1/*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2010 iX Systems, Inc.
4 * Copyright (c) 2010 Panasas, Inc.
5 * Copyright (c) 2013-2018 Mellanox Technologies, Ltd.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice unmodified, this list of conditions, and the following
13 *    disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/compat/linuxkpi/common/src/linux_compat.c 361202 2020-05-18 09:36:14Z hselasky $");
32
33#include "opt_stack.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/sysctl.h>
40#include <sys/proc.h>
41#include <sys/sglist.h>
42#include <sys/sleepqueue.h>
43#include <sys/refcount.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/bus.h>
47#include <sys/fcntl.h>
48#include <sys/file.h>
49#include <sys/filio.h>
50#include <sys/rwlock.h>
51#include <sys/mman.h>
52#include <sys/stack.h>
53#include <sys/user.h>
54
55#include <vm/vm.h>
56#include <vm/pmap.h>
57#include <vm/vm_object.h>
58#include <vm/vm_page.h>
59#include <vm/vm_pager.h>
60
61#include <machine/stdarg.h>
62
63#if defined(__i386__) || defined(__amd64__)
64#include <machine/md_var.h>
65#endif
66
67#include <linux/kobject.h>
68#include <linux/device.h>
69#include <linux/slab.h>
70#include <linux/module.h>
71#include <linux/moduleparam.h>
72#include <linux/cdev.h>
73#include <linux/file.h>
74#include <linux/sysfs.h>
75#include <linux/mm.h>
76#include <linux/io.h>
77#include <linux/vmalloc.h>
78#include <linux/netdevice.h>
79#include <linux/timer.h>
80#include <linux/interrupt.h>
81#include <linux/uaccess.h>
82#include <linux/list.h>
83#include <linux/kthread.h>
84#include <linux/kernel.h>
85#include <linux/compat.h>
86#include <linux/poll.h>
87#include <linux/smp.h>
88
89#if defined(__i386__) || defined(__amd64__)
90#include <asm/smp.h>
91#endif
92
93SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW, 0, "LinuxKPI parameters");
94
95int linuxkpi_debug;
96SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
97    &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
98
99MALLOC_DEFINE(M_KMALLOC, "linux", "Linux kmalloc compat");
100
101#include <linux/rbtree.h>
102/* Undo Linux compat changes. */
103#undef RB_ROOT
104#undef file
105#undef cdev
106#define	RB_ROOT(head)	(head)->rbh_root
107
108static void linux_cdev_deref(struct linux_cdev *ldev);
109static struct vm_area_struct *linux_cdev_handle_find(void *handle);
110
111struct kobject linux_class_root;
112struct device linux_root_device;
113struct class linux_class_misc;
114struct list_head pci_drivers;
115struct list_head pci_devices;
116spinlock_t pci_lock;
117
118unsigned long linux_timer_hz_mask;
119
120int
121panic_cmp(struct rb_node *one, struct rb_node *two)
122{
123	panic("no cmp");
124}
125
126RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
127
128int
129kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
130{
131	va_list tmp_va;
132	int len;
133	char *old;
134	char *name;
135	char dummy;
136
137	old = kobj->name;
138
139	if (old && fmt == NULL)
140		return (0);
141
142	/* compute length of string */
143	va_copy(tmp_va, args);
144	len = vsnprintf(&dummy, 0, fmt, tmp_va);
145	va_end(tmp_va);
146
147	/* account for zero termination */
148	len++;
149
150	/* check for error */
151	if (len < 1)
152		return (-EINVAL);
153
154	/* allocate memory for string */
155	name = kzalloc(len, GFP_KERNEL);
156	if (name == NULL)
157		return (-ENOMEM);
158	vsnprintf(name, len, fmt, args);
159	kobj->name = name;
160
161	/* free old string */
162	kfree(old);
163
164	/* filter new string */
165	for (; *name != '\0'; name++)
166		if (*name == '/')
167			*name = '!';
168	return (0);
169}
170
171int
172kobject_set_name(struct kobject *kobj, const char *fmt, ...)
173{
174	va_list args;
175	int error;
176
177	va_start(args, fmt);
178	error = kobject_set_name_vargs(kobj, fmt, args);
179	va_end(args);
180
181	return (error);
182}
183
184static int
185kobject_add_complete(struct kobject *kobj, struct kobject *parent)
186{
187	const struct kobj_type *t;
188	int error;
189
190	kobj->parent = parent;
191	error = sysfs_create_dir(kobj);
192	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
193		struct attribute **attr;
194		t = kobj->ktype;
195
196		for (attr = t->default_attrs; *attr != NULL; attr++) {
197			error = sysfs_create_file(kobj, *attr);
198			if (error)
199				break;
200		}
201		if (error)
202			sysfs_remove_dir(kobj);
203
204	}
205	return (error);
206}
207
208int
209kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
210{
211	va_list args;
212	int error;
213
214	va_start(args, fmt);
215	error = kobject_set_name_vargs(kobj, fmt, args);
216	va_end(args);
217	if (error)
218		return (error);
219
220	return kobject_add_complete(kobj, parent);
221}
222
223void
224linux_kobject_release(struct kref *kref)
225{
226	struct kobject *kobj;
227	char *name;
228
229	kobj = container_of(kref, struct kobject, kref);
230	sysfs_remove_dir(kobj);
231	name = kobj->name;
232	if (kobj->ktype && kobj->ktype->release)
233		kobj->ktype->release(kobj);
234	kfree(name);
235}
236
237static void
238linux_kobject_kfree(struct kobject *kobj)
239{
240	kfree(kobj);
241}
242
243static void
244linux_kobject_kfree_name(struct kobject *kobj)
245{
246	if (kobj) {
247		kfree(kobj->name);
248	}
249}
250
251const struct kobj_type linux_kfree_type = {
252	.release = linux_kobject_kfree
253};
254
255static void
256linux_device_release(struct device *dev)
257{
258	pr_debug("linux_device_release: %s\n", dev_name(dev));
259	kfree(dev);
260}
261
262static ssize_t
263linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
264{
265	struct class_attribute *dattr;
266	ssize_t error;
267
268	dattr = container_of(attr, struct class_attribute, attr);
269	error = -EIO;
270	if (dattr->show)
271		error = dattr->show(container_of(kobj, struct class, kobj),
272		    dattr, buf);
273	return (error);
274}
275
276static ssize_t
277linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
278    size_t count)
279{
280	struct class_attribute *dattr;
281	ssize_t error;
282
283	dattr = container_of(attr, struct class_attribute, attr);
284	error = -EIO;
285	if (dattr->store)
286		error = dattr->store(container_of(kobj, struct class, kobj),
287		    dattr, buf, count);
288	return (error);
289}
290
291static void
292linux_class_release(struct kobject *kobj)
293{
294	struct class *class;
295
296	class = container_of(kobj, struct class, kobj);
297	if (class->class_release)
298		class->class_release(class);
299}
300
301static const struct sysfs_ops linux_class_sysfs = {
302	.show  = linux_class_show,
303	.store = linux_class_store,
304};
305
306const struct kobj_type linux_class_ktype = {
307	.release = linux_class_release,
308	.sysfs_ops = &linux_class_sysfs
309};
310
311static void
312linux_dev_release(struct kobject *kobj)
313{
314	struct device *dev;
315
316	dev = container_of(kobj, struct device, kobj);
317	/* This is the precedence defined by linux. */
318	if (dev->release)
319		dev->release(dev);
320	else if (dev->class && dev->class->dev_release)
321		dev->class->dev_release(dev);
322}
323
324static ssize_t
325linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
326{
327	struct device_attribute *dattr;
328	ssize_t error;
329
330	dattr = container_of(attr, struct device_attribute, attr);
331	error = -EIO;
332	if (dattr->show)
333		error = dattr->show(container_of(kobj, struct device, kobj),
334		    dattr, buf);
335	return (error);
336}
337
338static ssize_t
339linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
340    size_t count)
341{
342	struct device_attribute *dattr;
343	ssize_t error;
344
345	dattr = container_of(attr, struct device_attribute, attr);
346	error = -EIO;
347	if (dattr->store)
348		error = dattr->store(container_of(kobj, struct device, kobj),
349		    dattr, buf, count);
350	return (error);
351}
352
353static const struct sysfs_ops linux_dev_sysfs = {
354	.show  = linux_dev_show,
355	.store = linux_dev_store,
356};
357
358const struct kobj_type linux_dev_ktype = {
359	.release = linux_dev_release,
360	.sysfs_ops = &linux_dev_sysfs
361};
362
363struct device *
364device_create(struct class *class, struct device *parent, dev_t devt,
365    void *drvdata, const char *fmt, ...)
