1/*-
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1982, 1986, 1989, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *				New Swap System
41 *				Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 *	- The new swapper uses the new radix bitmap code.  This should scale
46 *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47 *	  arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 *	- on the fly reallocation of swap during putpages.  The new system
52 *	  does not try to keep previously allocated swap blocks for dirty
53 *	  pages.
54 *
55 *	- on the fly deallocation of swap
56 *
57 *	- No more garbage collection required.  Unnecessarily allocated swap
58 *	  blocks only exist for dirty vm_page_t's now and these are already
59 *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60 *	  removal of invalidated swap blocks when a page is destroyed
61 *	  or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66 *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD$");
71
72#include "opt_swap.h"
73#include "opt_vm.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/conf.h>
78#include <sys/kernel.h>
79#include <sys/priv.h>
80#include <sys/proc.h>
81#include <sys/bio.h>
82#include <sys/buf.h>
83#include <sys/disk.h>
84#include <sys/fcntl.h>
85#include <sys/mount.h>
86#include <sys/namei.h>
87#include <sys/vnode.h>
88#include <sys/malloc.h>
89#include <sys/racct.h>
90#include <sys/resource.h>
91#include <sys/resourcevar.h>
92#include <sys/rwlock.h>
93#include <sys/sysctl.h>
94#include <sys/sysproto.h>
95#include <sys/blist.h>
96#include <sys/lock.h>
97#include <sys/sx.h>
98#include <sys/vmmeter.h>
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/vm.h>
103#include <vm/pmap.h>
104#include <vm/vm_map.h>
105#include <vm/vm_kern.h>
106#include <vm/vm_object.h>
107#include <vm/vm_page.h>
108#include <vm/vm_pager.h>
109#include <vm/vm_pageout.h>
110#include <vm/vm_param.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115#include <geom/geom.h>
116
117/*
118 * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119 * or 32 pages per allocation.
120 * The 32-page limit is due to the radix code (kern/subr_blist.c).
121 */
122#ifndef MAX_PAGEOUT_CLUSTER
123#define MAX_PAGEOUT_CLUSTER 16
124#endif
125
126#if !defined(SWB_NPAGES)
127#define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128#endif
129
130/*
131 * The swblock structure maps an object and a small, fixed-size range
132 * of page indices to disk addresses within a swap area.
133 * The collection of these mappings is implemented as a hash table.
134 * Unused disk addresses within a swap area are allocated and managed
135 * using a blist.
136 */
137#define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138#define SWAP_META_PAGES		(SWB_NPAGES * 2)
139#define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140
141struct swblock {
142	struct swblock	*swb_hnext;
143	vm_object_t	swb_object;
144	vm_pindex_t	swb_index;
145	int		swb_count;
146	daddr_t		swb_pages[SWAP_META_PAGES];
147};
148
149static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150static struct mtx sw_dev_mtx;
151static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152static struct swdevt *swdevhd;	/* Allocate from here next */
153static int nswapdev;		/* Number of swap devices */
154int swap_pager_avail;
155static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156
157static vm_ooffset_t swap_total;
158SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159    "Total amount of available swap storage.");
160static vm_ooffset_t swap_reserved;
161SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162    "Amount of swap storage needed to back all allocated anonymous memory.");
163static int overcommit = 0;
164SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165    "Configure virtual memory overcommit behavior. See tuning(7) "
166    "for details.");
167static unsigned long swzone;
168SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169    "Actual size of swap metadata zone");
170static unsigned long swap_maxpages;
171SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172    "Maximum amount of swap supported");
173
174/* bits from overcommit */
175#define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176#define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177#define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178
179int
180swap_reserve(vm_ooffset_t incr)
181{
182
183	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184}
185
186int
187swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188{
189	vm_ooffset_t r, s;
190	int res, error;
191	static int curfail;
192	static struct timeval lastfail;
193	struct uidinfo *uip;
194
195	uip = cred->cr_ruidinfo;
196
197	if (incr & PAGE_MASK)
198		panic("swap_reserve: & PAGE_MASK");
199
200#ifdef RACCT
201	PROC_LOCK(curproc);
202	error = racct_add(curproc, RACCT_SWAP, incr);
203	PROC_UNLOCK(curproc);
204	if (error != 0)
205		return (0);
206#endif
207
208	res = 0;
209	mtx_lock(&sw_dev_mtx);
210	r = swap_reserved + incr;
211	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
212		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
213		s *= PAGE_SIZE;
214	} else
215		s = 0;
216	s += swap_total;
217	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219		res = 1;
220		swap_reserved = r;
221	}
222	mtx_unlock(&sw_dev_mtx);
223
224	if (res) {
225		PROC_LOCK(curproc);
226		UIDINFO_VMSIZE_LOCK(uip);
227		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
228		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
229		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
230			res = 0;
231		else
232			uip->ui_vmsize += incr;
233		UIDINFO_VMSIZE_UNLOCK(uip);
234		PROC_UNLOCK(curproc);
235		if (!res) {
236			mtx_lock(&sw_dev_mtx);
237			swap_reserved -= incr;
238			mtx_unlock(&sw_dev_mtx);
239		}
240	}
241	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243		    uip->ui_uid, curproc->p_pid, incr);
244	}
245
246#ifdef RACCT
247	if (!res) {
248		PROC_LOCK(curproc);
249		racct_sub(curproc, RACCT_SWAP, incr);
250		PROC_UNLOCK(curproc);
251	}
252#endif
253
254	return (res);
255}
256
257void
258swap_reserve_force(vm_ooffset_t incr)
259{
260	struct uidinfo *uip;
261
262	mtx_lock(&sw_dev_mtx);
263	swap_reserved += incr;
264	mtx_unlock(&sw_dev_mtx);
265
266#ifdef RACCT
267	PROC_LOCK(curproc);
268	racct_add_force(curproc, RACCT_SWAP, incr);
269	PROC_UNLOCK(curproc);
270#endif
271
272	uip = curthread->td_ucred->cr_ruidinfo;
273	PROC_LOCK(curproc);
274	UIDINFO_VMSIZE_LOCK(uip);
275	uip->ui_vmsize += incr;
276	UIDINFO_VMSIZE_UNLOCK(uip);
277	PROC_UNLOCK(curproc);
278}
279
280void
281swap_release(vm_ooffset_t decr)
282{
283	struct ucred *cred;
284
285	PROC_LOCK(curproc);
286	cred = curthread->td_ucred;
287	swap_release_by_cred(decr, cred);
288	PROC_UNLOCK(curproc);
289}
290
291void
292swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293{
294 	struct uidinfo *uip;
295
296	uip = cred->cr_ruidinfo;
297
298	if (decr & PAGE_MASK)
299		panic("swap_release: & PAGE_MASK");
300
301	mtx_lock(&sw_dev_mtx);
302	if (swap_reserved < decr)
303		panic("swap_reserved < decr");
304	swap_reserved -= decr;
305	mtx_unlock(&sw_dev_mtx);
306
307	UIDINFO_VMSIZE_LOCK(uip);
308	if (uip->ui_vmsize < decr)
309		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310	uip->ui_vmsize -= decr;
311	UIDINFO_VMSIZE_UNLOCK(uip);
312
313	racct_sub_cred(cred, RACCT_SWAP, decr);
314}
315
316static void swapdev_strategy(struct buf *, struct swdevt *sw);
317
318#define SWM_FREE	0x02	/* free, period			*/
319#define SWM_POP		0x04	/* pop out			*/
320
321int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
322static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
323static int nsw_rcount;		/* free read buffers			*/
324static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
325static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
326static int nsw_wcount_async_max;/* assigned maximum			*/
327static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
328
329static struct swblock **swhash;
330static int swhash_mask;
331static struct mtx swhash_mtx;
332
333static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
334static struct sx sw_alloc_sx;
335
336
337SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
338	CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
339
340/*
341 * "named" and "unnamed" anon region objects.  Try to reduce the overhead
342 * of searching a named list by hashing it just a little.
343 */
344
345#define NOBJLISTS		8
346
347#define NOBJLIST(handle)	\
348	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
349
350static struct mtx sw_alloc_mtx;	/* protect list manipulation */
351static struct pagerlst	swap_pager_object_list[NOBJLISTS];
352static uma_zone_t	swap_zone;
353
354/*
355 * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
356 * calls hooked from other parts of the VM system and do not appear here.
357 * (see vm/swap_pager.h).
358 */
359static vm_object_t
360		swap_pager_alloc(void *handle, vm_ooffset_t size,
361		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
362static void	swap_pager_dealloc(vm_object_t object);
363static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
364static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
365static boolean_t
366		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
367static void	swap_pager_init(void);
368static void	swap_pager_unswapped(vm_page_t);
369static void	swap_pager_swapoff(struct swdevt *sp);
370
371struct pagerops swappagerops = {
372	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
373	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
374	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
375	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
376	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
377	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
378	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
379};
380
381/*
382 * dmmax is in page-sized chunks with the new swap system.  It was
383 * dev-bsized chunks in the old.  dmmax is always a power of 2.
384 *
385 * swap_*() routines are externally accessible.  swp_*() routines are
386 * internal.
387 */
388static int dmmax;
389static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
390static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
391
392SYSCTL_INT(_vm, OID_AUTO, dmmax,
393	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
394
395static void	swp_sizecheck(void);
396static void	swp_pager_async_iodone(struct buf *bp);
397static int	swapongeom(struct thread *, struct vnode *);
398static int	swaponvp(struct thread *, struct vnode *, u_long);
399static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
400
401/*
402 * Swap bitmap functions
403 */
404static void	swp_pager_freeswapspace(daddr_t blk, int npages);
405static daddr_t	swp_pager_getswapspace(int npages);
406
407/*
408 * Metadata functions
409 */
410static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
411static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
412static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
413static void swp_pager_meta_free_all(vm_object_t);
414static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
415
416static void
417swp_pager_free_nrpage(vm_page_t m)
418{
419
420	vm_page_lock(m);
421	if (m->wire_count == 0)
422		vm_page_free(m);
423	vm_page_unlock(m);
424}
425
426/*
427 * SWP_SIZECHECK() -	update swap_pager_full indication
428 *
429 *	update the swap_pager_almost_full indication and warn when we are
430 *	about to run out of swap space, using lowat/hiwat hysteresis.
