1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include "opt_vm.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mutex.h>
49#include <sys/queue.h>
50#include <sys/rwlock.h>
51#include <sys/sbuf.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/vm_object.h>
58#include <vm/vm_page.h>
59#include <vm/vm_phys.h>
60#include <vm/vm_radix.h>
61#include <vm/vm_reserv.h>
62
63/*
64 * The reservation system supports the speculative allocation of large physical
65 * pages ("superpages").  Speculative allocation enables the fully-automatic
66 * utilization of superpages by the virtual memory system.  In other words, no
67 * programmatic directives are required to use superpages.
68 */
69
70#if VM_NRESERVLEVEL > 0
71
72/*
73 * The number of small pages that are contained in a level 0 reservation
74 */
75#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
76
77/*
78 * The number of bits by which a physical address is shifted to obtain the
79 * reservation number
80 */
81#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
82
83/*
84 * The size of a level 0 reservation in bytes
85 */
86#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
87
88/*
89 * Computes the index of the small page underlying the given (object, pindex)
90 * within the reservation's array of small pages.
91 */
92#define	VM_RESERV_INDEX(object, pindex)	\
93    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
94
95/*
96 * The reservation structure
97 *
98 * A reservation structure is constructed whenever a large physical page is
99 * speculatively allocated to an object.  The reservation provides the small
100 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
101 * within that object.  The reservation's "popcnt" tracks the number of these
102 * small physical pages that are in use at any given time.  When and if the
103 * reservation is not fully utilized, it appears in the queue of partially-
104 * populated reservations.  The reservation always appears on the containing
105 * object's list of reservations.
106 *
107 * A partially-populated reservation can be broken and reclaimed at any time.
108 */
109struct vm_reserv {
110	TAILQ_ENTRY(vm_reserv) partpopq;
111	LIST_ENTRY(vm_reserv) objq;
112	vm_object_t	object;			/* containing object */
113	vm_pindex_t	pindex;			/* offset within object */
114	vm_page_t	pages;			/* first page of a superpage */
115	int		popcnt;			/* # of pages in use */
116	char		inpartpopq;
117};
118
119/*
120 * The reservation array
121 *
122 * This array is analoguous in function to vm_page_array.  It differs in the
123 * respect that it may contain a greater number of useful reservation
124 * structures than there are (physical) superpages.  These "invalid"
125 * reservation structures exist to trade-off space for time in the
126 * implementation of vm_reserv_from_page().  Invalid reservation structures are
127 * distinguishable from "valid" reservation structures by inspecting the
128 * reservation's "pages" field.  Invalid reservation structures have a NULL
129 * "pages" field.
130 *
131 * vm_reserv_from_page() maps a small (physical) page to an element of this
132 * array by computing a physical reservation number from the page's physical
133 * address.  The physical reservation number is used as the array index.
134 *
135 * An "active" reservation is a valid reservation structure that has a non-NULL
136 * "object" field and a non-zero "popcnt" field.  In other words, every active
137 * reservation belongs to a particular object.  Moreover, every active
138 * reservation has an entry in the containing object's list of reservations.
139 */
140static vm_reserv_t vm_reserv_array;
141
142/*
143 * The partially-populated reservation queue
144 *
145 * This queue enables the fast recovery of an unused cached or free small page
146 * from a partially-populated reservation.  The reservation at the head of
147 * this queue is the least-recently-changed, partially-populated reservation.
148 *
149 * Access to this queue is synchronized by the free page queue lock.
150 */
151static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
152			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
153
154static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
155
156static long vm_reserv_broken;
157SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
158    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
159
160static long vm_reserv_freed;
161SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
162    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
163
164static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
165
166SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
167    sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
168
169static long vm_reserv_reclaimed;
170SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
171    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
172
173static void		vm_reserv_depopulate(vm_reserv_t rv);
174static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
175static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
176			    vm_pindex_t pindex);
177static void		vm_reserv_populate(vm_reserv_t rv);
178static void		vm_reserv_reclaim(vm_reserv_t rv);
179
180/*
181 * Describes the current state of the partially-populated reservation queue.
