1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD$");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_compat.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/kernel.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/ktr.h>
113#include <sys/lock.h>
114#include <sys/msgbuf.h>
115#include <sys/malloc.h>
116#include <sys/mutex.h>
117#include <sys/proc.h>
118#include <sys/rwlock.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/systm.h>
122#include <sys/vmmeter.h>
123
124#include <sys/kdb.h>
125
126#include <dev/ofw/openfirm.h>
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/uma.h>
137
138#include <machine/_inttypes.h>
139#include <machine/cpu.h>
140#include <machine/platform.h>
141#include <machine/frame.h>
142#include <machine/md_var.h>
143#include <machine/psl.h>
144#include <machine/bat.h>
145#include <machine/hid.h>
146#include <machine/pte.h>
147#include <machine/sr.h>
148#include <machine/trap.h>
149#include <machine/mmuvar.h>
150
151#include "mmu_oea64.h"
152#include "mmu_if.h"
153#include "moea64_if.h"
154
155void moea64_release_vsid(uint64_t vsid);
156uintptr_t moea64_get_unique_vsid(void);
157
158#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159#define ENABLE_TRANS(msr)	mtmsr(msr)
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163#define	VSID_HASH_MASK		0x0000007fffffffffULL
164
165/*
166 * Locking semantics:
167 * -- Read lock: if no modifications are being made to either the PVO lists
168 *    or page table or if any modifications being made result in internal
169 *    changes (e.g. wiring, protection) such that the existence of the PVOs
170 *    is unchanged and they remain associated with the same pmap (in which
171 *    case the changes should be protected by the pmap lock)
172 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173 */
174
175#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	uint64_t om_pa;
184	cell_t	om_mode;
185};
186
187extern unsigned char _etext[];
188extern unsigned char _end[];
189
190extern int dumpsys_minidump;
191
192/*
193 * Map of physical memory regions.
194 */
195static struct	mem_region *regions;
196static struct	mem_region *pregions;
197static u_int	phys_avail_count;
198static int	regions_sz, pregions_sz;
199
200extern void bs_remap_earlyboot(void);
201
202/*
203 * Lock for the pteg and pvo tables.
204 */
205struct rwlock	moea64_table_lock;
206struct mtx	moea64_slb_mutex;
207
208/*
209 * PTEG data.
210 */
211u_int		moea64_pteg_count;
212u_int		moea64_pteg_mask;
213
214/*
215 * PVO data.
216 */
217struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
218
219uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
220uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
221
222#define	BPVO_POOL_SIZE	327680
223static struct	pvo_entry *moea64_bpvo_pool;
224static int	moea64_bpvo_pool_index = 0;
225
226#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227#ifdef __powerpc64__
228#define	NVSIDS		(NPMAPS * 16)
229#define VSID_HASHMASK	0xffffffffUL
230#else
231#define NVSIDS		NPMAPS
232#define VSID_HASHMASK	0xfffffUL
233#endif
234static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
235
236static boolean_t moea64_initialized = FALSE;
237
238/*
239 * Statistics.
240 */
241u_int	moea64_pte_valid = 0;
242u_int	moea64_pte_overflow = 0;
243u_int	moea64_pvo_entries = 0;
244u_int	moea64_pvo_enter_calls = 0;
245u_int	moea64_pvo_remove_calls = 0;
246SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
247    &moea64_pte_valid, 0, "");
248SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
249    &moea64_pte_overflow, 0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
251    &moea64_pvo_entries, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
253    &moea64_pvo_enter_calls, 0, "");
254SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
255    &moea64_pvo_remove_calls, 0, "");
256
257vm_offset_t	moea64_scratchpage_va[2];
258struct pvo_entry *moea64_scratchpage_pvo[2];
259uintptr_t	moea64_scratchpage_pte[2];
260struct	mtx	moea64_scratchpage_mtx;
261
262uint64_t 	moea64_large_page_mask = 0;
263uint64_t	moea64_large_page_size = 0;
264int		moea64_large_page_shift = 0;
265
266/*
267 * PVO calls.
268 */
269static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
270		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
271static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
272static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
273
274/*
275 * Utility routines.