431 *
432 *	Clear swap_pager_full ( task killing ) indication when lowat is met.
433 *
434 *	No restrictions on call
435 *	This routine may not block.
436 */
437static void
438swp_sizecheck(void)
439{
440
441	if (swap_pager_avail < nswap_lowat) {
442		if (swap_pager_almost_full == 0) {
443			printf("swap_pager: out of swap space\n");
444			swap_pager_almost_full = 1;
445		}
446	} else {
447		swap_pager_full = 0;
448		if (swap_pager_avail > nswap_hiwat)
449			swap_pager_almost_full = 0;
450	}
451}
452
453/*
454 * SWP_PAGER_HASH() -	hash swap meta data
455 *
456 *	This is an helper function which hashes the swapblk given
457 *	the object and page index.  It returns a pointer to a pointer
458 *	to the object, or a pointer to a NULL pointer if it could not
459 *	find a swapblk.
460 */
461static struct swblock **
462swp_pager_hash(vm_object_t object, vm_pindex_t index)
463{
464	struct swblock **pswap;
465	struct swblock *swap;
466
467	index &= ~(vm_pindex_t)SWAP_META_MASK;
468	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
469	while ((swap = *pswap) != NULL) {
470		if (swap->swb_object == object &&
471		    swap->swb_index == index
472		) {
473			break;
474		}
475		pswap = &swap->swb_hnext;
476	}
477	return (pswap);
478}
479
480/*
481 * SWAP_PAGER_INIT() -	initialize the swap pager!
482 *
483 *	Expected to be started from system init.  NOTE:  This code is run
484 *	before much else so be careful what you depend on.  Most of the VM
485 *	system has yet to be initialized at this point.
486 */
487static void
488swap_pager_init(void)
489{
490	/*
491	 * Initialize object lists
492	 */
493	int i;
494
495	for (i = 0; i < NOBJLISTS; ++i)
496		TAILQ_INIT(&swap_pager_object_list[i]);
497	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
498	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
499
500	/*
501	 * Device Stripe, in PAGE_SIZE'd blocks
502	 */
503	dmmax = SWB_NPAGES * 2;
504}
505
506/*
507 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
508 *
509 *	Expected to be started from pageout process once, prior to entering
510 *	its main loop.
511 */
512void
513swap_pager_swap_init(void)
514{
515	unsigned long n, n2;
516
517	/*
518	 * Number of in-transit swap bp operations.  Don't
519	 * exhaust the pbufs completely.  Make sure we
520	 * initialize workable values (0 will work for hysteresis
521	 * but it isn't very efficient).
522	 *
523	 * The nsw_cluster_max is constrained by the bp->b_pages[]
524	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
525	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
526	 * constrained by the swap device interleave stripe size.
527	 *
528	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
529	 * designed to prevent other I/O from having high latencies due to
530	 * our pageout I/O.  The value 4 works well for one or two active swap
531	 * devices but is probably a little low if you have more.  Even so,
532	 * a higher value would probably generate only a limited improvement
533	 * with three or four active swap devices since the system does not
534	 * typically have to pageout at extreme bandwidths.   We will want
535	 * at least 2 per swap devices, and 4 is a pretty good value if you
536	 * have one NFS swap device due to the command/ack latency over NFS.
537	 * So it all works out pretty well.
538	 */
539	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
540
541	mtx_lock(&pbuf_mtx);
542	nsw_rcount = (nswbuf + 1) / 2;
543	nsw_wcount_sync = (nswbuf + 3) / 4;
544	nsw_wcount_async = 4;
545	nsw_wcount_async_max = nsw_wcount_async;
546	mtx_unlock(&pbuf_mtx);
547
548	/*
549	 * Initialize our zone.  Right now I'm just guessing on the number
550	 * we need based on the number of pages in the system.  Each swblock
551	 * can hold 32 pages, so this is probably overkill.  This reservation
552	 * is typically limited to around 32MB by default.
553	 */
554	n = cnt.v_page_count / 2;
555	if (maxswzone && n > maxswzone / sizeof(struct swblock))
556		n = maxswzone / sizeof(struct swblock);
557	n2 = n;
558	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
559	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
560	if (swap_zone == NULL)
561		panic("failed to create swap_zone.");
562	do {
563		if (uma_zone_reserve_kva(swap_zone, n))
564			break;
565		/*
566		 * if the allocation failed, try a zone two thirds the
567		 * size of the previous attempt.
568		 */
569		n -= ((n + 2) / 3);
570	} while (n > 0);
571	if (n2 != n)
572		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
573	swap_maxpages = n * SWAP_META_PAGES;
574	swzone = n * sizeof(struct swblock);
575	n2 = n;
576
577	/*
578	 * Initialize our meta-data hash table.  The swapper does not need to
579	 * be quite as efficient as the VM system, so we do not use an
580	 * oversized hash table.
581	 *
582	 * 	n: 		size of hash table, must be power of 2
583	 *	swhash_mask:	hash table index mask
584	 */
585	for (n = 1; n < n2 / 8; n *= 2)
586		;
587	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
588	swhash_mask = n - 1;
589	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
590}
591
592/*
593 * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
594 *			its metadata structures.
595 *
596 *	This routine is called from the mmap and fork code to create a new
597 *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
598 *	and then converting it with swp_pager_meta_build().
599 *
600 *	This routine may block in vm_object_allocate() and create a named
601 *	object lookup race, so we must interlock.
602 *
603 * MPSAFE
604 */
605static vm_object_t
606swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
607    vm_ooffset_t offset, struct ucred *cred)
608{
609	vm_object_t object;
610	vm_pindex_t pindex;
611
612	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
613	if (handle) {
614		mtx_lock(&Giant);
615		/*
616		 * Reference existing named region or allocate new one.  There
617		 * should not be a race here against swp_pager_meta_build()
618		 * as called from vm_page_remove() in regards to the lookup
619		 * of the handle.
620		 */
621		sx_xlock(&sw_alloc_sx);
622		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
623		if (object == NULL) {
624			if (cred != NULL) {
625				if (!swap_reserve_by_cred(size, cred)) {
626					sx_xunlock(&sw_alloc_sx);
627					mtx_unlock(&Giant);
628					return (NULL);
629				}
630				crhold(cred);
631			}
632			object = vm_object_allocate(OBJT_DEFAULT, pindex);
633			VM_OBJECT_WLOCK(object);
634			object->handle = handle;
635			if (cred != NULL) {
636				object->cred = cred;
637				object->charge = size;
638			}
639			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
640			VM_OBJECT_WUNLOCK(object);
641		}
642		sx_xunlock(&sw_alloc_sx);
643		mtx_unlock(&Giant);
644	} else {
645		if (cred != NULL) {
646			if (!swap_reserve_by_cred(size, cred))
647				return (NULL);
648			crhold(cred);
649		}
650		object = vm_object_allocate(OBJT_DEFAULT, pindex);
651		VM_OBJECT_WLOCK(object);
652		if (cred != NULL) {
653			object->cred = cred;
654			object->charge = size;
655		}
656		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
657		VM_OBJECT_WUNLOCK(object);
658	}
659	return (object);
660}
661
662/*
663 * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
664 *
665 *	The swap backing for the object is destroyed.  The code is
666 *	designed such that we can reinstantiate it later, but this
667 *	routine is typically called only when the entire object is
668 *	about to be destroyed.
669 *
670 *	The object must be locked.
671 */
672static void
673swap_pager_dealloc(vm_object_t object)
674{
675
676	/*
677	 * Remove from list right away so lookups will fail if we block for
678	 * pageout completion.
679	 */
680	if (object->handle != NULL) {
681		mtx_lock(&sw_alloc_mtx);
682		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
683		mtx_unlock(&sw_alloc_mtx);
684	}
685
686	VM_OBJECT_ASSERT_WLOCKED(object);
687	vm_object_pip_wait(object, "swpdea");
688
689	/*
690	 * Free all remaining metadata.  We only bother to free it from
691	 * the swap meta data.  We do not attempt to free swapblk's still
692	 * associated with vm_page_t's for this object.  We do not care
693	 * if paging is still in progress on some objects.
694	 */
695	swp_pager_meta_free_all(object);
696}
697
698/************************************************************************
699 *			SWAP PAGER BITMAP ROUTINES			*
700 ************************************************************************/
701
702/*
703 * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
704 *
705 *	Allocate swap for the requested number of pages.  The starting
706 *	swap block number (a page index) is returned or SWAPBLK_NONE
707 *	if the allocation failed.
708 *
709 *	Also has the side effect of advising that somebody made a mistake
710 *	when they configured swap and didn't configure enough.
711 *
712 *	This routine may not sleep.
713 *
714 *	We allocate in round-robin fashion from the configured devices.
715 */
716static daddr_t
717swp_pager_getswapspace(int npages)
718{
719	daddr_t blk;
720	struct swdevt *sp;
721	int i;
722
723	blk = SWAPBLK_NONE;
724	mtx_lock(&sw_dev_mtx);
725	sp = swdevhd;
726	for (i = 0; i < nswapdev; i++) {
727		if (sp == NULL)
728			sp = TAILQ_FIRST(&swtailq);
729		if (!(sp->sw_flags & SW_CLOSING)) {
730			blk = blist_alloc(sp->sw_blist, npages);
731			if (blk != SWAPBLK_NONE) {
732				blk += sp->sw_first;
733				sp->sw_used += npages;
734				swap_pager_avail -= npages;
735				swp_sizecheck();
736				swdevhd = TAILQ_NEXT(sp, sw_list);
737				goto done;
738			}
739		}
740		sp = TAILQ_NEXT(sp, sw_list);
741	}
742	if (swap_pager_full != 2) {
743		printf("swap_pager_getswapspace(%d): failed\n", npages);
744		swap_pager_full = 2;
745		swap_pager_almost_full = 1;
746	}
747	swdevhd = NULL;
748done:
749	mtx_unlock(&sw_dev_mtx);
750	return (blk);
751}
752
753static int
754swp_pager_isondev(daddr_t blk, struct swdevt *sp)
755{
756
757	return (blk >= sp->sw_first && blk < sp->sw_end);
758}
759
760static void
761swp_pager_strategy(struct buf *bp)
762{
763	struct swdevt *sp;
764
765	mtx_lock(&sw_dev_mtx);
766	TAILQ_FOREACH(sp, &swtailq, sw_list) {
767		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
768			mtx_unlock(&sw_dev_mtx);
769			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
770			    unmapped_buf_allowed) {
771				bp->b_kvaalloc = bp->b_data;
772				bp->b_data = unmapped_buf;
773				bp->b_kvabase = unmapped_buf;
774				bp->b_offset = 0;
775				bp->b_flags |= B_UNMAPPED;
776			} else {
777				pmap_qenter((vm_offset_t)bp->b_data,
778				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
779			}
780			sp->sw_strategy(bp, sp);
781			return;
782		}
783	}
784	panic("Swapdev not found");
785}
786
787
788/*
789 * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
790 *
791 *	This routine returns the specified swap blocks back to the bitmap.