366{
367	struct device *dev;
368	va_list args;
369
370	dev = kzalloc(sizeof(*dev), M_WAITOK);
371	dev->parent = parent;
372	dev->class = class;
373	dev->devt = devt;
374	dev->driver_data = drvdata;
375	dev->release = linux_device_release;
376	va_start(args, fmt);
377	kobject_set_name_vargs(&dev->kobj, fmt, args);
378	va_end(args);
379	device_register(dev);
380
381	return (dev);
382}
383
384int
385kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
386    struct kobject *parent, const char *fmt, ...)
387{
388	va_list args;
389	int error;
390
391	kobject_init(kobj, ktype);
392	kobj->ktype = ktype;
393	kobj->parent = parent;
394	kobj->name = NULL;
395
396	va_start(args, fmt);
397	error = kobject_set_name_vargs(kobj, fmt, args);
398	va_end(args);
399	if (error)
400		return (error);
401	return kobject_add_complete(kobj, parent);
402}
403
404static void
405linux_kq_lock(void *arg)
406{
407	spinlock_t *s = arg;
408
409	spin_lock(s);
410}
411static void
412linux_kq_unlock(void *arg)
413{
414	spinlock_t *s = arg;
415
416	spin_unlock(s);
417}
418
419static void
420linux_kq_lock_owned(void *arg)
421{
422#ifdef INVARIANTS
423	spinlock_t *s = arg;
424
425	mtx_assert(&s->m, MA_OWNED);
426#endif
427}
428
429static void
430linux_kq_lock_unowned(void *arg)
431{
432#ifdef INVARIANTS
433	spinlock_t *s = arg;
434
435	mtx_assert(&s->m, MA_NOTOWNED);
436#endif
437}
438
439static void
440linux_file_kqfilter_poll(struct linux_file *, int);
441
442struct linux_file *
443linux_file_alloc(void)
444{
445	struct linux_file *filp;
446
447	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
448
449	/* set initial refcount */
450	filp->f_count = 1;
451
452	/* setup fields needed by kqueue support */
453	spin_lock_init(&filp->f_kqlock);
454	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
455	    linux_kq_lock, linux_kq_unlock,
456	    linux_kq_lock_owned, linux_kq_lock_unowned);
457
458	return (filp);
459}
460
461void
462linux_file_free(struct linux_file *filp)
463{
464	if (filp->_file == NULL) {
465		if (filp->f_shmem != NULL)
466			vm_object_deallocate(filp->f_shmem);
467		kfree(filp);
468	} else {
469		/*
470		 * The close method of the character device or file
471		 * will free the linux_file structure:
472		 */
473		_fdrop(filp->_file, curthread);
474	}
475}
476
477static int
478linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
479    vm_page_t *mres)
480{
481	struct vm_area_struct *vmap;
482
483	vmap = linux_cdev_handle_find(vm_obj->handle);
484
485	MPASS(vmap != NULL);
486	MPASS(vmap->vm_private_data == vm_obj->handle);
487
488	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
489		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
490		vm_page_t page;
491
492		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
493			/*
494			 * If the passed in result page is a fake
495			 * page, update it with the new physical
496			 * address.
497			 */
498			page = *mres;
499			vm_page_updatefake(page, paddr, vm_obj->memattr);
500		} else {
501			/*
502			 * Replace the passed in "mres" page with our
503			 * own fake page and free up the all of the
504			 * original pages.
505			 */
506			VM_OBJECT_WUNLOCK(vm_obj);
507			page = vm_page_getfake(paddr, vm_obj->memattr);
508			VM_OBJECT_WLOCK(vm_obj);
509
510			vm_page_replace_checked(page, vm_obj,
511			    (*mres)->pindex, *mres);
512
513			vm_page_lock(*mres);
514			vm_page_free(*mres);
515			vm_page_unlock(*mres);
516			*mres = page;
517		}
518		page->valid = VM_PAGE_BITS_ALL;
519		return (VM_PAGER_OK);
520	}
521	return (VM_PAGER_FAIL);
522}
523
524static int
525linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
526    vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
527{
528	struct vm_area_struct *vmap;
529	int err;
530
531	/* get VM area structure */
532	vmap = linux_cdev_handle_find(vm_obj->handle);
533	MPASS(vmap != NULL);
534	MPASS(vmap->vm_private_data == vm_obj->handle);
535
536	VM_OBJECT_WUNLOCK(vm_obj);
537
538	linux_set_current(curthread);
539
540	down_write(&vmap->vm_mm->mmap_sem);
541	if (unlikely(vmap->vm_ops == NULL)) {
542		err = VM_FAULT_SIGBUS;
543	} else {
544		struct vm_fault vmf;
545
546		/* fill out VM fault structure */
547		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
548		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
549		vmf.pgoff = 0;
550		vmf.page = NULL;
551		vmf.vma = vmap;
552
553		vmap->vm_pfn_count = 0;
554		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
555		vmap->vm_obj = vm_obj;
556
557		err = vmap->vm_ops->fault(vmap, &vmf);
558
559		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
560			kern_yield(PRI_USER);
561			err = vmap->vm_ops->fault(vmap, &vmf);
562		}
563	}
564
565	/* translate return code */
566	switch (err) {
567	case VM_FAULT_OOM:
568		err = VM_PAGER_AGAIN;
569		break;
570	case VM_FAULT_SIGBUS:
571		err = VM_PAGER_BAD;
572		break;
573	case VM_FAULT_NOPAGE:
574		/*
575		 * By contract the fault handler will return having
576		 * busied all the pages itself. If pidx is already
577		 * found in the object, it will simply xbusy the first
578		 * page and return with vm_pfn_count set to 1.
579		 */
580		*first = vmap->vm_pfn_first;
581		*last = *first + vmap->vm_pfn_count - 1;
582		err = VM_PAGER_OK;
583		break;
584	default:
585		err = VM_PAGER_ERROR;
586		break;
587	}
588	up_write(&vmap->vm_mm->mmap_sem);
589	VM_OBJECT_WLOCK(vm_obj);
590	return (err);
591}
592
593static struct rwlock linux_vma_lock;
594static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
595    TAILQ_HEAD_INITIALIZER(linux_vma_head);
596
597static void
598linux_cdev_handle_free(struct vm_area_struct *vmap)
599{
600	/* Drop reference on vm_file */
601	if (vmap->vm_file != NULL)
602		fput(vmap->vm_file);
603
604	/* Drop reference on mm_struct */
605	mmput(vmap->vm_mm);
606
607	kfree(vmap);
608}
609
610static void
611linux_cdev_handle_remove(struct vm_area_struct *vmap)
612{
613	rw_wlock(&linux_vma_lock);
614	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
615	rw_wunlock(&linux_vma_lock);
616}
617
618static struct vm_area_struct *
619linux_cdev_handle_find(void *handle)
620{
621	struct vm_area_struct *vmap;
622
623	rw_rlock(&linux_vma_lock);
624	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
625		if (vmap->vm_private_data == handle)
626			break;
627	}
628	rw_runlock(&linux_vma_lock);
629	return (vmap);
630}
631
632static int
633linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
634		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
635{
636
637	MPASS(linux_cdev_handle_find(handle) != NULL);
638	*color = 0;
639	return (0);
640}
641
642static void
643linux_cdev_pager_dtor(void *handle)
644{
645	const struct vm_operations_struct *vm_ops;
646	struct vm_area_struct *vmap;
647
648	vmap = linux_cdev_handle_find(handle);
649	MPASS(vmap != NULL);
650
651	/*
652	 * Remove handle before calling close operation to prevent
653	 * other threads from reusing the handle pointer.