276 */
277static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279static void		moea64_kremove(mmu_t, vm_offset_t);
280static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281			    vm_offset_t pa, vm_size_t sz);
282
283/*
284 * Kernel MMU interface
285 */
286void moea64_clear_modify(mmu_t, vm_page_t);
287void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
288void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
289    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
290int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
291    u_int flags, int8_t psind);
292void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
293    vm_prot_t);
294void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
295vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
296vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
297void moea64_init(mmu_t);
298boolean_t moea64_is_modified(mmu_t, vm_page_t);
299boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
300boolean_t moea64_is_referenced(mmu_t, vm_page_t);
301int moea64_ts_referenced(mmu_t, vm_page_t);
302vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
303boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
304int moea64_page_wired_mappings(mmu_t, vm_page_t);
305void moea64_pinit(mmu_t, pmap_t);
306void moea64_pinit0(mmu_t, pmap_t);
307void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
308void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
309void moea64_qremove(mmu_t, vm_offset_t, int);
310void moea64_release(mmu_t, pmap_t);
311void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
312void moea64_remove_pages(mmu_t, pmap_t);
313void moea64_remove_all(mmu_t, vm_page_t);
314void moea64_remove_write(mmu_t, vm_page_t);
315void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316void moea64_zero_page(mmu_t, vm_page_t);
317void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
318void moea64_zero_page_idle(mmu_t, vm_page_t);
319void moea64_activate(mmu_t, struct thread *);
320void moea64_deactivate(mmu_t, struct thread *);
321void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
322void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
323void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
324vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
325void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
326void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
327void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
328boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
329static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
330vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
331    vm_size_t *sz);
332struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
333
334static mmu_method_t moea64_methods[] = {
335	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
336	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
337	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
338	MMUMETHOD(mmu_enter,		moea64_enter),
339	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
340	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
341	MMUMETHOD(mmu_extract,		moea64_extract),
342	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
343	MMUMETHOD(mmu_init,		moea64_init),
344	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
348	MMUMETHOD(mmu_map,     		moea64_map),
349	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
350	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
351	MMUMETHOD(mmu_pinit,		moea64_pinit),
352	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
353	MMUMETHOD(mmu_protect,		moea64_protect),
354	MMUMETHOD(mmu_qenter,		moea64_qenter),
355	MMUMETHOD(mmu_qremove,		moea64_qremove),
356	MMUMETHOD(mmu_release,		moea64_release),
357	MMUMETHOD(mmu_remove,		moea64_remove),
358	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
359	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
360	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
361	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
362	MMUMETHOD(mmu_unwire,		moea64_unwire),
363	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
364	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
365	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
366	MMUMETHOD(mmu_activate,		moea64_activate),
367	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
368	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
369
370	/* Internal interfaces */
371	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
372	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
373	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
374	MMUMETHOD(mmu_kextract,		moea64_kextract),
375	MMUMETHOD(mmu_kenter,		moea64_kenter),
376	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
377	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
378	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
379	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
380
381	{ 0, 0 }
382};
383
384MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
385
386static __inline u_int
387va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
388{
389	uint64_t hash;
390	int shift;
391
392	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
393	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
394	    shift);
395	return (hash & moea64_pteg_mask);
396}
397
398static __inline struct pvo_head *
399vm_page_to_pvoh(vm_page_t m)
400{
401
402	return (&m->md.mdpg_pvoh);
403}
404
405static __inline void
406moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
407    uint64_t pte_lo, int flags)
408{
409
410	/*
411	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
412	 * set when the real pte is set in memory.
413	 *
414	 * Note: Don't set the valid bit for correct operation of tlb update.
415	 */
416	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
417	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
418
419	if (flags & PVO_LARGE)
420		pt->pte_hi |= LPTE_BIG;
421
422	pt->pte_lo = pte_lo;
423}
424
425static __inline uint64_t
426moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
427{
428	uint64_t pte_lo;
429	int i;
430
431	if (ma != VM_MEMATTR_DEFAULT) {
432		switch (ma) {
433		case VM_MEMATTR_UNCACHEABLE:
434			return (LPTE_I | LPTE_G);
435		case VM_MEMATTR_WRITE_COMBINING:
