net/route.h>
62#include <net/route_var.h>
63#include <net/vnet.h>
64
65#include <netinet/in.h>
66#include <netinet/if_ether.h>
67#include <netinet/ip_carp.h>
68#ifdef INET6
69#include <netinet6/ip6_var.h>
70#include <netinet6/scope6_var.h>
71#endif
72
73#ifdef COMPAT_FREEBSD32
74#include <sys/mount.h>
75#include <compat/freebsd32/freebsd32.h>
76
77struct if_msghdr32 {
78	uint16_t ifm_msglen;
79	uint8_t	ifm_version;
80	uint8_t	ifm_type;
81	int32_t	ifm_addrs;
82	int32_t	ifm_flags;
83	uint16_t ifm_index;
84	uint16_t _ifm_spare1;
85	struct	if_data ifm_data;
86};
87
88struct if_msghdrl32 {
89	uint16_t ifm_msglen;
90	uint8_t	ifm_version;
91	uint8_t	ifm_type;
92	int32_t	ifm_addrs;
93	int32_t	ifm_flags;
94	uint16_t ifm_index;
95	uint16_t _ifm_spare1;
96	uint16_t ifm_len;
97	uint16_t ifm_data_off;
98	uint32_t _ifm_spare2;
99	struct	if_data ifm_data;
100};
101
102struct ifa_msghdrl32 {
103	uint16_t ifam_msglen;
104	uint8_t	ifam_version;
105	uint8_t	ifam_type;
106	int32_t	ifam_addrs;
107	int32_t	ifam_flags;
108	uint16_t ifam_index;
109	uint16_t _ifam_spare1;
110	uint16_t ifam_len;
111	uint16_t ifam_data_off;
112	int32_t	ifam_metric;
113	struct	if_data ifam_data;
114};
115
116#define SA_SIZE32(sa)						\
117    (  (((struct sockaddr *)(sa))->sa_len == 0) ?		\
118	sizeof(int)		:				\
119	1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
120
121#endif /* COMPAT_FREEBSD32 */
122
123MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
124
125/* NB: these are not modified */
126static struct	sockaddr route_src = { 2, PF_ROUTE, };
127static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
128
129/* These are external hooks for CARP. */
130int	(*carp_get_vhid_p)(struct ifaddr *);
131
132/*
133 * Used by rtsock/raw_input callback code to decide whether to filter the update
134 * notification to a socket bound to a particular FIB.
135 */
136#define	RTS_FILTER_FIB	M_PROTO8
137
138typedef struct {
139	int	ip_count;	/* attached w/ AF_INET */
140	int	ip6_count;	/* attached w/ AF_INET6 */
141	int	any_count;	/* total attached */
142} route_cb_t;
143static VNET_DEFINE(route_cb_t, route_cb);
144#define	V_route_cb VNET(route_cb)
145
146struct mtx rtsock_mtx;
147MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
148
149#define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
150#define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
151#define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
152
153static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
154
155struct walkarg {
156	int	w_tmemsize;
157	int	w_op, w_arg;
158	caddr_t	w_tmem;
159	struct sysctl_req *w_req;
160};
161
162static void	rts_input(struct mbuf *m);
163static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
164static int	rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
165			struct walkarg *w, int *plen);
166static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
167			struct rt_addrinfo *rtinfo);
168static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
169static int	sysctl_iflist(int af, struct walkarg *w);
170static int	sysctl_ifmalist(int af, struct walkarg *w);
171static int	route_output(struct mbuf *m, struct socket *so, ...);
172static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
173static void	rt_dispatch(struct mbuf *, sa_family_t);
174static struct sockaddr	*rtsock_fix_netmask(struct sockaddr *dst,
175			struct sockaddr *smask, struct sockaddr_storage *dmask);
176
177static struct netisr_handler rtsock_nh = {
178	.nh_name = "rtsock",
179	.nh_handler = rts_input,
180	.nh_proto = NETISR_ROUTE,
181	.nh_policy = NETISR_POLICY_SOURCE,
182};
183
184static int
185sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
186{
187	int error, qlimit;
188
189	netisr_getqlimit(&rtsock_nh, &qlimit);
190	error = sysctl_handle_int(oidp, &qlimit, 0, req);
191        if (error || !req->newptr)
192                return (error);
193	if (qlimit < 1)
194		return (EINVAL);
195	return (netisr_setqlimit(&rtsock_nh, qlimit));
196}
197SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
198    0, 0, sysctl_route_netisr_maxqlen, "I",
199    "maximum routing socket dispatch queue length");
200
201static void
202vnet_rts_init(void)
203{
204	int tmp;
205
206	if (IS_DEFAULT_VNET(curvnet)) {
207		if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
208			rtsock_nh.nh_qlimit = tmp;
209		netisr_register(&rtsock_nh);
210	}
211#ifdef VIMAGE
212	 else
213		netisr_register_vnet(&rtsock_nh);
214#endif
215}
216VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
217    vnet_rts_init, 0);
218
219#ifdef VIMAGE
220static void
221vnet_rts_uninit(void)
222{
223
224	netisr_unregister_vnet(&rtsock_nh);
225}
226VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
227    vnet_rts_uninit, 0);
228#endif
229
230static int
231raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
232    struct rawcb *rp)
233{
234	int fibnum;
235
236	KASSERT(m != NULL, ("%s: m is NULL", __func__));
237	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
238	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
239
240	/* No filtering requested. */
241	if ((m->m_flags & RTS_FILTER_FIB) == 0)
242		return (0);
243
244	/* Check if it is a rts and the fib matches the one of the socket. */
245	fibnum = M_GETFIB(m);
246	if (proto->sp_family != PF_ROUTE ||
247	    rp->rcb_socket == NULL ||
248	    rp->rcb_socket->so_fibnum == fibnum)
249		return (0);
250
251	/* Filtering requested and no match, the socket shall be skipped. */
252	return (1);
253}
254
255static void
256rts_input(struct mbuf *m)
257{
258	struct sockproto route_proto;
259	unsigned short *family;
260	struct m_tag *tag;
261
262	route_proto.sp_family = PF_ROUTE;
263	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
264	if (tag != NULL) {
265		family = (unsigned short *)(tag + 1);
266		route_proto.sp_protocol = *family;
267		m_tag_delete(m, tag);
268	} else
269		route_proto.sp_protocol = 0;
270
271	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
272}
273
274/*
275 * It really doesn't make any sense at all for this code to share much
276 * with raw_usrreq.c, since its functionality is so restricted.  XXX
277 */
278static void
279rts_abort(struct socket *so)
280{
281
282	raw_usrreqs.pru_abort(so);
283}
284
285static void
286rts_close(struct socket *so)
287{
288
289	raw_usrreqs.pru_close(so);
290}
291
292/* pru_accept is EOPNOTSUPP */
293
294static int
295rts_attach(struct socket *so, int proto, struct thread *td)
296{
297	struct rawcb *rp;
298	int error;
299
300	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
301
302	/* XXX */
303	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
304
305	so->so_pcb = (caddr_t)rp;
306	so->so_fibnum = td->td_proc->p_fibnum;
307	error = raw_attach(so, proto);
