1//===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines facilities for reading and writing on-disk hash tables.
11///
12//===----------------------------------------------------------------------===//
13#ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
14#define LLVM_SUPPORT_ONDISKHASHTABLE_H
15
16#include "llvm/Support/Alignment.h"
17#include "llvm/Support/Allocator.h"
18#include "llvm/Support/DataTypes.h"
19#include "llvm/Support/EndianStream.h"
20#include "llvm/Support/Host.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Support/raw_ostream.h"
23#include <cassert>
24#include <cstdlib>
25
26namespace llvm {
27
28/// Generates an on disk hash table.
29///
30/// This needs an \c Info that handles storing values into the hash table's
31/// payload and computes the hash for a given key. This should provide the
32/// following interface:
33///
34/// \code
35/// class ExampleInfo {
36/// public:
37///   typedef ExampleKey key_type;   // Must be copy constructible
38///   typedef ExampleKey &key_type_ref;
39///   typedef ExampleData data_type; // Must be copy constructible
40///   typedef ExampleData &data_type_ref;
41///   typedef uint32_t hash_value_type; // The type the hash function returns.
42///   typedef uint32_t offset_type; // The type for offsets into the table.
43///
44///   /// Calculate the hash for Key
45///   static hash_value_type ComputeHash(key_type_ref Key);
46///   /// Return the lengths, in bytes, of the given Key/Data pair.
47///   static std::pair<offset_type, offset_type>
48///   EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
49///   /// Write Key to Out.  KeyLen is the length from EmitKeyDataLength.
50///   static void EmitKey(raw_ostream &Out, key_type_ref Key,
51///                       offset_type KeyLen);
52///   /// Write Data to Out.  DataLen is the length from EmitKeyDataLength.
53///   static void EmitData(raw_ostream &Out, key_type_ref Key,
54///                        data_type_ref Data, offset_type DataLen);
55///   /// Determine if two keys are equal. Optional, only needed by contains.
56///   static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
57/// };
58/// \endcode
59template <typename Info> class OnDiskChainedHashTableGenerator {
60  /// A single item in the hash table.
61  class Item {
62  public:
63    typename Info::key_type Key;
64    typename Info::data_type Data;
65    Item *Next;
66    const typename Info::hash_value_type Hash;
67
68    Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
69         Info &InfoObj)
70        : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
71  };
72
73  typedef typename Info::offset_type offset_type;
74  offset_type NumBuckets;
75  offset_type NumEntries;
76  llvm::SpecificBumpPtrAllocator<Item> BA;
77
78  /// A linked list of values in a particular hash bucket.
79  struct Bucket {
80    offset_type Off;
81    unsigned Length;
82    Item *Head;
83  };
84
85  Bucket *Buckets;
86
87private:
88  /// Insert an item into the appropriate hash bucket.
89  void insert(Bucket *Buckets, size_t Size, Item *E) {
90    Bucket &B = Buckets[E->Hash & (Size - 1)];
91    E->Next = B.Head;
92    ++B.Length;
93    B.Head = E;
94  }
95
96  /// Resize the hash table, moving the old entries into the new buckets.
97  void resize(size_t NewSize) {
98    Bucket *NewBuckets = static_cast<Bucket *>(
99        safe_calloc(NewSize, sizeof(Bucket)));
100    // Populate NewBuckets with the old entries.
101    for (size_t I = 0; I < NumBuckets; ++I)
102      for (Item *E = Buckets[I].Head; E;) {
103        Item *N = E->Next;
104        E->Next = nullptr;
105        insert(NewBuckets, NewSize, E);
106        E = N;
107      }
108
109    free(Buckets);
110    NumBuckets = NewSize;
111    Buckets = NewBuckets;
112  }
113
114public:
115  /// Insert an entry into the table.
116  void insert(typename Info::key_type_ref Key,
117              typename Info::data_type_ref Data) {
118    Info InfoObj;
119    insert(Key, Data, InfoObj);
120  }
121
122  /// Insert an entry into the table.
123  ///
124  /// Uses the provided Info instead of a stack allocated one.
