1/*-
2 * Copyright (c) 2011 NetApp, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD$
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/linker_set.h>
34#include <sys/errno.h>
35
36#include <ctype.h>
37#include <pthread.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <strings.h>
42#include <assert.h>
43#include <stdbool.h>
44
45#include <machine/vmm.h>
46#include <vmmapi.h>
47
48#include "acpi.h"
49#include "bhyverun.h"
50#include "inout.h"
51#include "ioapic.h"
52#include "mem.h"
53#include "pci_emul.h"
54#include "pci_irq.h"
55#include "pci_lpc.h"
56
57#define CONF1_ADDR_PORT    0x0cf8
58#define CONF1_DATA_PORT    0x0cfc
59
60#define CONF1_ENABLE	   0x80000000ul
61
62#define	CFGWRITE(pi,off,val,b)						\
63do {									\
64	if ((b) == 1) {							\
65		pci_set_cfgdata8((pi),(off),(val));			\
66	} else if ((b) == 2) {						\
67		pci_set_cfgdata16((pi),(off),(val));			\
68	} else {							\
69		pci_set_cfgdata32((pi),(off),(val));			\
70	}								\
71} while (0)
72
73#define	MAXBUSES	(PCI_BUSMAX + 1)
74#define MAXSLOTS	(PCI_SLOTMAX + 1)
75#define	MAXFUNCS	(PCI_FUNCMAX + 1)
76
77struct funcinfo {
78	char	*fi_name;
79	char	*fi_param;
80	struct pci_devinst *fi_devi;
81};
82
83struct intxinfo {
84	int	ii_count;
85	int	ii_pirq_pin;
86	int	ii_ioapic_irq;
87};
88
89struct slotinfo {
90	struct intxinfo si_intpins[4];
91	struct funcinfo si_funcs[MAXFUNCS];
92};
93
94struct businfo {
95	uint16_t iobase, iolimit;		/* I/O window */
96	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
97	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
98	struct slotinfo slotinfo[MAXSLOTS];
99};
100
101static struct businfo *pci_businfo[MAXBUSES];
102
103SET_DECLARE(pci_devemu_set, struct pci_devemu);
104
105static uint64_t pci_emul_iobase;
106static uint64_t pci_emul_membase32;
107static uint64_t pci_emul_membase64;
108
109#define	PCI_EMUL_IOBASE		0x2000
110#define	PCI_EMUL_IOLIMIT	0x10000
111
112#define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
113#define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
114SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
115
116#define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
117
118#define	PCI_EMUL_MEMBASE64	0xD000000000UL
119#define	PCI_EMUL_MEMLIMIT64	0xFD00000000UL
120
121static struct pci_devemu *pci_emul_finddev(char *name);
122static void pci_lintr_route(struct pci_devinst *pi);
123static void pci_lintr_update(struct pci_devinst *pi);
124static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
125    int func, int coff, int bytes, uint32_t *val);
126
127/*
128 * I/O access
129 */
130
131/*
132 * Slot options are in the form:
133 *
134 *  <bus>:<slot>:<func>,<emul>[,<config>]
135 *  <slot>[:<func>],<emul>[,<config>]
136 *
137 *  slot is 0..31
138 *  func is 0..7
139 *  emul is a string describing the type of PCI device e.g. virtio-net
140 *  config is an optional string, depending on the device, that can be
141 *  used for configuration.
142 *   Examples are:
143 *     1,virtio-net,tap0
144 *     3:0,dummy
145 */
146static void
147pci_parse_slot_usage(char *aopt)
148{
149
150	fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
151}
152
153int
154pci_parse_slot(char *opt)
155{
156	struct businfo *bi;
157	struct slotinfo *si;
158	char *emul, *config, *str, *cp;
159	int error, bnum, snum, fnum;
160
161	error = -1;
162	str = strdup(opt);
163
164	emul = config = NULL;
165	if ((cp = strchr(str, ',')) != NULL) {
166		*cp = '\0';
167		emul = cp + 1;
168		if ((cp = strchr(emul, ',')) != NULL) {
169			*cp = '\0';
170			config = cp + 1;
171		}
172	} else {
173		pci_parse_slot_usage(opt);
174		goto done;
175	}
176
177	/* <bus>:<slot>:<func> */
178	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
179		bnum = 0;
180		/* <slot>:<func> */
181		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
182			fnum = 0;
183			/* <slot> */
184			if (sscanf(str, "%d", &snum) != 1) {
185				snum = -1;
186			}
187		}
188	}
189
190	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
191	    fnum < 0 || fnum >= MAXFUNCS) {
192		pci_parse_slot_usage(opt);
193		goto done;
194	}
195
196	if (pci_businfo[bnum] == NULL)
197		pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
198
199	bi = pci_businfo[bnum];
200	si = &bi->slotinfo[snum];
201
202	if (si->si_funcs[fnum].fi_name != NULL) {
203		fprintf(stderr, "pci slot %d:%d already occupied!\n",
204			snum, fnum);
205		goto done;
206	}
207
208	if (pci_emul_finddev(emul) == NULL) {
209		fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
210			snum, fnum, emul);
211		goto done;
212	}
213
214	error = 0;
215	si->si_funcs[fnum].fi_name = emul;
216	si->si_funcs[fnum].fi_param = config;
217
218done:
219	if (error)
220		free(str);
221
222	return (error);
223}
224
225static int
226pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
227{
228
229	if (offset < pi->pi_msix.pba_offset)
230		return (0);
231
232	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
233		return (0);
234	}
235
236	return (1);
237}
238
239int
240pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
241		     uint64_t value)
242{
243	int msix_entry_offset;
244	int tab_index;
245	char *dest;
246
247	/* support only 4 or 8 byte writes */
248	if (size != 4 && size != 8)
249		return (-1);
250
251	/*
252	 * Return if table index is beyond what device supports
253	 */
254	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
255	if (tab_index >= pi->pi_msix.table_count)
256		return (-1);
257
258	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
259
260	/* support only aligned writes */
261	if ((msix_entry_offset % size) != 0)
262		return (-1);
263
264	dest = (char *)(pi->pi_msix.table + tab_index);
265	dest += msix_entry_offset;
266
267	if (size == 4)
268		*((uint32_t *)dest) = value;
269	else
270		*((uint64_t *)dest) = value;
271
272	return (0);
273}
274
275uint64_t
276pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
277{
278	char *dest;
279	int msix_entry_offset;
280	int tab_index;
281	uint64_t retval = ~0;
282
283	/*
284	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
285	 * table but we also allow 1 byte access to accomodate reads from
286	 * ddb.
