1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD$");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75#include <sys/rwlock.h>
76#include <sys/sysctl.h>
77#include <sys/vmem.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88#include <vm/uma.h>
89
90vm_map_t kernel_map;
91vm_map_t exec_map;
92vm_map_t pipe_map;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
98    NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
99
100SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
101#if defined(__arm__) || defined(__sparc64__)
102    &vm_max_kernel_address, 0,
103#else
104    NULL, VM_MAX_KERNEL_ADDRESS,
105#endif
106    "Max kernel address");
107
108/*
109 *	kva_alloc:
110 *
111 *	Allocate a virtual address range with no underlying object and
112 *	no initial mapping to physical memory.  Any mapping from this
113 *	range to physical memory must be explicitly created prior to
114 *	its use, typically with pmap_qenter().  Any attempt to create
115 *	a mapping on demand through vm_fault() will result in a panic.
116 */
117vm_offset_t
118kva_alloc(size)
119	vm_size_t size;
120{
121	vm_offset_t addr;
122
123	size = round_page(size);
124	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
125		return (0);
126
127	return (addr);
128}
129
130/*
131 *	kva_free:
132 *
133 *	Release a region of kernel virtual memory allocated
134 *	with kva_alloc, and return the physical pages
135 *	associated with that region.
136 *
137 *	This routine may not block on kernel maps.
138 */
139void
140kva_free(addr, size)
141	vm_offset_t addr;
142	vm_size_t size;
143{
144
145	size = round_page(size);
146	vmem_free(kernel_arena, addr, size);
147}
148
149/*
150 *	Allocates a region from the kernel address map and physical pages
151 *	within the specified address range to the kernel object.  Creates a
152 *	wired mapping from this region to these pages, and returns the
153 *	region's starting virtual address.  The allocated pages are not
154 *	necessarily physically contiguous.  If M_ZERO is specified through the
155 *	given flags, then the pages are zeroed before they are mapped.
156 */
157vm_offset_t
158kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
159    vm_paddr_t high, vm_memattr_t memattr)
160{
161	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
162	vm_offset_t addr;
163	vm_ooffset_t offset;
164	vm_page_t m;
165	int pflags, tries;
166	int i;
167
168	size = round_page(size);
169	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
170		return (0);
171	offset = addr - VM_MIN_KERNEL_ADDRESS;
172	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
173	VM_OBJECT_WLOCK(object);
174	for (i = 0; i < size; i += PAGE_SIZE) {
175		tries = 0;
176retry:
177		m = vm_page_alloc_contig(object, OFF_TO_IDX(offset + i),
178		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
179		if (m == NULL) {
180			VM_OBJECT_WUNLOCK(object);
181			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
182				vm_pageout_grow_cache(tries, low, high);
183				VM_OBJECT_WLOCK(object);
184				tries++;
185				goto retry;
186			}
187			/*
188			 * Unmap and free the pages.
189			 */
190			if (i != 0)
191				pmap_remove(kernel_pmap, addr, addr + i);
192			while (i != 0) {
193				i -= PAGE_SIZE;
194				m = vm_page_lookup(object,
195				    OFF_TO_IDX(offset + i));
196				vm_page_unwire(m, 0);
197				vm_page_free(m);
198			}
199			vmem_free(vmem, addr, size);
200			return (0);
201		}
202		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
203			pmap_zero_page(m);
204		m->valid = VM_PAGE_BITS_ALL;
205		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
206		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
207	}
208	VM_OBJECT_WUNLOCK(object);
209	return (addr);
210}
211
212/*
213 *	Allocates a region from the kernel address map and physically
214 *	contiguous pages within the specified address range to the kernel
215 *	object.  Creates a wired mapping from this region to these pages, and
216 *	returns the region's starting virtual address.  If M_ZERO is specified
217 *	through the given flags, then the pages are zeroed before they are
218 *	mapped.