792 *
793 *	This routine may not sleep.
794 */
795static void
796swp_pager_freeswapspace(daddr_t blk, int npages)
797{
798	struct swdevt *sp;
799
800	mtx_lock(&sw_dev_mtx);
801	TAILQ_FOREACH(sp, &swtailq, sw_list) {
802		if (blk >= sp->sw_first && blk < sp->sw_end) {
803			sp->sw_used -= npages;
804			/*
805			 * If we are attempting to stop swapping on
806			 * this device, we don't want to mark any
807			 * blocks free lest they be reused.
808			 */
809			if ((sp->sw_flags & SW_CLOSING) == 0) {
810				blist_free(sp->sw_blist, blk - sp->sw_first,
811				    npages);
812				swap_pager_avail += npages;
813				swp_sizecheck();
814			}
815			mtx_unlock(&sw_dev_mtx);
816			return;
817		}
818	}
819	panic("Swapdev not found");
820}
821
822/*
823 * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
824 *				range within an object.
825 *
826 *	This is a globally accessible routine.
827 *
828 *	This routine removes swapblk assignments from swap metadata.
829 *
830 *	The external callers of this routine typically have already destroyed
831 *	or renamed vm_page_t's associated with this range in the object so
832 *	we should be ok.
833 *
834 *	The object must be locked.
835 */
836void
837swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
838{
839
840	swp_pager_meta_free(object, start, size);
841}
842
843/*
844 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
845 *
846 *	Assigns swap blocks to the specified range within the object.  The
847 *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
848 *
849 *	Returns 0 on success, -1 on failure.
850 */
851int
852swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
853{
854	int n = 0;
855	daddr_t blk = SWAPBLK_NONE;
856	vm_pindex_t beg = start;	/* save start index */
857
858	VM_OBJECT_WLOCK(object);
859	while (size) {
860		if (n == 0) {
861			n = BLIST_MAX_ALLOC;
862			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
863				n >>= 1;
864				if (n == 0) {
865					swp_pager_meta_free(object, beg, start - beg);
866					VM_OBJECT_WUNLOCK(object);
867					return (-1);
868				}
869			}
870		}
871		swp_pager_meta_build(object, start, blk);
872		--size;
873		++start;
874		++blk;
875		--n;
876	}
877	swp_pager_meta_free(object, start, n);
878	VM_OBJECT_WUNLOCK(object);
879	return (0);
880}
881
882/*
883 * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
884 *			and destroy the source.
885 *
886 *	Copy any valid swapblks from the source to the destination.  In
887 *	cases where both the source and destination have a valid swapblk,
888 *	we keep the destination's.
889 *
890 *	This routine is allowed to sleep.  It may sleep allocating metadata
891 *	indirectly through swp_pager_meta_build() or if paging is still in
892 *	progress on the source.
893 *
894 *	The source object contains no vm_page_t's (which is just as well)
895 *
896 *	The source object is of type OBJT_SWAP.
897 *
898 *	The source and destination objects must be locked.
899 *	Both object locks may temporarily be released.
900 */
901void
902swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
903    vm_pindex_t offset, int destroysource)
904{
905	vm_pindex_t i;
906
907	VM_OBJECT_ASSERT_WLOCKED(srcobject);
908	VM_OBJECT_ASSERT_WLOCKED(dstobject);
909
910	/*
911	 * If destroysource is set, we remove the source object from the
912	 * swap_pager internal queue now.
913	 */
914	if (destroysource) {
915		if (srcobject->handle != NULL) {
916			mtx_lock(&sw_alloc_mtx);
917			TAILQ_REMOVE(
918			    NOBJLIST(srcobject->handle),
919			    srcobject,
920			    pager_object_list
921			);
922			mtx_unlock(&sw_alloc_mtx);
923		}
924	}
925
926	/*
927	 * transfer source to destination.
928	 */
929	for (i = 0; i < dstobject->size; ++i) {
930		daddr_t dstaddr;
931
932		/*
933		 * Locate (without changing) the swapblk on the destination,
934		 * unless it is invalid in which case free it silently, or
935		 * if the destination is a resident page, in which case the
936		 * source is thrown away.
937		 */
938		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
939
940		if (dstaddr == SWAPBLK_NONE) {
941			/*
942			 * Destination has no swapblk and is not resident,
943			 * copy source.
944			 */
945			daddr_t srcaddr;
946
947			srcaddr = swp_pager_meta_ctl(
948			    srcobject,
949			    i + offset,
950			    SWM_POP
951			);
952
953			if (srcaddr != SWAPBLK_NONE) {
954				/*
955				 * swp_pager_meta_build() can sleep.
956				 */
957				vm_object_pip_add(srcobject, 1);
958				VM_OBJECT_WUNLOCK(srcobject);
959				vm_object_pip_add(dstobject, 1);
960				swp_pager_meta_build(dstobject, i, srcaddr);
961				vm_object_pip_wakeup(dstobject);
962				VM_OBJECT_WLOCK(srcobject);
963				vm_object_pip_wakeup(srcobject);
964			}
965		} else {
966			/*
967			 * Destination has valid swapblk or it is represented
968			 * by a resident page.  We destroy the sourceblock.
969			 */
970
971			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
972		}
973	}
974
975	/*
976	 * Free left over swap blocks in source.
977	 *
978	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
979	 * double-remove the object from the swap queues.
980	 */
981	if (destroysource) {
982		swp_pager_meta_free_all(srcobject);
983		/*
984		 * Reverting the type is not necessary, the caller is going
985		 * to destroy srcobject directly, but I'm doing it here
986		 * for consistency since we've removed the object from its
987		 * queues.
988		 */
989		srcobject->type = OBJT_DEFAULT;
990	}
991}
992
993/*
994 * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
995 *				the requested page.
996 *
997 *	We determine whether good backing store exists for the requested
998 *	page and return TRUE if it does, FALSE if it doesn't.
999 *
1000 *	If TRUE, we also try to determine how much valid, contiguous backing
1001 *	store exists before and after the requested page within a reasonable
1002 *	distance.  We do not try to restrict it to the swap device stripe
1003 *	(that is handled in getpages/putpages).  It probably isn't worth
1004 *	doing here.
1005 */
1006static boolean_t
1007swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1008{
1009	daddr_t blk0;
1010
1011	VM_OBJECT_ASSERT_LOCKED(object);
1012	/*
1013	 * do we have good backing store at the requested index ?
1014	 */
1015	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1016
1017	if (blk0 == SWAPBLK_NONE) {
1018		if (before)
1019			*before = 0;
1020		if (after)
1021			*after = 0;
1022		return (FALSE);
1023	}
1024
1025	/*
1026	 * find backwards-looking contiguous good backing store
1027	 */
1028	if (before != NULL) {
1029		int i;
1030
1031		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1032			daddr_t blk;
1033
1034			if (i > pindex)
1035				break;
1036			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1037			if (blk != blk0 - i)
1038				break;
1039		}
1040		*before = (i - 1);
1041	}
1042
1043	/*
1044	 * find forward-looking contiguous good backing store
1045	 */
1046	if (after != NULL) {
1047		int i;
1048
1049		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1050			daddr_t blk;
1051
1052			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1053			if (blk != blk0 + i)
1054				break;
1055		}
1056		*after = (i - 1);
1057	}
1058	return (TRUE);
1059}
1060
1061/*
1062 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1063 *
1064 *	This removes any associated swap backing store, whether valid or
1065 *	not, from the page.
1066 *
1067 *	This routine is typically called when a page is made dirty, at
1068 *	which point any associated swap can be freed.  MADV_FREE also
1069 *	calls us in a special-case situation
1070 *
1071 *	NOTE!!!  If the page is clean and the swap was valid, the caller
1072 *	should make the page dirty before calling this routine.  This routine
1073 *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1074 *	depends on it.
1075 *
1076 *	This routine may not sleep.
1077 *
1078 *	The object containing the page must be locked.
1079 */
1080static void
1081swap_pager_unswapped(vm_page_t m)
1082{
1083
1084	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1085}
1086
1087/*
1088 * SWAP_PAGER_GETPAGES() - bring pages in from swap
1089 *
1090 *	Attempt to retrieve (m, count) pages from backing store, but make
1091 *	sure we retrieve at least m[reqpage].  We try to load in as large
1092 *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1093 *	belongs to the same object.
1094 *
1095 *	The code is designed for asynchronous operation and
1096 *	immediate-notification of 'reqpage' but tends not to be
1097 *	used that way.  Please do not optimize-out this algorithmic
1098 *	feature, I intend to improve on it in the future.
1099 *
1100 *	The parent has a single vm_object_pip_add() reference prior to
1101 *	calling us and we should return with the same.
1102 *
1103 *	The parent has BUSY'd the pages.  We should return with 'm'
1104 *	left busy, but the others adjusted.
1105 */
1106static int
1107swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1108{
1109	struct buf *bp;
1110	vm_page_t mreq;
1111	int i;
1112	int j;
1113	daddr_t blk;
1114
1115	mreq = m[reqpage];
1116
1117	KASSERT(mreq->object == object,
1118	    ("swap_pager_getpages: object mismatch %p/%p",
1119	    object, mreq->object));
1120
1121	/*
1122	 * Calculate range to retrieve.  The pages have already been assigned
1123	 * their swapblks.  We require a *contiguous* range but we know it to
1124	 * not span devices.   If we do not supply it, bad things
1125	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1126	 * loops are set up such that the case(s) are handled implicitly.