287	 */
288	if (size != 1 && size != 4 && size != 8)
289		return (retval);
290
291	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
292
293	/* support only aligned reads */
294	if ((msix_entry_offset % size) != 0) {
295		return (retval);
296	}
297
298	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
299
300	if (tab_index < pi->pi_msix.table_count) {
301		/* valid MSI-X Table access */
302		dest = (char *)(pi->pi_msix.table + tab_index);
303		dest += msix_entry_offset;
304
305		if (size == 1)
306			retval = *((uint8_t *)dest);
307		else if (size == 4)
308			retval = *((uint32_t *)dest);
309		else
310			retval = *((uint64_t *)dest);
311	} else if (pci_valid_pba_offset(pi, offset)) {
312		/* return 0 for PBA access */
313		retval = 0;
314	}
315
316	return (retval);
317}
318
319int
320pci_msix_table_bar(struct pci_devinst *pi)
321{
322
323	if (pi->pi_msix.table != NULL)
324		return (pi->pi_msix.table_bar);
325	else
326		return (-1);
327}
328
329int
330pci_msix_pba_bar(struct pci_devinst *pi)
331{
332
333	if (pi->pi_msix.table != NULL)
334		return (pi->pi_msix.pba_bar);
335	else
336		return (-1);
337}
338
339static int
340pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
341		    uint32_t *eax, void *arg)
342{
343	struct pci_devinst *pdi = arg;
344	struct pci_devemu *pe = pdi->pi_d;
345	uint64_t offset;
346	int i;
347
348	for (i = 0; i <= PCI_BARMAX; i++) {
349		if (pdi->pi_bar[i].type == PCIBAR_IO &&
350		    port >= pdi->pi_bar[i].addr &&
351		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
352			offset = port - pdi->pi_bar[i].addr;
353			if (in)
354				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
355							 offset, bytes);
356			else
357				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
358						   bytes, *eax);
359			return (0);
360		}
361	}
362	return (-1);
363}
364
365static int
366pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
367		     int size, uint64_t *val, void *arg1, long arg2)
368{
369	struct pci_devinst *pdi = arg1;
370	struct pci_devemu *pe = pdi->pi_d;
371	uint64_t offset;
372	int bidx = (int) arg2;
373
374	assert(bidx <= PCI_BARMAX);
375	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
376	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
377	assert(addr >= pdi->pi_bar[bidx].addr &&
378	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
379
380	offset = addr - pdi->pi_bar[bidx].addr;
381
382	if (dir == MEM_F_WRITE) {
383		if (size == 8) {
384			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
385					   4, *val & 0xffffffff);
386			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
387					   4, *val >> 32);
388		} else {
389			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
390					   size, *val);
391		}
392	} else {
393		if (size == 8) {
394			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
395						 offset, 4);
396			*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
397						  offset + 4, 4) << 32;
398		} else {
399			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
400						 offset, size);
401		}
402	}
403
404	return (0);
405}
406
407
408static int
409pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
410			uint64_t *addr)
411{
412	uint64_t base;
413
414	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
415
416	base = roundup2(*baseptr, size);
417
418	if (base + size <= limit) {
419		*addr = base;
420		*baseptr = base + size;
421		return (0);
422	} else
423		return (-1);
424}
425
426int
427pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
428		   uint64_t size)
429{
430
431	return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
432}
433
434/*
435 * Register (or unregister) the MMIO or I/O region associated with the BAR
436 * register 'idx' of an emulated pci device.
437 */
438static void
439modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
440{
441	int error;
442	struct inout_port iop;
443	struct mem_range mr;
444
445	switch (pi->pi_bar[idx].type) {
446	case PCIBAR_IO:
447		bzero(&iop, sizeof(struct inout_port));
448		iop.name = pi->pi_name;
449		iop.port = pi->pi_bar[idx].addr;
450		iop.size = pi->pi_bar[idx].size;
451		if (registration) {
452			iop.flags = IOPORT_F_INOUT;
453			iop.handler = pci_emul_io_handler;
454			iop.arg = pi;
455			error = register_inout(&iop);
456		} else
457			error = unregister_inout(&iop);
458		break;
459	case PCIBAR_MEM32:
460	case PCIBAR_MEM64:
461		bzero(&mr, sizeof(struct mem_range));
462		mr.name = pi->pi_name;
463		mr.base = pi->pi_bar[idx].addr;
464		mr.size = pi->pi_bar[idx].size;
465		if (registration) {
466			mr.flags = MEM_F_RW;
467			mr.handler = pci_emul_mem_handler;
468			mr.arg1 = pi;
469			mr.arg2 = idx;
470			error = register_mem(&mr);
471		} else
472			error = unregister_mem(&mr);
473		break;
474	default:
475		error = EINVAL;
476		break;
477	}
478	assert(error == 0);
479}
480
481static void
482unregister_bar(struct pci_devinst *pi, int idx)
483{
484
485	modify_bar_registration(pi, idx, 0);
486}
487
488static void
489register_bar(struct pci_devinst *pi, int idx)
490{
491
492	modify_bar_registration(pi, idx, 1);
493}
494
495/* Are we decoding i/o port accesses for the emulated pci device? */
496static int
497porten(struct pci_devinst *pi)
498{
499	uint16_t cmd;
500
501	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
502
503	return (cmd & PCIM_CMD_PORTEN);
504}
505
506/* Are we decoding memory accesses for the emulated pci device? */
507static int
508memen(struct pci_devinst *pi)
509{
510	uint16_t cmd;
511
512	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
513
514	return (cmd & PCIM_CMD_MEMEN);
515}
516
517/*
518 * Update the MMIO or I/O address that is decoded by the BAR register.
519 *
520 * If the pci device has enabled the address space decoding then intercept
521 * the address range decoded by the BAR register.
522 */
523static void
524update_bar_address(struct  pci_devinst *pi, uint64_t addr, int idx, int type)
525{
526	int decode;
527
528	if (pi->pi_bar[idx].type == PCIBAR_IO)
529		decode = porten(pi);
530	else
531		decode = memen(pi);
532
533	if (decode)
534		unregister_bar(pi, idx);
535
536	switch (type) {
537	case PCIBAR_IO:
538	case PCIBAR_MEM32:
539		pi->pi_bar[idx].addr = addr;
540		break;
541	case PCIBAR_MEM64:
542		pi->pi_bar[idx].addr &= ~0xffffffffUL;
543		pi->pi_bar[idx].addr |= addr;
544		break;
545	case PCIBAR_MEMHI64:
546		pi->pi_bar[idx].addr &= 0xffffffff;
547		pi->pi_bar[idx].addr |= addr;
548		break;
549	default:
550		assert(0);
551	}
552
553	if (decode)
554		register_bar(pi, idx);
555}
556
557int
558pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
559		    enum pcibar_type type, uint64_t size)
560{
561	int error;
562	uint64_t *baseptr, limit, addr, mask, lobits, bar;
563
564	assert(idx >= 0 && idx <= PCI_BARMAX);
565
566	if ((size & (size - 1)) != 0)
567		size = 1UL << flsl(size);	/* round up to a power of 2 */
568
569	/* Enforce minimum BAR sizes required by the PCI standard */
570	if (type == PCIBAR_IO) {
571		if (size < 4)
572			size = 4;
573	} else {
574		if (size < 16)
575			size = 16;
576	}
577
578	switch (type) {
579	case PCIBAR_NONE:
580		baseptr = NULL;
581		addr = mask = lobits = 0;
582		break;
583	case PCIBAR_IO:
584		baseptr = &pci_emul_iobase;
585		limit = PCI_EMUL_IOLIMIT;
586		mask = PCIM_BAR_IO_BASE;
587		lobits = PCIM_BAR_IO_SPACE;
588		break;
589	case PCIBAR_MEM64:
590		/*
591		 * XXX
592		 * Some drivers do not work well if the 64-bit BAR is allocated
593		 * above 4GB. Allow for this by allocating small requests under
594		 * 4GB unless then allocation size is larger than some arbitrary
595		 * number (32MB currently).