308	rp = sotorawcb(so);
309	if (error) {
310		so->so_pcb = NULL;
311		free(rp, M_PCB);
312		return error;
313	}
314	RTSOCK_LOCK();
315	switch(rp->rcb_proto.sp_protocol) {
316	case AF_INET:
317		V_route_cb.ip_count++;
318		break;
319	case AF_INET6:
320		V_route_cb.ip6_count++;
321		break;
322	}
323	V_route_cb.any_count++;
324	RTSOCK_UNLOCK();
325	soisconnected(so);
326	so->so_options |= SO_USELOOPBACK;
327	return 0;
328}
329
330static int
331rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
332{
333
334	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
335}
336
337static int
338rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
339{
340
341	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
342}
343
344/* pru_connect2 is EOPNOTSUPP */
345/* pru_control is EOPNOTSUPP */
346
347static void
348rts_detach(struct socket *so)
349{
350	struct rawcb *rp = sotorawcb(so);
351
352	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
353
354	RTSOCK_LOCK();
355	switch(rp->rcb_proto.sp_protocol) {
356	case AF_INET:
357		V_route_cb.ip_count--;
358		break;
359	case AF_INET6:
360		V_route_cb.ip6_count--;
361		break;
362	}
363	V_route_cb.any_count--;
364	RTSOCK_UNLOCK();
365	raw_usrreqs.pru_detach(so);
366}
367
368static int
369rts_disconnect(struct socket *so)
370{
371
372	return (raw_usrreqs.pru_disconnect(so));
373}
374
375/* pru_listen is EOPNOTSUPP */
376
377static int
378rts_peeraddr(struct socket *so, struct sockaddr **nam)
379{
380
381	return (raw_usrreqs.pru_peeraddr(so, nam));
382}
383
384/* pru_rcvd is EOPNOTSUPP */
385/* pru_rcvoob is EOPNOTSUPP */
386
387static int
388rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
389	 struct mbuf *control, struct thread *td)
390{
391
392	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
393}
394
395/* pru_sense is null */
396
397static int
398rts_shutdown(struct socket *so)
399{
400
401	return (raw_usrreqs.pru_shutdown(so));
402}
403
404static int
405rts_sockaddr(struct socket *so, struct sockaddr **nam)
406{
407
408	return (raw_usrreqs.pru_sockaddr(so, nam));
409}
410
411static struct pr_usrreqs route_usrreqs = {
412	.pru_abort =		rts_abort,
413	.pru_attach =		rts_attach,
414	.pru_bind =		rts_bind,
415	.pru_connect =		rts_connect,
416	.pru_detach =		rts_detach,
417	.pru_disconnect =	rts_disconnect,
418	.pru_peeraddr =		rts_peeraddr,
419	.pru_send =		rts_send,
420	.pru_shutdown =		rts_shutdown,
421	.pru_sockaddr =		rts_sockaddr,
422	.pru_close =		rts_close,
423};
424
425#ifndef _SOCKADDR_UNION_DEFINED
426#define	_SOCKADDR_UNION_DEFINED
427/*
428 * The union of all possible address formats we handle.
429 */
430union sockaddr_union {
431	struct sockaddr		sa;
432	struct sockaddr_in	sin;
433	struct sockaddr_in6	sin6;
434};
435#endif /* _SOCKADDR_UNION_DEFINED */
436
437static int
438rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
439    struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
440{
441
442	/* First, see if the returned address is part of the jail. */
443	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
444		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
445		return (0);
446	}
447
448	switch (info->rti_info[RTAX_DST]->sa_family) {
449#ifdef INET
450	case AF_INET:
451	{
452		struct in_addr ia;
453		struct ifaddr *ifa;
454		int found;
455
456		found = 0;
457		/*
458		 * Try to find an address on the given outgoing interface
459		 * that belongs to the jail.
460		 */
461		IF_ADDR_RLOCK(ifp);
462		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
463			struct sockaddr *sa;
464			sa = ifa->ifa_addr;
465			if (sa->sa_family != AF_INET)
466				continue;
467			ia = ((struct sockaddr_in *)sa)->sin_addr;
468			if (prison_check_ip4(cred, &ia) == 0) {
469				found = 1;
470				break;
471			}
472		}
473		IF_ADDR_RUNLOCK(ifp);
474		if (!found) {
475			/*
476			 * As a last resort return the 'default' jail address.
477			 */
478			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
479			    sin_addr;
480			if (prison_get_ip4(cred, &ia) != 0)
481				return (ESRCH);
482		}
483		bzero(&saun->sin, sizeof(struct sockaddr_in));
484		saun->sin.sin_len = sizeof(struct sockaddr_in);
485		saun->sin.sin_family = AF_INET;
486		saun->sin.sin_addr.s_addr = ia.s_addr;
487		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
488		break;
489	}
490#endif
491#ifdef INET6
492	case AF_INET6:
493	{
494		struct in6_addr ia6;
495		struct ifaddr *ifa;
496		int found;
497
498		found = 0;
499		/*
500		 * Try to find an address on the given outgoing interface
501		 * that belongs to the jail.
502		 */
503		IF_ADDR_RLOCK(ifp);
504		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
505			struct sockaddr *sa;
506			sa = ifa->ifa_addr;
507			if (sa->sa_family != AF_INET6)
508				continue;
509			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
510			    &ia6, sizeof(struct in6_addr));
511			if (prison_check_ip6(cred, &ia6) == 0) {
512				found = 1;
513				break;
514			}
515		}
516		IF_ADDR_RUNLOCK(ifp);
517		if (!found) {
518			/*
519			 * As a last resort return the 'default' jail address.
520			 */
521			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
522			    sin6_addr;
523			if (prison_get_ip6(cred, &ia6) != 0)
524				return (ESRCH);
525		}
526		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
527		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
528		saun->sin6.sin6_family = AF_INET6;
529		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
530		if (sa6_recoverscope(&saun->sin6) != 0)
531			return (ESRCH);
532		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
533		break;
534	}
535#endif
536	default:
537		return (ESRCH);
538	}
539	return (0);
540}
541
542/*ARGSUSED*/
543static int
544route_output(struct mbuf *m, struct socket *so, ...)
545{
546	struct rt_msghdr *rtm = NULL;
547	struct rtentry *rt = NULL;
548	struct rib_head *rnh;
549	struct rt_addrinfo info;
550	struct sockaddr_storage ss;
551#ifdef INET6
552	struct sockaddr_in6 *sin6;
553	int i, rti_need_deembed = 0;
554#endif
555	int alloc_len = 0, len, error = 0, fibnum;
556	struct ifnet *ifp = NULL;
557	union sockaddr_union saun;
558	sa_family_t saf = AF_UNSPEC;
559	struct rawcb *rp = NULL;
560	struct walkarg w;
561
562	fibnum = so->so_fibnum;
563
564#define senderr(e) { error = e; goto flush;}
565	if (m == NULL || ((m->m_len < sizeof(long)) &&
566		       (m = m_pullup(m, sizeof(long))) == NULL))
567		return (ENOBUFS);
568	if ((m->m_flags & M_PKTHDR) == 0)
569		panic("route_output");
570	len = m->m_pkthdr.len;
571	if (len < sizeof(*rtm) ||
572	    len != mtod(m, struct rt_msghdr *)->rtm_msglen)
573		senderr(EINVAL);
574
575	/*
576	 * Most of current messages are in range 200-240 bytes,
577	 * minimize possible re-allocation on reply using larger size
578	 * buffer aligned on 1k boundaty.