1127	 *
1128	 * The swp_*() calls must be made with the object locked.
1129	 */
1130	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1131
1132	for (i = reqpage - 1; i >= 0; --i) {
1133		daddr_t iblk;
1134
1135		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1136		if (blk != iblk + (reqpage - i))
1137			break;
1138	}
1139	++i;
1140
1141	for (j = reqpage + 1; j < count; ++j) {
1142		daddr_t jblk;
1143
1144		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1145		if (blk != jblk - (j - reqpage))
1146			break;
1147	}
1148
1149	/*
1150	 * free pages outside our collection range.   Note: we never free
1151	 * mreq, it must remain busy throughout.
1152	 */
1153	if (0 < i || j < count) {
1154		int k;
1155
1156		for (k = 0; k < i; ++k)
1157			swp_pager_free_nrpage(m[k]);
1158		for (k = j; k < count; ++k)
1159			swp_pager_free_nrpage(m[k]);
1160	}
1161
1162	/*
1163	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1164	 * still busy, but the others unbusied.
1165	 */
1166	if (blk == SWAPBLK_NONE)
1167		return (VM_PAGER_FAIL);
1168
1169	/*
1170	 * Getpbuf() can sleep.
1171	 */
1172	VM_OBJECT_WUNLOCK(object);
1173	/*
1174	 * Get a swap buffer header to perform the IO
1175	 */
1176	bp = getpbuf(&nsw_rcount);
1177	bp->b_flags |= B_PAGING;
1178
1179	bp->b_iocmd = BIO_READ;
1180	bp->b_iodone = swp_pager_async_iodone;
1181	bp->b_rcred = crhold(thread0.td_ucred);
1182	bp->b_wcred = crhold(thread0.td_ucred);
1183	bp->b_blkno = blk - (reqpage - i);
1184	bp->b_bcount = PAGE_SIZE * (j - i);
1185	bp->b_bufsize = PAGE_SIZE * (j - i);
1186	bp->b_pager.pg_reqpage = reqpage - i;
1187
1188	VM_OBJECT_WLOCK(object);
1189	{
1190		int k;
1191
1192		for (k = i; k < j; ++k) {
1193			bp->b_pages[k - i] = m[k];
1194			m[k]->oflags |= VPO_SWAPINPROG;
1195		}
1196	}
1197	bp->b_npages = j - i;
1198
1199	PCPU_INC(cnt.v_swapin);
1200	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1201
1202	/*
1203	 * We still hold the lock on mreq, and our automatic completion routine
1204	 * does not remove it.
1205	 */
1206	vm_object_pip_add(object, bp->b_npages);
1207	VM_OBJECT_WUNLOCK(object);
1208
1209	/*
1210	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1211	 * this point because we automatically release it on completion.
1212	 * Instead, we look at the one page we are interested in which we
1213	 * still hold a lock on even through the I/O completion.
1214	 *
1215	 * The other pages in our m[] array are also released on completion,
1216	 * so we cannot assume they are valid anymore either.
1217	 *
1218	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1219	 */
1220	BUF_KERNPROC(bp);
1221	swp_pager_strategy(bp);
1222
1223	/*
1224	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1225	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1226	 * is set in the meta-data.
1227	 */
1228	VM_OBJECT_WLOCK(object);
1229	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1230		mreq->oflags |= VPO_SWAPSLEEP;
1231		PCPU_INC(cnt.v_intrans);
1232		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1233		    "swread", hz * 20)) {
1234			printf(
1235"swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1236			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1237		}
1238	}
1239
1240	/*
1241	 * mreq is left busied after completion, but all the other pages
1242	 * are freed.  If we had an unrecoverable read error the page will
1243	 * not be valid.
1244	 */
1245	if (mreq->valid != VM_PAGE_BITS_ALL) {
1246		return (VM_PAGER_ERROR);
1247	} else {
1248		return (VM_PAGER_OK);
1249	}
1250
1251	/*
1252	 * A final note: in a low swap situation, we cannot deallocate swap
1253	 * and mark a page dirty here because the caller is likely to mark
1254	 * the page clean when we return, causing the page to possibly revert
1255	 * to all-zero's later.
1256	 */
1257}
1258
1259/*
1260 *	swap_pager_putpages:
1261 *
1262 *	Assign swap (if necessary) and initiate I/O on the specified pages.
1263 *
1264 *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1265 *	are automatically converted to SWAP objects.
1266 *
1267 *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1268 *	vm_page reservation system coupled with properly written VFS devices
1269 *	should ensure that no low-memory deadlock occurs.  This is an area
1270 *	which needs work.
1271 *
1272 *	The parent has N vm_object_pip_add() references prior to
1273 *	calling us and will remove references for rtvals[] that are
1274 *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1275 *	completion.
1276 *
1277 *	The parent has soft-busy'd the pages it passes us and will unbusy
1278 *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1279 *	We need to unbusy the rest on I/O completion.
1280 */
1281void
1282swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1283    boolean_t sync, int *rtvals)
1284{
1285	int i;
1286	int n = 0;
1287
1288	if (count && m[0]->object != object) {
1289		panic("swap_pager_putpages: object mismatch %p/%p",
1290		    object,
1291		    m[0]->object
1292		);
1293	}
1294
1295	/*
1296	 * Step 1
1297	 *
1298	 * Turn object into OBJT_SWAP
1299	 * check for bogus sysops
1300	 * force sync if not pageout process
1301	 */
1302	if (object->type != OBJT_SWAP)
1303		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1304	VM_OBJECT_WUNLOCK(object);
1305
1306	if (curproc != pageproc)
1307		sync = TRUE;
1308
1309	/*
1310	 * Step 2
1311	 *
1312	 * Update nsw parameters from swap_async_max sysctl values.
1313	 * Do not let the sysop crash the machine with bogus numbers.
1314	 */
1315	mtx_lock(&pbuf_mtx);
1316	if (swap_async_max != nsw_wcount_async_max) {
1317		int n;
1318
1319		/*
1320		 * limit range
1321		 */
1322		if ((n = swap_async_max) > nswbuf / 2)
1323			n = nswbuf / 2;
1324		if (n < 1)
1325			n = 1;
1326		swap_async_max = n;
1327
1328		/*
1329		 * Adjust difference ( if possible ).  If the current async
1330		 * count is too low, we may not be able to make the adjustment
1331		 * at this time.
1332		 */
1333		n -= nsw_wcount_async_max;
1334		if (nsw_wcount_async + n >= 0) {
1335			nsw_wcount_async += n;
1336			nsw_wcount_async_max += n;
1337			wakeup(&nsw_wcount_async);
1338		}
1339	}
1340	mtx_unlock(&pbuf_mtx);
1341
1342	/*
1343	 * Step 3
1344	 *
1345	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1346	 * The page is left dirty until the pageout operation completes
1347	 * successfully.
1348	 */
1349	for (i = 0; i < count; i += n) {
1350		int j;
1351		struct buf *bp;
1352		daddr_t blk;
1353
1354		/*
1355		 * Maximum I/O size is limited by a number of factors.
1356		 */
1357		n = min(BLIST_MAX_ALLOC, count - i);
1358		n = min(n, nsw_cluster_max);
1359
1360		/*
1361		 * Get biggest block of swap we can.  If we fail, fall
1362		 * back and try to allocate a smaller block.  Don't go
1363		 * overboard trying to allocate space if it would overly
1364		 * fragment swap.
1365		 */
1366		while (
1367		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1368		    n > 4
1369		) {
1370			n >>= 1;
1371		}
1372		if (blk == SWAPBLK_NONE) {
1373			for (j = 0; j < n; ++j)
1374				rtvals[i+j] = VM_PAGER_FAIL;
1375			continue;
1376		}
1377
1378		/*
1379		 * All I/O parameters have been satisfied, build the I/O
1380		 * request and assign the swap space.
1381		 */
1382		if (sync == TRUE) {
1383			bp = getpbuf(&nsw_wcount_sync);
1384		} else {
1385			bp = getpbuf(&nsw_wcount_async);
1386			bp->b_flags = B_ASYNC;
1387		}
1388		bp->b_flags |= B_PAGING;
1389		bp->b_iocmd = BIO_WRITE;
1390
1391		bp->b_rcred = crhold(thread0.td_ucred);
1392		bp->b_wcred = crhold(thread0.td_ucred);
1393		bp->b_bcount = PAGE_SIZE * n;
1394		bp->b_bufsize = PAGE_SIZE * n;
1395		bp->b_blkno = blk;
1396
1397		VM_OBJECT_WLOCK(object);
1398		for (j = 0; j < n; ++j) {
1399			vm_page_t mreq = m[i+j];
1400
1401			swp_pager_meta_build(
1402			    mreq->object,
1403			    mreq->pindex,
1404			    blk + j
1405			);
1406			vm_page_dirty(mreq);
1407			rtvals[i+j] = VM_PAGER_OK;
1408
1409			mreq->oflags |= VPO_SWAPINPROG;
1410			bp->b_pages[j] = mreq;
1411		}
1412		VM_OBJECT_WUNLOCK(object);
1413		bp->b_npages = n;
1414		/*
1415		 * Must set dirty range for NFS to work.
1416		 */
1417		bp->b_dirtyoff = 0;
1418		bp->b_dirtyend = bp->b_bcount;
1419
1420		PCPU_INC(cnt.v_swapout);
1421		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1422
1423		/*
1424		 * asynchronous
1425		 *
1426		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1427		 */
1428		if (sync == FALSE) {
1429			bp->b_iodone = swp_pager_async_iodone;
1430			BUF_KERNPROC(bp);
1431			swp_pager_strategy(bp);
1432
1433			for (j = 0; j < n; ++j)
1434				rtvals[i+j] = VM_PAGER_PEND;
1435			/* restart outter loop */
1436			continue;
1437		}
1438
1439		/*
1440		 * synchronous
1441		 *
1442		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1443		 */
1444		bp->b_iodone = bdone;
1445		swp_pager_strategy(bp);
1446
1447		/*
1448		 * Wait for the sync I/O to complete, then update rtvals.
1449		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1450		 * our async completion routine at the end, thus avoiding a
1451		 * double-free.