596		 */
597		if (size > 32 * 1024 * 1024) {
598			/*
599			 * XXX special case for device requiring peer-peer DMA
600			 */
601			if (size == 0x100000000UL)
602				baseptr = &hostbase;
603			else
604				baseptr = &pci_emul_membase64;
605			limit = PCI_EMUL_MEMLIMIT64;
606			mask = PCIM_BAR_MEM_BASE;
607			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
608				 PCIM_BAR_MEM_PREFETCH;
609			break;
610		} else {
611			baseptr = &pci_emul_membase32;
612			limit = PCI_EMUL_MEMLIMIT32;
613			mask = PCIM_BAR_MEM_BASE;
614			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
615		}
616		break;
617	case PCIBAR_MEM32:
618		baseptr = &pci_emul_membase32;
619		limit = PCI_EMUL_MEMLIMIT32;
620		mask = PCIM_BAR_MEM_BASE;
621		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
622		break;
623	default:
624		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
625		assert(0);
626	}
627
628	if (baseptr != NULL) {
629		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
630		if (error != 0)
631			return (error);
632	}
633
634	pdi->pi_bar[idx].type = type;
635	pdi->pi_bar[idx].addr = addr;
636	pdi->pi_bar[idx].size = size;
637
638	/* Initialize the BAR register in config space */
639	bar = (addr & mask) | lobits;
640	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
641
642	if (type == PCIBAR_MEM64) {
643		assert(idx + 1 <= PCI_BARMAX);
644		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
645		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
646	}
647
648	register_bar(pdi, idx);
649
650	return (0);
651}
652
653#define	CAP_START_OFFSET	0x40
654static int
655pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
656{
657	int i, capoff, reallen;
658	uint16_t sts;
659
660	assert(caplen > 0);
661
662	reallen = roundup2(caplen, 4);		/* dword aligned */
663
664	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
665	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
666		capoff = CAP_START_OFFSET;
667	else
668		capoff = pi->pi_capend + 1;
669
670	/* Check if we have enough space */
671	if (capoff + reallen > PCI_REGMAX + 1)
672		return (-1);
673
674	/* Set the previous capability pointer */
675	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
676		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
677		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
678	} else
679		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
680
681	/* Copy the capability */
682	for (i = 0; i < caplen; i++)
683		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
684
685	/* Set the next capability pointer */
686	pci_set_cfgdata8(pi, capoff + 1, 0);
687
688	pi->pi_prevcap = capoff;
689	pi->pi_capend = capoff + reallen - 1;
690	return (0);
691}
692
693static struct pci_devemu *
694pci_emul_finddev(char *name)
695{
696	struct pci_devemu **pdpp, *pdp;
697
698	SET_FOREACH(pdpp, pci_devemu_set) {
699		pdp = *pdpp;
700		if (!strcmp(pdp->pe_emu, name)) {
701			return (pdp);
702		}
703	}
704
705	return (NULL);
706}
707
708static int
709pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
710    int func, struct funcinfo *fi)
711{
712	struct pci_devinst *pdi;
713	int err;
714
715	pdi = calloc(1, sizeof(struct pci_devinst));
716
717	pdi->pi_vmctx = ctx;
718	pdi->pi_bus = bus;
719	pdi->pi_slot = slot;
720	pdi->pi_func = func;
721	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
722	pdi->pi_lintr.pin = 0;
723	pdi->pi_lintr.state = IDLE;
724	pdi->pi_lintr.pirq_pin = 0;
725	pdi->pi_lintr.ioapic_irq = 0;
726	pdi->pi_d = pde;
727	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
728
729	/* Disable legacy interrupts */
730	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
731	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
732
733	pci_set_cfgdata8(pdi, PCIR_COMMAND,
734		    PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
735
736	err = (*pde->pe_init)(ctx, pdi, fi->fi_param);
737	if (err == 0)
738		fi->fi_devi = pdi;
739	else
740		free(pdi);
741
742	return (err);
743}
744
745void
746pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
747{
748	int mmc;
749
750	CTASSERT(sizeof(struct msicap) == 14);
751
752	/* Number of msi messages must be a power of 2 between 1 and 32 */
753	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
754	mmc = ffs(msgnum) - 1;
755
756	bzero(msicap, sizeof(struct msicap));
757	msicap->capid = PCIY_MSI;
758	msicap->nextptr = nextptr;
759	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
760}
761
762int
763pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
764{
765	struct msicap msicap;
766
767	pci_populate_msicap(&msicap, msgnum, 0);
768
769	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
770}
771
772static void
773pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
774		     uint32_t msix_tab_size)
775{
776	CTASSERT(sizeof(struct msixcap) == 12);
777
778	assert(msix_tab_size % 4096 == 0);
779
780	bzero(msixcap, sizeof(struct msixcap));
781	msixcap->capid = PCIY_MSIX;
782
783	/*
784	 * Message Control Register, all fields set to
785	 * zero except for the Table Size.
786	 * Note: Table size N is encoded as N-1
787	 */
788	msixcap->msgctrl = msgnum - 1;
789
790	/*
791	 * MSI-X BAR setup:
792	 * - MSI-X table start at offset 0
793	 * - PBA table starts at a 4K aligned offset after the MSI-X table
794	 */
795	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
796	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
797}
798
799static void
800pci_msix_table_init(struct pci_devinst *pi, int table_entries)
801{
802	int i, table_size;
803
804	assert(table_entries > 0);
805	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
806
807	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
808	pi->pi_msix.table = calloc(1, table_size);
809
810	/* set mask bit of vector control register */
811	for (i = 0; i < table_entries; i++)
812		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
813}
814
815int
816pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
817{
818	uint32_t tab_size;
819	struct msixcap msixcap;
820
821	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
822	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
823
824	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
825
826	/* Align table size to nearest 4K */
827	tab_size = roundup2(tab_size, 4096);
828
829	pi->pi_msix.table_bar = barnum;
830	pi->pi_msix.pba_bar   = barnum;
831	pi->pi_msix.table_offset = 0;
832	pi->pi_msix.table_count = msgnum;
833	pi->pi_msix.pba_offset = tab_size;
834	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
835
836	pci_msix_table_init(pi, msgnum);
837
838	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
839
840	/* allocate memory for MSI-X Table and PBA */
841	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
842				tab_size + pi->pi_msix.pba_size);
843
844	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
845					sizeof(msixcap)));
846}
847
848void
849msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
850		 int bytes, uint32_t val)
851{
852	uint16_t msgctrl, rwmask;
853	int off, table_bar;
854
855	off = offset - capoff;
856	table_bar = pi->pi_msix.table_bar;
857	/* Message Control Register */
858	if (off == 2 && bytes == 2) {
859		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
860		msgctrl = pci_get_cfgdata16(pi, offset);
861		msgctrl &= ~rwmask;
862		msgctrl |= val & rwmask;
863		val = msgctrl;
864
865		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
866		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
867		pci_lintr_update(pi);
868	}
869
870	CFGWRITE(pi, offset, val, bytes);
871}
872
873void
874msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
875		int bytes, uint32_t val)
876{
877	uint16_t msgctrl, rwmask, msgdata, mme;
878	uint32_t addrlo;
879
880	/*
881	 * If guest is writing to the message control register make sure
882	 * we do not overwrite read-only fields.