579	 */
580	alloc_len = roundup2(len, 1024);
581	if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
582		senderr(ENOBUFS);
583
584	m_copydata(m, 0, len, (caddr_t)rtm);
585	bzero(&info, sizeof(info));
586	bzero(&w, sizeof(w));
587
588	if (rtm->rtm_version != RTM_VERSION) {
589		/* Do not touch message since format is unknown */
590		free(rtm, M_TEMP);
591		rtm = NULL;
592		senderr(EPROTONOSUPPORT);
593	}
594
595	/*
596	 * Starting from here, it is possible
597	 * to alter original message and insert
598	 * caller PID and error value.
599	 */
600
601	rtm->rtm_pid = curproc->p_pid;
602	info.rti_addrs = rtm->rtm_addrs;
603
604	info.rti_mflags = rtm->rtm_inits;
605	info.rti_rmx = &rtm->rtm_rmx;
606
607	/*
608	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
609	 * link-local address because rtrequest requires addresses with
610	 * embedded scope id.
611	 */
612	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info))
613		senderr(EINVAL);
614
615	info.rti_flags = rtm->rtm_flags;
616	if (info.rti_info[RTAX_DST] == NULL ||
617	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
618	    (info.rti_info[RTAX_GATEWAY] != NULL &&
619	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
620		senderr(EINVAL);
621	saf = info.rti_info[RTAX_DST]->sa_family;
622	/*
623	 * Verify that the caller has the appropriate privilege; RTM_GET
624	 * is the only operation the non-superuser is allowed.
625	 */
626	if (rtm->rtm_type != RTM_GET) {
627		error = priv_check(curthread, PRIV_NET_ROUTE);
628		if (error)
629			senderr(error);
630	}
631
632	/*
633	 * The given gateway address may be an interface address.
634	 * For example, issuing a "route change" command on a route
635	 * entry that was created from a tunnel, and the gateway
636	 * address given is the local end point. In this case the
637	 * RTF_GATEWAY flag must be cleared or the destination will
638	 * not be reachable even though there is no error message.
639	 */
640	if (info.rti_info[RTAX_GATEWAY] != NULL &&
641	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
642		struct rt_addrinfo ginfo;
643		struct sockaddr *gdst;
644
645		bzero(&ginfo, sizeof(ginfo));
646		bzero(&ss, sizeof(ss));
647		ss.ss_len = sizeof(ss);
648
649		ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
650		gdst = info.rti_info[RTAX_GATEWAY];
651
652		/*
653		 * A host route through the loopback interface is
654		 * installed for each interface adddress. In pre 8.0
655		 * releases the interface address of a PPP link type
656		 * is not reachable locally. This behavior is fixed as
657		 * part of the new L2/L3 redesign and rewrite work. The
658		 * signature of this interface address route is the
659		 * AF_LINK sa_family type of the rt_gateway, and the
660		 * rt_ifp has the IFF_LOOPBACK flag set.
661		 */
662		if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
663			if (ss.ss_family == AF_LINK &&
664			    ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
665				info.rti_flags &= ~RTF_GATEWAY;
666				info.rti_flags |= RTF_GWFLAG_COMPAT;
667			}
668			rib_free_info(&ginfo);
669		}
670	}
671
672	switch (rtm->rtm_type) {
673		struct rtentry *saved_nrt;
674
675	case RTM_ADD:
676	case RTM_CHANGE:
677		if (info.rti_info[RTAX_GATEWAY] == NULL)
678			senderr(EINVAL);
679		saved_nrt = NULL;
680
681		/* support for new ARP code */
682		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
683		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
684			error = lla_rt_output(rtm, &info);
685#ifdef INET6
686			if (error == 0)
687				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
688#endif
689			break;
690		}
691		error = rtrequest1_fib(rtm->rtm_type, &info, &saved_nrt,
692		    fibnum);
693		if (error == 0 && saved_nrt != NULL) {
694#ifdef INET6
695			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
696#endif
697			RT_LOCK(saved_nrt);
698			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
699			RT_REMREF(saved_nrt);
700			RT_UNLOCK(saved_nrt);
701		}
702		break;
703
704	case RTM_DELETE:
705		saved_nrt = NULL;
706		/* support for new ARP code */
707		if (info.rti_info[RTAX_GATEWAY] &&
708		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
709		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
710			error = lla_rt_output(rtm, &info);
711#ifdef INET6
712			if (error == 0)
713				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
714#endif
715			break;
716		}
717		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt, fibnum);
718		if (error == 0) {
719			RT_LOCK(saved_nrt);
720			rt = saved_nrt;
721			goto report;
722		}
723#ifdef INET6
724		/* rt_msg2() will not be used when RTM_DELETE fails. */
725		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
726#endif
727		break;
728
729	case RTM_GET:
730		rnh = rt_tables_get_rnh(fibnum, saf);
731		if (rnh == NULL)
732			senderr(EAFNOSUPPORT);
733
734		RIB_RLOCK(rnh);
735
736		if (info.rti_info[RTAX_NETMASK] == NULL &&
737		    rtm->rtm_type == RTM_GET) {
738			/*
739			 * Provide longest prefix match for
740			 * address lookup (no mask).
741			 * 'route -n get addr'
742			 */
743			rt = (struct rtentry *) rnh->rnh_matchaddr(
744			    info.rti_info[RTAX_DST], &rnh->head);
745		} else
746			rt = (struct rtentry *) rnh->rnh_lookup(
747			    info.rti_info[RTAX_DST],
748			    info.rti_info[RTAX_NETMASK], &rnh->head);
749
750		if (rt == NULL) {
751			RIB_RUNLOCK(rnh);
752			senderr(ESRCH);
753		}
754#ifdef RADIX_MPATH
755		/*
756		 * for RTM_CHANGE/LOCK, if we got multipath routes,
757		 * we require users to specify a matching RTAX_GATEWAY.
758		 *
759		 * for RTM_GET, gate is optional even with multipath.
760		 * if gate == NULL the first match is returned.
761		 * (no need to call rt_mpath_matchgate if gate == NULL)
762		 */
763		if (rt_mpath_capable(rnh) &&
764		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
765			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
766			if (!rt) {
767				RIB_RUNLOCK(rnh);
768				senderr(ESRCH);
769			}
770		}
771#endif
772		/*
773		 * If performing proxied L2 entry insertion, and
774		 * the actual PPP host entry is found, perform
775		 * another search to retrieve the prefix route of
776		 * the local end point of the PPP link.