1452		 */
1453		bwait(bp, PVM, "swwrt");
1454		for (j = 0; j < n; ++j)
1455			rtvals[i+j] = VM_PAGER_PEND;
1456		/*
1457		 * Now that we are through with the bp, we can call the
1458		 * normal async completion, which frees everything up.
1459		 */
1460		swp_pager_async_iodone(bp);
1461	}
1462	VM_OBJECT_WLOCK(object);
1463}
1464
1465/*
1466 *	swp_pager_async_iodone:
1467 *
1468 *	Completion routine for asynchronous reads and writes from/to swap.
1469 *	Also called manually by synchronous code to finish up a bp.
1470 *
1471 *	This routine may not sleep.
1472 */
1473static void
1474swp_pager_async_iodone(struct buf *bp)
1475{
1476	int i;
1477	vm_object_t object = NULL;
1478
1479	/*
1480	 * report error
1481	 */
1482	if (bp->b_ioflags & BIO_ERROR) {
1483		printf(
1484		    "swap_pager: I/O error - %s failed; blkno %ld,"
1485			"size %ld, error %d\n",
1486		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1487		    (long)bp->b_blkno,
1488		    (long)bp->b_bcount,
1489		    bp->b_error
1490		);
1491	}
1492
1493	/*
1494	 * remove the mapping for kernel virtual
1495	 */
1496	if ((bp->b_flags & B_UNMAPPED) != 0) {
1497		bp->b_data = bp->b_kvaalloc;
1498		bp->b_kvabase = bp->b_kvaalloc;
1499		bp->b_flags &= ~B_UNMAPPED;
1500	} else
1501		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1502
1503	if (bp->b_npages) {
1504		object = bp->b_pages[0]->object;
1505		VM_OBJECT_WLOCK(object);
1506	}
1507
1508	/*
1509	 * cleanup pages.  If an error occurs writing to swap, we are in
1510	 * very serious trouble.  If it happens to be a disk error, though,
1511	 * we may be able to recover by reassigning the swap later on.  So
1512	 * in this case we remove the m->swapblk assignment for the page
1513	 * but do not free it in the rlist.  The errornous block(s) are thus
1514	 * never reallocated as swap.  Redirty the page and continue.
1515	 */
1516	for (i = 0; i < bp->b_npages; ++i) {
1517		vm_page_t m = bp->b_pages[i];
1518
1519		m->oflags &= ~VPO_SWAPINPROG;
1520		if (m->oflags & VPO_SWAPSLEEP) {
1521			m->oflags &= ~VPO_SWAPSLEEP;
1522			wakeup(&object->paging_in_progress);
1523		}
1524
1525		if (bp->b_ioflags & BIO_ERROR) {
1526			/*
1527			 * If an error occurs I'd love to throw the swapblk
1528			 * away without freeing it back to swapspace, so it
1529			 * can never be used again.  But I can't from an
1530			 * interrupt.
1531			 */
1532			if (bp->b_iocmd == BIO_READ) {
1533				/*
1534				 * When reading, reqpage needs to stay
1535				 * locked for the parent, but all other
1536				 * pages can be freed.  We still want to
1537				 * wakeup the parent waiting on the page,
1538				 * though.  ( also: pg_reqpage can be -1 and
1539				 * not match anything ).
1540				 *
1541				 * We have to wake specifically requested pages
1542				 * up too because we cleared VPO_SWAPINPROG and
1543				 * someone may be waiting for that.
1544				 *
1545				 * NOTE: for reads, m->dirty will probably
1546				 * be overridden by the original caller of
1547				 * getpages so don't play cute tricks here.
1548				 */
1549				m->valid = 0;
1550				if (i != bp->b_pager.pg_reqpage)
1551					swp_pager_free_nrpage(m);
1552				else {
1553					vm_page_lock(m);
1554					vm_page_flash(m);
1555					vm_page_unlock(m);
1556				}
1557				/*
1558				 * If i == bp->b_pager.pg_reqpage, do not wake
1559				 * the page up.  The caller needs to.
1560				 */
1561			} else {
1562				/*
1563				 * If a write error occurs, reactivate page
1564				 * so it doesn't clog the inactive list,
1565				 * then finish the I/O.
1566				 */
1567				vm_page_dirty(m);
1568				vm_page_lock(m);
1569				vm_page_activate(m);
1570				vm_page_unlock(m);
1571				vm_page_sunbusy(m);
1572			}
1573		} else if (bp->b_iocmd == BIO_READ) {
1574			/*
1575			 * NOTE: for reads, m->dirty will probably be
1576			 * overridden by the original caller of getpages so
1577			 * we cannot set them in order to free the underlying
1578			 * swap in a low-swap situation.  I don't think we'd
1579			 * want to do that anyway, but it was an optimization
1580			 * that existed in the old swapper for a time before
1581			 * it got ripped out due to precisely this problem.
1582			 *
1583			 * If not the requested page then deactivate it.
1584			 *
1585			 * Note that the requested page, reqpage, is left
1586			 * busied, but we still have to wake it up.  The
1587			 * other pages are released (unbusied) by
1588			 * vm_page_xunbusy().
1589			 */
1590			KASSERT(!pmap_page_is_mapped(m),
1591			    ("swp_pager_async_iodone: page %p is mapped", m));
1592			m->valid = VM_PAGE_BITS_ALL;
1593			KASSERT(m->dirty == 0,
1594			    ("swp_pager_async_iodone: page %p is dirty", m));
1595
1596			/*
1597			 * We have to wake specifically requested pages
1598			 * up too because we cleared VPO_SWAPINPROG and
1599			 * could be waiting for it in getpages.  However,
1600			 * be sure to not unbusy getpages specifically
1601			 * requested page - getpages expects it to be
1602			 * left busy.
1603			 */
1604			if (i != bp->b_pager.pg_reqpage) {
1605				vm_page_lock(m);
1606				vm_page_deactivate(m);
1607				vm_page_unlock(m);
1608				vm_page_xunbusy(m);
1609			} else {
1610				vm_page_lock(m);
1611				vm_page_flash(m);
1612				vm_page_unlock(m);
1613			}
1614		} else {
1615			/*
1616			 * For write success, clear the dirty
1617			 * status, then finish the I/O ( which decrements the
1618			 * busy count and possibly wakes waiter's up ).
1619			 */
1620			KASSERT(!pmap_page_is_write_mapped(m),
1621			    ("swp_pager_async_iodone: page %p is not write"
1622			    " protected", m));
1623			vm_page_undirty(m);
1624			vm_page_sunbusy(m);
1625			if (vm_page_count_severe()) {
1626				vm_page_lock(m);
1627				vm_page_try_to_cache(m);
1628				vm_page_unlock(m);
1629			}
1630		}
1631	}
1632
1633	/*
1634	 * adjust pip.  NOTE: the original parent may still have its own
1635	 * pip refs on the object.
1636	 */
1637	if (object != NULL) {
1638		vm_object_pip_wakeupn(object, bp->b_npages);
1639		VM_OBJECT_WUNLOCK(object);
1640	}
1641
1642	/*
1643	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1644	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1645	 * trigger a KASSERT in relpbuf().
1646	 */
1647	if (bp->b_vp) {
1648		    bp->b_vp = NULL;
1649		    bp->b_bufobj = NULL;
1650	}
1651	/*
1652	 * release the physical I/O buffer
1653	 */
1654	relpbuf(
1655	    bp,
1656	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1657		((bp->b_flags & B_ASYNC) ?
1658		    &nsw_wcount_async :
1659		    &nsw_wcount_sync
1660		)
1661	    )
1662	);
1663}
1664
1665/*
1666 *	swap_pager_isswapped:
1667 *
1668 *	Return 1 if at least one page in the given object is paged
1669 *	out to the given swap device.
1670 *
1671 *	This routine may not sleep.
1672 */
1673int
1674swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1675{
1676	daddr_t index = 0;
1677	int bcount;
1678	int i;
1679
1680	VM_OBJECT_ASSERT_WLOCKED(object);
1681	if (object->type != OBJT_SWAP)
1682		return (0);
1683
1684	mtx_lock(&swhash_mtx);
1685	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1686		struct swblock *swap;
1687
1688		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1689			for (i = 0; i < SWAP_META_PAGES; ++i) {
1690				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1691					mtx_unlock(&swhash_mtx);
1692					return (1);
1693				}
1694			}
1695		}
1696		index += SWAP_META_PAGES;
1697	}
1698	mtx_unlock(&swhash_mtx);
1699	return (0);
1700}
1701
1702/*
1703 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1704 *
1705 *	This routine dissociates the page at the given index within a
1706 *	swap block from its backing store, paging it in if necessary.
1707 *	If the page is paged in, it is placed in the inactive queue,
1708 *	since it had its backing store ripped out from under it.
1709 *	We also attempt to swap in all other pages in the swap block,
1710 *	we only guarantee that the one at the specified index is
1711 *	paged in.
1712 *
1713 *	XXX - The code to page the whole block in doesn't work, so we
1714 *	      revert to the one-by-one behavior for now.  Sigh.
1715 */
1716static inline void
1717swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1718{
1719	vm_page_t m;
1720
1721	vm_object_pip_add(object, 1);
1722	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1723	if (m->valid == VM_PAGE_BITS_ALL) {
1724		vm_object_pip_subtract(object, 1);
1725		vm_page_dirty(m);
1726		vm_page_lock(m);
1727		vm_page_activate(m);
1728		vm_page_unlock(m);
1729		vm_page_xunbusy(m);
1730		vm_pager_page_unswapped(m);
1731		return;
1732	}
1733
1734	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1735		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1736	vm_object_pip_subtract(object, 1);
1737	vm_page_dirty(m);
1738	vm_page_lock(m);
1739	vm_page_deactivate(m);
1740	vm_page_unlock(m);
1741	vm_page_xunbusy(m);
1742	vm_pager_page_unswapped(m);
1743}
1744
1745/*
1746 *	swap_pager_swapoff:
1747 *
1748 *	Page in all of the pages that have been paged out to the
1749 *	given device.  The corresponding blocks in the bitmap must be
1750 *	marked as allocated and the device must be flagged SW_CLOSING.
1751 *	There may be no processes swapped out to the device.
1752 *
1753 *	This routine may block.