883	 */
884	if ((offset - capoff) == 2 && bytes == 2) {
885		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
886		msgctrl = pci_get_cfgdata16(pi, offset);
887		msgctrl &= ~rwmask;
888		msgctrl |= val & rwmask;
889		val = msgctrl;
890
891		addrlo = pci_get_cfgdata32(pi, capoff + 4);
892		if (msgctrl & PCIM_MSICTRL_64BIT)
893			msgdata = pci_get_cfgdata16(pi, capoff + 12);
894		else
895			msgdata = pci_get_cfgdata16(pi, capoff + 8);
896
897		mme = msgctrl & PCIM_MSICTRL_MME_MASK;
898		pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
899		if (pi->pi_msi.enabled) {
900			pi->pi_msi.addr = addrlo;
901			pi->pi_msi.msg_data = msgdata;
902			pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
903		} else {
904			pi->pi_msi.maxmsgnum = 0;
905		}
906		pci_lintr_update(pi);
907	}
908
909	CFGWRITE(pi, offset, val, bytes);
910}
911
912void
913pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
914		 int bytes, uint32_t val)
915{
916
917	/* XXX don't write to the readonly parts */
918	CFGWRITE(pi, offset, val, bytes);
919}
920
921#define	PCIECAP_VERSION	0x2
922int
923pci_emul_add_pciecap(struct pci_devinst *pi, int type)
924{
925	int err;
926	struct pciecap pciecap;
927
928	CTASSERT(sizeof(struct pciecap) == 60);
929
930	if (type != PCIEM_TYPE_ROOT_PORT)
931		return (-1);
932
933	bzero(&pciecap, sizeof(pciecap));
934
935	pciecap.capid = PCIY_EXPRESS;
936	pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
937	pciecap.link_capabilities = 0x411;	/* gen1, x1 */
938	pciecap.link_status = 0x11;		/* gen1, x1 */
939
940	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
941	return (err);
942}
943
944/*
945 * This function assumes that 'coff' is in the capabilities region of the
946 * config space.
947 */
948static void
949pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
950{
951	int capid;
952	uint8_t capoff, nextoff;
953
954	/* Do not allow un-aligned writes */
955	if ((offset & (bytes - 1)) != 0)
956		return;
957
958	/* Find the capability that we want to update */
959	capoff = CAP_START_OFFSET;
960	while (1) {
961		nextoff = pci_get_cfgdata8(pi, capoff + 1);
962		if (nextoff == 0)
963			break;
964		if (offset >= capoff && offset < nextoff)
965			break;
966
967		capoff = nextoff;
968	}
969	assert(offset >= capoff);
970
971	/*
972	 * Capability ID and Next Capability Pointer are readonly.
973	 * However, some o/s's do 4-byte writes that include these.
974	 * For this case, trim the write back to 2 bytes and adjust
975	 * the data.
976	 */
977	if (offset == capoff || offset == capoff + 1) {
978		if (offset == capoff && bytes == 4) {
979			bytes = 2;
980			offset += 2;
981			val >>= 16;
982		} else
983			return;
984	}
985
986	capid = pci_get_cfgdata8(pi, capoff);
987	switch (capid) {
988	case PCIY_MSI:
989		msicap_cfgwrite(pi, capoff, offset, bytes, val);
990		break;
991	case PCIY_MSIX:
992		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
993		break;
994	case PCIY_EXPRESS:
995		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
996		break;
997	default:
998		break;
999	}
1000}
1001
1002static int
1003pci_emul_iscap(struct pci_devinst *pi, int offset)
1004{
1005	uint16_t sts;
1006
1007	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1008	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1009		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1010			return (1);
1011	}
1012	return (0);
1013}
1014
1015static int
1016pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1017			  int size, uint64_t *val, void *arg1, long arg2)
1018{
1019	/*
1020	 * Ignore writes; return 0xff's for reads. The mem read code
1021	 * will take care of truncating to the correct size.
1022	 */
1023	if (dir == MEM_F_READ) {
1024		*val = 0xffffffffffffffff;
1025	}
1026
1027	return (0);
1028}
1029
1030static int
1031pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1032    int bytes, uint64_t *val, void *arg1, long arg2)
1033{
1034	int bus, slot, func, coff, in;
1035
1036	coff = addr & 0xfff;
1037	func = (addr >> 12) & 0x7;
1038	slot = (addr >> 15) & 0x1f;
1039	bus = (addr >> 20) & 0xff;
1040	in = (dir == MEM_F_READ);
1041	if (in)
1042		*val = ~0UL;
1043	pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
1044	return (0);
1045}
1046
1047uint64_t
1048pci_ecfg_base(void)
1049{
1050
1051	return (PCI_EMUL_ECFG_BASE);
1052}
1053
1054#define	BUSIO_ROUNDUP		32
1055#define	BUSMEM_ROUNDUP		(1024 * 1024)
1056
1057int
1058init_pci(struct vmctx *ctx)
1059{
1060	struct mem_range mr;
1061	struct pci_devemu *pde;
1062	struct businfo *bi;
1063	struct slotinfo *si;
1064	struct funcinfo *fi;
1065	size_t lowmem;
1066	int bus, slot, func;
1067	int error;
1068
1069	pci_emul_iobase = PCI_EMUL_IOBASE;
1070	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
1071	pci_emul_membase64 = PCI_EMUL_MEMBASE64;
1072
1073	for (bus = 0; bus < MAXBUSES; bus++) {
1074		if ((bi = pci_businfo[bus]) == NULL)
1075			continue;
1076		/*
1077		 * Keep track of the i/o and memory resources allocated to
1078		 * this bus.
1079		 */
1080		bi->iobase = pci_emul_iobase;
1081		bi->membase32 = pci_emul_membase32;
1082		bi->membase64 = pci_emul_membase64;
1083
1084		for (slot = 0; slot < MAXSLOTS; slot++) {
1085			si = &bi->slotinfo[slot];
1086			for (func = 0; func < MAXFUNCS; func++) {
1087				fi = &si->si_funcs[func];
1088				if (fi->fi_name == NULL)
1089					continue;
1090				pde = pci_emul_finddev(fi->fi_name);
1091				assert(pde != NULL);
1092				error = pci_emul_init(ctx, pde, bus, slot,
1093				    func, fi);
1094				if (error)
1095					return (error);
1096			}
1097		}
1098
1099		/*
1100		 * Add some slop to the I/O and memory resources decoded by
1101		 * this bus to give a guest some flexibility if it wants to
1102		 * reprogram the BARs.
1103		 */
1104		pci_emul_iobase += BUSIO_ROUNDUP;
1105		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1106		bi->iolimit = pci_emul_iobase;
1107
1108		pci_emul_membase32 += BUSMEM_ROUNDUP;
1109		pci_emul_membase32 = roundup2(pci_emul_membase32,
1110		    BUSMEM_ROUNDUP);
1111		bi->memlimit32 = pci_emul_membase32;
1112
1113		pci_emul_membase64 += BUSMEM_ROUNDUP;
1114		pci_emul_membase64 = roundup2(pci_emul_membase64,
1115		    BUSMEM_ROUNDUP);
1116		bi->memlimit64 = pci_emul_membase64;
1117	}
1118
1119	/*
1120	 * PCI backends are initialized before routing INTx interrupts
1121	 * so that LPC devices are able to reserve ISA IRQs before
1122	 * routing PIRQ pins.