777		 */
778		if (rtm->rtm_flags & RTF_ANNOUNCE) {
779			struct sockaddr laddr;
780
781			if (rt->rt_ifp != NULL &&
782			    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
783				struct ifaddr *ifa;
784
785				ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1,
786						RT_ALL_FIBS);
787				if (ifa != NULL)
788					rt_maskedcopy(ifa->ifa_addr,
789						      &laddr,
790						      ifa->ifa_netmask);
791			} else
792				rt_maskedcopy(rt->rt_ifa->ifa_addr,
793					      &laddr,
794					      rt->rt_ifa->ifa_netmask);
795			/*
796			 * refactor rt and no lock operation necessary
797			 */
798			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
799			    &rnh->head);
800			if (rt == NULL) {
801				RIB_RUNLOCK(rnh);
802				senderr(ESRCH);
803			}
804		}
805		RT_LOCK(rt);
806		RT_ADDREF(rt);
807		RIB_RUNLOCK(rnh);
808
809report:
810		RT_LOCK_ASSERT(rt);
811		if ((rt->rt_flags & RTF_HOST) == 0
812		    ? jailed_without_vnet(curthread->td_ucred)
813		    : prison_if(curthread->td_ucred,
814		    rt_key(rt)) != 0) {
815			RT_UNLOCK(rt);
816			senderr(ESRCH);
817		}
818		info.rti_info[RTAX_DST] = rt_key(rt);
819		info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
820		info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
821		    rt_mask(rt), &ss);
822		info.rti_info[RTAX_GENMASK] = 0;
823		if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
824			ifp = rt->rt_ifp;
825			if (ifp) {
826				info.rti_info[RTAX_IFP] =
827				    ifp->if_addr->ifa_addr;
828				error = rtm_get_jailed(&info, ifp, rt,
829				    &saun, curthread->td_ucred);
830				if (error != 0) {
831					RT_UNLOCK(rt);
832					senderr(error);
833				}
834				if (ifp->if_flags & IFF_POINTOPOINT)
835					info.rti_info[RTAX_BRD] =
836					    rt->rt_ifa->ifa_dstaddr;
837				rtm->rtm_index = ifp->if_index;
838			} else {
839				info.rti_info[RTAX_IFP] = NULL;
840				info.rti_info[RTAX_IFA] = NULL;
841			}
842		} else if ((ifp = rt->rt_ifp) != NULL) {
843			rtm->rtm_index = ifp->if_index;
844		}
845
846		/* Check if we need to realloc storage */
847		rtsock_msg_buffer(rtm->rtm_type, &info, NULL, &len);
848		if (len > alloc_len) {
849			struct rt_msghdr *new_rtm;
850			new_rtm = malloc(len, M_TEMP, M_NOWAIT);
851			if (new_rtm == NULL) {
852				RT_UNLOCK(rt);
853				senderr(ENOBUFS);
854			}
855			bcopy(rtm, new_rtm, rtm->rtm_msglen);
856			free(rtm, M_TEMP);
857			rtm = new_rtm;
858			alloc_len = len;
859		}
860
861		w.w_tmem = (caddr_t)rtm;
862		w.w_tmemsize = alloc_len;
863		rtsock_msg_buffer(rtm->rtm_type, &info, &w, &len);
864
865		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
866			rtm->rtm_flags = RTF_GATEWAY |
867				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
868		else
869			rtm->rtm_flags = rt->rt_flags;
870		rt_getmetrics(rt, &rtm->rtm_rmx);
871		rtm->rtm_addrs = info.rti_addrs;
872
873		RT_UNLOCK(rt);
874		break;
875
876	default:
877		senderr(EOPNOTSUPP);
878	}
879
880flush:
881	if (rt != NULL)
882		RTFREE(rt);
883	/*
884	 * Check to see if we don't want our own messages.
885	 */
886	if ((so->so_options & SO_USELOOPBACK) == 0) {
887		if (V_route_cb.any_count <= 1) {
888			if (rtm != NULL)
889				free(rtm, M_TEMP);
890			m_freem(m);
891			return (error);
892		}
893		/* There is another listener, so construct message */
894		rp = sotorawcb(so);
895	}
896
897	if (rtm != NULL) {
898#ifdef INET6
899		if (rti_need_deembed) {
900			/* sin6_scope_id is recovered before sending rtm. */
901			sin6 = (struct sockaddr_in6 *)&ss;
902			for (i = 0; i < RTAX_MAX; i++) {
903				if (info.rti_info[i] == NULL)
904					continue;
905				if (info.rti_info[i]->sa_family != AF_INET6)
906					continue;
907				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
908				if (sa6_recoverscope(sin6) == 0)
909					bcopy(sin6, info.rti_info[i],
910						    sizeof(*sin6));
911			}
912		}
913#endif
914		if (error != 0)
915			rtm->rtm_errno = error;
916		else
917			rtm->rtm_flags |= RTF_DONE;
918
919		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
920		if (m->m_pkthdr.len < rtm->rtm_msglen) {
921			m_freem(m);
922			m = NULL;
923		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
924			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
925
926		free(rtm, M_TEMP);
927	}
928	if (m != NULL) {
929		M_SETFIB(m, fibnum);
930		m->m_flags |= RTS_FILTER_FIB;
931		if (rp) {
932			/*
933			 * XXX insure we don't get a copy by
934			 * invalidating our protocol
935			 */
936			unsigned short family = rp->rcb_proto.sp_family;
937			rp->rcb_proto.sp_family = 0;
938			rt_dispatch(m, saf);
939			rp->rcb_proto.sp_family = family;
940		} else
941			rt_dispatch(m, saf);
942	}
943
944	return (error);
945}
946
947static void
948rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
949{
950
951	bzero(out, sizeof(*out));
952	out->rmx_mtu = rt->rt_mtu;
953	out->rmx_weight = rt->rt_weight;
954	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
955	/* Kernel -> userland timebase conversion. */
956	out->rmx_expire = rt->rt_expire ?
957	    rt->rt_expire - time_uptime + time_second : 0;
958}
959
960/*
961 * Extract the addresses of the passed sockaddrs.
962 * Do a little sanity checking so as to avoid bad memory references.
963 * This data is derived straight from userland.
964 */
965static int
966rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
967{
968	struct sockaddr *sa;
969	int i;
970
971	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
972		if ((rtinfo->rti_addrs & (1 << i)) == 0)
973			continue;
974		sa = (struct sockaddr *)cp;
975		/*
976		 * It won't fit.
977		 */
978		if (cp + sa->sa_len > cplim)
979			return (EINVAL);
980		/*
981		 * there are no more.. quit now
982		 * If there are more bits, they are in error.
983		 * I've seen this. route(1) can evidently generate these.
984		 * This causes kernel to core dump.
985		 * for compatibility, If we see this, point to a safe address.
986		 */
987		if (sa->sa_len == 0) {
988			rtinfo->rti_info[i] = &sa_zero;
989			return (0); /* should be EINVAL but for compat */
990		}
991		/* accept it */
992#ifdef INET6
993		if (sa->sa_family == AF_INET6)
994			sa6_embedscope((struct sockaddr_in6 *)sa,
995			    V_ip6_use_defzone);
996#endif
997		rtinfo->rti_info[i] = sa;
998		cp += SA_SIZE(sa);
999	}
1000	return (0);
1001}
1002
1003/*
1004 * Fill in @dmask with valid netmask leaving original @smask
1005 * intact. Mostly used with radix netmasks.
1006 */
1007static struct sockaddr *
1008rtsock_fix_netmask(struct sockaddr *dst, struct sockaddr *smask,
1009    struct sockaddr_storage *dmask)
1010{
1011	if (dst == NULL || smask == NULL)
1012		return (NULL);
1013
1014	memset(dmask, 0, dst->sa_len);
1015	memcpy(dmask, smask, smask->sa_len);
1016	dmask->ss_len = dst->sa_len;
1017	dmask->ss_family = dst->sa_family;
1018
1019	return ((struct sockaddr *)dmask);
1020}
1021
1022/*
1023 * Writes information related to @rtinfo object to newly-allocated mbuf.
1024 * Assumes MCLBYTES is enough to construct any message.
1025 * Used for OS notifications of vaious events (if/ifa announces,etc)
1026 *
1027 * Returns allocated mbuf or NULL on failure.