1754 */
1755static void
1756swap_pager_swapoff(struct swdevt *sp)
1757{
1758	struct swblock *swap;
1759	int i, j, retries;
1760
1761	GIANT_REQUIRED;
1762
1763	retries = 0;
1764full_rescan:
1765	mtx_lock(&swhash_mtx);
1766	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1767restart:
1768		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1769			vm_object_t object = swap->swb_object;
1770			vm_pindex_t pindex = swap->swb_index;
1771			for (j = 0; j < SWAP_META_PAGES; ++j) {
1772				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1773					/* avoid deadlock */
1774					if (!VM_OBJECT_TRYWLOCK(object)) {
1775						break;
1776					} else {
1777						mtx_unlock(&swhash_mtx);
1778						swp_pager_force_pagein(object,
1779						    pindex + j);
1780						VM_OBJECT_WUNLOCK(object);
1781						mtx_lock(&swhash_mtx);
1782						goto restart;
1783					}
1784				}
1785			}
1786		}
1787	}
1788	mtx_unlock(&swhash_mtx);
1789	if (sp->sw_used) {
1790		/*
1791		 * Objects may be locked or paging to the device being
1792		 * removed, so we will miss their pages and need to
1793		 * make another pass.  We have marked this device as
1794		 * SW_CLOSING, so the activity should finish soon.
1795		 */
1796		retries++;
1797		if (retries > 100) {
1798			panic("swapoff: failed to locate %d swap blocks",
1799			    sp->sw_used);
1800		}
1801		pause("swpoff", hz / 20);
1802		goto full_rescan;
1803	}
1804}
1805
1806/************************************************************************
1807 *				SWAP META DATA 				*
1808 ************************************************************************
1809 *
1810 *	These routines manipulate the swap metadata stored in the
1811 *	OBJT_SWAP object.
1812 *
1813 *	Swap metadata is implemented with a global hash and not directly
1814 *	linked into the object.  Instead the object simply contains
1815 *	appropriate tracking counters.
1816 */
1817
1818/*
1819 * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1820 *
1821 *	We first convert the object to a swap object if it is a default
1822 *	object.
1823 *
1824 *	The specified swapblk is added to the object's swap metadata.  If
1825 *	the swapblk is not valid, it is freed instead.  Any previously
1826 *	assigned swapblk is freed.
1827 */
1828static void
1829swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1830{
1831	static volatile int exhausted;
1832	struct swblock *swap;
1833	struct swblock **pswap;
1834	int idx;
1835
1836	VM_OBJECT_ASSERT_WLOCKED(object);
1837	/*
1838	 * Convert default object to swap object if necessary
1839	 */
1840	if (object->type != OBJT_SWAP) {
1841		object->type = OBJT_SWAP;
1842		object->un_pager.swp.swp_bcount = 0;
1843
1844		if (object->handle != NULL) {
1845			mtx_lock(&sw_alloc_mtx);
1846			TAILQ_INSERT_TAIL(
1847			    NOBJLIST(object->handle),
1848			    object,
1849			    pager_object_list
1850			);
1851			mtx_unlock(&sw_alloc_mtx);
1852		}
1853	}
1854
1855	/*
1856	 * Locate hash entry.  If not found create, but if we aren't adding
1857	 * anything just return.  If we run out of space in the map we wait
1858	 * and, since the hash table may have changed, retry.
1859	 */
1860retry:
1861	mtx_lock(&swhash_mtx);
1862	pswap = swp_pager_hash(object, pindex);
1863
1864	if ((swap = *pswap) == NULL) {
1865		int i;
1866
1867		if (swapblk == SWAPBLK_NONE)
1868			goto done;
1869
1870		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1871		    (curproc == pageproc ? M_USE_RESERVE : 0));
1872		if (swap == NULL) {
1873			mtx_unlock(&swhash_mtx);
1874			VM_OBJECT_WUNLOCK(object);
1875			if (uma_zone_exhausted(swap_zone)) {
1876				if (atomic_cmpset_int(&exhausted, 0, 1))
1877					printf("swap zone exhausted, "
1878					    "increase kern.maxswzone\n");
1879				vm_pageout_oom(VM_OOM_SWAPZ);
1880				pause("swzonex", 10);
1881			} else
1882				VM_WAIT;
1883			VM_OBJECT_WLOCK(object);
1884			goto retry;
1885		}
1886
1887		if (atomic_cmpset_int(&exhausted, 1, 0))
1888			printf("swap zone ok\n");
1889
1890		swap->swb_hnext = NULL;
1891		swap->swb_object = object;
1892		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1893		swap->swb_count = 0;
1894
1895		++object->un_pager.swp.swp_bcount;
1896
1897		for (i = 0; i < SWAP_META_PAGES; ++i)
1898			swap->swb_pages[i] = SWAPBLK_NONE;
1899	}
1900
1901	/*
1902	 * Delete prior contents of metadata
1903	 */
1904	idx = pindex & SWAP_META_MASK;
1905
1906	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1907		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1908		--swap->swb_count;
1909	}
1910
1911	/*
1912	 * Enter block into metadata
1913	 */
1914	swap->swb_pages[idx] = swapblk;
1915	if (swapblk != SWAPBLK_NONE)
1916		++swap->swb_count;
1917done:
1918	mtx_unlock(&swhash_mtx);
1919}
1920
1921/*
1922 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1923 *
1924 *	The requested range of blocks is freed, with any associated swap
1925 *	returned to the swap bitmap.
1926 *
1927 *	This routine will free swap metadata structures as they are cleaned
1928 *	out.  This routine does *NOT* operate on swap metadata associated
1929 *	with resident pages.
1930 */
1931static void
1932swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1933{
1934
1935	VM_OBJECT_ASSERT_LOCKED(object);
1936	if (object->type != OBJT_SWAP)
1937		return;
1938
1939	while (count > 0) {
1940		struct swblock **pswap;
1941		struct swblock *swap;
1942
1943		mtx_lock(&swhash_mtx);
1944		pswap = swp_pager_hash(object, index);
1945
1946		if ((swap = *pswap) != NULL) {
1947			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1948
1949			if (v != SWAPBLK_NONE) {
1950				swp_pager_freeswapspace(v, 1);
1951				swap->swb_pages[index & SWAP_META_MASK] =
1952					SWAPBLK_NONE;
1953				if (--swap->swb_count == 0) {
1954					*pswap = swap->swb_hnext;
1955					uma_zfree(swap_zone, swap);
1956					--object->un_pager.swp.swp_bcount;
1957				}
1958			}
1959			--count;
1960			++index;
1961		} else {
1962			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1963			count -= n;
1964			index += n;
1965		}
1966		mtx_unlock(&swhash_mtx);
1967	}
1968}
1969
1970/*
1971 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1972 *
1973 *	This routine locates and destroys all swap metadata associated with
1974 *	an object.
1975 */
1976static void
1977swp_pager_meta_free_all(vm_object_t object)
1978{
1979	daddr_t index = 0;
1980
1981	VM_OBJECT_ASSERT_WLOCKED(object);
1982	if (object->type != OBJT_SWAP)
1983		return;
1984
1985	while (object->un_pager.swp.swp_bcount) {
1986		struct swblock **pswap;
1987		struct swblock *swap;
1988
1989		mtx_lock(&swhash_mtx);
1990		pswap = swp_pager_hash(object, index);
1991		if ((swap = *pswap) != NULL) {
1992			int i;
1993
1994			for (i = 0; i < SWAP_META_PAGES; ++i) {
1995				daddr_t v = swap->swb_pages[i];
1996				if (v != SWAPBLK_NONE) {
1997					--swap->swb_count;
1998					swp_pager_freeswapspace(v, 1);
1999				}
2000			}
2001			if (swap->swb_count != 0)
2002				panic("swap_pager_meta_free_all: swb_count != 0");
2003			*pswap = swap->swb_hnext;
2004			uma_zfree(swap_zone, swap);
2005			--object->un_pager.swp.swp_bcount;
2006		}
2007		mtx_unlock(&swhash_mtx);
2008		index += SWAP_META_PAGES;
2009	}
2010}
2011
2012/*
2013 * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2014 *
2015 *	This routine is capable of looking up, popping, or freeing
2016 *	swapblk assignments in the swap meta data or in the vm_page_t.
2017 *	The routine typically returns the swapblk being looked-up, or popped,
2018 *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2019 *	was invalid.  This routine will automatically free any invalid
2020 *	meta-data swapblks.
2021 *
2022 *	It is not possible to store invalid swapblks in the swap meta data
2023 *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2024 *
2025 *	When acting on a busy resident page and paging is in progress, we
2026 *	have to wait until paging is complete but otherwise can act on the
2027 *	busy page.
2028 *
2029 *	SWM_FREE	remove and free swap block from metadata
2030 *	SWM_POP		remove from meta data but do not free.. pop it out
2031 */
2032static daddr_t
2033swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2034{
2035	struct swblock **pswap;
2036	struct swblock *swap;
2037	daddr_t r1;
2038	int idx;
2039
2040	VM_OBJECT_ASSERT_LOCKED(object);
2041	/*
2042	 * The meta data only exists of the object is OBJT_SWAP
2043	 * and even then might not be allocated yet.
2044	 */
2045	if (object->type != OBJT_SWAP)
2046		return (SWAPBLK_NONE);
2047
2048	r1 = SWAPBLK_NONE;
2049	mtx_lock(&swhash_mtx);
2050	pswap = swp_pager_hash(object, pindex);
2051
2052	if ((swap = *pswap) != NULL) {
2053		idx = pindex & SWAP_META_MASK;
2054		r1 = swap->swb_pages[idx];
2055
2056		if (r1 != SWAPBLK_NONE) {
2057			if (flags & SWM_FREE) {
2058				swp_pager_freeswapspace(r1, 1);
2059				r1 = SWAPBLK_NONE;
2060			}
2061			if (flags & (SWM_FREE|SWM_POP)) {
2062				swap->swb_pages[idx] = SWAPBLK_NONE;
2063				if (--swap->swb_count == 0) {
2064					*pswap = swap->swb_hnext;
2065					uma_zfree(swap_zone, swap);
2066					--object->un_pager.swp.swp_bcount;
2067				}
2068			}
2069		}
2070	}
2071	mtx_unlock(&swhash_mtx);
2072	return (r1);
2073}
2074
2075/*
2076 * System call swapon(name) enables swapping on device name,
2077 * which must be in the swdevsw.  Return EBUSY
2078 * if already swapping on this device.