654	 */
655	linux_cdev_handle_remove(vmap);
656
657	down_write(&vmap->vm_mm->mmap_sem);
658	vm_ops = vmap->vm_ops;
659	if (likely(vm_ops != NULL))
660		vm_ops->close(vmap);
661	up_write(&vmap->vm_mm->mmap_sem);
662
663	linux_cdev_handle_free(vmap);
664}
665
666static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
667  {
668	/* OBJT_MGTDEVICE */
669	.cdev_pg_populate	= linux_cdev_pager_populate,
670	.cdev_pg_ctor	= linux_cdev_pager_ctor,
671	.cdev_pg_dtor	= linux_cdev_pager_dtor
672  },
673  {
674	/* OBJT_DEVICE */
675	.cdev_pg_fault	= linux_cdev_pager_fault,
676	.cdev_pg_ctor	= linux_cdev_pager_ctor,
677	.cdev_pg_dtor	= linux_cdev_pager_dtor
678  },
679};
680
681int
682zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
683    unsigned long size)
684{
685	vm_object_t obj;
686	vm_page_t m;
687
688	obj = vma->vm_obj;
689	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
690		return (-ENOTSUP);
691	VM_OBJECT_RLOCK(obj);
692	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
693	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
694	    m = TAILQ_NEXT(m, listq))
695		pmap_remove_all(m);
696	VM_OBJECT_RUNLOCK(obj);
697	return (0);
698}
699
700static struct file_operations dummy_ldev_ops = {
701	/* XXXKIB */
702};
703
704static struct linux_cdev dummy_ldev = {
705	.ops = &dummy_ldev_ops,
706};
707
708#define	LDEV_SI_DTR	0x0001
709#define	LDEV_SI_REF	0x0002
710
711static void
712linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
713    struct linux_cdev **dev)
714{
715	struct linux_cdev *ldev;
716	u_int siref;
717
718	ldev = filp->f_cdev;
719	*fop = filp->f_op;
720	if (ldev != NULL) {
721		for (siref = ldev->siref;;) {
722			if ((siref & LDEV_SI_DTR) != 0) {
723				ldev = &dummy_ldev;
724				siref = ldev->siref;
725				*fop = ldev->ops;
726				MPASS((ldev->siref & LDEV_SI_DTR) == 0);
727			} else if (atomic_fcmpset_int(&ldev->siref, &siref,
728			    siref + LDEV_SI_REF)) {
729				break;
730			}
731		}
732	}
733	*dev = ldev;
734}
735
736static void
737linux_drop_fop(struct linux_cdev *ldev)
738{
739
740	if (ldev == NULL)
741		return;
742	MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
743	atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
744}
745
746#define	OPW(fp,td,code) ({			\
747	struct file *__fpop;			\
748	__typeof(code) __retval;		\
749						\
750	__fpop = (td)->td_fpop;			\
751	(td)->td_fpop = (fp);			\
752	__retval = (code);			\
753	(td)->td_fpop = __fpop;			\
754	__retval;				\
755})
756
757static int
758linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
759    struct file *file)
760{
761	struct linux_cdev *ldev;
762	struct linux_file *filp;
763	const struct file_operations *fop;
764	int error;
765
766	ldev = dev->si_drv1;
767
768	filp = linux_file_alloc();
769	filp->f_dentry = &filp->f_dentry_store;
770	filp->f_op = ldev->ops;
771	filp->f_mode = file->f_flag;
772	filp->f_flags = file->f_flag;
773	filp->f_vnode = file->f_vnode;
774	filp->_file = file;
775	refcount_acquire(&ldev->refs);
776	filp->f_cdev = ldev;
777
778	linux_set_current(td);
779	linux_get_fop(filp, &fop, &ldev);
780
781	if (fop->open != NULL) {
782		error = -fop->open(file->f_vnode, filp);
783		if (error != 0) {
784			linux_drop_fop(ldev);
785			linux_cdev_deref(filp->f_cdev);
786			kfree(filp);
787			return (error);
788		}
789	}
790
791	/* hold on to the vnode - used for fstat() */
792	vhold(filp->f_vnode);
793
794	/* release the file from devfs */
795	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
796	linux_drop_fop(ldev);
797	return (ENXIO);
798}
799
800#define	LINUX_IOCTL_MIN_PTR 0x10000UL
801#define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
802
803static inline int
804linux_remap_address(void **uaddr, size_t len)
805{
806	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
807
808	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
809	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
810		struct task_struct *pts = current;
811		if (pts == NULL) {
812			*uaddr = NULL;
813			return (1);
814		}
815
816		/* compute data offset */
817		uaddr_val -= LINUX_IOCTL_MIN_PTR;
818
819		/* check that length is within bounds */
820		if ((len > IOCPARM_MAX) ||
821		    (uaddr_val + len) > pts->bsd_ioctl_len) {
822			*uaddr = NULL;
823			return (1);
824		}
825
826		/* re-add kernel buffer address */
827		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
828
829		/* update address location */
830		*uaddr = (void *)uaddr_val;
831		return (1);
832	}
833	return (0);
834}
835
836int
837linux_copyin(const void *uaddr, void *kaddr, size_t len)
838{
839	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
840		if (uaddr == NULL)
841			return (-EFAULT);
842		memcpy(kaddr, uaddr, len);
843		return (0);
844	}
845	return (-copyin(uaddr, kaddr, len));
846}
847
848int
849linux_copyout(const void *kaddr, void *uaddr, size_t len)
850{
851	if (linux_remap_address(&uaddr, len)) {
852		if (uaddr == NULL)
853			return (-EFAULT);
854		memcpy(uaddr, kaddr, len);
855		return (0);
856	}
857	return (-copyout(kaddr, uaddr, len));
858}
859
860size_t
861linux_clear_user(void *_uaddr, size_t _len)
862{
863	uint8_t *uaddr = _uaddr;
864	size_t len = _len;
865
866	/* make sure uaddr is aligned before going into the fast loop */
867	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
868		if (subyte(uaddr, 0))
869			return (_len);
870		uaddr++;
871		len--;
872	}
873
874	/* zero 8 bytes at a time */
875	while (len > 7) {
876#ifdef __LP64__
877		if (suword64(uaddr, 0))
878			return (_len);
879#else
880		if (suword32(uaddr, 0))
881			return (_len);
882		if (suword32(uaddr + 4, 0))
883			return (_len);
884#endif
885		uaddr += 8;
886		len -= 8;
887	}
888
889	/* zero fill end, if any */
890	while (len > 0) {
891		if (subyte(uaddr, 0))
892			return (_len);
893		uaddr++;
894		len--;
895	}
896	return (0);
897}
898
899int
900linux_access_ok(int rw, const void *uaddr, size_t len)
901{
902	uintptr_t saddr;
903	uintptr_t eaddr;
904
905	/* get start and end address */
906	saddr = (uintptr_t)uaddr;
907	eaddr = (uintptr_t)uaddr + len;
908
909	/* verify addresses are valid for userspace */
910	return ((saddr == eaddr) ||
911	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
912}
913
914/*
915 * This function should return either EINTR or ERESTART depending on
916 * the signal type sent to this thread:
917 */
918static int
919linux_get_error(struct task_struct *task, int error)
920{
921	/* check for signal type interrupt code */
922	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
923		error = -linux_schedule_get_interrupt_value(task);
924		if (error == 0)
925			error = EINTR;
926	}
927	return (error);
928}
929
930static int
931linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
932    const struct file_operations *fop, u_long cmd, caddr_t data,
933    struct thread *td)
934{
935	struct task_struct *task = current;
936	unsigned size;
937	int error;
938
939	size = IOCPARM_LEN(cmd);
940	/* refer to logic in sys_ioctl() */
941	if (size > 0) {
942		/*
943		 * Setup hint for linux_copyin() and linux_copyout().
944		 *
945		 * Background: Linux code expects a user-space address
946		 * while FreeBSD supplies a kernel-space address.
947		 */
948		task->bsd_ioctl_data = data;
949		task->bsd_ioctl_len = size;
950		data = (void *)LINUX_IOCTL_MIN_PTR;
951	} else {
952		/* fetch user-space pointer */
953		data = *(void **)data;
954	}
955#if defined(__amd64__)
956	if (td->td_proc->p_elf_machine == EM_386) {
957		/* try the compat IOCTL handler first */
958		if (fop->compat_ioctl != NULL) {
959			error = -OPW(fp, td, fop->compat_ioctl(filp,
960			    cmd, (u_long)data));
961		} else {
962			error = ENOTTY;
963		}
964
965		/* fallback to the regular IOCTL handler, if any */
966		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
967			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
968			    cmd, (u_long)data));
969		}
970	} else
971#endif
972	{
973		if (fop->unlocked_ioctl != NULL) {
974			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
975			    cmd, (u_long)data));
976		} else {
977			error = ENOTTY;
978		}
979	}
980	if (size > 0) {
981		task->bsd_ioctl_data = NULL;
982		task->bsd_ioctl_len = 0;
983	}
984
985	if (error == EWOULDBLOCK) {
986		/* update kqfilter status, if any */
987		linux_file_kqfilter_poll(filp,
988		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
989	} else {
990		error = linux_get_error(task, error);
991	}
992	return (error);
993}
994
995#define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
996
997/*
998 * This function atomically updates the poll wakeup state and returns
999 * the previous state at the time of update.