1028 */
1029static struct mbuf *
1030rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1031{
1032	struct rt_msghdr *rtm;
1033	struct mbuf *m;
1034	int i;
1035	struct sockaddr *sa;
1036#ifdef INET6
1037	struct sockaddr_storage ss;
1038	struct sockaddr_in6 *sin6;
1039#endif
1040	int len, dlen;
1041
1042	switch (type) {
1043
1044	case RTM_DELADDR:
1045	case RTM_NEWADDR:
1046		len = sizeof(struct ifa_msghdr);
1047		break;
1048
1049	case RTM_DELMADDR:
1050	case RTM_NEWMADDR:
1051		len = sizeof(struct ifma_msghdr);
1052		break;
1053
1054	case RTM_IFINFO:
1055		len = sizeof(struct if_msghdr);
1056		break;
1057
1058	case RTM_IFANNOUNCE:
1059	case RTM_IEEE80211:
1060		len = sizeof(struct if_announcemsghdr);
1061		break;
1062
1063	default:
1064		len = sizeof(struct rt_msghdr);
1065	}
1066
1067	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1068	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1069	if (len > MHLEN)
1070		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1071	else
1072		m = m_gethdr(M_NOWAIT, MT_DATA);
1073	if (m == NULL)
1074		return (m);
1075
1076	m->m_pkthdr.len = m->m_len = len;
1077	rtm = mtod(m, struct rt_msghdr *);
1078	bzero((caddr_t)rtm, len);
1079	for (i = 0; i < RTAX_MAX; i++) {
1080		if ((sa = rtinfo->rti_info[i]) == NULL)
1081			continue;
1082		rtinfo->rti_addrs |= (1 << i);
1083		dlen = SA_SIZE(sa);
1084#ifdef INET6
1085		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1086			sin6 = (struct sockaddr_in6 *)&ss;
1087			bcopy(sa, sin6, sizeof(*sin6));
1088			if (sa6_recoverscope(sin6) == 0)
1089				sa = (struct sockaddr *)sin6;
1090		}
1091#endif
1092		m_copyback(m, len, dlen, (caddr_t)sa);
1093		len += dlen;
1094	}
1095	if (m->m_pkthdr.len != len) {
1096		m_freem(m);
1097		return (NULL);
1098	}
1099	rtm->rtm_msglen = len;
1100	rtm->rtm_version = RTM_VERSION;
1101	rtm->rtm_type = type;
1102	return (m);
1103}
1104
1105/*
1106 * Writes information related to @rtinfo object to preallocated buffer.
1107 * Stores needed size in @plen. If @w is NULL, calculates size without
1108 * writing.
1109 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1110 *
1111 * Returns 0 on success.
1112 *
1113 */
1114static int
1115rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1116{
1117	int i;
1118	int len, buflen = 0, dlen;
1119	caddr_t cp = NULL;
1120	struct rt_msghdr *rtm = NULL;
1121#ifdef INET6
1122	struct sockaddr_storage ss;
1123	struct sockaddr_in6 *sin6;
1124#endif
1125#ifdef COMPAT_FREEBSD32
1126	bool compat32 = false;
1127#endif
1128
1129	switch (type) {
1130
1131	case RTM_DELADDR:
1132	case RTM_NEWADDR:
1133		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1134#ifdef COMPAT_FREEBSD32
1135			if (w->w_req->flags & SCTL_MASK32) {
1136				len = sizeof(struct ifa_msghdrl32);
1137				compat32 = true;
1138			} else
1139#endif
1140				len = sizeof(struct ifa_msghdrl);
1141		} else
1142			len = sizeof(struct ifa_msghdr);
1143		break;
1144
1145	case RTM_IFINFO:
1146#ifdef COMPAT_FREEBSD32
1147		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1148			if (w->w_op == NET_RT_IFLISTL)
1149				len = sizeof(struct if_msghdrl32);
1150			else
1151				len = sizeof(struct if_msghdr32);
1152			compat32 = true;
1153			break;
1154		}
1155#endif
1156		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1157			len = sizeof(struct if_msghdrl);
1158		else
1159			len = sizeof(struct if_msghdr);
1160		break;
1161
1162	case RTM_NEWMADDR:
1163		len = sizeof(struct ifma_msghdr);
1164		break;
1165
1166	default:
1167		len = sizeof(struct rt_msghdr);
1168	}
1169
1170	if (w != NULL) {
1171		rtm = (struct rt_msghdr *)w->w_tmem;
1172		buflen = w->w_tmemsize - len;
1173		cp = (caddr_t)w->w_tmem + len;
1174	}
1175
1176	rtinfo->rti_addrs = 0;
1177	for (i = 0; i < RTAX_MAX; i++) {
1178		struct sockaddr *sa;
1179
1180		if ((sa = rtinfo->rti_info[i]) == NULL)
1181			continue;
1182		rtinfo->rti_addrs |= (1 << i);
1183#ifdef COMPAT_FREEBSD32
1184		if (compat32)
1185			dlen = SA_SIZE32(sa);
1186		else
1187#endif
1188			dlen = SA_SIZE(sa);
1189		if (cp != NULL && buflen >= dlen) {
1190#ifdef INET6
1191			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1192				sin6 = (struct sockaddr_in6 *)&ss;
1193				bcopy(sa, sin6, sizeof(*sin6));
1194				if (sa6_recoverscope(sin6) == 0)
1195					sa = (struct sockaddr *)sin6;
1196			}
1197#endif
1198			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1199			cp += dlen;
1200			buflen -= dlen;
1201		} else if (cp != NULL) {
1202			/*
1203			 * Buffer too small. Count needed size
1204			 * and return with error.
1205			 */
1206			cp = NULL;
1207		}
1208
1209		len += dlen;
1210	}
1211
1212	if (cp != NULL) {
1213		dlen = ALIGN(len) - len;
1214		if (buflen < dlen)
1215			cp = NULL;
1216		else {
1217			bzero(cp, dlen);
1218			cp += dlen;
1219			buflen -= dlen;
1220		}
1221	}
1222	len = ALIGN(len);
1223
1224	if (cp != NULL) {
1225		/* fill header iff buffer is large enough */
1226		rtm->rtm_version = RTM_VERSION;
1227		rtm->rtm_type = type;
1228		rtm->rtm_msglen = len;
1229	}
1230
1231	*plen = len;
1232
1233	if (w != NULL && cp == NULL)
1234		return (ENOBUFS);
1235
1236	return (0);
1237}
1238
1239/*
1240 * This routine is called to generate a message from the routing
1241 * socket indicating that a redirect has occurred, a routing lookup
1242 * has failed, or that a protocol has detected timeouts to a particular
1243 * destination.
1244 */
1245void
1246rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1247    int fibnum)
1248{
1249	struct rt_msghdr *rtm;
1250	struct mbuf *m;
1251	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1252
1253	if (V_route_cb.any_count == 0)
1254		return;
1255	m = rtsock_msg_mbuf(type, rtinfo);
1256	if (m == NULL)
1257		return;
1258
1259	if (fibnum != RT_ALL_FIBS) {
1260		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1261		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1262		M_SETFIB(m, fibnum);
1263		m->m_flags |= RTS_FILTER_FIB;
1264	}
1265
1266	rtm = mtod(m, struct rt_msghdr *);
1267	rtm->rtm_flags = RTF_DONE | flags;
1268	rtm->rtm_errno = error;
1269	rtm->rtm_addrs = rtinfo->rti_addrs;
1270	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1271}
1272
1273void
1274rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1275{
1276
1277	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1278}
1279
1280/*
1281 * This routine is called to generate a message from the routing
1282 * socket indicating that the status of a network interface has changed.