219 */
220vm_offset_t
221kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
222    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
223    vm_memattr_t memattr)
224{
225	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
226	vm_offset_t addr, tmp;
227	vm_ooffset_t offset;
228	vm_page_t end_m, m;
229	int pflags, tries;
230
231	size = round_page(size);
232	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
233		return (0);
234	offset = addr - VM_MIN_KERNEL_ADDRESS;
235	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
236	VM_OBJECT_WLOCK(object);
237	tries = 0;
238retry:
239	m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
240	    atop(size), low, high, alignment, boundary, memattr);
241	if (m == NULL) {
242		VM_OBJECT_WUNLOCK(object);
243		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
244			vm_pageout_grow_cache(tries, low, high);
245			VM_OBJECT_WLOCK(object);
246			tries++;
247			goto retry;
248		}
249		vmem_free(vmem, addr, size);
250		return (0);
251	}
252	end_m = m + atop(size);
253	tmp = addr;
254	for (; m < end_m; m++) {
255		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
256			pmap_zero_page(m);
257		m->valid = VM_PAGE_BITS_ALL;
258		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
259		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
260		tmp += PAGE_SIZE;
261	}
262	VM_OBJECT_WUNLOCK(object);
263	return (addr);
264}
265
266/*
267 *	kmem_suballoc:
268 *
269 *	Allocates a map to manage a subrange
270 *	of the kernel virtual address space.
271 *
272 *	Arguments are as follows:
273 *
274 *	parent		Map to take range from
275 *	min, max	Returned endpoints of map
276 *	size		Size of range to find
277 *	superpage_align	Request that min is superpage aligned
278 */
279vm_map_t
280kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
281    vm_size_t size, boolean_t superpage_align)
282{
283	int ret;
284	vm_map_t result;
285
286	size = round_page(size);
287
288	*min = vm_map_min(parent);
289	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
290	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
291	    MAP_ACC_NO_CHARGE);
292	if (ret != KERN_SUCCESS)
293		panic("kmem_suballoc: bad status return of %d", ret);
294	*max = *min + size;
295	result = vm_map_create(vm_map_pmap(parent), *min, *max);
296	if (result == NULL)
297		panic("kmem_suballoc: cannot create submap");
298	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
299		panic("kmem_suballoc: unable to change range to submap");
300	return (result);
301}
302
303/*
304 *	kmem_malloc:
305 *
306 *	Allocate wired-down pages in the kernel's address space.
307 */
308vm_offset_t
309kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
310{
311	vm_offset_t addr;
312	int rv;
313
314	size = round_page(size);
315	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
316		return (0);
317
318	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
319	    addr, size, flags);
320	if (rv != KERN_SUCCESS) {
321		vmem_free(vmem, addr, size);
322		return (0);
323	}
324	return (addr);
325}
326
327/*
328 *	kmem_back:
329 *
330 *	Allocate physical pages for the specified virtual address range.
331 */
332int
333kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
334{
335	vm_offset_t offset, i;
336	vm_page_t m;
337	int pflags;
338
339	KASSERT(object == kmem_object || object == kernel_object,
340	    ("kmem_back: only supports kernel objects."));
341
342	offset = addr - VM_MIN_KERNEL_ADDRESS;
343	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
344
345	VM_OBJECT_WLOCK(object);
346	for (i = 0; i < size; i += PAGE_SIZE) {
347retry:
348		m = vm_page_alloc(object, OFF_TO_IDX(offset + i), pflags);
349
350		/*
351		 * Ran out of space, free everything up and return. Don't need
352		 * to lock page queues here as we know that the pages we got
353		 * aren't on any queues.
354		 */
355		if (m == NULL) {
356			if ((flags & M_NOWAIT) == 0) {
357				VM_OBJECT_WUNLOCK(object);
358				VM_WAIT;
359				VM_OBJECT_WLOCK(object);
360				goto retry;
361			}
362			/*
363			 * Unmap and free the pages.
364			 */
365			if (i != 0)
366				pmap_remove(kernel_pmap, addr, addr + i);
367			while (i != 0) {
368				i -= PAGE_SIZE;
369				m = vm_page_lookup(object,
370						   OFF_TO_IDX(offset + i));
371				vm_page_unwire(m, 0);
372				vm_page_free(m);
373			}
374			VM_OBJECT_WUNLOCK(object);
375			return (KERN_NO_SPACE);
376		}
377		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
378			pmap_zero_page(m);
379		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
380		    ("kmem_malloc: page %p is managed", m));
381		m->valid = VM_PAGE_BITS_ALL;
382		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
383		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
384	}
385	VM_OBJECT_WUNLOCK(object);
386
387	return (KERN_SUCCESS);
388}
389
390void
391kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
392{
393	vm_page_t m;
394	vm_offset_t offset;
395	int i;
396
397	KASSERT(object == kmem_object || object == kernel_object,
398	    ("kmem_unback: only supports kernel objects."));
399
400	offset = addr - VM_MIN_KERNEL_ADDRESS;
401	VM_OBJECT_WLOCK(object);
402	pmap_remove(kernel_pmap, addr, addr + size);
403	for (i = 0; i < size; i += PAGE_SIZE) {
404		m = vm_page_lookup(object, OFF_TO_IDX(offset + i));
405		vm_page_unwire(m, 0);
406		vm_page_free(m);
407	}
408	VM_OBJECT_WUNLOCK(object);
409}
410
411/*
412 *	kmem_free:
413 *
414 *	Free memory allocated with kmem_malloc.  The size must match the
415 *	original allocation.