125  void insert(typename Info::key_type_ref Key,
126              typename Info::data_type_ref Data, Info &InfoObj) {
127    ++NumEntries;
128    if (4 * NumEntries >= 3 * NumBuckets)
129      resize(NumBuckets * 2);
130    insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
131  }
132
133  /// Determine whether an entry has been inserted.
134  bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
135    unsigned Hash = InfoObj.ComputeHash(Key);
136    for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
137      if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
138        return true;
139    return false;
140  }
141
142  /// Emit the table to Out, which must not be at offset 0.
143  offset_type Emit(raw_ostream &Out) {
144    Info InfoObj;
145    return Emit(Out, InfoObj);
146  }
147
148  /// Emit the table to Out, which must not be at offset 0.
149  ///
150  /// Uses the provided Info instead of a stack allocated one.
151  offset_type Emit(raw_ostream &Out, Info &InfoObj) {
152    using namespace llvm::support;
153    endian::Writer LE(Out, little);
154
155    // Now we're done adding entries, resize the bucket list if it's
156    // significantly too large. (This only happens if the number of
157    // entries is small and we're within our initial allocation of
158    // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
159    //
160    // As a special case, if there are two or fewer entries, just
161    // form a single bucket. A linear scan is fine in that case, and
162    // this is very common in C++ class lookup tables. This also
163    // guarantees we produce at least one bucket for an empty table.
164    //
165    // FIXME: Try computing a perfect hash function at this point.
166    unsigned TargetNumBuckets =
167        NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3);
168    if (TargetNumBuckets != NumBuckets)
169      resize(TargetNumBuckets);
170
171    // Emit the payload of the table.
172    for (offset_type I = 0; I < NumBuckets; ++I) {
173      Bucket &B = Buckets[I];
174      if (!B.Head)
175        continue;
176
177      // Store the offset for the data of this bucket.
178      B.Off = Out.tell();
179      assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
180
181      // Write out the number of items in the bucket.
182      LE.write<uint16_t>(B.Length);
183      assert(B.Length != 0 && "Bucket has a head but zero length?");
184
185      // Write out the entries in the bucket.
186      for (Item *I = B.Head; I; I = I->Next) {
187        LE.write<typename Info::hash_value_type>(I->Hash);
188        const std::pair<offset_type, offset_type> &Len =
189            InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
190#ifdef NDEBUG
191        InfoObj.EmitKey(Out, I->Key, Len.first);
192        InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
193#else
194        // In asserts mode, check that the users length matches the data they
195        // wrote.
196        uint64_t KeyStart = Out.tell();
197        InfoObj.EmitKey(Out, I->Key, Len.first);
198        uint64_t DataStart = Out.tell();
199        InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
200        uint64_t End = Out.tell();
201        assert(offset_type(DataStart - KeyStart) == Len.first &&
202               "key length does not match bytes written");
203        assert(offset_type(End - DataStart) == Len.second &&
204               "data length does not match bytes written");
205#endif
206      }
207    }
208
209    // Pad with zeros so that we can start the hashtable at an aligned address.
210    offset_type TableOff = Out.tell();
211    uint64_t N = offsetToAlignment(TableOff, Align(alignof(offset_type)));
212    TableOff += N;
213    while (N--)
214      LE.write<uint8_t>(0);
215
216    // Emit the hashtable itself.
217    LE.write<offset_type>(NumBuckets);
218    LE.write<offset_type>(NumEntries);
219    for (offset_type I = 0; I < NumBuckets; ++I)
220      LE.write<offset_type>(Buckets[I].Off);
221
222    return TableOff;
223  }
224
225  OnDiskChainedHashTableGenerator() {
226    NumEntries = 0;
227    NumBuckets = 64;
228    // Note that we do not need to run the constructors of the individual
229    // Bucket objects since 'calloc' returns bytes that are all 0.
230    Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
231  }
232
233  ~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
234};
235
236/// Provides lookup on an on disk hash table.
237///
238/// This needs an \c Info that handles reading values from the hash table's
239/// payload and computes the hash for a given key. This should provide the
240/// following interface:
241///
242/// \code
243/// class ExampleLookupInfo {
244/// public:
245///   typedef ExampleData data_type;
246///   typedef ExampleInternalKey internal_key_type; // The stored key type.