1123	 */
1124	for (bus = 0; bus < MAXBUSES; bus++) {
1125		if ((bi = pci_businfo[bus]) == NULL)
1126			continue;
1127
1128		for (slot = 0; slot < MAXSLOTS; slot++) {
1129			si = &bi->slotinfo[slot];
1130			for (func = 0; func < MAXFUNCS; func++) {
1131				fi = &si->si_funcs[func];
1132				if (fi->fi_devi == NULL)
1133					continue;
1134				pci_lintr_route(fi->fi_devi);
1135			}
1136		}
1137	}
1138	lpc_pirq_routed();
1139
1140	/*
1141	 * The guest physical memory map looks like the following:
1142	 * [0,		    lowmem)		guest system memory
1143	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
1144	 * [lowmem_limit,   0xE0000000)		PCI hole (32-bit BAR allocation)
1145	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1146	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1147	 * [4GB,	    4GB + highmem)
1148	 */
1149
1150	/*
1151	 * Accesses to memory addresses that are not allocated to system
1152	 * memory or PCI devices return 0xff's.
1153	 */
1154	lowmem = vm_get_lowmem_size(ctx);
1155	bzero(&mr, sizeof(struct mem_range));
1156	mr.name = "PCI hole";
1157	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1158	mr.base = lowmem;
1159	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1160	mr.handler = pci_emul_fallback_handler;
1161	error = register_mem_fallback(&mr);
1162	assert(error == 0);
1163
1164	/* PCI extended config space */
1165	bzero(&mr, sizeof(struct mem_range));
1166	mr.name = "PCI ECFG";
1167	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1168	mr.base = PCI_EMUL_ECFG_BASE;
1169	mr.size = PCI_EMUL_ECFG_SIZE;
1170	mr.handler = pci_emul_ecfg_handler;
1171	error = register_mem(&mr);
1172	assert(error == 0);
1173
1174	return (0);
1175}
1176
1177static void
1178pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1179    void *arg)
1180{
1181
1182	dsdt_line("  Package ()");
1183	dsdt_line("  {");
1184	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1185	dsdt_line("    0x%02X,", pin - 1);
1186	dsdt_line("    Zero,");
1187	dsdt_line("    0x%X", ioapic_irq);
1188	dsdt_line("  },");
1189}
1190
1191static void
1192pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1193    void *arg)
1194{
1195	char *name;
1196
1197	name = lpc_pirq_name(pirq_pin);
1198	if (name == NULL)
1199		return;
1200	dsdt_line("  Package ()");
1201	dsdt_line("  {");
1202	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1203	dsdt_line("    0x%02X,", pin - 1);
1204	dsdt_line("    %s,", name);
1205	dsdt_line("    0x00");
1206	dsdt_line("  },");
1207	free(name);
1208}
1209
1210/*
1211 * A bhyve virtual machine has a flat PCI hierarchy with a root port
1212 * corresponding to each PCI bus.
1213 */
1214static void
1215pci_bus_write_dsdt(int bus)
1216{
1217	struct businfo *bi;
1218	struct slotinfo *si;
1219	struct pci_devinst *pi;
1220	int count, func, slot;
1221
1222	/*
1223	 * If there are no devices on this 'bus' then just return.
1224	 */
1225	if ((bi = pci_businfo[bus]) == NULL) {
1226		/*
1227		 * Bus 0 is special because it decodes the I/O ports used
1228		 * for PCI config space access even if there are no devices
1229		 * on it.
1230		 */
1231		if (bus != 0)
1232			return;
1233	}
1234
1235	dsdt_line("  Device (PC%02X)", bus);
1236	dsdt_line("  {");
1237	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1238	dsdt_line("    Name (_ADR, Zero)");
1239
1240	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1241	dsdt_line("    {");
1242	dsdt_line("        Return (0x%08X)", bus);
1243	dsdt_line("    }");
1244	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1245	dsdt_line("    {");
1246	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1247	    "MaxFixed, PosDecode,");
1248	dsdt_line("        0x0000,             // Granularity");
1249	dsdt_line("        0x%04X,             // Range Minimum", bus);
1250	dsdt_line("        0x%04X,             // Range Maximum", bus);
1251	dsdt_line("        0x0000,             // Translation Offset");
1252	dsdt_line("        0x0001,             // Length");
1253	dsdt_line("        ,, )");
1254
1255	if (bus == 0) {
1256		dsdt_indent(3);
1257		dsdt_fixed_ioport(0xCF8, 8);
1258		dsdt_unindent(3);
1259
1260		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1261		    "PosDecode, EntireRange,");
1262		dsdt_line("        0x0000,             // Granularity");
1263		dsdt_line("        0x0000,             // Range Minimum");
1264		dsdt_line("        0x0CF7,             // Range Maximum");
1265		dsdt_line("        0x0000,             // Translation Offset");
1266		dsdt_line("        0x0CF8,             // Length");
1267		dsdt_line("        ,, , TypeStatic)");
1268
1269		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1270		    "PosDecode, EntireRange,");
1271		dsdt_line("        0x0000,             // Granularity");
1272		dsdt_line("        0x0D00,             // Range Minimum");
1273		dsdt_line("        0x%04X,             // Range Maximum",
1274		    PCI_EMUL_IOBASE - 1);
1275		dsdt_line("        0x0000,             // Translation Offset");
1276		dsdt_line("        0x%04X,             // Length",
1277		    PCI_EMUL_IOBASE - 0x0D00);
1278		dsdt_line("        ,, , TypeStatic)");
1279
1280		if (bi == NULL) {
1281			dsdt_line("    })");
1282			goto done;
1283		}
1284	}
1285	assert(bi != NULL);
1286
1287	/* i/o window */
1288	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1289	    "PosDecode, EntireRange,");
1290	dsdt_line("        0x0000,             // Granularity");
1291	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1292	dsdt_line("        0x%04X,             // Range Maximum",
1293	    bi->iolimit - 1);
1294	dsdt_line("        0x0000,             // Translation Offset");
1295	dsdt_line("        0x%04X,             // Length",
1296	    bi->iolimit - bi->iobase);
1297	dsdt_line("        ,, , TypeStatic)");
1298
1299	/* mmio window (32-bit) */
1300	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1301	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1302	dsdt_line("        0x00000000,         // Granularity");
1303	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1304	dsdt_line("        0x%08X,         // Range Maximum\n",
1305	    bi->memlimit32 - 1);
1306	dsdt_line("        0x00000000,         // Translation Offset");
1307	dsdt_line("        0x%08X,         // Length\n",
1308	    bi->memlimit32 - bi->membase32);
1309	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1310
1311	/* mmio window (64-bit) */
1312	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1313	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1314	dsdt_line("        0x0000000000000000, // Granularity");
1315	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1316	dsdt_line("        0x%016lX, // Range Maximum\n",
1317	    bi->memlimit64 - 1);
1318	dsdt_line("        0x0000000000000000, // Translation Offset");
1319	dsdt_line("        0x%016lX, // Length\n",
1320	    bi->memlimit64 - bi->membase64);
1321	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1322	dsdt_line("    })");
1323
1324	count = pci_count_lintr(bus);
1325	if (count != 0) {
1326		dsdt_indent(2);