182 */
183static int
184sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
185{
186	struct sbuf sbuf;
187	vm_reserv_t rv;
188	int counter, error, level, unused_pages;
189
190	error = sysctl_wire_old_buffer(req, 0);
191	if (error != 0)
192		return (error);
193	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
194	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
195	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
196		counter = 0;
197		unused_pages = 0;
198		mtx_lock(&vm_page_queue_free_mtx);
199		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
200			counter++;
201			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
202		}
203		mtx_unlock(&vm_page_queue_free_mtx);
204		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
205		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
206	}
207	error = sbuf_finish(&sbuf);
208	sbuf_delete(&sbuf);
209	return (error);
210}
211
212/*
213 * Reduces the given reservation's population count.  If the population count
214 * becomes zero, the reservation is destroyed.  Additionally, moves the
215 * reservation to the tail of the partially-populated reservations queue if the
216 * population count is non-zero.
217 *
218 * The free page queue lock must be held.
219 */
220static void
221vm_reserv_depopulate(vm_reserv_t rv)
222{
223
224	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
225	KASSERT(rv->object != NULL,
226	    ("vm_reserv_depopulate: reserv %p is free", rv));
227	KASSERT(rv->popcnt > 0,
228	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
229	if (rv->inpartpopq) {
230		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
231		rv->inpartpopq = FALSE;
232	} else {
233		KASSERT(rv->pages->psind == 1,
234		    ("vm_reserv_depopulate: reserv %p is already demoted",
235		    rv));
236		rv->pages->psind = 0;
237	}
238	rv->popcnt--;
239	if (rv->popcnt == 0) {
240		LIST_REMOVE(rv, objq);
241		rv->object = NULL;
242		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
243		vm_reserv_freed++;
244	} else {
245		rv->inpartpopq = TRUE;
246		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
247	}
248}
249
250/*
251 * Returns the reservation to which the given page might belong.
252 */
253static __inline vm_reserv_t
254vm_reserv_from_page(vm_page_t m)
255{
256
257	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
258}
259
260/*
261 * Returns TRUE if the given reservation contains the given page index and
262 * FALSE otherwise.
263 */
264static __inline boolean_t
265vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
266{
267
268	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
269}
270
271/*
272 * Increases the given reservation's population count.  Moves the reservation
273 * to the tail of the partially-populated reservation queue.
274 *
275 * The free page queue must be locked.
276 */
277static void
278vm_reserv_populate(vm_reserv_t rv)
279{
280
281	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
282	KASSERT(rv->object != NULL,
283	    ("vm_reserv_populate: reserv %p is free", rv));
284	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
285	    ("vm_reserv_populate: reserv %p is already full", rv));
286	KASSERT(rv->pages->psind == 0,
287	    ("vm_reserv_populate: reserv %p is already promoted", rv));
288	if (rv->inpartpopq) {
289		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
290		rv->inpartpopq = FALSE;
291	}
292	rv->popcnt++;
293	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
294		rv->inpartpopq = TRUE;
295		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
296	} else
297		rv->pages->psind = 1;
298}
299
300/*
301 * Allocates a contiguous set of physical pages of the given size "npages"
302 * from existing or newly created reservations.  All of the physical pages
303 * must be at or above the given physical address "low" and below the given
304 * physical address "high".  The given value "alignment" determines the
305 * alignment of the first physical page in the set.  If the given value
306 * "boundary" is non-zero, then the set of physical pages cannot cross any
307 * physical address boundary that is a multiple of that value.  Both
308 * "alignment" and "boundary" must be a power of two.
309 *
310 * The object and free page queue must be locked.
311 */
312vm_page_t
313vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
314    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
315{
316	vm_paddr_t pa, size;
317	vm_page_t m, m_ret, mpred, msucc;
318	vm_pindex_t first, leftcap, rightcap;
319	vm_reserv_t rv;
320	u_long allocpages, maxpages, minpages;
321	int i, index, n;
322
323	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
324	VM_OBJECT_ASSERT_WLOCKED(object);
325	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
326
327	/*
328	 * Is a reservation fundamentally impossible?
329	 */
330	if (pindex < VM_RESERV_INDEX(object, pindex) ||
331	    pindex + npages > object->size)
332		return (NULL);
333
334	/*
335	 * All reservations of a particular size have the same alignment.
336	 * Assuming that the first page is allocated from a reservation, the
337	 * least significant bits of its physical address can be determined
338	 * from its offset from the beginning of the reservation and the size
339	 * of the reservation.