436		case VM_MEMATTR_WRITE_BACK:
437		case VM_MEMATTR_PREFETCHABLE:
438			return (LPTE_I);
439		case VM_MEMATTR_WRITE_THROUGH:
440			return (LPTE_W | LPTE_M);
441		}
442	}
443
444	/*
445	 * Assume the page is cache inhibited and access is guarded unless
446	 * it's in our available memory array.
447	 */
448	pte_lo = LPTE_I | LPTE_G;
449	for (i = 0; i < pregions_sz; i++) {
450		if ((pa >= pregions[i].mr_start) &&
451		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
452			pte_lo &= ~(LPTE_I | LPTE_G);
453			pte_lo |= LPTE_M;
454			break;
455		}
456	}
457
458	return pte_lo;
459}
460
461/*
462 * Quick sort callout for comparing memory regions.
463 */
464static int	om_cmp(const void *a, const void *b);
465
466static int
467om_cmp(const void *a, const void *b)
468{
469	const struct	ofw_map *mapa;
470	const struct	ofw_map *mapb;
471
472	mapa = a;
473	mapb = b;
474	if (mapa->om_pa < mapb->om_pa)
475		return (-1);
476	else if (mapa->om_pa > mapb->om_pa)
477		return (1);
478	else
479		return (0);
480}
481
482static void
483moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
484{
485	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
486	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
487	register_t	msr;
488	vm_offset_t	off;
489	vm_paddr_t	pa_base;
490	int		i, j;
491
492	bzero(translations, sz);
493	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
494	    sizeof(acells));
495	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
496		panic("moea64_bootstrap: can't get ofw translations");
497
498	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
499	sz /= sizeof(cell_t);
500	for (i = 0, j = 0; i < sz; j++) {
501		translations[j].om_va = trans_cells[i++];
502		translations[j].om_len = trans_cells[i++];
503		translations[j].om_pa = trans_cells[i++];
504		if (acells == 2) {
505			translations[j].om_pa <<= 32;
506			translations[j].om_pa |= trans_cells[i++];
507		}
508		translations[j].om_mode = trans_cells[i++];
509	}
510	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
511	    i, sz));
512
513	sz = j;
514	qsort(translations, sz, sizeof (*translations), om_cmp);
515
516	for (i = 0; i < sz; i++) {
517		pa_base = translations[i].om_pa;
518	      #ifndef __powerpc64__
519		if ((translations[i].om_pa >> 32) != 0)
520			panic("OFW translations above 32-bit boundary!");
521	      #endif
522
523		if (pa_base % PAGE_SIZE)
524			panic("OFW translation not page-aligned (phys)!");
525		if (translations[i].om_va % PAGE_SIZE)
526			panic("OFW translation not page-aligned (virt)!");
527
528		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
529		    pa_base, translations[i].om_va, translations[i].om_len);
530
531		/* Now enter the pages for this mapping */
532
533		DISABLE_TRANS(msr);
534		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
535			if (moea64_pvo_find_va(kernel_pmap,
536			    translations[i].om_va + off) != NULL)
537				continue;
538
539			moea64_kenter(mmup, translations[i].om_va + off,
540			    pa_base + off);
541		}
542		ENABLE_TRANS(msr);
543	}
544}
545
546#ifdef __powerpc64__
547static void
548moea64_probe_large_page(void)
549{
550	uint16_t pvr = mfpvr() >> 16;
551
552	switch (pvr) {
553	case IBM970:
554	case IBM970FX:
555	case IBM970MP:
556		powerpc_sync(); isync();
557		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
558		powerpc_sync(); isync();
559
560		/* FALLTHROUGH */
561	default:
562		moea64_large_page_size = 0x1000000; /* 16 MB */
563		moea64_large_page_shift = 24;
564	}
565
566	moea64_large_page_mask = moea64_large_page_size - 1;
567}
568
569static void
570moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
571{
572	struct slb *cache;
573	struct slb entry;
574	uint64_t esid, slbe;
575	uint64_t i;
576
577	cache = PCPU_GET(slb);
578	esid = va >> ADDR_SR_SHFT;
579	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
580
581	for (i = 0; i < 64; i++) {
582		if (cache[i].slbe == (slbe | i))
583			return;
584	}
585
586	entry.slbe = slbe;
587	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
588	if (large)
589		entry.slbv |= SLBV_L;
590
591	slb_insert_kernel(entry.slbe, entry.slbv);
592}
593#endif
594
595static void
596moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
597    vm_offset_t kernelend)
598{
599	register_t msr;
600	vm_paddr_t pa;
601	vm_offset_t size, off;
602	uint64_t pte_lo;
603	int i;
604
605	if (moea64_large_page_size == 0)
606		hw_direct_map = 0;
607
608	DISABLE_TRANS(msr);
609	if (hw_direct_map) {
610		LOCK_TABLE_WR();
611		PMAP_LOCK(kernel_pmap);
612		for (i = 0; i < pregions_sz; i++) {
613		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
614		     pregions[i].mr_size; pa += moea64_large_page_size) {
615			pte_lo = LPTE_M;
616
617			/*
618			 * Set memory access as guarded if prefetch within
619			 * the page could exit the available physmem area.
620			 */
621			if (pa & moea64_large_page_mask) {
622				pa &= moea64_large_page_mask;
623				pte_lo |= LPTE_G;
624			}
625			if (pa + moea64_large_page_size >
626			    pregions[i].mr_start + pregions[i].mr_size)
627				pte_lo |= LPTE_G;
628
629			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
630				    NULL, pa, pa, pte_lo,
631				    PVO_WIRED | PVO_LARGE, 0);
632		  }
633		}
634		PMAP_UNLOCK(kernel_pmap);
635		UNLOCK_TABLE_WR();
636	} else {
637		size = sizeof(struct pvo_head) * moea64_pteg_count;
638		off = (vm_offset_t)(moea64_pvo_table);
639		for (pa = off; pa < off + size; pa += PAGE_SIZE)
640			moea64_kenter(mmup, pa, pa);
641		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
642		off = (vm_offset_t)(moea64_bpvo_pool);
643		for (pa = off; pa < off + size; pa += PAGE_SIZE)
644		moea64_kenter(mmup, pa, pa);
645
646		/*
647		 * Map certain important things, like ourselves.
648		 *
649		 * NOTE: We do not map the exception vector space. That code is
650		 * used only in real mode, and leaving it unmapped allows us to
651		 * catch NULL pointer deferences, instead of making NULL a valid
652		 * address.
653		 */
654
655		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
656		    pa += PAGE_SIZE)
657			moea64_kenter(mmup, pa, pa);
658	}
659	ENABLE_TRANS(msr);
660
661	/*
662	 * Allow user to override unmapped_buf_allowed for testing.
663	 * XXXKIB Only direct map implementation was tested.