1327		dsdt_line("Name (PPRT, Package ()");
1328		dsdt_line("{");
1329		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1330 		dsdt_line("})");
1331		dsdt_line("Name (APRT, Package ()");
1332		dsdt_line("{");
1333		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1334 		dsdt_line("})");
1335		dsdt_line("Method (_PRT, 0, NotSerialized)");
1336		dsdt_line("{");
1337		dsdt_line("  If (PICM)");
1338		dsdt_line("  {");
1339		dsdt_line("    Return (APRT)");
1340		dsdt_line("  }");
1341		dsdt_line("  Else");
1342		dsdt_line("  {");
1343		dsdt_line("    Return (PPRT)");
1344		dsdt_line("  }");
1345		dsdt_line("}");
1346		dsdt_unindent(2);
1347	}
1348
1349	dsdt_indent(2);
1350	for (slot = 0; slot < MAXSLOTS; slot++) {
1351		si = &bi->slotinfo[slot];
1352		for (func = 0; func < MAXFUNCS; func++) {
1353			pi = si->si_funcs[func].fi_devi;
1354			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1355				pi->pi_d->pe_write_dsdt(pi);
1356		}
1357	}
1358	dsdt_unindent(2);
1359done:
1360	dsdt_line("  }");
1361}
1362
1363void
1364pci_write_dsdt(void)
1365{
1366	int bus;
1367
1368	dsdt_indent(1);
1369	dsdt_line("Name (PICM, 0x00)");
1370	dsdt_line("Method (_PIC, 1, NotSerialized)");
1371	dsdt_line("{");
1372	dsdt_line("  Store (Arg0, PICM)");
1373	dsdt_line("}");
1374	dsdt_line("");
1375	dsdt_line("Scope (_SB)");
1376	dsdt_line("{");
1377	for (bus = 0; bus < MAXBUSES; bus++)
1378		pci_bus_write_dsdt(bus);
1379	dsdt_line("}");
1380	dsdt_unindent(1);
1381}
1382
1383int
1384pci_bus_configured(int bus)
1385{
1386	assert(bus >= 0 && bus < MAXBUSES);
1387	return (pci_businfo[bus] != NULL);
1388}
1389
1390int
1391pci_msi_enabled(struct pci_devinst *pi)
1392{
1393	return (pi->pi_msi.enabled);
1394}
1395
1396int
1397pci_msi_maxmsgnum(struct pci_devinst *pi)
1398{
1399	if (pi->pi_msi.enabled)
1400		return (pi->pi_msi.maxmsgnum);
1401	else
1402		return (0);
1403}
1404
1405int
1406pci_msix_enabled(struct pci_devinst *pi)
1407{
1408
1409	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1410}
1411
1412void
1413pci_generate_msix(struct pci_devinst *pi, int index)
1414{
1415	struct msix_table_entry *mte;
1416
1417	if (!pci_msix_enabled(pi))
1418		return;
1419
1420	if (pi->pi_msix.function_mask)
1421		return;
1422
1423	if (index >= pi->pi_msix.table_count)
1424		return;
1425
1426	mte = &pi->pi_msix.table[index];
1427	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1428		/* XXX Set PBA bit if interrupt is disabled */
1429		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1430	}
1431}
1432
1433void
1434pci_generate_msi(struct pci_devinst *pi, int index)
1435{
1436
1437	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1438		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1439			     pi->pi_msi.msg_data + index);
1440	}
1441}
1442
1443static bool
1444pci_lintr_permitted(struct pci_devinst *pi)
1445{
1446	uint16_t cmd;
1447
1448	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1449	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1450		(cmd & PCIM_CMD_INTxDIS)));
1451}
1452
1453void
1454pci_lintr_request(struct pci_devinst *pi)
1455{
1456	struct businfo *bi;
1457	struct slotinfo *si;
1458	int bestpin, bestcount, pin;
1459
1460	bi = pci_businfo[pi->pi_bus];
1461	assert(bi != NULL);
1462
1463	/*
1464	 * Just allocate a pin from our slot.  The pin will be
1465	 * assigned IRQs later when interrupts are routed.
1466	 */
1467	si = &bi->slotinfo[pi->pi_slot];
1468	bestpin = 0;
1469	bestcount = si->si_intpins[0].ii_count;
1470	for (pin = 1; pin < 4; pin++) {
1471		if (si->si_intpins[pin].ii_count < bestcount) {
1472			bestpin = pin;
1473			bestcount = si->si_intpins[pin].ii_count;
1474		}
1475	}
1476
1477	si->si_intpins[bestpin].ii_count++;
1478	pi->pi_lintr.pin = bestpin + 1;
1479	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1480}
1481
1482static void
1483pci_lintr_route(struct pci_devinst *pi)
1484{
1485	struct businfo *bi;
1486	struct intxinfo *ii;
1487
1488	if (pi->pi_lintr.pin == 0)
1489		return;
1490
1491	bi = pci_businfo[pi->pi_bus];
1492	assert(bi != NULL);
1493	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1494
1495	/*
1496	 * Attempt to allocate an I/O APIC pin for this intpin if one
1497	 * is not yet assigned.
1498	 */
1499	if (ii->ii_ioapic_irq == 0)
1500		ii->ii_ioapic_irq = ioapic_pci_alloc_irq();
1501	assert(ii->ii_ioapic_irq > 0);
1502
1503	/*
1504	 * Attempt to allocate a PIRQ pin for this intpin if one is
1505	 * not yet assigned.
1506	 */
1507	if (ii->ii_pirq_pin == 0)
1508		ii->ii_pirq_pin = pirq_alloc_pin(pi->pi_vmctx);
1509	assert(ii->ii_pirq_pin > 0);
1510
1511	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1512	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1513	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1514}
1515
1516void
1517pci_lintr_assert(struct pci_devinst *pi)
1518{
1519
1520	assert(pi->pi_lintr.pin > 0);
1521
1522	pthread_mutex_lock(&pi->pi_lintr.lock);
1523	if (pi->pi_lintr.state == IDLE) {
1524		if (pci_lintr_permitted(pi)) {
1525			pi->pi_lintr.state = ASSERTED;
1526			pci_irq_assert(pi);
1527		} else
1528			pi->pi_lintr.state = PENDING;
1529	}
1530	pthread_mutex_unlock(&pi->pi_lintr.lock);
1531}
1532
1533void
1534pci_lintr_deassert(struct pci_devinst *pi)
1535{
1536
1537	assert(pi->pi_lintr.pin > 0);
1538
1539	pthread_mutex_lock(&pi->pi_lintr.lock);
1540	if (pi->pi_lintr.state == ASSERTED) {
1541		pi->pi_lintr.state = IDLE;
1542		pci_irq_deassert(pi);
1543	} else if (pi->pi_lintr.state == PENDING)
1544		pi->pi_lintr.state = IDLE;
1545	pthread_mutex_unlock(&pi->pi_lintr.lock);
1546}
1547
1548static void
1549pci_lintr_update(struct pci_devinst *pi)
1550{
1551
1552	pthread_mutex_lock(&pi->pi_lintr.lock);
1553	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1554		pci_irq_deassert(pi);
1555		pi->pi_lintr.state = PENDING;
1556	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1557		pi->pi_lintr.state = ASSERTED;
1558		pci_irq_assert(pi);
1559	}
1560	pthread_mutex_unlock(&pi->pi_lintr.lock);
1561}
1562
1563int
1564pci_count_lintr(int bus)
1565{
1566	int count, slot, pin;
1567	struct slotinfo *slotinfo;
1568
1569	count = 0;
1570	if (pci_businfo[bus] != NULL) {
1571		for (slot = 0; slot < MAXSLOTS; slot++) {
1572			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1573			for (pin = 0; pin < 4; pin++) {
1574				if (slotinfo->si_intpins[pin].ii_count != 0)
1575					count++;
1576			}
1577		}
1578	}
1579	return (count);
1580}
1581
1582void
1583pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1584{
1585	struct businfo *bi;
1586	struct slotinfo *si;
1587	struct intxinfo *ii;
1588	int slot, pin;
1589
1590	if ((bi = pci_businfo[bus]) == NULL)
1591		return;
1592
1593	for (slot = 0; slot < MAXSLOTS; slot++) {
1594		si = &bi->slotinfo[slot];
1595		for (pin = 0; pin < 4; pin++) {
1596			ii = &si->si_intpins[pin];
1597			if (ii->ii_count != 0)
1598				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1599				    ii->ii_ioapic_irq, arg);
1600		}
1601	}
1602}
1603
1604/*
1605 * Return 1 if the emulated device in 'slot' is a multi-function device.