340	 *
341	 * Could the specified index within a reservation of the smallest
342	 * possible size satisfy the alignment and boundary requirements?
343	 */
344	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
345	if ((pa & (alignment - 1)) != 0)
346		return (NULL);
347	size = npages << PAGE_SHIFT;
348	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
349		return (NULL);
350
351	/*
352	 * Look for an existing reservation.
353	 */
354	mpred = vm_radix_lookup_le(&object->rtree, pindex);
355	if (mpred != NULL) {
356		KASSERT(mpred->pindex < pindex,
357		    ("vm_reserv_alloc_contig: pindex already allocated"));
358		rv = vm_reserv_from_page(mpred);
359		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
360			goto found;
361		msucc = TAILQ_NEXT(mpred, listq);
362	} else
363		msucc = TAILQ_FIRST(&object->memq);
364	if (msucc != NULL) {
365		KASSERT(msucc->pindex > pindex,
366		    ("vm_reserv_alloc_page: pindex already allocated"));
367		rv = vm_reserv_from_page(msucc);
368		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
369			goto found;
370	}
371
372	/*
373	 * Could at least one reservation fit between the first index to the
374	 * left that can be used ("leftcap") and the first index to the right
375	 * that cannot be used ("rightcap")?
376	 */
377	first = pindex - VM_RESERV_INDEX(object, pindex);
378	if (mpred != NULL) {
379		if ((rv = vm_reserv_from_page(mpred))->object != object)
380			leftcap = mpred->pindex + 1;
381		else
382			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
383		if (leftcap > first)
384			return (NULL);
385	}
386	minpages = VM_RESERV_INDEX(object, pindex) + npages;
387	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
388	allocpages = maxpages;
389	if (msucc != NULL) {
390		if ((rv = vm_reserv_from_page(msucc))->object != object)
391			rightcap = msucc->pindex;
392		else
393			rightcap = rv->pindex;
394		if (first + maxpages > rightcap) {
395			if (maxpages == VM_LEVEL_0_NPAGES)
396				return (NULL);
397
398			/*
399			 * At least one reservation will fit between "leftcap"
400			 * and "rightcap".  However, a reservation for the
401			 * last of the requested pages will not fit.  Reduce
402			 * the size of the upcoming allocation accordingly.
403			 */
404			allocpages = minpages;
405		}
406	}
407
408	/*
409	 * Would the last new reservation extend past the end of the object?
410	 */
411	if (first + maxpages > object->size) {
412		/*
413		 * Don't allocate the last new reservation if the object is a
414		 * vnode or backed by another object that is a vnode.
415		 */
416		if (object->type == OBJT_VNODE ||
417		    (object->backing_object != NULL &&
418		    object->backing_object->type == OBJT_VNODE)) {
419			if (maxpages == VM_LEVEL_0_NPAGES)
420				return (NULL);
421			allocpages = minpages;
422		}
423		/* Speculate that the object may grow. */
424	}
425
426	/*
427	 * Allocate the physical pages.  The alignment and boundary specified
428	 * for this allocation may be different from the alignment and
429	 * boundary specified for the requested pages.  For instance, the
430	 * specified index may not be the first page within the first new
431	 * reservation.
432	 */
433	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
434	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
435	if (m == NULL)
436		return (NULL);
437
438	/*
439	 * The allocated physical pages always begin at a reservation
440	 * boundary, but they do not always end at a reservation boundary.
441	 * Initialize every reservation that is completely covered by the
442	 * allocated physical pages.
443	 */
444	m_ret = NULL;
445	index = VM_RESERV_INDEX(object, pindex);
446	do {
447		rv = vm_reserv_from_page(m);
448		KASSERT(rv->pages == m,
449		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
450		    rv));
451		KASSERT(rv->object == NULL,
452		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
453		LIST_INSERT_HEAD(&object->rvq, rv, objq);
454		rv->object = object;
455		rv->pindex = first;
456		KASSERT(rv->popcnt == 0,
457		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
458		    rv));
459		KASSERT(!rv->inpartpopq,
460		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
461		    rv));
462		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
463		for (i = 0; i < n; i++)
464			vm_reserv_populate(rv);
465		npages -= n;
466		if (m_ret == NULL) {
467			m_ret = &rv->pages[index];
468			index = 0;
469		}
470		m += VM_LEVEL_0_NPAGES;
471		first += VM_LEVEL_0_NPAGES;
472		allocpages -= VM_LEVEL_0_NPAGES;
473	} while (allocpages >= VM_LEVEL_0_NPAGES);
474	return (m_ret);
475
476	/*
477	 * Found a matching reservation.