1000 */
1001static uint8_t
1002linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1003{
1004	int c, old;
1005
1006	c = v->counter;
1007
1008	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1009		c = old;
1010
1011	return (c);
1012}
1013
1014
1015static int
1016linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1017{
1018	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1019		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1020		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1021		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1022		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1023	};
1024	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1025
1026	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1027	case LINUX_FWQ_STATE_QUEUED:
1028		linux_poll_wakeup(filp);
1029		return (1);
1030	default:
1031		return (0);
1032	}
1033}
1034
1035void
1036linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1037{
1038	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1039		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1040		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1041		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1042		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1043	};
1044
1045	/* check if we are called inside the select system call */
1046	if (p == LINUX_POLL_TABLE_NORMAL)
1047		selrecord(curthread, &filp->f_selinfo);
1048
1049	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1050	case LINUX_FWQ_STATE_INIT:
1051		/* NOTE: file handles can only belong to one wait-queue */
1052		filp->f_wait_queue.wqh = wqh;
1053		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1054		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1055		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1056		break;
1057	default:
1058		break;
1059	}
1060}
1061
1062static void
1063linux_poll_wait_dequeue(struct linux_file *filp)
1064{
1065	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1066		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1067		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1068		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1069		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1070	};
1071
1072	seldrain(&filp->f_selinfo);
1073
1074	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1075	case LINUX_FWQ_STATE_NOT_READY:
1076	case LINUX_FWQ_STATE_QUEUED:
1077	case LINUX_FWQ_STATE_READY:
1078		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1079		break;
1080	default:
1081		break;
1082	}
1083}
1084
1085void
1086linux_poll_wakeup(struct linux_file *filp)
1087{
1088	/* this function should be NULL-safe */
1089	if (filp == NULL)
1090		return;
1091
1092	selwakeup(&filp->f_selinfo);
1093
1094	spin_lock(&filp->f_kqlock);
1095	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1096	    LINUX_KQ_FLAG_NEED_WRITE;
1097
1098	/* make sure the "knote" gets woken up */
1099	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1100	spin_unlock(&filp->f_kqlock);
1101}
1102
1103static void
1104linux_file_kqfilter_detach(struct knote *kn)
1105{
1106	struct linux_file *filp = kn->kn_hook;
1107
1108	spin_lock(&filp->f_kqlock);
1109	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1110	spin_unlock(&filp->f_kqlock);
1111}
1112
1113static int
1114linux_file_kqfilter_read_event(struct knote *kn, long hint)
1115{
1116	struct linux_file *filp = kn->kn_hook;
1117
1118	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1119
1120	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1121}
1122
1123static int
1124linux_file_kqfilter_write_event(struct knote *kn, long hint)
1125{
1126	struct linux_file *filp = kn->kn_hook;
1127
1128	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1129
1130	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1131}
1132
1133static struct filterops linux_dev_kqfiltops_read = {
1134	.f_isfd = 1,
1135	.f_detach = linux_file_kqfilter_detach,
1136	.f_event = linux_file_kqfilter_read_event,
1137};
1138
1139static struct filterops linux_dev_kqfiltops_write = {
1140	.f_isfd = 1,
1141	.f_detach = linux_file_kqfilter_detach,
1142	.f_event = linux_file_kqfilter_write_event,
1143};
1144
1145static void
1146linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1147{
1148	struct thread *td;
1149	const struct file_operations *fop;
1150	struct linux_cdev *ldev;
1151	int temp;
1152
1153	if ((filp->f_kqflags & kqflags) == 0)
1154		return;
1155
1156	td = curthread;
1157
1158	linux_get_fop(filp, &fop, &ldev);
1159	/* get the latest polling state */
1160	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1161	linux_drop_fop(ldev);
1162
1163	spin_lock(&filp->f_kqlock);
1164	/* clear kqflags */
1165	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1166	    LINUX_KQ_FLAG_NEED_WRITE);
1167	/* update kqflags */
1168	if ((temp & (POLLIN | POLLOUT)) != 0) {
1169		if ((temp & POLLIN) != 0)
1170			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1171		if ((temp & POLLOUT) != 0)
1172			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1173
1174		/* make sure the "knote" gets woken up */
1175		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1176	}
1177	spin_unlock(&filp->f_kqlock);
1178}
1179
1180static int
1181linux_file_kqfilter(struct file *file, struct knote *kn)
1182{
1183	struct linux_file *filp;
1184	struct thread *td;
1185	int error;
1186
1187	td = curthread;
1188	filp = (struct linux_file *)file->f_data;
1189	filp->f_flags = file->f_flag;
1190	if (filp->f_op->poll == NULL)
1191		return (EINVAL);
1192
1193	spin_lock(&filp->f_kqlock);
1194	switch (kn->kn_filter) {
1195	case EVFILT_READ:
1196		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1197		kn->kn_fop = &linux_dev_kqfiltops_read;
1198		kn->kn_hook = filp;
1199		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1200		error = 0;
1201		break;
1202	case EVFILT_WRITE:
1203		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1204		kn->kn_fop = &linux_dev_kqfiltops_write;
1205		kn->kn_hook = filp;
1206		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1207		error = 0;
1208		break;
1209	default:
1210		error = EINVAL;
1211		break;
1212	}
1213	spin_unlock(&filp->f_kqlock);
1214
1215	if (error == 0) {
1216		linux_set_current(td);
1217
1218		/* update kqfilter status, if any */
1219		linux_file_kqfilter_poll(filp,
1220		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1221	}
1222	return (error);
1223}
1224
1225static int
1226linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1227    vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1228    int nprot, struct thread *td)
1229{
1230	struct task_struct *task;
1231	struct vm_area_struct *vmap;
1232	struct mm_struct *mm;
1233	struct linux_file *filp;
1234	vm_memattr_t attr;
1235	int error;
1236
1237	filp = (struct linux_file *)fp->f_data;
1238	filp->f_flags = fp->f_flag;
1239
1240	if (fop->mmap == NULL)
1241		return (EOPNOTSUPP);
1242
1243	linux_set_current(td);
1244
1245	/*
1246	 * The same VM object might be shared by multiple processes
1247	 * and the mm_struct is usually freed when a process exits.
1248	 *
1249	 * The atomic reference below makes sure the mm_struct is
1250	 * available as long as the vmap is in the linux_vma_head.