664	 */
665	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
666	    &unmapped_buf_allowed))
667		unmapped_buf_allowed = hw_direct_map;
668}
669
670void
671moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
672{
673	int		i, j;
674	vm_size_t	physsz, hwphyssz;
675
676#ifndef __powerpc64__
677	/* We don't have a direct map since there is no BAT */
678	hw_direct_map = 0;
679
680	/* Make sure battable is zero, since we have no BAT */
681	for (i = 0; i < 16; i++) {
682		battable[i].batu = 0;
683		battable[i].batl = 0;
684	}
685#else
686	moea64_probe_large_page();
687
688	/* Use a direct map if we have large page support */
689	if (moea64_large_page_size > 0)
690		hw_direct_map = 1;
691	else
692		hw_direct_map = 0;
693#endif
694
695	/* Get physical memory regions from firmware */
696	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
697	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
698
699	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
700		panic("moea64_bootstrap: phys_avail too small");
701
702	phys_avail_count = 0;
703	physsz = 0;
704	hwphyssz = 0;
705	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
706	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
707		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
708		    regions[i].mr_start, regions[i].mr_start +
709		    regions[i].mr_size, regions[i].mr_size);
710		if (hwphyssz != 0 &&
711		    (physsz + regions[i].mr_size) >= hwphyssz) {
712			if (physsz < hwphyssz) {
713				phys_avail[j] = regions[i].mr_start;
714				phys_avail[j + 1] = regions[i].mr_start +
715				    hwphyssz - physsz;
716				physsz = hwphyssz;
717				phys_avail_count++;
718			}
719			break;
720		}
721		phys_avail[j] = regions[i].mr_start;
722		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
723		phys_avail_count++;
724		physsz += regions[i].mr_size;
725	}
726
727	/* Check for overlap with the kernel and exception vectors */
728	for (j = 0; j < 2*phys_avail_count; j+=2) {
729		if (phys_avail[j] < EXC_LAST)
730			phys_avail[j] += EXC_LAST;
731
732		if (kernelstart >= phys_avail[j] &&
733		    kernelstart < phys_avail[j+1]) {
734			if (kernelend < phys_avail[j+1]) {
735				phys_avail[2*phys_avail_count] =
736				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
737				phys_avail[2*phys_avail_count + 1] =
738				    phys_avail[j+1];
739				phys_avail_count++;
740			}
741
742			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
743		}
744
745		if (kernelend >= phys_avail[j] &&
746		    kernelend < phys_avail[j+1]) {
747			if (kernelstart > phys_avail[j]) {
748				phys_avail[2*phys_avail_count] = phys_avail[j];
749				phys_avail[2*phys_avail_count + 1] =
750				    kernelstart & ~PAGE_MASK;
751				phys_avail_count++;
752			}
753
754			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
755		}
756	}
757
758	physmem = btoc(physsz);
759
760#ifdef PTEGCOUNT
761	moea64_pteg_count = PTEGCOUNT;
762#else
763	moea64_pteg_count = 0x1000;
764
765	while (moea64_pteg_count < physmem)
766		moea64_pteg_count <<= 1;
767
768	moea64_pteg_count >>= 1;
769#endif /* PTEGCOUNT */
770}
771
772void
773moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
774{
775	vm_size_t	size;
776	register_t	msr;
777	int		i;
778
779	/*
780	 * Set PTEG mask
781	 */
782	moea64_pteg_mask = moea64_pteg_count - 1;
783
784	/*
785	 * Allocate pv/overflow lists.
786	 */
787	size = sizeof(struct pvo_head) * moea64_pteg_count;
788
789	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
790	    PAGE_SIZE);
791	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
792
793	DISABLE_TRANS(msr);
794	for (i = 0; i < moea64_pteg_count; i++)
795		LIST_INIT(&moea64_pvo_table[i]);
796	ENABLE_TRANS(msr);
797
798	/*
799	 * Initialize the lock that synchronizes access to the pteg and pvo
800	 * tables.
801	 */
802	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
803	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
804
805	/*
806	 * Initialise the unmanaged pvo pool.
807	 */
808	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
809		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
810	moea64_bpvo_pool_index = 0;
811
812	/*
813	 * Make sure kernel vsid is allocated as well as VSID 0.
814	 */
815	#ifndef __powerpc64__
816	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
817		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
818	moea64_vsid_bitmap[0] |= 1;
819	#endif
820
821	/*
822	 * Initialize the kernel pmap (which is statically allocated).
823	 */
824	#ifdef __powerpc64__
825	for (i = 0; i < 64; i++) {
826		pcpup->pc_slb[i].slbv = 0;
827		pcpup->pc_slb[i].slbe = 0;
828	}
829	#else
830	for (i = 0; i < 16; i++)
831		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
832	#endif
833
834	kernel_pmap->pmap_phys = kernel_pmap;
835	CPU_FILL(&kernel_pmap->pm_active);
836	RB_INIT(&kernel_pmap->pmap_pvo);
837
838	PMAP_LOCK_INIT(kernel_pmap);
839
840	/*
841	 * Now map in all the other buffers we allocated earlier
842	 */
843
844	moea64_setup_direct_map(mmup, kernelstart, kernelend);
845}
846
847void
848moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
849{
850	ihandle_t	mmui;
851	phandle_t	chosen;
852	phandle_t	mmu;
853	size_t		sz;
854	int		i;
855	vm_offset_t	pa, va;
856	void		*dpcpu;
857
858	/*
859	 * Set up the Open Firmware pmap and add its mappings if not in real
860	 * mode.
861	 */
862
863	chosen = OF_finddevice("/chosen");
864	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
865	    mmu = OF_instance_to_package(mmui);
866	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
867		sz = 0;
868	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
869		panic("moea64_bootstrap: too many ofw translations");
870
871	    if (sz > 0)
872		moea64_add_ofw_mappings(mmup, mmu, sz);
873	}
874
875	/*
876	 * Calculate the last available physical address.
877	 */
878	for (i = 0; phys_avail[i + 2] != 0; i += 2)
879		;
880	Maxmem = powerpc_btop(phys_avail[i + 1]);
881
882	/*
883	 * Initialize MMU and remap early physical mappings
884	 */
885	MMU_CPU_BOOTSTRAP(mmup,0);
886	mtmsr(mfmsr() | PSL_DR | PSL_IR);
887	pmap_bootstrapped++;
888	bs_remap_earlyboot();
889
890	/*
891	 * Set the start and end of kva.
892	 */
893	virtual_avail = VM_MIN_KERNEL_ADDRESS;
894	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
895
896	/*
897	 * Map the entire KVA range into the SLB. We must not fault there.
898	 */
899	#ifdef __powerpc64__
900	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
901		moea64_bootstrap_slb_prefault(va, 0);
902	#endif
903
904	/*
905	 * Figure out how far we can extend virtual_end into segment 16
906	 * without running into existing mappings. Segment 16 is guaranteed
907	 * to contain neither RAM nor devices (at least on Apple hardware),
908	 * but will generally contain some OFW mappings we should not
909	 * step on.