478	 */
479found:
480	index = VM_RESERV_INDEX(object, pindex);
481	/* Does the allocation fit within the reservation? */
482	if (index + npages > VM_LEVEL_0_NPAGES)
483		return (NULL);
484	m = &rv->pages[index];
485	pa = VM_PAGE_TO_PHYS(m);
486	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
487	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
488		return (NULL);
489	/* Handle vm_page_rename(m, new_object, ...). */
490	for (i = 0; i < npages; i++)
491		if ((rv->pages[index + i].flags & (PG_CACHED | PG_FREE)) == 0)
492			return (NULL);
493	for (i = 0; i < npages; i++)
494		vm_reserv_populate(rv);
495	return (m);
496}
497
498/*
499 * Allocates a page from an existing or newly-created reservation.
500 *
501 * The page "mpred" must immediately precede the offset "pindex" within the
502 * specified object.
503 *
504 * The object and free page queue must be locked.
505 */
506vm_page_t
507vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
508{
509	vm_page_t m, msucc;
510	vm_pindex_t first, leftcap, rightcap;
511	vm_reserv_t rv;
512
513	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
514	VM_OBJECT_ASSERT_WLOCKED(object);
515
516	/*
517	 * Is a reservation fundamentally impossible?
518	 */
519	if (pindex < VM_RESERV_INDEX(object, pindex) ||
520	    pindex >= object->size)
521		return (NULL);
522
523	/*
524	 * Look for an existing reservation.
525	 */
526	if (mpred != NULL) {
527		KASSERT(mpred->object == object,
528		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
529		KASSERT(mpred->pindex < pindex,
530		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
531		rv = vm_reserv_from_page(mpred);
532		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
533			goto found;
534		msucc = TAILQ_NEXT(mpred, listq);
535	} else
536		msucc = TAILQ_FIRST(&object->memq);
537	if (msucc != NULL) {
538		KASSERT(msucc->pindex > pindex,
539		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
540		rv = vm_reserv_from_page(msucc);
541		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
542			goto found;
543	}
544
545	/*
546	 * Could a reservation fit between the first index to the left that
547	 * can be used and the first index to the right that cannot be used?
548	 */
549	first = pindex - VM_RESERV_INDEX(object, pindex);
550	if (mpred != NULL) {
551		if ((rv = vm_reserv_from_page(mpred))->object != object)
552			leftcap = mpred->pindex + 1;
553		else
554			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
555		if (leftcap > first)
556			return (NULL);
557	}
558	if (msucc != NULL) {
559		if ((rv = vm_reserv_from_page(msucc))->object != object)
560			rightcap = msucc->pindex;
561		else
562			rightcap = rv->pindex;
563		if (first + VM_LEVEL_0_NPAGES > rightcap)
564			return (NULL);
565	}
566
567	/*
568	 * Would a new reservation extend past the end of the object?
569	 */
570	if (first + VM_LEVEL_0_NPAGES > object->size) {
571		/*
572		 * Don't allocate a new reservation if the object is a vnode or
573		 * backed by another object that is a vnode.
574		 */
575		if (object->type == OBJT_VNODE ||
576		    (object->backing_object != NULL &&
577		    object->backing_object->type == OBJT_VNODE))
578			return (NULL);
579		/* Speculate that the object may grow. */
580	}
581
582	/*
583	 * Allocate and populate the new reservation.
584	 */
585	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
586	if (m == NULL)
587		return (NULL);
588	rv = vm_reserv_from_page(m);
589	KASSERT(rv->pages == m,
590	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
591	KASSERT(rv->object == NULL,
592	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
593	LIST_INSERT_HEAD(&object->rvq, rv, objq);
594	rv->object = object;
595	rv->pindex = first;
596	KASSERT(rv->popcnt == 0,
597	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
598	KASSERT(!rv->inpartpopq,
599	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
600	vm_reserv_populate(rv);
601	return (&rv->pages[VM_RESERV_INDEX(object, pindex)]);
602
603	/*
604	 * Found a matching reservation.