247///   typedef ExampleKey external_key_type; // The type to pass to find().
248///   typedef uint32_t hash_value_type; // The type the hash function returns.
249///   typedef uint32_t offset_type; // The type for offsets into the table.
250///
251///   /// Compare two keys for equality.
252///   static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
253///   /// Calculate the hash for the given key.
254///   static hash_value_type ComputeHash(internal_key_type &IKey);
255///   /// Translate from the semantic type of a key in the hash table to the
256///   /// type that is actually stored and used for hashing and comparisons.
257///   /// The internal and external types are often the same, in which case this
258///   /// can simply return the passed in value.
259///   static const internal_key_type &GetInternalKey(external_key_type &EKey);
260///   /// Read the key and data length from Buffer, leaving it pointing at the
261///   /// following byte.
262///   static std::pair<offset_type, offset_type>
263///   ReadKeyDataLength(const unsigned char *&Buffer);
264///   /// Read the key from Buffer, given the KeyLen as reported from
265///   /// ReadKeyDataLength.
266///   const internal_key_type &ReadKey(const unsigned char *Buffer,
267///                                    offset_type KeyLen);
268///   /// Read the data for Key from Buffer, given the DataLen as reported from
269///   /// ReadKeyDataLength.
270///   data_type ReadData(StringRef Key, const unsigned char *Buffer,
271///                      offset_type DataLen);
272/// };
273/// \endcode
274template <typename Info> class OnDiskChainedHashTable {
275  const typename Info::offset_type NumBuckets;
276  const typename Info::offset_type NumEntries;
277  const unsigned char *const Buckets;
278  const unsigned char *const Base;
279  Info InfoObj;
280
281public:
282  typedef Info InfoType;
283  typedef typename Info::internal_key_type internal_key_type;
284  typedef typename Info::external_key_type external_key_type;
285  typedef typename Info::data_type data_type;
286  typedef typename Info::hash_value_type hash_value_type;
287  typedef typename Info::offset_type offset_type;
288
289  OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
290                         const unsigned char *Buckets,
291                         const unsigned char *Base,
292                         const Info &InfoObj = Info())
293      : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
294        Base(Base), InfoObj(InfoObj) {
295    assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
296           "'buckets' must have a 4-byte alignment");
297  }
298
299  /// Read the number of buckets and the number of entries from a hash table
300  /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
301  /// pointer past them.
302  static std::pair<offset_type, offset_type>
303  readNumBucketsAndEntries(const unsigned char *&Buckets) {
304    assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
305           "buckets should be 4-byte aligned.");
306    using namespace llvm::support;
307    offset_type NumBuckets =
308        endian::readNext<offset_type, little, aligned>(Buckets);
309    offset_type NumEntries =
310        endian::readNext<offset_type, little, aligned>(Buckets);
311    return std::make_pair(NumBuckets, NumEntries);
312  }
313
314  offset_type getNumBuckets() const { return NumBuckets; }
315  offset_type getNumEntries() const { return NumEntries; }
316  const unsigned char *getBase() const { return Base; }
317  const unsigned char *getBuckets() const { return Buckets; }
318
319  bool isEmpty() const { return NumEntries == 0; }
320
321  class iterator {
322    internal_key_type Key;
323    const unsigned char *const Data;
324    const offset_type Len;
325    Info *InfoObj;
326
327  public:
328    iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
329    iterator(const internal_key_type K, const unsigned char *D, offset_type L,
330             Info *InfoObj)
331        : Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
332
333    data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
334
335    const unsigned char *getDataPtr() const { return Data; }
336    offset_type getDataLen() const { return Len; }
337
338    bool operator==(const iterator &X) const { return X.Data == Data; }
339    bool operator!=(const iterator &X) const { return X.Data != Data; }
340  };
341
342  /// Look up the stored data for a particular key.
343  iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
344    const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
345    hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
346    return find_hashed(IKey, KeyHash, InfoPtr);
347  }
348
349  /// Look up the stored data for a particular key with a known hash.