1251	 */
1252	task = current;
1253	mm = task->mm;
1254	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1255		return (EINVAL);
1256
1257	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1258	vmap->vm_start = 0;
1259	vmap->vm_end = size;
1260	vmap->vm_pgoff = *offset / PAGE_SIZE;
1261	vmap->vm_pfn = 0;
1262	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1263	vmap->vm_ops = NULL;
1264	vmap->vm_file = get_file(filp);
1265	vmap->vm_mm = mm;
1266
1267	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1268		error = linux_get_error(task, EINTR);
1269	} else {
1270		error = -OPW(fp, td, fop->mmap(filp, vmap));
1271		error = linux_get_error(task, error);
1272		up_write(&vmap->vm_mm->mmap_sem);
1273	}
1274
1275	if (error != 0) {
1276		linux_cdev_handle_free(vmap);
1277		return (error);
1278	}
1279
1280	attr = pgprot2cachemode(vmap->vm_page_prot);
1281
1282	if (vmap->vm_ops != NULL) {
1283		struct vm_area_struct *ptr;
1284		void *vm_private_data;
1285		bool vm_no_fault;
1286
1287		if (vmap->vm_ops->open == NULL ||
1288		    vmap->vm_ops->close == NULL ||
1289		    vmap->vm_private_data == NULL) {
1290			/* free allocated VM area struct */
1291			linux_cdev_handle_free(vmap);
1292			return (EINVAL);
1293		}
1294
1295		vm_private_data = vmap->vm_private_data;
1296
1297		rw_wlock(&linux_vma_lock);
1298		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1299			if (ptr->vm_private_data == vm_private_data)
1300				break;
1301		}
1302		/* check if there is an existing VM area struct */
1303		if (ptr != NULL) {
1304			/* check if the VM area structure is invalid */
1305			if (ptr->vm_ops == NULL ||
1306			    ptr->vm_ops->open == NULL ||
1307			    ptr->vm_ops->close == NULL) {
1308				error = ESTALE;
1309				vm_no_fault = 1;
1310			} else {
1311				error = EEXIST;
1312				vm_no_fault = (ptr->vm_ops->fault == NULL);
1313			}
1314		} else {
1315			/* insert VM area structure into list */
1316			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1317			error = 0;
1318			vm_no_fault = (vmap->vm_ops->fault == NULL);
1319		}
1320		rw_wunlock(&linux_vma_lock);
1321
1322		if (error != 0) {
1323			/* free allocated VM area struct */
1324			linux_cdev_handle_free(vmap);
1325			/* check for stale VM area struct */
1326			if (error != EEXIST)
1327				return (error);
1328		}
1329
1330		/* check if there is no fault handler */
1331		if (vm_no_fault) {
1332			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1333			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1334			    td->td_ucred);
1335		} else {
1336			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1337			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1338			    td->td_ucred);
1339		}
1340
1341		/* check if allocating the VM object failed */
1342		if (*object == NULL) {
1343			if (error == 0) {
1344				/* remove VM area struct from list */
1345				linux_cdev_handle_remove(vmap);
1346				/* free allocated VM area struct */
1347				linux_cdev_handle_free(vmap);
1348			}
1349			return (EINVAL);
1350		}
1351	} else {
1352		struct sglist *sg;
1353
1354		sg = sglist_alloc(1, M_WAITOK);
1355		sglist_append_phys(sg,
1356		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1357
1358		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1359		    nprot, 0, td->td_ucred);
1360
1361		linux_cdev_handle_free(vmap);
1362
1363		if (*object == NULL) {
1364			sglist_free(sg);
1365			return (EINVAL);
1366		}
1367	}
1368
1369	if (attr != VM_MEMATTR_DEFAULT) {
1370		VM_OBJECT_WLOCK(*object);
1371		vm_object_set_memattr(*object, attr);
1372		VM_OBJECT_WUNLOCK(*object);
1373	}
1374	*offset = 0;
1375	return (0);
1376}
1377
1378struct cdevsw linuxcdevsw = {
1379	.d_version = D_VERSION,
1380	.d_fdopen = linux_dev_fdopen,
1381	.d_name = "lkpidev",
1382};
1383
1384static int
1385linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1386    int flags, struct thread *td)
1387{
1388	struct linux_file *filp;
1389	const struct file_operations *fop;
1390	struct linux_cdev *ldev;
1391	ssize_t bytes;
1392	int error;
1393
1394	error = 0;
1395	filp = (struct linux_file *)file->f_data;
1396	filp->f_flags = file->f_flag;
1397	/* XXX no support for I/O vectors currently */
1398	if (uio->uio_iovcnt != 1)
1399		return (EOPNOTSUPP);
1400	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1401		return (EINVAL);
1402	linux_set_current(td);
1403	linux_get_fop(filp, &fop, &ldev);
1404	if (fop->read != NULL) {
1405		bytes = OPW(file, td, fop->read(filp,
1406		    uio->uio_iov->iov_base,
1407		    uio->uio_iov->iov_len, &uio->uio_offset));
1408		if (bytes >= 0) {
1409			uio->uio_iov->iov_base =
1410			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1411			uio->uio_iov->iov_len -= bytes;
1412			uio->uio_resid -= bytes;
1413		} else {
1414			error = linux_get_error(current, -bytes);
1415		}
1416	} else
1417		error = ENXIO;
1418
1419	/* update kqfilter status, if any */
1420	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1421	linux_drop_fop(ldev);
1422
1423	return (error);
1424}
1425
1426static int
1427linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1428    int flags, struct thread *td)
1429{
1430	struct linux_file *filp;
1431	const struct file_operations *fop;
1432	struct linux_cdev *ldev;
1433	ssize_t bytes;
1434	int error;
1435
1436	filp = (struct linux_file *)file->f_data;
1437	filp->f_flags = file->f_flag;
1438	/* XXX no support for I/O vectors currently */
1439	if (uio->uio_iovcnt != 1)
1440		return (EOPNOTSUPP);
1441	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1442		return (EINVAL);
1443	linux_set_current(td);
1444	linux_get_fop(filp, &fop, &ldev);
1445	if (fop->write != NULL) {
1446		bytes = OPW(file, td, fop->write(filp,
1447		    uio->uio_iov->iov_base,
1448		    uio->uio_iov->iov_len, &uio->uio_offset));
1449		if (bytes >= 0) {
1450			uio->uio_iov->iov_base =
1451			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1452			uio->uio_iov->iov_len -= bytes;
1453			uio->uio_resid -= bytes;
1454			error = 0;
1455		} else {
1456			error = linux_get_error(current, -bytes);
1457		}
1458	} else
1459		error = ENXIO;
1460
1461	/* update kqfilter status, if any */
1462	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1463
1464	linux_drop_fop(ldev);
1465
1466	return (error);
1467}
1468
1469static int
1470linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1471    struct thread *td)
1472{
1473	struct linux_file *filp;
1474	const struct file_operations *fop;
1475	struct linux_cdev *ldev;
1476	int revents;
1477
1478	filp = (struct linux_file *)file->f_data;
1479	filp->f_flags = file->f_flag;
1480	linux_set_current(td);
1481	linux_get_fop(filp, &fop, &ldev);
1482	if (fop->poll != NULL) {
1483		revents = OPW(file, td, fop->poll(filp,
1484		    LINUX_POLL_TABLE_NORMAL)) & events;
1485	} else {
1486		revents = 0;
1487	}
1488	linux_drop_fop(ldev);
1489	return (revents);
1490}
1491
1492static int
1493linux_file_close(struct file *file, struct thread *td)
1494{
1495	struct linux_file *filp;
1496	int (*release)(struct inode *, struct linux_file *);
1497	const struct file_operations *fop;
1498	struct linux_cdev *ldev;
1499	int error;
1500
1501	filp = (struct linux_file *)file->f_data;
1502
1503	KASSERT(file_count(filp) == 0,
1504	    ("File refcount(%d) is not zero", file_count(filp)));
1505
1506	if (td == NULL)
1507		td = curthread;
1508
1509	error = 0;
1510	filp->f_flags = file->f_flag;
1511	linux_set_current(td);
1512	linux_poll_wait_dequeue(filp);
1513	linux_get_fop(filp, &fop, &ldev);
1514	/*
1515	 * Always use the real release function, if any, to avoid
1516	 * leaking device resources:
1517	 */
1518	release = filp->f_op->release;
1519	if (release != NULL)
1520		error = -OPW(file, td, release(filp->f_vnode, filp));
1521	funsetown(&filp->f_sigio);
1522	if (filp->f_vnode != NULL)
1523		vdrop(filp->f_vnode);
1524	linux_drop_fop(ldev);
1525	if (filp->f_cdev != NULL)
1526		linux_cdev_deref(filp->f_cdev);
1527	kfree(filp);
1528
1529	return (error);
1530}
1531
1532static int
1533linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1534    struct thread *td)
1535{
1536	struct linux_file *filp;
1537	const struct file_operations *fop;
1538	struct linux_cdev *ldev;
1539	struct fiodgname_arg *fgn;
1540	const char *p;
1541	int error, i;
1542
1543	error = 0;
1544	filp = (struct linux_file *)fp->f_data;
1545	filp->f_flags = fp->f_flag;
1546	linux_get_fop(filp, &fop, &ldev);
1547
1548	linux_set_current(td);
1549	switch (cmd) {
1550	case FIONBIO:
1551		break;
1552	case FIOASYNC:
1553		if (fop->fasync == NULL)
1554			break;
1555		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1556		break;
1557	case FIOSETOWN:
1558		error = fsetown(*(int *)data, &filp->f_sigio);
1559		if (error == 0) {
1560			if (fop->fasync == NULL)
1561				break;
1562			error = -OPW(fp, td, fop->fasync(0, filp,
1563			    fp->f_flag & FASYNC));
1564		}
1565		break;
1566	case FIOGETOWN:
1567		*(int *)data = fgetown(&filp->f_sigio);
1568		break;
1569	case FIODGNAME:
1570		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1571			error = ENXIO;
1572			break;
1573		}
1574		fgn = data;
1575		p = devtoname(filp->f_cdev->cdev);
1576		i = strlen(p) + 1;
1577		if (i > fgn->len) {
1578			error = EINVAL;
1579			break;
1580		}
1581		error = copyout(p, fgn->buf, i);
1582		break;
1583	default:
1584		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1585		break;
1586	}
1587	linux_drop_fop(ldev);
1588	return (error);
1589}
1590
1591static int
1592linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1593    vm_prot_t *maxprotp, int *flagsp, struct file *fp,
1594    vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1595{
1596	/*
1597	 * Character devices do not provide private mappings
1598	 * of any kind:
1599	 */
1600	if ((*maxprotp & VM_PROT_WRITE) == 0 &&
1601	    (prot & VM_PROT_WRITE) != 0)
1602		return (EACCES);
1603	if ((*flagsp & (MAP_PRIVATE | MAP_COPY)) != 0)
1604		return (EINVAL);
1605
1606	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1607	    (int)prot, td));
1608}
1609
1610static int
1611linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1612    vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1613    struct thread *td)
1614{
1615	struct linux_file *filp;
1616	const struct file_operations *fop;
1617	struct linux_cdev *ldev;
1618	struct mount *mp;
1619	struct vnode *vp;
1620	vm_object_t object;
1621	vm_prot_t maxprot;
1622	int error;
1623
1624	filp = (struct linux_file *)fp->f_data;
1625
1626	vp = filp->f_vnode;
1627	if (vp == NULL)
1628		return (EOPNOTSUPP);
1629
1630	/*
1631	 * Ensure that file and memory protections are
1632	 * compatible.