910	 */
911
912	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
913	PMAP_LOCK(kernel_pmap);
914	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
915	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
916		virtual_end += PAGE_SIZE;
917	PMAP_UNLOCK(kernel_pmap);
918	#endif
919
920	/*
921	 * Allocate a kernel stack with a guard page for thread0 and map it
922	 * into the kernel page map.
923	 */
924	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
925	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
926	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
927	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
928	thread0.td_kstack = va;
929	thread0.td_kstack_pages = KSTACK_PAGES;
930	for (i = 0; i < KSTACK_PAGES; i++) {
931		moea64_kenter(mmup, va, pa);
932		pa += PAGE_SIZE;
933		va += PAGE_SIZE;
934	}
935
936	/*
937	 * Allocate virtual address space for the message buffer.
938	 */
939	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
940	msgbufp = (struct msgbuf *)virtual_avail;
941	va = virtual_avail;
942	virtual_avail += round_page(msgbufsize);
943	while (va < virtual_avail) {
944		moea64_kenter(mmup, va, pa);
945		pa += PAGE_SIZE;
946		va += PAGE_SIZE;
947	}
948
949	/*
950	 * Allocate virtual address space for the dynamic percpu area.
951	 */
952	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
953	dpcpu = (void *)virtual_avail;
954	va = virtual_avail;
955	virtual_avail += DPCPU_SIZE;
956	while (va < virtual_avail) {
957		moea64_kenter(mmup, va, pa);
958		pa += PAGE_SIZE;
959		va += PAGE_SIZE;
960	}
961	dpcpu_init(dpcpu, 0);
962
963	/*
964	 * Allocate some things for page zeroing. We put this directly
965	 * in the page table, marked with LPTE_LOCKED, to avoid any
966	 * of the PVO book-keeping or other parts of the VM system
967	 * from even knowing that this hack exists.
968	 */
969
970	if (!hw_direct_map) {
971		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
972		    MTX_DEF);
973		for (i = 0; i < 2; i++) {
974			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
975			virtual_end -= PAGE_SIZE;
976
977			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
978
979			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
980			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
981			LOCK_TABLE_RD();
982			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
983			    mmup, moea64_scratchpage_pvo[i]);
984			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
985			    |= LPTE_LOCKED;
986			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
987			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
988			    moea64_scratchpage_pvo[i]->pvo_vpn);
989			UNLOCK_TABLE_RD();
990		}
991	}
992}
993
994/*
995 * Activate a user pmap.  The pmap must be activated before its address
996 * space can be accessed in any way.
997 */
998void
999moea64_activate(mmu_t mmu, struct thread *td)
1000{
1001	pmap_t	pm;
1002
1003	pm = &td->td_proc->p_vmspace->vm_pmap;
1004	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1005
1006	#ifdef __powerpc64__
1007	PCPU_SET(userslb, pm->pm_slb);
1008	#else
1009	PCPU_SET(curpmap, pm->pmap_phys);
1010	#endif
1011}
1012
1013void
1014moea64_deactivate(mmu_t mmu, struct thread *td)
1015{
1016	pmap_t	pm;
1017
1018	pm = &td->td_proc->p_vmspace->vm_pmap;
1019	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1020	#ifdef __powerpc64__
1021	PCPU_SET(userslb, NULL);
1022	#else
1023	PCPU_SET(curpmap, NULL);
1024	#endif
1025}
1026
1027void
1028moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1029{
1030	struct	pvo_entry key, *pvo;
1031	uintptr_t pt;
1032
1033	LOCK_TABLE_RD();
1034	PMAP_LOCK(pm);
1035	key.pvo_vaddr = sva;
1036	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1037	    pvo != NULL && PVO_VADDR(pvo) < eva;
1038	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1039		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1040		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1041			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1042			    pvo);
1043		pvo->pvo_vaddr &= ~PVO_WIRED;
1044		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1045			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1046			    &pvo->pvo_pte.lpte);
1047		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1048		if (pt != -1) {
1049			/*
1050			 * The PTE's wired attribute is not a hardware
1051			 * feature, so there is no need to invalidate any TLB
1052			 * entries.