416 */
417void
418kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
419{
420
421	size = round_page(size);
422	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
423	    addr, size);
424	vmem_free(vmem, addr, size);
425}
426
427/*
428 *	kmap_alloc_wait:
429 *
430 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
431 *	has no room, the caller sleeps waiting for more memory in the submap.
432 *
433 *	This routine may block.
434 */
435vm_offset_t
436kmap_alloc_wait(map, size)
437	vm_map_t map;
438	vm_size_t size;
439{
440	vm_offset_t addr;
441
442	size = round_page(size);
443	if (!swap_reserve(size))
444		return (0);
445
446	for (;;) {
447		/*
448		 * To make this work for more than one map, use the map's lock
449		 * to lock out sleepers/wakers.
450		 */
451		vm_map_lock(map);
452		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
453			break;
454		/* no space now; see if we can ever get space */
455		if (vm_map_max(map) - vm_map_min(map) < size) {
456			vm_map_unlock(map);
457			swap_release(size);
458			return (0);
459		}
460		map->needs_wakeup = TRUE;
461		vm_map_unlock_and_wait(map, 0);
462	}
463	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
464	    VM_PROT_ALL, MAP_ACC_CHARGED);
465	vm_map_unlock(map);
466	return (addr);
467}
468
469/*
470 *	kmap_free_wakeup:
471 *
472 *	Returns memory to a submap of the kernel, and wakes up any processes
473 *	waiting for memory in that map.
474 */
475void
476kmap_free_wakeup(map, addr, size)
477	vm_map_t map;
478	vm_offset_t addr;
479	vm_size_t size;
480{
481
482	vm_map_lock(map);
483	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
484	if (map->needs_wakeup) {
485		map->needs_wakeup = FALSE;
486		vm_map_wakeup(map);
487	}
488	vm_map_unlock(map);
489}
490
491void
492kmem_init_zero_region(void)
493{
494	vm_offset_t addr, i;
495	vm_page_t m;
496
497	/*
498	 * Map a single physical page of zeros to a larger virtual range.
499	 * This requires less looping in places that want large amounts of
500	 * zeros, while not using much more physical resources.
501	 */
502	addr = kva_alloc(ZERO_REGION_SIZE);
503	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
504	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
505	if ((m->flags & PG_ZERO) == 0)
506		pmap_zero_page(m);
507	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
508		pmap_qenter(addr + i, &m, 1);
509	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
510
511	zero_region = (const void *)addr;
512}
513
514/*
515 * 	kmem_init:
516 *
517 *	Create the kernel map; insert a mapping covering kernel text,
518 *	data, bss, and all space allocated thus far (`boostrap' data).  The
519 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
520 *	`start' as allocated, and the range between `start' and `end' as free.
521 */
522void
523kmem_init(start, end)
524	vm_offset_t start, end;
525{
526	vm_map_t m;
527
528	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
529	m->system_map = 1;
530	vm_map_lock(m);
531	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
532	kernel_map = m;
533	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
534#ifdef __amd64__
535	    KERNBASE,
536#else
537	    VM_MIN_KERNEL_ADDRESS,
538#endif
539	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
540	/* ... and ending with the completion of the above `insert' */
541	vm_map_unlock(m);
542}
543
544#ifdef DIAGNOSTIC
545/*
546 * Allow userspace to directly trigger the VM drain routine for testing
547 * purposes.
548 */
549static int
550debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
551{
552	int error, i;
553
554	i = 0;
555	error = sysctl_handle_int(oidp, &i, 0, req);
556	if (error)
557		return (error);
558	if (i)
559		EVENTHANDLER_INVOKE(vm_lowmem, 0);
560	return (0);
561}
562
563SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
564    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
565#endif
566