1283 */
1284void
1285rt_ifmsg(struct ifnet *ifp)
1286{
1287	struct if_msghdr *ifm;
1288	struct mbuf *m;
1289	struct rt_addrinfo info;
1290
1291	if (V_route_cb.any_count == 0)
1292		return;
1293	bzero((caddr_t)&info, sizeof(info));
1294	m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1295	if (m == NULL)
1296		return;
1297	ifm = mtod(m, struct if_msghdr *);
1298	ifm->ifm_index = ifp->if_index;
1299	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1300	if_data_copy(ifp, &ifm->ifm_data);
1301	ifm->ifm_addrs = 0;
1302	rt_dispatch(m, AF_UNSPEC);
1303}
1304
1305/*
1306 * Announce interface address arrival/withdraw.
1307 * Please do not call directly, use rt_addrmsg().
1308 * Assume input data to be valid.
1309 * Returns 0 on success.
1310 */
1311int
1312rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1313{
1314	struct rt_addrinfo info;
1315	struct sockaddr *sa;
1316	int ncmd;
1317	struct mbuf *m;
1318	struct ifa_msghdr *ifam;
1319	struct ifnet *ifp = ifa->ifa_ifp;
1320	struct sockaddr_storage ss;
1321
1322	if (V_route_cb.any_count == 0)
1323		return (0);
1324
1325	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1326
1327	bzero((caddr_t)&info, sizeof(info));
1328	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1329	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1330	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1331	    info.rti_info[RTAX_IFP], ifa->ifa_netmask, &ss);
1332	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1333	if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
1334		return (ENOBUFS);
1335	ifam = mtod(m, struct ifa_msghdr *);
1336	ifam->ifam_index = ifp->if_index;
1337	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1338	ifam->ifam_flags = ifa->ifa_flags;
1339	ifam->ifam_addrs = info.rti_addrs;
1340
1341	if (fibnum != RT_ALL_FIBS) {
1342		M_SETFIB(m, fibnum);
1343		m->m_flags |= RTS_FILTER_FIB;
1344	}
1345
1346	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1347
1348	return (0);
1349}
1350
1351/*
1352 * Announce route addition/removal.
1353 * Please do not call directly, use rt_routemsg().
1354 * Note that @rt data MAY be inconsistent/invalid:
1355 * if some userland app sends us "invalid" route message (invalid mask,
1356 * no dst, wrong address families, etc...) we need to pass it back
1357 * to app (and any other rtsock consumers) with rtm_errno field set to
1358 * non-zero value.
1359 *
1360 * Returns 0 on success.
1361 */
1362int
1363rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt,
1364    int fibnum)
1365{
1366	struct rt_addrinfo info;
1367	struct sockaddr *sa;
1368	struct mbuf *m;
1369	struct rt_msghdr *rtm;
1370	struct sockaddr_storage ss;
1371
1372	if (V_route_cb.any_count == 0)
1373		return (0);
1374
1375	bzero((caddr_t)&info, sizeof(info));
1376	info.rti_info[RTAX_DST] = sa = rt_key(rt);
1377	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(sa, rt_mask(rt), &ss);
1378	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1379	if ((m = rtsock_msg_mbuf(cmd, &info)) == NULL)
1380		return (ENOBUFS);
1381	rtm = mtod(m, struct rt_msghdr *);
1382	rtm->rtm_index = ifp->if_index;
1383	rtm->rtm_flags |= rt->rt_flags;
1384	rtm->rtm_errno = error;
1385	rtm->rtm_addrs = info.rti_addrs;
1386
1387	if (fibnum != RT_ALL_FIBS) {
1388		M_SETFIB(m, fibnum);
1389		m->m_flags |= RTS_FILTER_FIB;
1390	}
1391
1392	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1393
1394	return (0);
1395}
1396
1397/*
1398 * This is the analogue to the rt_newaddrmsg which performs the same
1399 * function but for multicast group memberhips.  This is easier since
1400 * there is no route state to worry about.
1401 */
1402void
1403rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1404{
1405	struct rt_addrinfo info;
1406	struct mbuf *m = NULL;
1407	struct ifnet *ifp = ifma->ifma_ifp;
1408	struct ifma_msghdr *ifmam;
1409
1410	if (V_route_cb.any_count == 0)
1411		return;
1412
1413	bzero((caddr_t)&info, sizeof(info));
1414	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1415	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1416	/*
1417	 * If a link-layer address is present, present it as a ``gateway''
1418	 * (similarly to how ARP entries, e.g., are presented).
1419	 */
1420	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1421	m = rtsock_msg_mbuf(cmd, &info);
1422	if (m == NULL)
1423		return;
1424	ifmam = mtod(m, struct ifma_msghdr *);
1425	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1426	    __func__));
1427	ifmam->ifmam_index = ifp->if_index;
1428	ifmam->ifmam_addrs = info.rti_addrs;
1429	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1430}
1431
1432static struct mbuf *
1433rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1434	struct rt_addrinfo *info)
1435{
1436	struct if_announcemsghdr *ifan;
1437	struct mbuf *m;
1438
1439	if (V_route_cb.any_count == 0)
1440		return NULL;
1441	bzero((caddr_t)info, sizeof(*info));
1442	m = rtsock_msg_mbuf(type, info);
1443	if (m != NULL) {
1444		ifan = mtod(m, struct if_announcemsghdr *);
1445		ifan->ifan_index = ifp->if_index;
1446		strlcpy(ifan->ifan_name, ifp->if_xname,
1447			sizeof(ifan->ifan_name));
1448		ifan->ifan_what = what;
1449	}
1450	return m;
1451}
1452
1453/*
1454 * This is called to generate routing socket messages indicating
1455 * IEEE80211 wireless events.
1456 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1457 */
1458void
1459rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1460{
1461	struct mbuf *m;
1462	struct rt_addrinfo info;
1463
1464	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1465	if (m != NULL) {
1466		/*
1467		 * Append the ieee80211 data.  Try to stick it in the
1468		 * mbuf containing the ifannounce msg; otherwise allocate
1469		 * a new mbuf and append.
1470		 *
1471		 * NB: we assume m is a single mbuf.
1472		 */
1473		if (data_len > M_TRAILINGSPACE(m)) {
1474			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1475			if (n == NULL) {
1476				m_freem(m);
1477				return;
1478			}
1479			bcopy(data, mtod(n, void *), data_len);
1480			n->m_len = data_len;
1481			m->m_next = n;
1482		} else if (data_len > 0) {
1483			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1484			m->m_len += data_len;
1485		}
1486		if (m->m_flags & M_PKTHDR)
1487			m->m_pkthdr.len += data_len;
1488		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1489		rt_dispatch(m, AF_UNSPEC);
1490	}
1491}
1492
1493/*
1494 * This is called to generate routing socket messages indicating
1495 * network interface arrival and departure.
1496 */
1497void
1498rt_ifannouncemsg(struct ifnet *ifp, int what)
1499{
1500	struct mbuf *m;
1501	struct rt_addrinfo info;
1502
1503	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1504	if (m != NULL)
1505		rt_dispatch(m, AF_UNSPEC);
1506}
1507
1508static void
1509rt_dispatch(struct mbuf *m, sa_family_t saf)
1510{
1511	struct m_tag *tag;
1512
1513	/*
1514	 * Preserve the family from the sockaddr, if any, in an m_tag for
1515	 * use when injecting the mbuf into the routing socket buffer from
1516	 * the netisr.
1517	 */
1518	if (saf != AF_UNSPEC) {
1519		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1520		    M_NOWAIT);
1521		if (tag == NULL) {
1522			m_freem(m);
1523			return;
1524		}
1525		*(unsigned short *)(tag + 1) = saf;
1526		m_tag_prepend(m, tag);
1527	}
1528#ifdef VIMAGE
1529	if (V_loif)
1530		m->m_pkthdr.rcvif = V_loif;
1531	else {
1532		m_freem(m);
1533		return;
1534	}
1535#endif
1536	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1537}
1538
1539/*
1540 * This is used in dumping the kernel table via sysctl().