605	 */
606found:
607	m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
608	/* Handle vm_page_rename(m, new_object, ...). */
609	if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
610		return (NULL);
611	vm_reserv_populate(rv);
612	return (m);
613}
614
615/*
616 * Breaks all reservations belonging to the given object.
617 */
618void
619vm_reserv_break_all(vm_object_t object)
620{
621	vm_reserv_t rv;
622	int i;
623
624	mtx_lock(&vm_page_queue_free_mtx);
625	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
626		KASSERT(rv->object == object,
627		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
628		if (rv->inpartpopq) {
629			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
630			rv->inpartpopq = FALSE;
631		}
632		LIST_REMOVE(rv, objq);
633		rv->object = NULL;
634		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
635			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
636				vm_phys_free_pages(&rv->pages[i], 0);
637			else
638				rv->popcnt--;
639		}
640		KASSERT(rv->popcnt == 0,
641		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
642		    rv));
643		vm_reserv_broken++;
644	}
645	mtx_unlock(&vm_page_queue_free_mtx);
646}
647
648/*
649 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
650 * page is freed and FALSE otherwise.
651 *
652 * The free page queue lock must be held.
653 */
654boolean_t
655vm_reserv_free_page(vm_page_t m)
656{
657	vm_reserv_t rv;
658
659	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
660	rv = vm_reserv_from_page(m);
661	if (rv->object == NULL)
662		return (FALSE);
663	if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
664		vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
665		    VM_LEVEL_0_ORDER);
666	vm_reserv_depopulate(rv);
667	return (TRUE);
668}
669
670/*
671 * Initializes the reservation management system.  Specifically, initializes
672 * the reservation array.
673 *
674 * Requires that vm_page_array and first_page are initialized!
675 */
676void
677vm_reserv_init(void)
678{
679	vm_paddr_t paddr;
680	int i;
681
682	/*
683	 * Initialize the reservation array.  Specifically, initialize the
684	 * "pages" field for every element that has an underlying superpage.
685	 */
686	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
687		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
688		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
689			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
690			    PHYS_TO_VM_PAGE(paddr);
691			paddr += VM_LEVEL_0_SIZE;
692		}
693	}
694}
695
696/*
697 * Returns a reservation level if the given page belongs to a fully-populated
698 * reservation and -1 otherwise.
699 */
700int
701vm_reserv_level_iffullpop(vm_page_t m)
702{
703	vm_reserv_t rv;
704
705	rv = vm_reserv_from_page(m);
706	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
707}
708
709/*
710 * Prepare for the reactivation of a cached page.
711 *
712 * First, suppose that the given page "m" was allocated individually, i.e., not
713 * as part of a reservation, and cached.  Then, suppose a reservation
714 * containing "m" is allocated by the same object.  Although "m" and the
715 * reservation belong to the same object, "m"'s pindex may not match the
716 * reservation's.
717 *
718 * The free page queue must be locked.
719 */
720boolean_t
721vm_reserv_reactivate_page(vm_page_t m)
722{
723	vm_reserv_t rv;
724	int i, m_index;
725
726	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
727	rv = vm_reserv_from_page(m);
728	if (rv->object == NULL)
729		return (FALSE);
730	KASSERT((m->flags & PG_CACHED) != 0,
731	    ("vm_reserv_uncache_page: page %p is not cached", m));
732	if (m->object == rv->object &&
733	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
734		vm_reserv_populate(rv);
735	else {
736		KASSERT(rv->inpartpopq,
737		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
738		    rv));
739		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
740		rv->inpartpopq = FALSE;
741		LIST_REMOVE(rv, objq);
742		rv->object = NULL;
743		/* Don't vm_phys_free_pages(m, 0). */
744		m_index = m - rv->pages;
745		for (i = 0; i < m_index; i++) {
746			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
747				vm_phys_free_pages(&rv->pages[i], 0);
748			else
749				rv->popcnt--;
750		}
751		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
752			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
753				vm_phys_free_pages(&rv->pages[i], 0);
754			else
755				rv->popcnt--;
756		}
757		KASSERT(rv->popcnt == 0,
758		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
759		    rv));
760		vm_reserv_broken++;
761	}
762	return (TRUE);
763}
764
765/*
766 * Breaks the given partially-populated reservation, releasing its cached and
767 * free pages to the physical memory allocator.
768 *
769 * The free page queue lock must be held.