1053			 */
1054			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1055			    pvo->pvo_vpn);
1056		}
1057		pm->pm_stats.wired_count--;
1058	}
1059	UNLOCK_TABLE_RD();
1060	PMAP_UNLOCK(pm);
1061}
1062
1063/*
1064 * This goes through and sets the physical address of our
1065 * special scratch PTE to the PA we want to zero or copy. Because
1066 * of locking issues (this can get called in pvo_enter() by
1067 * the UMA allocator), we can't use most other utility functions here
1068 */
1069
1070static __inline
1071void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1072
1073	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1074	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1075
1076	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1077	    ~(LPTE_WIMG | LPTE_RPGN);
1078	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1079	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1080	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1081	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1082	    moea64_scratchpage_pvo[which]->pvo_vpn);
1083	isync();
1084}
1085
1086void
1087moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1088{
1089	vm_offset_t	dst;
1090	vm_offset_t	src;
1091
1092	dst = VM_PAGE_TO_PHYS(mdst);
1093	src = VM_PAGE_TO_PHYS(msrc);
1094
1095	if (hw_direct_map) {
1096		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1097	} else {
1098		mtx_lock(&moea64_scratchpage_mtx);
1099
1100		moea64_set_scratchpage_pa(mmu, 0, src);
1101		moea64_set_scratchpage_pa(mmu, 1, dst);
1102
1103		bcopy((void *)moea64_scratchpage_va[0],
1104		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1105
1106		mtx_unlock(&moea64_scratchpage_mtx);
1107	}
1108}
1109
1110static inline void
1111moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1112    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1113{
1114	void *a_cp, *b_cp;
1115	vm_offset_t a_pg_offset, b_pg_offset;
1116	int cnt;
1117
1118	while (xfersize > 0) {
1119		a_pg_offset = a_offset & PAGE_MASK;
1120		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1121		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1122		    a_pg_offset;
1123		b_pg_offset = b_offset & PAGE_MASK;
1124		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1125		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1126		    b_pg_offset;
1127		bcopy(a_cp, b_cp, cnt);
1128		a_offset += cnt;
1129		b_offset += cnt;
1130		xfersize -= cnt;
1131	}
1132}
1133
1134static inline void
1135moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1136    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1137{
1138	void *a_cp, *b_cp;
1139	vm_offset_t a_pg_offset, b_pg_offset;
1140	int cnt;
1141
1142	mtx_lock(&moea64_scratchpage_mtx);
1143	while (xfersize > 0) {
1144		a_pg_offset = a_offset & PAGE_MASK;
1145		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1146		moea64_set_scratchpage_pa(mmu, 0,
1147		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1148		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1149		b_pg_offset = b_offset & PAGE_MASK;
1150		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1151		moea64_set_scratchpage_pa(mmu, 1,
1152		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1153		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1154		bcopy(a_cp, b_cp, cnt);
1155		a_offset += cnt;
1156		b_offset += cnt;
1157		xfersize -= cnt;
1158	}
1159	mtx_unlock(&moea64_scratchpage_mtx);
1160}
1161
1162void
1163moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1164    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1165{
1166
1167	if (hw_direct_map) {
1168		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1169		    xfersize);
1170	} else {
1171		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1172		    xfersize);
1173	}
1174}
1175
1176void
1177moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1178{
1179	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1180
1181	if (size + off > PAGE_SIZE)
1182		panic("moea64_zero_page: size + off > PAGE_SIZE");
1183
1184	if (hw_direct_map) {
1185		bzero((caddr_t)pa + off, size);
1186	} else {
1187		mtx_lock(&moea64_scratchpage_mtx);
1188		moea64_set_scratchpage_pa(mmu, 0, pa);
1189		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1190		mtx_unlock(&moea64_scratchpage_mtx);
1191	}
1192}
1193
1194/*
1195 * Zero a page of physical memory by temporarily mapping it
1196 */
1197void
1198moea64_zero_page(mmu_t mmu, vm_page_t m)
1199{
1200	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1201	vm_offset_t va, off;
1202
1203	if (!hw_direct_map) {
1204		mtx_lock(&moea64_scratchpage_mtx);
1205
1206		moea64_set_scratchpage_pa(mmu, 0, pa);
1207		va = moea64_scratchpage_va[0];
1208	} else {
1209		va = pa;
1210	}
1211
1212	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1213		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1214
1215	if (!hw_direct_map)
1216		mtx_unlock(&moea64_scratchpage_mtx);
1217}
1218
1219void
1220moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1221{
1222
1223	moea64_zero_page(mmu, m);
1224}
1225
1226/*
1227 * Map the given physical page at the specified virtual address in the
1228 * target pmap with the protection requested.  If specified the page
1229 * will be wired down.
1230 */
1231
1232int
1233moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1234    vm_prot_t prot, u_int flags, int8_t psind)
1235{
1236	struct		pvo_head *pvo_head;
1237	uma_zone_t	zone;
1238	vm_page_t	pg;
1239	uint64_t	pte_lo;
1240	u_int		pvo_flags;
1241	int		error;
1242
1243	if (!moea64_initialized) {
1244		pvo_head = NULL;
1245		pg = NULL;
1246		zone = moea64_upvo_zone;
1247		pvo_flags = 0;
1248	} else {
1249		pvo_head = vm_page_to_pvoh(m);
1250		pg = m;
1251		zone = moea64_mpvo_zone;
1252		pvo_flags = PVO_MANAGED;
1253	}
1254
1255	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1256		VM_OBJECT_ASSERT_LOCKED(m->object);
1257
1258	/* XXX change the pvo head for fake pages */
1259	if ((m->oflags & VPO_UNMANAGED) != 0) {
1260		pvo_flags &= ~PVO_MANAGED;
1261		pvo_head = NULL;
1262		zone = moea64_upvo_zone;
1263	}
1264
1265	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1266
1267	if (prot & VM_PROT_WRITE) {
1268		pte_lo |= LPTE_BW;
1269		if (pmap_bootstrapped &&
1270		    (m->oflags & VPO_UNMANAGED) == 0)
1271			vm_page_aflag_set(m, PGA_WRITEABLE);
1272	} else
1273		pte_lo |= LPTE_BR;
1274
1275	if ((prot & VM_PROT_EXECUTE) == 0)
1276		pte_lo |= LPTE_NOEXEC;
1277
1278	if ((flags & PMAP_ENTER_WIRED) != 0)
1279		pvo_flags |= PVO_WIRED;
1280
1281	for (;;) {
1282		LOCK_TABLE_WR();
1283		PMAP_LOCK(pmap);
1284		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1285		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1286		PMAP_UNLOCK(pmap);
1287		UNLOCK_TABLE_WR();
1288		if (error != ENOMEM)
1289			break;
1290		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1291			return (KERN_RESOURCE_SHORTAGE);
1292		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1293		VM_WAIT;
1294	}
1295
1296	/*
1297	 * Flush the page from the instruction cache if this page is
1298	 * mapped executable and cacheable.