1541 */
1542static int
1543sysctl_dumpentry(struct radix_node *rn, void *vw)
1544{
1545	struct walkarg *w = vw;
1546	struct rtentry *rt = (struct rtentry *)rn;
1547	int error = 0, size;
1548	struct rt_addrinfo info;
1549	struct sockaddr_storage ss;
1550
1551	IFNET_RLOCK_NOSLEEP_ASSERT();
1552
1553	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1554		return 0;
1555	if ((rt->rt_flags & RTF_HOST) == 0
1556	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1557	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1558		return (0);
1559	bzero((caddr_t)&info, sizeof(info));
1560	info.rti_info[RTAX_DST] = rt_key(rt);
1561	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1562	info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt),
1563	    rt_mask(rt), &ss);
1564	info.rti_info[RTAX_GENMASK] = 0;
1565	if (rt->rt_ifp && !(rt->rt_ifp->if_flags & IFF_DYING)) {
1566		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1567		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1568		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1569			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1570	}
1571	if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
1572		return (error);
1573	if (w->w_req && w->w_tmem) {
1574		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1575
1576		bzero(&rtm->rtm_index,
1577		    sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
1578		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1579			rtm->rtm_flags = RTF_GATEWAY |
1580				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1581		else
1582			rtm->rtm_flags = rt->rt_flags;
1583		rt_getmetrics(rt, &rtm->rtm_rmx);
1584		rtm->rtm_index = rt->rt_ifp->if_index;
1585		rtm->rtm_addrs = info.rti_addrs;
1586		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1587		return (error);
1588	}
1589	return (error);
1590}
1591
1592static int
1593sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
1594    struct rt_addrinfo *info, struct walkarg *w, int len)
1595{
1596	struct if_msghdrl *ifm;
1597	struct if_data *ifd;
1598
1599	ifm = (struct if_msghdrl *)w->w_tmem;
1600
1601#ifdef COMPAT_FREEBSD32
1602	if (w->w_req->flags & SCTL_MASK32) {
1603		struct if_msghdrl32 *ifm32;
1604
1605		ifm32 = (struct if_msghdrl32 *)ifm;
1606		ifm32->ifm_addrs = info->rti_addrs;
1607		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1608		ifm32->ifm_index = ifp->if_index;
1609		ifm32->_ifm_spare1 = 0;
1610		ifm32->ifm_len = sizeof(*ifm32);
1611		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1612		ifm32->_ifm_spare2 = 0;
1613		ifd = &ifm32->ifm_data;
1614	} else
1615#endif
1616	{
1617		ifm->ifm_addrs = info->rti_addrs;
1618		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1619		ifm->ifm_index = ifp->if_index;
1620		ifm->_ifm_spare1 = 0;
1621		ifm->ifm_len = sizeof(*ifm);
1622		ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1623		ifm->_ifm_spare2 = 0;
1624		ifd = &ifm->ifm_data;
1625	}
1626
1627	memcpy(ifd, src_ifd, sizeof(*ifd));
1628
1629	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1630}
1631
1632static int
1633sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
1634    struct rt_addrinfo *info, struct walkarg *w, int len)
1635{
1636	struct if_msghdr *ifm;
1637	struct if_data *ifd;
1638
1639	ifm = (struct if_msghdr *)w->w_tmem;
1640
1641#ifdef COMPAT_FREEBSD32
1642	if (w->w_req->flags & SCTL_MASK32) {
1643		struct if_msghdr32 *ifm32;
1644
1645		ifm32 = (struct if_msghdr32 *)ifm;
1646		ifm32->ifm_addrs = info->rti_addrs;
1647		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1648		ifm32->ifm_index = ifp->if_index;
1649		ifm32->_ifm_spare1 = 0;
1650		ifd = &ifm32->ifm_data;
1651	} else
1652#endif
1653	{
1654		ifm->ifm_addrs = info->rti_addrs;
1655		ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1656		ifm->ifm_index = ifp->if_index;
1657		ifm->_ifm_spare1 = 0;
1658		ifd = &ifm->ifm_data;
1659	}
1660
1661	memcpy(ifd, src_ifd, sizeof(*ifd));
1662
1663	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1664}
1665
1666static int
1667sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1668    struct walkarg *w, int len)
1669{
1670	struct ifa_msghdrl *ifam;
1671	struct if_data *ifd;
1672
1673	ifam = (struct ifa_msghdrl *)w->w_tmem;
1674
1675#ifdef COMPAT_FREEBSD32
1676	if (w->w_req->flags & SCTL_MASK32) {
1677		struct ifa_msghdrl32 *ifam32;
1678
1679		ifam32 = (struct ifa_msghdrl32 *)ifam;
1680		ifam32->ifam_addrs = info->rti_addrs;
1681		ifam32->ifam_flags = ifa->ifa_flags;
1682		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1683		ifam32->_ifam_spare1 = 0;
1684		ifam32->ifam_len = sizeof(*ifam32);
1685		ifam32->ifam_data_off =
1686		    offsetof(struct ifa_msghdrl32, ifam_data);
1687		ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
1688		ifd = &ifam32->ifam_data;
1689	} else
1690#endif
1691	{
1692		ifam->ifam_addrs = info->rti_addrs;
1693		ifam->ifam_flags = ifa->ifa_flags;
1694		ifam->ifam_index = ifa->ifa_ifp->if_index;
1695		ifam->_ifam_spare1 = 0;
1696		ifam->ifam_len = sizeof(*ifam);
1697		ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1698		ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1699		ifd = &ifam->ifam_data;
1700	}
1701
1702	bzero(ifd, sizeof(*ifd));
1703	ifd->ifi_datalen = sizeof(struct if_data);
1704	ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
1705	ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
1706	ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
1707	ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
1708
1709	/* Fixup if_data carp(4) vhid. */
1710	if (carp_get_vhid_p != NULL)
1711		ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
1712
1713	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1714}
1715
1716static int
1717sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1718    struct walkarg *w, int len)
1719{
1720	struct ifa_msghdr *ifam;
1721
1722	ifam = (struct ifa_msghdr *)w->w_tmem;
1723	ifam->ifam_addrs = info->rti_addrs;
1724	ifam->ifam_flags = ifa->ifa_flags;
1725	ifam->ifam_index = ifa->ifa_ifp->if_index;
1726	ifam->_ifam_spare1 = 0;
1727	ifam->ifam_metric = ifa->ifa_ifp->if_metric;
1728
1729	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1730}
1731
1732static int
1733sysctl_iflist(int af, struct walkarg *w)
1734{
1735	struct ifnet *ifp;
1736	struct ifaddr *ifa;
1737	struct if_data ifd;
1738	struct rt_addrinfo info;
1739	int len, error = 0;
1740	struct sockaddr_storage ss;
1741
1742	bzero((caddr_t)&info, sizeof(info));
1743	bzero(&ifd, sizeof(ifd));
1744	IFNET_RLOCK_NOSLEEP();
1745	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1746		if (w->w_arg && w->w_arg != ifp->if_index)