770 */
771static void
772vm_reserv_reclaim(vm_reserv_t rv)
773{
774	int i;
775
776	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
777	KASSERT(rv->inpartpopq,
778	    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
779	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
780	rv->inpartpopq = FALSE;
781	KASSERT(rv->object != NULL,
782	    ("vm_reserv_reclaim: reserv %p is free", rv));
783	LIST_REMOVE(rv, objq);
784	rv->object = NULL;
785	for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
786		if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
787			vm_phys_free_pages(&rv->pages[i], 0);
788		else
789			rv->popcnt--;
790	}
791	KASSERT(rv->popcnt == 0,
792	    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
793	vm_reserv_reclaimed++;
794}
795
796/*
797 * Breaks the reservation at the head of the partially-populated reservation
798 * queue, releasing its cached and free pages to the physical memory
799 * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
800 *
801 * The free page queue lock must be held.
802 */
803boolean_t
804vm_reserv_reclaim_inactive(void)
805{
806	vm_reserv_t rv;
807
808	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
809	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
810		vm_reserv_reclaim(rv);
811		return (TRUE);
812	}
813	return (FALSE);
814}
815
816/*
817 * Searches the partially-populated reservation queue for the least recently
818 * active reservation with unused pages, i.e., cached or free, that satisfy the
819 * given request for contiguous physical memory.  If a satisfactory reservation
820 * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
821 * otherwise.
822 *
823 * The free page queue lock must be held.
824 */
825boolean_t
826vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
827    u_long alignment, vm_paddr_t boundary)
828{
829	vm_paddr_t pa, pa_length, size;
830	vm_reserv_t rv;
831	int i;
832
833	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
834	if (npages > VM_LEVEL_0_NPAGES - 1)
835		return (FALSE);
836	size = npages << PAGE_SHIFT;
837	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
838		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
839		if (pa + PAGE_SIZE - size < low) {
840			/* this entire reservation is too low; go to next */
841			continue;
842		}
843		pa_length = 0;
844		for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
845			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
846				pa_length += PAGE_SIZE;
847				if (pa_length == PAGE_SIZE) {
848					pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
849					if (pa + size > high) {
850						/* skip to next reservation */
851						break;
852					} else if (pa < low ||
853					    (pa & (alignment - 1)) != 0 ||
854					    ((pa ^ (pa + size - 1)) &
855					    ~(boundary - 1)) != 0)
856						pa_length = 0;
857				}
858				if (pa_length >= size) {
859					vm_reserv_reclaim(rv);
860					return (TRUE);
861				}
862			} else
863				pa_length = 0;
864	}
865	return (FALSE);
866}
867
868/*
869 * Transfers the reservation underlying the given page to a new object.
870 *
871 * The object must be locked.
872 */
873void
874vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
875    vm_pindex_t old_object_offset)
876{
877	vm_reserv_t rv;
878
879	VM_OBJECT_ASSERT_WLOCKED(new_object);
880	rv = vm_reserv_from_page(m);
881	if (rv->object == old_object) {
882		mtx_lock(&vm_page_queue_free_mtx);
883		if (rv->object == old_object) {
884			LIST_REMOVE(rv, objq);
885			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
886			rv->object = new_object;
887			rv->pindex -= old_object_offset;
888		}
889		mtx_unlock(&vm_page_queue_free_mtx);
890	}
891}
892
893/*
894 * Allocates the virtual and physical memory required by the reservation
895 * management system's data structures, in particular, the reservation array.
896 */
897vm_paddr_t
898vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
899{
900	vm_paddr_t new_end;
901	size_t size;
902
903	/*
904	 * Calculate the size (in bytes) of the reservation array.  Round up
905	 * from "high_water" because every small page is mapped to an element
906	 * in the reservation array based on its physical address.  Thus, the
907	 * number of elements in the reservation array can be greater than the
908	 * number of superpages.
909	 */
910	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
911
912	/*
913	 * Allocate and map the physical memory for the reservation array.  The
914	 * next available virtual address is returned by reference.
915	 */
916	new_end = end - round_page(size);
917	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
918	    VM_PROT_READ | VM_PROT_WRITE);
919	bzero(vm_reserv_array, size);
920
921	/*
922	 * Return the next available physical address.
923	 */
924	return (new_end);
925}
926
927#endif	/* VM_NRESERVLEVEL > 0 */
928