1606 * Return 0 otherwise.
1607 */
1608static int
1609pci_emul_is_mfdev(int bus, int slot)
1610{
1611	struct businfo *bi;
1612	struct slotinfo *si;
1613	int f, numfuncs;
1614
1615	numfuncs = 0;
1616	if ((bi = pci_businfo[bus]) != NULL) {
1617		si = &bi->slotinfo[slot];
1618		for (f = 0; f < MAXFUNCS; f++) {
1619			if (si->si_funcs[f].fi_devi != NULL) {
1620				numfuncs++;
1621			}
1622		}
1623	}
1624	return (numfuncs > 1);
1625}
1626
1627/*
1628 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1629 * whether or not is a multi-function being emulated in the pci 'slot'.
1630 */
1631static void
1632pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1633{
1634	int mfdev;
1635
1636	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1637		mfdev = pci_emul_is_mfdev(bus, slot);
1638		switch (bytes) {
1639		case 1:
1640		case 2:
1641			*rv &= ~PCIM_MFDEV;
1642			if (mfdev) {
1643				*rv |= PCIM_MFDEV;
1644			}
1645			break;
1646		case 4:
1647			*rv &= ~(PCIM_MFDEV << 16);
1648			if (mfdev) {
1649				*rv |= (PCIM_MFDEV << 16);
1650			}
1651			break;
1652		}
1653	}
1654}
1655
1656static uint32_t
1657bits_changed(uint32_t old, uint32_t new, uint32_t mask)
1658{
1659
1660	return ((old ^ new) & mask);
1661}
1662
1663static void
1664pci_emul_cmdwrite(struct pci_devinst *pi, uint32_t new, int bytes)
1665{
1666	int i;
1667	uint16_t old;
1668
1669	/*
1670	 * The command register is at an offset of 4 bytes and thus the
1671	 * guest could write 1, 2 or 4 bytes starting at this offset.
1672	 */
1673
1674	old = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
1675	CFGWRITE(pi, PCIR_COMMAND, new, bytes);		/* update config */
1676	new = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* get updated value */
1677
1678	/*
1679	 * If the MMIO or I/O address space decoding has changed then
1680	 * register/unregister all BARs that decode that address space.
1681	 */
1682	for (i = 0; i <= PCI_BARMAX; i++) {
1683		switch (pi->pi_bar[i].type) {
1684			case PCIBAR_NONE:
1685			case PCIBAR_MEMHI64:
1686				break;
1687			case PCIBAR_IO:
1688				/* I/O address space decoding changed? */
1689				if (bits_changed(old, new, PCIM_CMD_PORTEN)) {
1690					if (porten(pi))
1691						register_bar(pi, i);
1692					else
1693						unregister_bar(pi, i);
1694				}
1695				break;
1696			case PCIBAR_MEM32:
1697			case PCIBAR_MEM64:
1698				/* MMIO address space decoding changed? */
1699				if (bits_changed(old, new, PCIM_CMD_MEMEN)) {
1700					if (memen(pi))
1701						register_bar(pi, i);
1702					else
1703						unregister_bar(pi, i);
1704				}
1705				break;
1706			default:
1707				assert(0);
1708		}
1709	}
1710
1711	/*
1712	 * If INTx has been unmasked and is pending, assert the
1713	 * interrupt.
1714	 */
1715	pci_lintr_update(pi);
1716}
1717
1718static void
1719pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
1720    int coff, int bytes, uint32_t *eax)
1721{
1722	struct businfo *bi;
1723	struct slotinfo *si;
1724	struct pci_devinst *pi;
1725	struct pci_devemu *pe;
1726	int idx, needcfg;
1727	uint64_t addr, bar, mask;
1728
1729	if ((bi = pci_businfo[bus]) != NULL) {
1730		si = &bi->slotinfo[slot];
1731		pi = si->si_funcs[func].fi_devi;
1732	} else
1733		pi = NULL;
1734
1735	/*
1736	 * Just return if there is no device at this slot:func or if the
1737	 * the guest is doing an un-aligned access.
1738	 */
1739	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
1740	    (coff & (bytes - 1)) != 0) {
1741		if (in)
1742			*eax = 0xffffffff;
1743		return;
1744	}
1745
1746	/*
1747	 * Ignore all writes beyond the standard config space and return all
1748	 * ones on reads.
1749	 */
1750	if (coff >= PCI_REGMAX + 1) {
1751		if (in) {
1752			*eax = 0xffffffff;
1753			/*
1754			 * Extended capabilities begin at offset 256 in config
1755			 * space. Absence of extended capabilities is signaled
1756			 * with all 0s in the extended capability header at
1757			 * offset 256.
1758			 */
1759			if (coff <= PCI_REGMAX + 4)
1760				*eax = 0x00000000;
1761		}
1762		return;
1763	}
1764
1765	pe = pi->pi_d;
1766
1767	/*
1768	 * Config read
1769	 */
1770	if (in) {
1771		/* Let the device emulation override the default handler */
1772		if (pe->pe_cfgread != NULL) {
1773			needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
1774			    eax);
1775		} else {
1776			needcfg = 1;
1777		}
1778
1779		if (needcfg) {
1780			if (bytes == 1)
1781				*eax = pci_get_cfgdata8(pi, coff);
1782			else if (bytes == 2)
1783				*eax = pci_get_cfgdata16(pi, coff);
1784			else
1785				*eax = pci_get_cfgdata32(pi, coff);
1786		}
1787
1788		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
1789	} else {
1790		/* Let the device emulation override the default handler */
1791		if (pe->pe_cfgwrite != NULL &&
1792		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
1793			return;
1794
1795		/*
1796		 * Special handling for write to BAR registers
1797		 */
1798		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
1799			/*
1800			 * Ignore writes to BAR registers that are not
1801			 * 4-byte aligned.