1633	 */
1634	mp = vp->v_mount;
1635	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1636		maxprot = VM_PROT_NONE;
1637		if ((prot & VM_PROT_EXECUTE) != 0)
1638			return (EACCES);
1639	} else
1640		maxprot = VM_PROT_EXECUTE;
1641	if ((fp->f_flag & FREAD) != 0)
1642		maxprot |= VM_PROT_READ;
1643	else if ((prot & VM_PROT_READ) != 0)
1644		return (EACCES);
1645
1646	/*
1647	 * If we are sharing potential changes via MAP_SHARED and we
1648	 * are trying to get write permission although we opened it
1649	 * without asking for it, bail out.
1650	 *
1651	 * Note that most character devices always share mappings.
1652	 *
1653	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1654	 * requests rather than doing it here.
1655	 */
1656	if ((flags & MAP_SHARED) != 0) {
1657		if ((fp->f_flag & FWRITE) != 0)
1658			maxprot |= VM_PROT_WRITE;
1659		else if ((prot & VM_PROT_WRITE) != 0)
1660			return (EACCES);
1661	}
1662	maxprot &= cap_maxprot;
1663
1664	linux_get_fop(filp, &fop, &ldev);
1665	error = linux_file_mmap_sub(td, size, prot, &maxprot, &flags, fp,
1666	    &foff, fop, &object);
1667	if (error != 0)
1668		goto out;
1669
1670	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1671	    foff, FALSE, td);
1672	if (error != 0)
1673		vm_object_deallocate(object);
1674out:
1675	linux_drop_fop(ldev);
1676	return (error);
1677}
1678
1679static int
1680linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
1681    struct thread *td)
1682{
1683	struct linux_file *filp;
1684	struct vnode *vp;
1685	int error;
1686
1687	filp = (struct linux_file *)fp->f_data;
1688	if (filp->f_vnode == NULL)
1689		return (EOPNOTSUPP);
1690
1691	vp = filp->f_vnode;
1692
1693	vn_lock(vp, LK_SHARED | LK_RETRY);
1694	error = vn_stat(vp, sb, td->td_ucred, NOCRED, td);
1695	VOP_UNLOCK(vp, 0);
1696
1697	return (error);
1698}
1699
1700static int
1701linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1702    struct filedesc *fdp)
1703{
1704	struct linux_file *filp;
1705	struct vnode *vp;
1706	int error;
1707
1708	filp = fp->f_data;
1709	vp = filp->f_vnode;
1710	if (vp == NULL) {
1711		error = 0;
1712		kif->kf_type = KF_TYPE_DEV;
1713	} else {
1714		vref(vp);
1715		FILEDESC_SUNLOCK(fdp);
1716		error = vn_fill_kinfo_vnode(vp, kif);
1717		vrele(vp);
1718		kif->kf_type = KF_TYPE_VNODE;
1719		FILEDESC_SLOCK(fdp);
1720	}
1721	return (error);
1722}
1723
1724unsigned int
1725linux_iminor(struct inode *inode)
1726{
1727	struct linux_cdev *ldev;
1728
1729	if (inode == NULL || inode->v_rdev == NULL ||
1730	    inode->v_rdev->si_devsw != &linuxcdevsw)
1731		return (-1U);
1732	ldev = inode->v_rdev->si_drv1;
1733	if (ldev == NULL)
1734		return (-1U);
1735
1736	return (minor(ldev->dev));
1737}
1738
1739struct fileops linuxfileops = {
1740	.fo_read = linux_file_read,
1741	.fo_write = linux_file_write,
1742	.fo_truncate = invfo_truncate,
1743	.fo_kqfilter = linux_file_kqfilter,
1744	.fo_stat = linux_file_stat,
1745	.fo_fill_kinfo = linux_file_fill_kinfo,
1746	.fo_poll = linux_file_poll,
1747	.fo_close = linux_file_close,
1748	.fo_ioctl = linux_file_ioctl,
1749	.fo_mmap = linux_file_mmap,
1750	.fo_chmod = invfo_chmod,
1751	.fo_chown = invfo_chown,
1752	.fo_sendfile = invfo_sendfile,
1753	.fo_flags = DFLAG_PASSABLE,
1754};
1755
1756/*
1757 * Hash of vmmap addresses.  This is infrequently accessed and does not
1758 * need to be particularly large.  This is done because we must store the
1759 * caller's idea of the map size to properly unmap.
1760 */
1761struct vmmap {
1762	LIST_ENTRY(vmmap)	vm_next;
1763	void 			*vm_addr;
1764	unsigned long		vm_size;
1765};
1766
1767struct vmmaphd {
1768	struct vmmap *lh_first;
1769};
1770#define	VMMAP_HASH_SIZE	64
1771#define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1772#define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1773static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1774static struct mtx vmmaplock;
1775
1776static void
1777vmmap_add(void *addr, unsigned long size)
1778{
1779	struct vmmap *vmmap;
1780
1781	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1782	mtx_lock(&vmmaplock);
1783	vmmap->vm_size = size;
1784	vmmap->vm_addr = addr;
1785	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1786	mtx_unlock(&vmmaplock);
1787}
1788
1789static struct vmmap *
1790vmmap_remove(void *addr)
1791{
1792	struct vmmap *vmmap;
1793
1794	mtx_lock(&vmmaplock);
1795	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1796		if (vmmap->vm_addr == addr)
1797			break;
1798	if (vmmap)
1799		LIST_REMOVE(vmmap, vm_next);
1800	mtx_unlock(&vmmaplock);
1801
1802	return (vmmap);
1803}
1804
1805#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1806void *
1807_ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1808{
1809	void *addr;
1810
1811	addr = pmap_mapdev_attr(phys_addr, size, attr);
1812	if (addr == NULL)
1813		return (NULL);
1814	vmmap_add(addr, size);
1815
1816	return (addr);
1817}
1818#endif
1819
1820void
1821iounmap(void *addr)
1822{
1823	struct vmmap *vmmap;
1824
1825	vmmap = vmmap_remove(addr);
1826	if (vmmap == NULL)
1827		return;
1828#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
1829	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1830#endif
1831	kfree(vmmap);
1832}
1833
1834
1835void *
1836vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1837{
1838	vm_offset_t off;
1839	size_t size;
1840
1841	size = count * PAGE_SIZE;
1842	off = kva_alloc(size);
1843	if (off == 0)
1844		return (NULL);
1845	vmmap_add((void *)off, size);
1846	pmap_qenter(off, pages, count);
1847
1848	return ((void *)off);
1849}
1850
1851void
1852vunmap(void *addr)
1853{
1854	struct vmmap *vmmap;
1855
1856	vmmap = vmmap_remove(addr);
1857	if (vmmap == NULL)
1858		return;
1859	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1860	kva_free((vm_offset_t)addr, vmmap->vm_size);
1861	kfree(vmmap);
1862}
1863
1864char *
1865kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1866{
1867	unsigned int len;
1868	char *p;
1869	va_list aq;
1870
1871	va_copy(aq, ap);
1872	len = vsnprintf(NULL, 0, fmt, aq);
1873	va_end(aq);
1874
1875	p = kmalloc(len + 1, gfp);
1876	if (p != NULL)
1877		vsnprintf(p, len + 1, fmt, ap);
1878
1879	return (p);
1880}
1881
1882char *
1883kasprintf(gfp_t gfp, const char *fmt, ...)