1747			continue;
1748		if_data_copy(ifp, &ifd);
1749		IF_ADDR_RLOCK(ifp);
1750		ifa = ifp->if_addr;
1751		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1752		error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
1753		if (error != 0)
1754			goto done;
1755		info.rti_info[RTAX_IFP] = NULL;
1756		if (w->w_req && w->w_tmem) {
1757			if (w->w_op == NET_RT_IFLISTL)
1758				error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
1759				    len);
1760			else
1761				error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
1762				    len);
1763			if (error)
1764				goto done;
1765		}
1766		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1767			if (af && af != ifa->ifa_addr->sa_family)
1768				continue;
1769			if (prison_if(w->w_req->td->td_ucred,
1770			    ifa->ifa_addr) != 0)
1771				continue;
1772			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1773			info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
1774			    ifa->ifa_addr, ifa->ifa_netmask, &ss);
1775			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1776			error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
1777			if (error != 0)
1778				goto done;
1779			if (w->w_req && w->w_tmem) {
1780				if (w->w_op == NET_RT_IFLISTL)
1781					error = sysctl_iflist_ifaml(ifa, &info,
1782					    w, len);
1783				else
1784					error = sysctl_iflist_ifam(ifa, &info,
1785					    w, len);
1786				if (error)
1787					goto done;
1788			}
1789		}
1790		IF_ADDR_RUNLOCK(ifp);
1791		info.rti_info[RTAX_IFA] = NULL;
1792		info.rti_info[RTAX_NETMASK] = NULL;
1793		info.rti_info[RTAX_BRD] = NULL;
1794	}
1795done:
1796	if (ifp != NULL)
1797		IF_ADDR_RUNLOCK(ifp);
1798	IFNET_RUNLOCK_NOSLEEP();
1799	return (error);
1800}
1801
1802static int
1803sysctl_ifmalist(int af, struct walkarg *w)
1804{
1805	struct rt_addrinfo info;
1806	struct ifaddr *ifa;
1807	struct ifmultiaddr *ifma;
1808	struct ifnet *ifp;
1809	int error, len;
1810
1811	error = 0;
1812	bzero((caddr_t)&info, sizeof(info));
1813
1814	IFNET_RLOCK_NOSLEEP();
1815	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1816		if (w->w_arg && w->w_arg != ifp->if_index)
1817			continue;
1818		ifa = ifp->if_addr;
1819		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1820		IF_ADDR_RLOCK(ifp);
1821		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1822			if (af && af != ifma->ifma_addr->sa_family)
1823				continue;
1824			if (prison_if(w->w_req->td->td_ucred,
1825			    ifma->ifma_addr) != 0)
1826				continue;
1827			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1828			info.rti_info[RTAX_GATEWAY] =
1829			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1830			    ifma->ifma_lladdr : NULL;
1831			error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
1832			if (error != 0)
1833				break;
1834			if (w->w_req && w->w_tmem) {
1835				struct ifma_msghdr *ifmam;
1836
1837				ifmam = (struct ifma_msghdr *)w->w_tmem;
1838				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1839				ifmam->ifmam_flags = 0;
1840				ifmam->ifmam_addrs = info.rti_addrs;
1841				ifmam->_ifmam_spare1 = 0;
1842				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1843				if (error != 0)
1844					break;
1845			}
1846		}
1847		IF_ADDR_RUNLOCK(ifp);
1848		if (error != 0)
1849			break;
1850	}
1851	IFNET_RUNLOCK_NOSLEEP();
1852	return (error);
1853}
1854
1855static int
1856sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1857{
1858	int	*name = (int *)arg1;
1859	u_int	namelen = arg2;
1860	struct rib_head *rnh = NULL; /* silence compiler. */
1861	int	i, lim, error = EINVAL;
1862	int	fib = 0;
1863	u_char	af;
1864	struct	walkarg w;
1865
1866	name ++;
1867	namelen--;
1868	if (req->newptr)
1869		return (EPERM);
1870	if (name[1] == NET_RT_DUMP) {
1871		if (namelen == 3)
1872			fib = req->td->td_proc->p_fibnum;
1873		else if (namelen == 4)
1874			fib = (name[3] == RT_ALL_FIBS) ?
1875			    req->td->td_proc->p_fibnum : name[3];
1876		else
1877			return ((namelen < 3) ? EISDIR : ENOTDIR);
1878		if (fib < 0 || fib >= rt_numfibs)
1879			return (EINVAL);
1880	} else if (namelen != 3)
1881		return ((namelen < 3) ? EISDIR : ENOTDIR);
1882	af = name[0];
1883	if (af > AF_MAX)
1884		return (EINVAL);
1885	bzero(&w, sizeof(w));
1886	w.w_op = name[1];
1887	w.w_arg = name[2];
1888	w.w_req = req;
1889
1890	error = sysctl_wire_old_buffer(req, 0);
1891	if (error)
1892		return (error);
1893
1894	/*
1895	 * Allocate reply buffer in advance.
1896	 * All rtsock messages has maximum length of u_short.
1897	 */
1898	w.w_tmemsize = 65536;
1899	w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
1900
1901	switch (w.w_op) {
1902
1903	case NET_RT_DUMP:
1904	case NET_RT_FLAGS:
1905		if (af == 0) {			/* dump all tables */
1906			i = 1;
1907			lim = AF_MAX;
1908		} else				/* dump only one table */
1909			i = lim = af;
1910
1911		/*
1912		 * take care of llinfo entries, the caller must
1913		 * specify an AF
1914		 */
1915		if (w.w_op == NET_RT_FLAGS &&
1916		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1917			if (af != 0)
1918				error = lltable_sysctl_dumparp(af, w.w_req);
1919			else
1920				error = EINVAL;
1921			break;
1922		}
1923		/*
1924		 * take care of routing entries
1925		 */
1926		for (error = 0; error == 0 && i <= lim; i++) {
1927			rnh = rt_tables_get_rnh(fib, i);
1928			if (rnh != NULL) {
1929				RIB_RLOCK(rnh);
1930				IFNET_RLOCK_NOSLEEP();
1931			    	error = rnh->rnh_walktree(&rnh->head,
1932				    sysctl_dumpentry, &w);
1933				IFNET_RUNLOCK_NOSLEEP();
1934				RIB_RUNLOCK(rnh);
1935			} else if (af != 0)
1936				error = EAFNOSUPPORT;
1937		}
1938		break;
1939
1940	case NET_RT_IFLIST:
1941	case NET_RT_IFLISTL:
1942		error = sysctl_iflist(af, &w);
1943		break;
1944
1945	case NET_RT_IFMALIST:
1946		error = sysctl_ifmalist(af, &w);
1947		break;
1948	}
1949
1950	free(w.w_tmem, M_TEMP);
1951	return (error);
1952}
1953
1954static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1955
1956/*
1957 * Definitions of protocols supported in the ROUTE domain.
1958 */
1959
1960static struct domain routedomain;		/* or at least forward */
1961
1962static struct protosw routesw[] = {
1963{
1964	.pr_type =		SOCK_RAW,
1965	.pr_domain =		&routedomain,
1966	.pr_flags =		PR_ATOMIC|PR_ADDR,
1967	.pr_output =		route_output,
1968	.pr_ctlinput =		raw_ctlinput,
1969	.pr_init =		raw_init,
1970	.pr_usrreqs =		&route_usrreqs
1971}
1972};
1973
1974static struct domain routedomain = {
1975	.dom_family =		PF_ROUTE,
1976	.dom_name =		 "route",
1977	.dom_protosw =		routesw,
1978	.dom_protoswNPROTOSW =	&routesw[nitems(routesw)]
1979};
1980
1981VNET_DOMAIN_SET(route);
1982