2079 */
2080#ifndef _SYS_SYSPROTO_H_
2081struct swapon_args {
2082	char *name;
2083};
2084#endif
2085
2086/*
2087 * MPSAFE
2088 */
2089/* ARGSUSED */
2090int
2091sys_swapon(struct thread *td, struct swapon_args *uap)
2092{
2093	struct vattr attr;
2094	struct vnode *vp;
2095	struct nameidata nd;
2096	int error;
2097
2098	error = priv_check(td, PRIV_SWAPON);
2099	if (error)
2100		return (error);
2101
2102	mtx_lock(&Giant);
2103	while (swdev_syscall_active)
2104	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2105	swdev_syscall_active = 1;
2106
2107	/*
2108	 * Swap metadata may not fit in the KVM if we have physical
2109	 * memory of >1GB.
2110	 */
2111	if (swap_zone == NULL) {
2112		error = ENOMEM;
2113		goto done;
2114	}
2115
2116	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2117	    uap->name, td);
2118	error = namei(&nd);
2119	if (error)
2120		goto done;
2121
2122	NDFREE(&nd, NDF_ONLY_PNBUF);
2123	vp = nd.ni_vp;
2124
2125	if (vn_isdisk(vp, &error)) {
2126		error = swapongeom(td, vp);
2127	} else if (vp->v_type == VREG &&
2128	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2129	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2130		/*
2131		 * Allow direct swapping to NFS regular files in the same
2132		 * way that nfs_mountroot() sets up diskless swapping.
2133		 */
2134		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2135	}
2136
2137	if (error)
2138		vrele(vp);
2139done:
2140	swdev_syscall_active = 0;
2141	wakeup_one(&swdev_syscall_active);
2142	mtx_unlock(&Giant);
2143	return (error);
2144}
2145
2146/*
2147 * Check that the total amount of swap currently configured does not
2148 * exceed half the theoretical maximum.  If it does, print a warning
2149 * message and return -1; otherwise, return 0.
2150 */
2151static int
2152swapon_check_swzone(unsigned long npages)
2153{
2154	unsigned long maxpages;
2155
2156	/* absolute maximum we can handle assuming 100% efficiency */
2157	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2158
2159	/* recommend using no more than half that amount */
2160	if (npages > maxpages / 2) {
2161		printf("warning: total configured swap (%lu pages) "
2162		    "exceeds maximum recommended amount (%lu pages).\n",
2163		    npages, maxpages / 2);
2164		printf("warning: increase kern.maxswzone "
2165		    "or reduce amount of swap.\n");
2166		return (-1);
2167	}
2168	return (0);
2169}
2170
2171static void
2172swaponsomething(struct vnode *vp, void *id, u_long nblks,
2173    sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2174{
2175	struct swdevt *sp, *tsp;
2176	swblk_t dvbase;
2177	u_long mblocks;
2178
2179	/*
2180	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2181	 * First chop nblks off to page-align it, then convert.
2182	 *
2183	 * sw->sw_nblks is in page-sized chunks now too.
2184	 */
2185	nblks &= ~(ctodb(1) - 1);
2186	nblks = dbtoc(nblks);
2187
2188	/*
2189	 * If we go beyond this, we get overflows in the radix
2190	 * tree bitmap code.
2191	 */
2192	mblocks = 0x40000000 / BLIST_META_RADIX;
2193	if (nblks > mblocks) {
2194		printf(
2195    "WARNING: reducing swap size to maximum of %luMB per unit\n",
2196		    mblocks / 1024 / 1024 * PAGE_SIZE);
2197		nblks = mblocks;
2198	}
2199
2200	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2201	sp->sw_vp = vp;
2202	sp->sw_id = id;
2203	sp->sw_dev = dev;
2204	sp->sw_flags = 0;
2205	sp->sw_nblks = nblks;
2206	sp->sw_used = 0;
2207	sp->sw_strategy = strategy;
2208	sp->sw_close = close;
2209	sp->sw_flags = flags;
2210
2211	sp->sw_blist = blist_create(nblks, M_WAITOK);
2212	/*
2213	 * Do not free the first two block in order to avoid overwriting
2214	 * any bsd label at the front of the partition
2215	 */
2216	blist_free(sp->sw_blist, 2, nblks - 2);
2217
2218	dvbase = 0;
2219	mtx_lock(&sw_dev_mtx);
2220	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2221		if (tsp->sw_end >= dvbase) {
2222			/*
2223			 * We put one uncovered page between the devices
2224			 * in order to definitively prevent any cross-device
2225			 * I/O requests
2226			 */
2227			dvbase = tsp->sw_end + 1;
2228		}
2229	}
2230	sp->sw_first = dvbase;
2231	sp->sw_end = dvbase + nblks;
2232	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2233	nswapdev++;
2234	swap_pager_avail += nblks;
2235	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2236	swapon_check_swzone(swap_total / PAGE_SIZE);
2237	swp_sizecheck();
2238	mtx_unlock(&sw_dev_mtx);
2239}
2240
2241/*
2242 * SYSCALL: swapoff(devname)
2243 *
2244 * Disable swapping on the given device.
2245 *
2246 * XXX: Badly designed system call: it should use a device index
2247 * rather than filename as specification.  We keep sw_vp around
2248 * only to make this work.
2249 */
2250#ifndef _SYS_SYSPROTO_H_
2251struct swapoff_args {
2252	char *name;
2253};
2254#endif
2255
2256/*
2257 * MPSAFE
2258 */
2259/* ARGSUSED */
2260int
2261sys_swapoff(struct thread *td, struct swapoff_args *uap)
2262{
2263	struct vnode *vp;
2264	struct nameidata nd;
2265	struct swdevt *sp;
2266	int error;
2267
2268	error = priv_check(td, PRIV_SWAPOFF);
2269	if (error)
2270		return (error);
2271
2272	mtx_lock(&Giant);
2273	while (swdev_syscall_active)
2274	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2275	swdev_syscall_active = 1;
2276
2277	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2278	    td);
2279	error = namei(&nd);
2280	if (error)
2281		goto done;
2282	NDFREE(&nd, NDF_ONLY_PNBUF);
2283	vp = nd.ni_vp;
2284
2285	mtx_lock(&sw_dev_mtx);
2286	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2287		if (sp->sw_vp == vp)
2288			break;
2289	}
2290	mtx_unlock(&sw_dev_mtx);
2291	if (sp == NULL) {
2292		error = EINVAL;
2293		goto done;
2294	}
2295	error = swapoff_one(sp, td->td_ucred);
2296done:
2297	swdev_syscall_active = 0;
2298	wakeup_one(&swdev_syscall_active);
2299	mtx_unlock(&Giant);
2300	return (error);
2301}
2302
2303static int
2304swapoff_one(struct swdevt *sp, struct ucred *cred)
2305{
2306	u_long nblks, dvbase;
2307#ifdef MAC
2308	int error;
2309#endif
2310
2311	mtx_assert(&Giant, MA_OWNED);
2312#ifdef MAC
2313	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2314	error = mac_system_check_swapoff(cred, sp->sw_vp);
2315	(void) VOP_UNLOCK(sp->sw_vp, 0);
2316	if (error != 0)
2317		return (error);
2318#endif
2319	nblks = sp->sw_nblks;
2320
2321	/*
2322	 * We can turn off this swap device safely only if the
2323	 * available virtual memory in the system will fit the amount
2324	 * of data we will have to page back in, plus an epsilon so
2325	 * the system doesn't become critically low on swap space.
2326	 */
2327	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2328	    nblks + nswap_lowat) {
2329		return (ENOMEM);
2330	}
2331
2332	/*
2333	 * Prevent further allocations on this device.
2334	 */
2335	mtx_lock(&sw_dev_mtx);
2336	sp->sw_flags |= SW_CLOSING;
2337	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2338		swap_pager_avail -= blist_fill(sp->sw_blist,
2339		     dvbase, dmmax);
2340	}
2341	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2342	mtx_unlock(&sw_dev_mtx);
2343
2344	/*
2345	 * Page in the contents of the device and close it.
2346	 */
2347	swap_pager_swapoff(sp);
2348
2349	sp->sw_close(curthread, sp);
2350	sp->sw_id = NULL;
2351	mtx_lock(&sw_dev_mtx);
2352	TAILQ_REMOVE(&swtailq, sp, sw_list);
2353	nswapdev--;
2354	if (nswapdev == 0) {
2355		swap_pager_full = 2;
2356		swap_pager_almost_full = 1;
2357	}
2358	if (swdevhd == sp)
2359		swdevhd = NULL;
2360	mtx_unlock(&sw_dev_mtx);
2361	blist_destroy(sp->sw_blist);
2362	free(sp, M_VMPGDATA);
2363	return (0);
2364}
2365
2366void
2367swapoff_all(void)
2368{
2369	struct swdevt *sp, *spt;
2370	const char *devname;
2371	int error;
2372
2373	mtx_lock(&Giant);
2374	while (swdev_syscall_active)
2375		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2376	swdev_syscall_active = 1;
2377
2378	mtx_lock(&sw_dev_mtx);
2379	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2380		mtx_unlock(&sw_dev_mtx);
2381		if (vn_isdisk(sp->sw_vp, NULL))
2382			devname = devtoname(sp->sw_vp->v_rdev);
2383		else
2384			devname = "[file]";
2385		error = swapoff_one(sp, thread0.td_ucred);
2386		if (error != 0) {
2387			printf("Cannot remove swap device %s (error=%d), "
2388			    "skipping.\n", devname, error);
2389		} else if (bootverbose) {
2390			printf("Swap device %s removed.\n", devname);
2391		}
2392		mtx_lock(&sw_dev_mtx);
2393	}
2394	mtx_unlock(&sw_dev_mtx);
2395
2396	swdev_syscall_active = 0;
2397	wakeup_one(&swdev_syscall_active);
2398	mtx_unlock(&Giant);
2399}
2400
2401void
2402swap_pager_status(int *total, int *used)
2403{
2404	struct swdevt *sp;
2405
2406	*total = 0;
2407	*used = 0;
2408	mtx_lock(&sw_dev_mtx);
2409	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2410		*total += sp->sw_nblks;
2411		*used += sp->sw_used;
2412	}
2413	mtx_unlock(&sw_dev_mtx);
2414}
2415
2416int
2417swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2418{
2419	struct swdevt *sp;
2420	const char *tmp_devname;
2421	int error, n;
2422
2423	n = 0;
2424	error = ENOENT;
2425	mtx_lock(&sw_dev_mtx);
2426	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2427		if (n != name) {
2428			n++;
2429			continue;
2430		}
2431		xs->xsw_version = XSWDEV_VERSION;
2432		xs->xsw_dev = sp->sw_dev;
2433		xs->xsw_flags = sp->sw_flags;
2434		xs->xsw_nblks = sp->sw_nblks;
2435		xs->xsw_used = sp->sw_used;
2436		if (devname != NULL) {
2437			if (vn_isdisk(sp->sw_vp, NULL))
2438				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2439			else
2440				tmp_devname = "[file]";
2441			strncpy(devname, tmp_devname, len);
2442		}
2443		error = 0;
2444		break;
2445	}
2446	mtx_unlock(&sw_dev_mtx);
2447	return (error);
2448}
2449
2450static int
2451sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2452{
2453	struct xswdev xs;
2454	int error;
2455
2456	if (arg2 != 1)			/* name length */
2457		return (EINVAL);
2458	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2459	if (error != 0)
2460		return (error);
2461	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2462	return (error);
2463}
2464
2465SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2466    "Number of swap devices");
2467SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2468    "Swap statistics by device");
2469
2470/*
2471 * vmspace_swap_count() - count the approximate swap usage in pages for a
2472 *			  vmspace.