1884{
1885	va_list ap;
1886	char *p;
1887
1888	va_start(ap, fmt);
1889	p = kvasprintf(gfp, fmt, ap);
1890	va_end(ap);
1891
1892	return (p);
1893}
1894
1895static void
1896linux_timer_callback_wrapper(void *context)
1897{
1898	struct timer_list *timer;
1899
1900	linux_set_current(curthread);
1901
1902	timer = context;
1903	timer->function(timer->data);
1904}
1905
1906void
1907mod_timer(struct timer_list *timer, int expires)
1908{
1909
1910	timer->expires = expires;
1911	callout_reset(&timer->callout,
1912	    linux_timer_jiffies_until(expires),
1913	    &linux_timer_callback_wrapper, timer);
1914}
1915
1916void
1917add_timer(struct timer_list *timer)
1918{
1919
1920	callout_reset(&timer->callout,
1921	    linux_timer_jiffies_until(timer->expires),
1922	    &linux_timer_callback_wrapper, timer);
1923}
1924
1925void
1926add_timer_on(struct timer_list *timer, int cpu)
1927{
1928
1929	callout_reset_on(&timer->callout,
1930	    linux_timer_jiffies_until(timer->expires),
1931	    &linux_timer_callback_wrapper, timer, cpu);
1932}
1933
1934/* greatest common divisor, Euclid equation */
1935static uint64_t
1936lkpi_gcd_64(uint64_t a, uint64_t b)
1937{
1938	uint64_t an;
1939	uint64_t bn;
1940
1941	while (b != 0) {
1942		an = b;
1943		bn = a % b;
1944		a = an;
1945		b = bn;
1946	}
1947	return (a);
1948}
1949
1950uint64_t lkpi_nsec2hz_rem;
1951uint64_t lkpi_nsec2hz_div = 1000000000ULL;
1952uint64_t lkpi_nsec2hz_max;
1953
1954uint64_t lkpi_usec2hz_rem;
1955uint64_t lkpi_usec2hz_div = 1000000ULL;
1956uint64_t lkpi_usec2hz_max;
1957
1958uint64_t lkpi_msec2hz_rem;
1959uint64_t lkpi_msec2hz_div = 1000ULL;
1960uint64_t lkpi_msec2hz_max;
1961
1962static void
1963linux_timer_init(void *arg)
1964{
1965	uint64_t gcd;
1966
1967	/*
1968	 * Compute an internal HZ value which can divide 2**32 to
1969	 * avoid timer rounding problems when the tick value wraps
1970	 * around 2**32:
1971	 */
1972	linux_timer_hz_mask = 1;
1973	while (linux_timer_hz_mask < (unsigned long)hz)
1974		linux_timer_hz_mask *= 2;
1975	linux_timer_hz_mask--;
1976
1977	/* compute some internal constants */
1978
1979	lkpi_nsec2hz_rem = hz;
1980	lkpi_usec2hz_rem = hz;
1981	lkpi_msec2hz_rem = hz;
1982
1983	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
1984	lkpi_nsec2hz_rem /= gcd;
1985	lkpi_nsec2hz_div /= gcd;
1986	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
1987
1988	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
1989	lkpi_usec2hz_rem /= gcd;
1990	lkpi_usec2hz_div /= gcd;
1991	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
1992
1993	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
1994	lkpi_msec2hz_rem /= gcd;
1995	lkpi_msec2hz_div /= gcd;
1996	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
1997}
1998SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
1999
2000void
2001linux_complete_common(struct completion *c, int all)
2002{
2003	int wakeup_swapper;
2004
2005	sleepq_lock(c);
2006	if (all) {
2007		c->done = UINT_MAX;
2008		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2009	} else {
2010		if (c->done != UINT_MAX)
2011			c->done++;
2012		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2013	}
2014	sleepq_release(c);
2015	if (wakeup_swapper)
2016		kick_proc0();
2017}
2018
2019/*
2020 * Indefinite wait for done != 0 with or without signals.
2021 */
2022int
2023linux_wait_for_common(struct completion *c, int flags)
2024{
2025	struct task_struct *task;
2026	int error;
2027
2028	if (SCHEDULER_STOPPED())
2029		return (0);
2030
2031	task = current;
2032
2033	if (flags != 0)
2034		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2035	else
2036		flags = SLEEPQ_SLEEP;
2037	error = 0;
2038	for (;;) {
2039		sleepq_lock(c);
2040		if (c->done)
2041			break;
2042		sleepq_add(c, NULL, "completion", flags, 0);
2043		if (flags & SLEEPQ_INTERRUPTIBLE) {
2044			DROP_GIANT();
2045			error = -sleepq_wait_sig(c, 0);
2046			PICKUP_GIANT();
2047			if (error != 0) {
2048				linux_schedule_save_interrupt_value(task, error);
2049				error = -ERESTARTSYS;
2050				goto intr;
2051			}
2052		} else {
2053			DROP_GIANT();
2054			sleepq_wait(c, 0);
2055			PICKUP_GIANT();
2056		}
2057	}
2058	if (c->done != UINT_MAX)
2059		c->done--;
2060	sleepq_release(c);
2061
2062intr:
2063	return (error);
2064}
2065
2066/*
2067 * Time limited wait for done != 0 with or without signals.
2068 */
2069int
2070linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2071{
2072	struct task_struct *task;
2073	int end = jiffies + timeout;
2074	int error;
2075
2076	if (SCHEDULER_STOPPED())
2077		return (0);
2078
2079	task = current;
2080
2081	if (flags != 0)
2082		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2083	else
2084		flags = SLEEPQ_SLEEP;
2085
2086	for (;;) {
2087		sleepq_lock(c);
2088		if (c->done)
2089			break;
2090		sleepq_add(c, NULL, "completion", flags, 0);
2091		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2092
2093		DROP_GIANT();
2094		if (flags & SLEEPQ_INTERRUPTIBLE)
2095			error = -sleepq_timedwait_sig(c, 0);
2096		else
2097			error = -sleepq_timedwait(c, 0);
2098		PICKUP_GIANT();
2099
2100		if (error != 0) {
2101			/* check for timeout */
2102			if (error == -EWOULDBLOCK) {
2103				error = 0;	/* timeout */
2104			} else {
2105				/* signal happened */
2106				linux_schedule_save_interrupt_value(task, error);
2107				error = -ERESTARTSYS;
2108			}
2109			goto done;
2110		}
2111	}
2112	if (c->done != UINT_MAX)
2113		c->done--;
2114	sleepq_release(c);
2115
2116	/* return how many jiffies are left */
2117	error = linux_timer_jiffies_until(end);
2118done:
2119	return (error);
2120}
2121
2122int
2123linux_try_wait_for_completion(struct completion *c)
2124{
2125	int isdone;
2126
2127	sleepq_lock(c);
2128	isdone = (c->done != 0);
2129	if (c->done != 0 && c->done != UINT_MAX)
2130		c->done--;
2131	sleepq_release(c);
2132	return (isdone);
2133}
2134
2135int
2136linux_completion_done(struct completion *c)
2137{
2138	int isdone;
2139
2140	sleepq_lock(c);
2141	isdone = (c->done != 0);
2142	sleepq_release(c);
2143	return (isdone);
2144}
2145
2146static void
2147linux_cdev_deref(struct linux_cdev *ldev)
2148{
2149
2150	if (refcount_release(&ldev->refs))
2151		kfree(ldev);
2152}
2153
2154static void
2155linux_cdev_release(struct kobject *kobj)
2156{
2157	struct linux_cdev *cdev;
2158	struct kobject *parent;
2159
2160	cdev = container_of(kobj, struct linux_cdev, kobj);
2161	parent = kobj->parent;
2162	linux_destroy_dev(cdev);
2163	linux_cdev_deref(cdev);
2164	kobject_put(parent);
2165}
2166
2167static void
2168linux_cdev_static_release(struct kobject *kobj)
2169{
2170	struct linux_cdev *cdev;
2171	struct kobject *parent;
2172
2173	cdev = container_of(kobj, struct linux_cdev, kobj);
2174	parent = kobj->parent;
2175	linux_destroy_dev(cdev);
2176	kobject_put(parent);
2177}
2178
2179void
2180linux_destroy_dev(struct linux_cdev *ldev)
2181{
2182
2183	if (ldev->cdev == NULL)
2184		return;
2185
2186	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2187	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2188	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2189		pause("ldevdtr", hz / 4);
2190
2191	destroy_dev(ldev->cdev);
2192	ldev->cdev = NULL;
2193}
2194
2195const struct kobj_type linux_cdev_ktype = {
2196	.release = linux_cdev_release,
2197};
2198
2199const struct kobj_type linux_cdev_static_ktype = {
2200	.release = linux_cdev_static_release,
2201};
2202
2203static void
2204linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2205{
2206	struct notifier_block *nb;
2207
2208	nb = arg;
2209	if (linkstate == LINK_STATE_UP)
2210		nb->notifier_call(nb, NETDEV_UP, ifp);
2211	else
2212		nb->notifier_call(nb, NETDEV_DOWN, ifp);
2213}
2214
2215static void
2216linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2217{
2218	struct notifier_block *nb;
2219
2220	nb = arg;
2221	nb->notifier_call(nb, NETDEV_REGISTER, ifp);
2222}
2223
2224static void
2225linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2226{
2227	struct notifier_block *nb;
2228