1299	 */
1300	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1301	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1302		vm_page_aflag_set(m, PGA_EXECUTABLE);
1303		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1304	}
1305	return (KERN_SUCCESS);
1306}
1307
1308static void
1309moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1310    vm_size_t sz)
1311{
1312
1313	/*
1314	 * This is much trickier than on older systems because
1315	 * we can't sync the icache on physical addresses directly
1316	 * without a direct map. Instead we check a couple of cases
1317	 * where the memory is already mapped in and, failing that,
1318	 * use the same trick we use for page zeroing to create
1319	 * a temporary mapping for this physical address.
1320	 */
1321
1322	if (!pmap_bootstrapped) {
1323		/*
1324		 * If PMAP is not bootstrapped, we are likely to be
1325		 * in real mode.
1326		 */
1327		__syncicache((void *)pa, sz);
1328	} else if (pmap == kernel_pmap) {
1329		__syncicache((void *)va, sz);
1330	} else if (hw_direct_map) {
1331		__syncicache((void *)pa, sz);
1332	} else {
1333		/* Use the scratch page to set up a temp mapping */
1334
1335		mtx_lock(&moea64_scratchpage_mtx);
1336
1337		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1338		__syncicache((void *)(moea64_scratchpage_va[1] +
1339		    (va & ADDR_POFF)), sz);
1340
1341		mtx_unlock(&moea64_scratchpage_mtx);
1342	}
1343}
1344
1345/*
1346 * Maps a sequence of resident pages belonging to the same object.
1347 * The sequence begins with the given page m_start.  This page is
1348 * mapped at the given virtual address start.  Each subsequent page is
1349 * mapped at a virtual address that is offset from start by the same
1350 * amount as the page is offset from m_start within the object.  The
1351 * last page in the sequence is the page with the largest offset from
1352 * m_start that can be mapped at a virtual address less than the given
1353 * virtual address end.  Not every virtual page between start and end
1354 * is mapped; only those for which a resident page exists with the
1355 * corresponding offset from m_start are mapped.
1356 */
1357void
1358moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1359    vm_page_t m_start, vm_prot_t prot)
1360{
1361	vm_page_t m;
1362	vm_pindex_t diff, psize;
1363
1364	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1365
1366	psize = atop(end - start);
1367	m = m_start;
1368	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1369		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1370		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1371		m = TAILQ_NEXT(m, listq);
1372	}
1373}
1374
1375void
1376moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1377    vm_prot_t prot)
1378{
1379
1380	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1381	    PMAP_ENTER_NOSLEEP, 0);
1382}
1383
1384vm_paddr_t
1385moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1386{
1387	struct	pvo_entry *pvo;
1388	vm_paddr_t pa;
1389
1390	PMAP_LOCK(pm);
1391	pvo = moea64_pvo_find_va(pm, va);
1392	if (pvo == NULL)
1393		pa = 0;
1394	else
1395		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1396		    (va - PVO_VADDR(pvo));
1397	PMAP_UNLOCK(pm);
1398	return (pa);
1399}
1400
1401/*
1402 * Atomically extract and hold the physical page with the given
1403 * pmap and virtual address pair if that mapping permits the given
1404 * protection.
1405 */
1406vm_page_t
1407moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1408{
1409	struct	pvo_entry *pvo;
1410	vm_page_t m;
1411        vm_paddr_t pa;
1412
1413	m = NULL;
1414	pa = 0;
1415	PMAP_LOCK(pmap);
1416retry:
1417	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1418	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1419	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1420	     (prot & VM_PROT_WRITE) == 0)) {
1421		if (vm_page_pa_tryrelock(pmap,
1422			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1423			goto retry;
1424		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1425		vm_page_hold(m);
1426	}
1427	PA_UNLOCK_COND(pa);
1428	PMAP_UNLOCK(pmap);
1429	return (m);
1430}
1431
1432static mmu_t installed_mmu;
1433
1434static void *
1435moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1436{
1437	/*
1438	 * This entire routine is a horrible hack to avoid bothering kmem
1439	 * for new KVA addresses. Because this can get called from inside
1440	 * kmem allocation routines, calling kmem for a new address here
1441	 * can lead to multiply locking non-recursive mutexes.
1442	 */
1443        vm_offset_t va;
1444
1445        vm_page_t m;
1446        int pflags, needed_lock;
1447
1448	*flags = UMA_SLAB_PRIV;
1449	needed_lock = !PMAP_LOCKED(kernel_pmap);
1450	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1451
1452        for (;;) {
1453                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1454                if (m == NULL) {
1455                        if (wait & M_NOWAIT)
1456                                return (NULL);
1457                        VM_WAIT;
1458                } else
1459                        break;
1460        }
1461
1462	va = VM_PAGE_TO_PHYS(m);
1463
1464	LOCK_TABLE_WR();
1465	if (needed_lock)
1466		PMAP_LOCK(kernel_pmap);
1467
1468	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1469	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1470	    0);
1471
1472	if (needed_lock)
1473		PMAP_UNLOCK(kernel_pmap);
1474	UNLOCK_TABLE_WR();
1475
1476	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1477                bzero((void *)va, PAGE_SIZE);
1478
1479	return (void *)va;
1480}
1481
1482extern int elf32_nxstack;
1483
1484void
1485moea64_init(mmu_t mmu)
1486{
1487
1488	CTR0(KTR_PMAP, "moea64_init");
1489
1490	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1491	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1492	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1493	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1494	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1495	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1496
1497	if (!hw_direct_map) {
1498		installed_mmu = mmu;
1499		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1500		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1501	}
1502
1503#ifdef COMPAT_FREEBSD32
1504	elf32_nxstack = 1;
1505#endif
1506
1507	moea64_initialized = TRUE;
1508}
1509
1510boolean_t
1511moea64_is_referenced(mmu_t mmu, vm_page_t m)
1512{
1513
1514	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1515	    ("moea64_is_referenced: page %p is not managed", m));
1516	return (moea64_query_bit(mmu, m, PTE_REF));
1517}
1518
1519boolean_t
1520moea64_is_modified(mmu_t mmu, vm_page_t m)
1521{
1522
1523	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1524	    ("moea64_is_modified: page %p is not managed", m));
1525
1526	/*
1527	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1528	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1529	 * is clear, no PTEs can have LPTE_CHG set.