2473 *
2474 *	The map must be locked.
2475 *
2476 *	Swap usage is determined by taking the proportional swap used by
2477 *	VM objects backing the VM map.  To make up for fractional losses,
2478 *	if the VM object has any swap use at all the associated map entries
2479 *	count for at least 1 swap page.
2480 */
2481long
2482vmspace_swap_count(struct vmspace *vmspace)
2483{
2484	vm_map_t map;
2485	vm_map_entry_t cur;
2486	vm_object_t object;
2487	long count, n;
2488
2489	map = &vmspace->vm_map;
2490	count = 0;
2491
2492	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2493		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2494		    (object = cur->object.vm_object) != NULL) {
2495			VM_OBJECT_WLOCK(object);
2496			if (object->type == OBJT_SWAP &&
2497			    object->un_pager.swp.swp_bcount != 0) {
2498				n = (cur->end - cur->start) / PAGE_SIZE;
2499				count += object->un_pager.swp.swp_bcount *
2500				    SWAP_META_PAGES * n / object->size + 1;
2501			}
2502			VM_OBJECT_WUNLOCK(object);
2503		}
2504	}
2505	return (count);
2506}
2507
2508/*
2509 * GEOM backend
2510 *
2511 * Swapping onto disk devices.
2512 *
2513 */
2514
2515static g_orphan_t swapgeom_orphan;
2516
2517static struct g_class g_swap_class = {
2518	.name = "SWAP",
2519	.version = G_VERSION,
2520	.orphan = swapgeom_orphan,
2521};
2522
2523DECLARE_GEOM_CLASS(g_swap_class, g_class);
2524
2525
2526static void
2527swapgeom_done(struct bio *bp2)
2528{
2529	struct buf *bp;
2530
2531	bp = bp2->bio_caller2;
2532	bp->b_ioflags = bp2->bio_flags;
2533	if (bp2->bio_error)
2534		bp->b_ioflags |= BIO_ERROR;
2535	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2536	bp->b_error = bp2->bio_error;
2537	bufdone(bp);
2538	g_destroy_bio(bp2);
2539}
2540
2541static void
2542swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2543{
2544	struct bio *bio;
2545	struct g_consumer *cp;
2546
2547	cp = sp->sw_id;
2548	if (cp == NULL) {
2549		bp->b_error = ENXIO;
2550		bp->b_ioflags |= BIO_ERROR;
2551		bufdone(bp);
2552		return;
2553	}
2554	if (bp->b_iocmd == BIO_WRITE)
2555		bio = g_new_bio();
2556	else
2557		bio = g_alloc_bio();
2558	if (bio == NULL) {
2559		bp->b_error = ENOMEM;
2560		bp->b_ioflags |= BIO_ERROR;
2561		bufdone(bp);
2562		return;
2563	}
2564
2565	bio->bio_caller2 = bp;
2566	bio->bio_cmd = bp->b_iocmd;
2567	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2568	bio->bio_length = bp->b_bcount;
2569	bio->bio_done = swapgeom_done;
2570	if ((bp->b_flags & B_UNMAPPED) != 0) {
2571		bio->bio_ma = bp->b_pages;
2572		bio->bio_data = unmapped_buf;
2573		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2574		bio->bio_ma_n = bp->b_npages;
2575		bio->bio_flags |= BIO_UNMAPPED;
2576	} else {
2577		bio->bio_data = bp->b_data;
2578		bio->bio_ma = NULL;
2579	}
2580	g_io_request(bio, cp);
2581	return;
2582}
2583
2584static void
2585swapgeom_orphan(struct g_consumer *cp)
2586{
2587	struct swdevt *sp;
2588
2589	mtx_lock(&sw_dev_mtx);
2590	TAILQ_FOREACH(sp, &swtailq, sw_list)
2591		if (sp->sw_id == cp)
2592			sp->sw_flags |= SW_CLOSING;
2593	mtx_unlock(&sw_dev_mtx);
2594}
2595
2596static void
2597swapgeom_close_ev(void *arg, int flags)
2598{
2599	struct g_consumer *cp;
2600
2601	cp = arg;
2602	g_access(cp, -1, -1, 0);
2603	g_detach(cp);
2604	g_destroy_consumer(cp);
2605}
2606
2607static void
2608swapgeom_close(struct thread *td, struct swdevt *sw)
2609{
2610
2611	/* XXX: direct call when Giant untangled */
2612	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2613}
2614
2615
2616struct swh0h0 {
2617	struct cdev *dev;
2618	struct vnode *vp;
2619	int	error;
2620};
2621
2622static void
2623swapongeom_ev(void *arg, int flags)
2624{
2625	struct swh0h0 *swh;
2626	struct g_provider *pp;
2627	struct g_consumer *cp;
2628	static struct g_geom *gp;
2629	struct swdevt *sp;
2630	u_long nblks;
2631	int error;
2632
2633	swh = arg;
2634	swh->error = 0;
2635	pp = g_dev_getprovider(swh->dev);
2636	if (pp == NULL) {
2637		swh->error = ENODEV;
2638		return;
2639	}
2640	mtx_lock(&sw_dev_mtx);
2641	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2642		cp = sp->sw_id;
2643		if (cp != NULL && cp->provider == pp) {
2644			mtx_unlock(&sw_dev_mtx);
2645			swh->error = EBUSY;
2646			return;
2647		}
2648	}
2649	mtx_unlock(&sw_dev_mtx);
2650	if (gp == NULL)
2651		gp = g_new_geomf(&g_swap_class, "swap");
2652	cp = g_new_consumer(gp);
2653	g_attach(cp, pp);
2654	/*
2655	 * XXX: Everytime you think you can improve the margin for
2656	 * footshooting, somebody depends on the ability to do so:
2657	 * savecore(8) wants to write to our swapdev so we cannot
2658	 * set an exclusive count :-(
2659	 */
2660	error = g_access(cp, 1, 1, 0);
2661	if (error) {
2662		g_detach(cp);
2663		g_destroy_consumer(cp);
2664		swh->error = error;
2665		return;
2666	}
2667	nblks = pp->mediasize / DEV_BSIZE;
2668	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2669	    swapgeom_close, dev2udev(swh->dev),
2670	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2671	swh->error = 0;
2672}
2673
2674static int
2675swapongeom(struct thread *td, struct vnode *vp)
2676{
2677	int error;
2678	struct swh0h0 swh;
2679
2680	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2681
2682	swh.dev = vp->v_rdev;
2683	swh.vp = vp;
2684	swh.error = 0;
2685	/* XXX: direct call when Giant untangled */
2686	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2687	if (!error)
2688		error = swh.error;
2689	VOP_UNLOCK(vp, 0);
2690	return (error);
2691}
2692
2693/*
2694 * VNODE backend
2695 *
2696 * This is used mainly for network filesystem (read: probably only tested
2697 * with NFS) swapfiles.
2698 *
2699 */
2700
2701static void
2702swapdev_strategy(struct buf *bp, struct swdevt *sp)
2703{
2704	struct vnode *vp2;
2705
2706	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2707
2708	vp2 = sp->sw_id;
2709	vhold(vp2);
2710	if (bp->b_iocmd == BIO_WRITE) {
2711		if (bp->b_bufobj)
2712			bufobj_wdrop(bp->b_bufobj);
2713		bufobj_wref(&vp2->v_bufobj);
2714	}
2715	if (bp->b_bufobj != &vp2->v_bufobj)
2716		bp->b_bufobj = &vp2->v_bufobj;
2717	bp->b_vp = vp2;
2718	bp->b_iooffset = dbtob(bp->b_blkno);
2719	bstrategy(bp);
2720	return;
2721}
2722
2723static void
2724swapdev_close(struct thread *td, struct swdevt *sp)
2725{
2726
2727	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2728	vrele(sp->sw_vp);
2729}
2730
2731
2732static int
2733swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2734{
2735	struct swdevt *sp;
2736	int error;
2737
2738	if (nblks == 0)
2739		return (ENXIO);
2740	mtx_lock(&sw_dev_mtx);
2741	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2742		if (sp->sw_id == vp) {
2743			mtx_unlock(&sw_dev_mtx);
2744			return (EBUSY);
2745		}
2746	}
2747	mtx_unlock(&sw_dev_mtx);
2748
2749	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2750#ifdef MAC
2751	error = mac_system_check_swapon(td->td_ucred, vp);
2752	if (error == 0)
2753#endif
2754		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2755	(void) VOP_UNLOCK(vp, 0);
2756	if (error)
2757		return (error);
2758
2759	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2760	    NODEV, 0);
2761	return (0);
2762}
2763