350  iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
351                       Info *InfoPtr = nullptr) {
352    using namespace llvm::support;
353
354    if (!InfoPtr)
355      InfoPtr = &InfoObj;
356
357    // Each bucket is just an offset into the hash table file.
358    offset_type Idx = KeyHash & (NumBuckets - 1);
359    const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;
360
361    offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket);
362    if (Offset == 0)
363      return iterator(); // Empty bucket.
364    const unsigned char *Items = Base + Offset;
365
366    // 'Items' starts with a 16-bit unsigned integer representing the
367    // number of items in this bucket.
368    unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items);
369
370    for (unsigned i = 0; i < Len; ++i) {
371      // Read the hash.
372      hash_value_type ItemHash =
373          endian::readNext<hash_value_type, little, unaligned>(Items);
374
375      // Determine the length of the key and the data.
376      const std::pair<offset_type, offset_type> &L =
377          Info::ReadKeyDataLength(Items);
378      offset_type ItemLen = L.first + L.second;
379
380      // Compare the hashes.  If they are not the same, skip the entry entirely.
381      if (ItemHash != KeyHash) {
382        Items += ItemLen;
383        continue;
384      }
385
386      // Read the key.
387      const internal_key_type &X =
388          InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
389
390      // If the key doesn't match just skip reading the value.
391      if (!InfoPtr->EqualKey(X, IKey)) {
392        Items += ItemLen;
393        continue;
394      }
395
396      // The key matches!
397      return iterator(X, Items + L.first, L.second, InfoPtr);
398    }
399
400    return iterator();
401  }
402
403  iterator end() const { return iterator(); }
404
405  Info &getInfoObj() { return InfoObj; }
406
407  /// Create the hash table.
408  ///
409  /// \param Buckets is the beginning of the hash table itself, which follows
410  /// the payload of entire structure. This is the value returned by
411  /// OnDiskHashTableGenerator::Emit.
412  ///
413  /// \param Base is the point from which all offsets into the structure are
414  /// based. This is offset 0 in the stream that was used when Emitting the
415  /// table.
416  static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
417                                        const unsigned char *const Base,
418                                        const Info &InfoObj = Info()) {
419    assert(Buckets > Base);
420    auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
421    return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
422                                            NumBucketsAndEntries.second,
423                                            Buckets, Base, InfoObj);
424  }
425};
426
427/// Provides lookup and iteration over an on disk hash table.
428///
429/// \copydetails llvm::OnDiskChainedHashTable
430template <typename Info>
431class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
432  const unsigned char *Payload;
433
434public:
435  typedef OnDiskChainedHashTable<Info>          base_type;
436  typedef typename base_type::internal_key_type internal_key_type;
437  typedef typename base_type::external_key_type external_key_type;
438  typedef typename base_type::data_type         data_type;
439  typedef typename base_type::hash_value_type   hash_value_type;
440  typedef typename base_type::offset_type       offset_type;
441
442private:
443  /// Iterates over all of the keys in the table.
444  class iterator_base {
445    const unsigned char *Ptr;
446    offset_type NumItemsInBucketLeft;
447    offset_type NumEntriesLeft;
448
449  public:
450    typedef external_key_type value_type;
451
452    iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
453        : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
454    iterator_base()
455        : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}
456
457    friend bool operator==(const iterator_base &X, const iterator_base &Y) {
458      return X.NumEntriesLeft == Y.NumEntriesLeft;
459    }
460    friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
461      return X.NumEntriesLeft != Y.NumEntriesLeft;
462    }
463
464    /// Move to the next item.
465    void advance() {
466      using namespace llvm::support;
467      if (!NumItemsInBucketLeft) {
468        // 'Items' starts with a 16-bit unsigned integer representing the
469        // number of items in this bucket.
470        NumItemsInBucketLeft =
471            endian::readNext<uint16_t, little, unaligned>(Ptr);
472      }
473      Ptr += sizeof(hash_value_type); // Skip the hash.
474      // Determine the length of the key and the data.