1802			 */
1803			if (bytes != 4 || (coff & 0x3) != 0)
1804				return;
1805			idx = (coff - PCIR_BAR(0)) / 4;
1806			mask = ~(pi->pi_bar[idx].size - 1);
1807			switch (pi->pi_bar[idx].type) {
1808			case PCIBAR_NONE:
1809				pi->pi_bar[idx].addr = bar = 0;
1810				break;
1811			case PCIBAR_IO:
1812				addr = *eax & mask;
1813				addr &= 0xffff;
1814				bar = addr | PCIM_BAR_IO_SPACE;
1815				/*
1816				 * Register the new BAR value for interception
1817				 */
1818				if (addr != pi->pi_bar[idx].addr) {
1819					update_bar_address(pi, addr, idx,
1820							   PCIBAR_IO);
1821				}
1822				break;
1823			case PCIBAR_MEM32:
1824				addr = bar = *eax & mask;
1825				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
1826				if (addr != pi->pi_bar[idx].addr) {
1827					update_bar_address(pi, addr, idx,
1828							   PCIBAR_MEM32);
1829				}
1830				break;
1831			case PCIBAR_MEM64:
1832				addr = bar = *eax & mask;
1833				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
1834				       PCIM_BAR_MEM_PREFETCH;
1835				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
1836					update_bar_address(pi, addr, idx,
1837							   PCIBAR_MEM64);
1838				}
1839				break;
1840			case PCIBAR_MEMHI64:
1841				mask = ~(pi->pi_bar[idx - 1].size - 1);
1842				addr = ((uint64_t)*eax << 32) & mask;
1843				bar = addr >> 32;
1844				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
1845					update_bar_address(pi, addr, idx - 1,
1846							   PCIBAR_MEMHI64);
1847				}
1848				break;
1849			default:
1850				assert(0);
1851			}
1852			pci_set_cfgdata32(pi, coff, bar);
1853
1854		} else if (pci_emul_iscap(pi, coff)) {
1855			pci_emul_capwrite(pi, coff, bytes, *eax);
1856		} else if (coff == PCIR_COMMAND) {
1857			pci_emul_cmdwrite(pi, *eax, bytes);
1858		} else {
1859			CFGWRITE(pi, coff, *eax, bytes);
1860		}
1861	}
1862}
1863
1864static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
1865
1866static int
1867pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1868		 uint32_t *eax, void *arg)
1869{
1870	uint32_t x;
1871
1872	if (bytes != 4) {
1873		if (in)
1874			*eax = (bytes == 2) ? 0xffff : 0xff;
1875		return (0);
1876	}
1877
1878	if (in) {
1879		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
1880		if (cfgenable)
1881			x |= CONF1_ENABLE;
1882		*eax = x;
1883	} else {
1884		x = *eax;
1885		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
1886		cfgoff = x & PCI_REGMAX;
1887		cfgfunc = (x >> 8) & PCI_FUNCMAX;
1888		cfgslot = (x >> 11) & PCI_SLOTMAX;
1889		cfgbus = (x >> 16) & PCI_BUSMAX;
1890	}
1891
1892	return (0);
1893}
1894INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
1895
1896static int
1897pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1898		 uint32_t *eax, void *arg)
1899{
1900	int coff;
1901
1902	assert(bytes == 1 || bytes == 2 || bytes == 4);
1903
1904	coff = cfgoff + (port - CONF1_DATA_PORT);
1905	if (cfgenable) {
1906		pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
1907		    eax);
1908	} else {
1909		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
1910		if (in)
1911			*eax = 0xffffffff;
1912	}
1913	return (0);
1914}
1915
1916INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
1917INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
1918INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
1919INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
1920
1921#define PCI_EMUL_TEST
1922#ifdef PCI_EMUL_TEST
1923/*
1924 * Define a dummy test device
1925 */
1926#define DIOSZ	8
1927#define DMEMSZ	4096
1928struct pci_emul_dsoftc {
1929	uint8_t   ioregs[DIOSZ];
1930	uint8_t	  memregs[DMEMSZ];
1931};
1932
1933#define	PCI_EMUL_MSI_MSGS	 4
1934#define	PCI_EMUL_MSIX_MSGS	16
1935
1936static int
1937pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
1938{
1939	int error;
1940	struct pci_emul_dsoftc *sc;
1941
1942	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
1943
1944	pi->pi_arg = sc;
1945
1946	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
1947	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
1948	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
1949
1950	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
1951	assert(error == 0);
1952
1953	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
1954	assert(error == 0);
1955
1956	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
1957	assert(error == 0);
1958
1959	return (0);
1960}
1961
1962static void
1963pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1964	      uint64_t offset, int size, uint64_t value)
1965{
1966	int i;
1967	struct pci_emul_dsoftc *sc = pi->pi_arg;
1968
1969	if (baridx == 0) {
1970		if (offset + size > DIOSZ) {
1971			printf("diow: iow too large, offset %ld size %d\n",
1972			       offset, size);
1973			return;
1974		}
1975
1976		if (size == 1) {
1977			sc->ioregs[offset] = value & 0xff;
1978		} else if (size == 2) {
1979			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
1980		} else if (size == 4) {
1981			*(uint32_t *)&sc->ioregs[offset] = value;
1982		} else {
1983			printf("diow: iow unknown size %d\n", size);
1984		}
1985
1986		/*
1987		 * Special magic value to generate an interrupt
1988		 */
1989		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
1990			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
1991
1992		if (value == 0xabcdef) {
1993			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
1994				pci_generate_msi(pi, i);
1995		}
1996	}
1997
1998	if (baridx == 1) {
1999		if (offset + size > DMEMSZ) {
2000			printf("diow: memw too large, offset %ld size %d\n",
2001			       offset, size);
2002			return;
2003		}
2004
2005		if (size == 1) {
2006			sc->memregs[offset] = value;
2007		} else if (size == 2) {
2008			*(uint16_t *)&sc->memregs[offset] = value;
2009		} else if (size == 4) {
2010			*(uint32_t *)&sc->memregs[offset] = value;
2011		} else if (size == 8) {
2012			*(uint64_t *)&sc->memregs[offset] = value;
2013		} else {
2014			printf("diow: memw unknown size %d\n", size);
2015		}
2016
2017		/*
2018		 * magic interrupt ??
2019		 */
2020	}
2021
2022	if (baridx > 1) {
2023		printf("diow: unknown bar idx %d\n", baridx);
2024	}
2025}
2026
2027static uint64_t
2028pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2029	      uint64_t offset, int size)
2030{
2031	struct pci_emul_dsoftc *sc = pi->pi_arg;
2032	uint32_t value;
2033
2034	if (baridx == 0) {
2035		if (offset + size > DIOSZ) {
2036			printf("dior: ior too large, offset %ld size %d\n",
2037			       offset, size);
2038			return (0);
2039		}
2040
2041		if (size == 1) {
2042			value = sc->ioregs[offset];
2043		} else if (size == 2) {
2044			value = *(uint16_t *) &sc->ioregs[offset];
2045		} else if (size == 4) {
2046			value = *(uint32_t *) &sc->ioregs[offset];
2047		} else {
2048			printf("dior: ior unknown size %d\n", size);
2049		}
2050	}
2051
2052	if (baridx == 1) {
2053		if (offset + size > DMEMSZ) {
2054			printf("dior: memr too large, offset %ld size %d\n",
2055			       offset, size);
2056			return (0);
2057		}
2058
2059		if (size == 1) {
2060			value = sc->memregs[offset];
2061		} else if (size == 2) {
2062			value = *(uint16_t *) &sc->memregs[offset];
2063		} else if (size == 4) {
2064			value = *(uint32_t *) &sc->memregs[offset];
2065		} else if (size == 8) {
2066			value = *(uint64_t *) &sc->memregs[offset];
2067		} else {
2068			printf("dior: ior unknown size %d\n", size);
2069		}
2070	}
2071
2072
2073	if (baridx > 1) {
2074		printf("dior: unknown bar idx %d\n", baridx);
2075		return (0);
2076	}
2077
2078	return (value);
2079}
2080
2081struct pci_devemu pci_dummy = {
2082	.pe_emu = "dummy",
2083	.pe_init = pci_emul_dinit,
2084	.pe_barwrite = pci_emul_diow,
2085	.pe_barread = pci_emul_dior
2086};
2087PCI_EMUL_SET(pci_dummy);
2088
2089#endif /* PCI_EMUL_TEST */
2090