2229	nb = arg;
2230	nb->notifier_call(nb, NETDEV_UNREGISTER, ifp);
2231}
2232
2233static void
2234linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2235{
2236	struct notifier_block *nb;
2237
2238	nb = arg;
2239	nb->notifier_call(nb, NETDEV_CHANGEADDR, ifp);
2240}
2241
2242static void
2243linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2244{
2245	struct notifier_block *nb;
2246
2247	nb = arg;
2248	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, ifp);
2249}
2250
2251int
2252register_netdevice_notifier(struct notifier_block *nb)
2253{
2254
2255	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2256	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2257	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2258	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2259	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2260	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2261	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2262	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2263
2264	return (0);
2265}
2266
2267int
2268register_inetaddr_notifier(struct notifier_block *nb)
2269{
2270
2271	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2272	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2273	return (0);
2274}
2275
2276int
2277unregister_netdevice_notifier(struct notifier_block *nb)
2278{
2279
2280	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2281	    nb->tags[NETDEV_UP]);
2282	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2283	    nb->tags[NETDEV_REGISTER]);
2284	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2285	    nb->tags[NETDEV_UNREGISTER]);
2286	EVENTHANDLER_DEREGISTER(iflladdr_event,
2287	    nb->tags[NETDEV_CHANGEADDR]);
2288
2289	return (0);
2290}
2291
2292int
2293unregister_inetaddr_notifier(struct notifier_block *nb)
2294{
2295
2296	EVENTHANDLER_DEREGISTER(ifaddr_event,
2297	    nb->tags[NETDEV_CHANGEIFADDR]);
2298
2299	return (0);
2300}
2301
2302struct list_sort_thunk {
2303	int (*cmp)(void *, struct list_head *, struct list_head *);
2304	void *priv;
2305};
2306
2307static inline int
2308linux_le_cmp(void *priv, const void *d1, const void *d2)
2309{
2310	struct list_head *le1, *le2;
2311	struct list_sort_thunk *thunk;
2312
2313	thunk = priv;
2314	le1 = *(__DECONST(struct list_head **, d1));
2315	le2 = *(__DECONST(struct list_head **, d2));
2316	return ((thunk->cmp)(thunk->priv, le1, le2));
2317}
2318
2319void
2320list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2321    struct list_head *a, struct list_head *b))
2322{
2323	struct list_sort_thunk thunk;
2324	struct list_head **ar, *le;
2325	size_t count, i;
2326
2327	count = 0;
2328	list_for_each(le, head)
2329		count++;
2330	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2331	i = 0;
2332	list_for_each(le, head)
2333		ar[i++] = le;
2334	thunk.cmp = cmp;
2335	thunk.priv = priv;
2336	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2337	INIT_LIST_HEAD(head);
2338	for (i = 0; i < count; i++)
2339		list_add_tail(ar[i], head);
2340	free(ar, M_KMALLOC);
2341}
2342
2343void
2344linux_irq_handler(void *ent)
2345{
2346	struct irq_ent *irqe;
2347
2348	linux_set_current(curthread);
2349
2350	irqe = ent;
2351	irqe->handler(irqe->irq, irqe->arg);
2352}
2353
2354#if defined(__i386__) || defined(__amd64__)
2355int
2356linux_wbinvd_on_all_cpus(void)
2357{
2358
2359	pmap_invalidate_cache();
2360	return (0);
2361}
2362#endif
2363
2364int
2365linux_on_each_cpu(void callback(void *), void *data)
2366{
2367
2368	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2369	    smp_no_rendezvous_barrier, data);
2370	return (0);
2371}
2372
2373int
2374linux_in_atomic(void)
2375{
2376
2377	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2378}
2379
2380struct linux_cdev *
2381linux_find_cdev(const char *name, unsigned major, unsigned minor)
2382{
2383	dev_t dev = MKDEV(major, minor);
2384	struct cdev *cdev;
2385
2386	dev_lock();
2387	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2388		struct linux_cdev *ldev = cdev->si_drv1;
2389		if (ldev->dev == dev &&
2390		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2391			break;
2392		}
2393	}
2394	dev_unlock();
2395
2396	return (cdev != NULL ? cdev->si_drv1 : NULL);
2397}
2398
2399int
2400__register_chrdev(unsigned int major, unsigned int baseminor,
2401    unsigned int count, const char *name,
2402    const struct file_operations *fops)
2403{
2404	struct linux_cdev *cdev;
2405	int ret = 0;
2406	int i;
2407
2408	for (i = baseminor; i < baseminor + count; i++) {
2409		cdev = cdev_alloc();
2410		cdev->ops = fops;
2411		kobject_set_name(&cdev->kobj, name);
2412
2413		ret = cdev_add(cdev, makedev(major, i), 1);
2414		if (ret != 0)
2415			break;
2416	}
2417	return (ret);
2418}
2419
2420int
2421__register_chrdev_p(unsigned int major, unsigned int baseminor,
2422    unsigned int count, const char *name,
2423    const struct file_operations *fops, uid_t uid,
2424    gid_t gid, int mode)
2425{
2426	struct linux_cdev *cdev;
2427	int ret = 0;
2428	int i;
2429
2430	for (i = baseminor; i < baseminor + count; i++) {
2431		cdev = cdev_alloc();
2432		cdev->ops = fops;
2433		kobject_set_name(&cdev->kobj, name);
2434
2435		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2436		if (ret != 0)
2437			break;
2438	}
2439	return (ret);
2440}
2441
2442void
2443__unregister_chrdev(unsigned int major, unsigned int baseminor,
2444    unsigned int count, const char *name)
2445{
2446	struct linux_cdev *cdevp;
2447	int i;
2448
2449	for (i = baseminor; i < baseminor + count; i++) {
2450		cdevp = linux_find_cdev(name, major, i);
2451		if (cdevp != NULL)
2452			cdev_del(cdevp);
2453	}
2454}
2455
2456void
2457linux_dump_stack(void)
2458{
2459#ifdef STACK
2460	struct stack st;
2461
2462	stack_zero(&st);
2463	stack_save(&st);
2464	stack_print(&st);
2465#endif
2466}
2467
2468#if defined(__i386__) || defined(__amd64__)
2469bool linux_cpu_has_clflush;
2470#endif
2471
2472static void
2473linux_compat_init(void *arg)
2474{
2475	struct sysctl_oid *rootoid;
2476	int i;
2477
2478#if defined(__i386__) || defined(__amd64__)
2479	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2480#endif
2481	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2482
2483	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2484	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2485	kobject_init(&linux_class_root, &linux_class_ktype);
2486	kobject_set_name(&linux_class_root, "class");
2487	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2488	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2489	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2490	kobject_set_name(&linux_root_device.kobj, "device");
2491	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2492	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device", CTLFLAG_RD, NULL,
2493	    "device");
2494	linux_root_device.bsddev = root_bus;
2495	linux_class_misc.name = "misc";
2496	class_register(&linux_class_misc);
2497	INIT_LIST_HEAD(&pci_drivers);
2498	INIT_LIST_HEAD(&pci_devices);
2499	spin_lock_init(&pci_lock);
2500	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2501	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2502		LIST_INIT(&vmmaphead[i]);
2503}
2504SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2505
2506static void
2507linux_compat_uninit(void *arg)
2508{
2509	linux_kobject_kfree_name(&linux_class_root);
2510	linux_kobject_kfree_name(&linux_root_device.kobj);
2511	linux_kobject_kfree_name(&linux_class_misc.kobj);
2512
2513	mtx_destroy(&vmmaplock);
2514	spin_lock_destroy(&pci_lock);
2515	rw_destroy(&linux_vma_lock);
2516}
2517SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2518
2519/*
2520 * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2521 * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2522 * used. Assert these types have the same size, else some parts of the
2523 * LinuxKPI may not work like expected:
2524 */
2525CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2526