475      const std::pair<offset_type, offset_type> &L =
476          Info::ReadKeyDataLength(Ptr);
477      Ptr += L.first + L.second;
478      assert(NumItemsInBucketLeft);
479      --NumItemsInBucketLeft;
480      assert(NumEntriesLeft);
481      --NumEntriesLeft;
482    }
483
484    /// Get the start of the item as written by the trait (after the hash and
485    /// immediately before the key and value length).
486    const unsigned char *getItem() const {
487      return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
488    }
489  };
490
491public:
492  OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
493                                 const unsigned char *Buckets,
494                                 const unsigned char *Payload,
495                                 const unsigned char *Base,
496                                 const Info &InfoObj = Info())
497      : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
498        Payload(Payload) {}
499
500  /// Iterates over all of the keys in the table.
501  class key_iterator : public iterator_base {
502    Info *InfoObj;
503
504  public:
505    typedef external_key_type value_type;
506
507    key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
508                 Info *InfoObj)
509        : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
510    key_iterator() : iterator_base(), InfoObj() {}
511
512    key_iterator &operator++() {
513      this->advance();
514      return *this;
515    }
516    key_iterator operator++(int) { // Postincrement
517      key_iterator tmp = *this;
518      ++*this;
519      return tmp;
520    }
521
522    internal_key_type getInternalKey() const {
523      auto *LocalPtr = this->getItem();
524
525      // Determine the length of the key and the data.
526      auto L = Info::ReadKeyDataLength(LocalPtr);
527
528      // Read the key.
529      return InfoObj->ReadKey(LocalPtr, L.first);
530    }
531
532    value_type operator*() const {
533      return InfoObj->GetExternalKey(getInternalKey());
534    }
535  };
536
537  key_iterator key_begin() {
538    return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
539  }
540  key_iterator key_end() { return key_iterator(); }
541
542  iterator_range<key_iterator> keys() {
543    return make_range(key_begin(), key_end());
544  }
545
546  /// Iterates over all the entries in the table, returning the data.
547  class data_iterator : public iterator_base {
548    Info *InfoObj;
549
550  public:
551    typedef data_type value_type;
552
553    data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
554                  Info *InfoObj)
555        : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
556    data_iterator() : iterator_base(), InfoObj() {}
557
558    data_iterator &operator++() { // Preincrement
559      this->advance();
560      return *this;
561    }
562    data_iterator operator++(int) { // Postincrement
563      data_iterator tmp = *this;
564      ++*this;
565      return tmp;
566    }
567
568    value_type operator*() const {
569      auto *LocalPtr = this->getItem();
570
571      // Determine the length of the key and the data.
572      auto L = Info::ReadKeyDataLength(LocalPtr);
573
574      // Read the key.
575      const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
576      return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
577    }
578  };
579
580  data_iterator data_begin() {
581    return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
582  }
583  data_iterator data_end() { return data_iterator(); }
584
585  iterator_range<data_iterator> data() {
586    return make_range(data_begin(), data_end());
587  }
588
589  /// Create the hash table.
590  ///
591  /// \param Buckets is the beginning of the hash table itself, which follows
592  /// the payload of entire structure. This is the value returned by
593  /// OnDiskHashTableGenerator::Emit.
594  ///
595  /// \param Payload is the beginning of the data contained in the table.  This
596  /// is Base plus any padding or header data that was stored, ie, the offset
597  /// that the stream was at when calling Emit.
598  ///
599  /// \param Base is the point from which all offsets into the structure are
600  /// based. This is offset 0 in the stream that was used when Emitting the
601  /// table.
602  static OnDiskIterableChainedHashTable *
603  Create(const unsigned char *Buckets, const unsigned char *const Payload,
604         const unsigned char *const Base, const Info &InfoObj = Info()) {
605    assert(Buckets > Base);
606    auto NumBucketsAndEntries =
607        OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
608    return new OnDiskIterableChainedHashTable<Info>(
609        NumBucketsAndEntries.first, NumBucketsAndEntries.second,
610        Buckets, Payload, Base, InfoObj);
611  }
612};
613
614} // end namespace llvm
615
616#endif
617