1530	 */
1531	VM_OBJECT_ASSERT_LOCKED(m->object);
1532	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1533		return (FALSE);
1534	return (moea64_query_bit(mmu, m, LPTE_CHG));
1535}
1536
1537boolean_t
1538moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1539{
1540	struct pvo_entry *pvo;
1541	boolean_t rv;
1542
1543	PMAP_LOCK(pmap);
1544	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1545	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1546	PMAP_UNLOCK(pmap);
1547	return (rv);
1548}
1549
1550void
1551moea64_clear_modify(mmu_t mmu, vm_page_t m)
1552{
1553
1554	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1555	    ("moea64_clear_modify: page %p is not managed", m));
1556	VM_OBJECT_ASSERT_WLOCKED(m->object);
1557	KASSERT(!vm_page_xbusied(m),
1558	    ("moea64_clear_modify: page %p is exclusive busied", m));
1559
1560	/*
1561	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1562	 * set.  If the object containing the page is locked and the page is
1563	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1564	 */
1565	if ((m->aflags & PGA_WRITEABLE) == 0)
1566		return;
1567	moea64_clear_bit(mmu, m, LPTE_CHG);
1568}
1569
1570/*
1571 * Clear the write and modified bits in each of the given page's mappings.
1572 */
1573void
1574moea64_remove_write(mmu_t mmu, vm_page_t m)
1575{
1576	struct	pvo_entry *pvo;
1577	uintptr_t pt;
1578	pmap_t	pmap;
1579	uint64_t lo = 0;
1580
1581	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1582	    ("moea64_remove_write: page %p is not managed", m));
1583
1584	/*
1585	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1586	 * set by another thread while the object is locked.  Thus,
1587	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1588	 */
1589	VM_OBJECT_ASSERT_WLOCKED(m->object);
1590	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1591		return;
1592	powerpc_sync();
1593	LOCK_TABLE_RD();
1594	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1595		pmap = pvo->pvo_pmap;
1596		PMAP_LOCK(pmap);
1597		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1598			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1599			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1600			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1601			if (pt != -1) {
1602				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1603				lo |= pvo->pvo_pte.lpte.pte_lo;
1604				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1605				MOEA64_PTE_CHANGE(mmu, pt,
1606				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1607				if (pvo->pvo_pmap == kernel_pmap)
1608					isync();
1609			}
1610		}
1611		if ((lo & LPTE_CHG) != 0)
1612			vm_page_dirty(m);
1613		PMAP_UNLOCK(pmap);
1614	}
1615	UNLOCK_TABLE_RD();
1616	vm_page_aflag_clear(m, PGA_WRITEABLE);
1617}
1618
1619/*
1620 *	moea64_ts_referenced:
1621 *
1622 *	Return a count of reference bits for a page, clearing those bits.
1623 *	It is not necessary for every reference bit to be cleared, but it
1624 *	is necessary that 0 only be returned when there are truly no
1625 *	reference bits set.
1626 *
1627 *	XXX: The exact number of bits to check and clear is a matter that
1628 *	should be tested and standardized at some point in the future for
1629 *	optimal aging of shared pages.
1630 */
1631int
1632moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1633{
1634
1635	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1636	    ("moea64_ts_referenced: page %p is not managed", m));
1637	return (moea64_clear_bit(mmu, m, LPTE_REF));
1638}
1639
1640/*
1641 * Modify the WIMG settings of all mappings for a page.
1642 */
1643void
1644moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1645{
1646	struct	pvo_entry *pvo;
1647	struct  pvo_head *pvo_head;
1648	uintptr_t pt;
1649	pmap_t	pmap;
1650	uint64_t lo;
1651
1652	if ((m->oflags & VPO_UNMANAGED) != 0) {
1653		m->md.mdpg_cache_attrs = ma;
1654		return;
1655	}
1656
1657	pvo_head = vm_page_to_pvoh(m);
1658	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1659	LOCK_TABLE_RD();
1660	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1661		pmap = pvo->pvo_pmap;
1662		PMAP_LOCK(pmap);
1663		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1664		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1665		pvo->pvo_pte.lpte.pte_lo |= lo;
1666		if (pt != -1) {
1667			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1668			    pvo->pvo_vpn);
1669			if (pvo->pvo_pmap == kernel_pmap)
1670				isync();
1671		}
1672		PMAP_UNLOCK(pmap);
1673	}
1674	UNLOCK_TABLE_RD();
1675	m->md.mdpg_cache_attrs = ma;
1676}
1677
1678/*
1679 * Map a wired page into kernel virtual address space.
1680 */
1681void
1682moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1683{
1684	uint64_t	pte_lo;
1685	int		error;
1686
1687	pte_lo = moea64_calc_wimg(pa, ma);
1688
1689	LOCK_TABLE_WR();
1690	PMAP_LOCK(kernel_pmap);
1691	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1692	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1693	PMAP_UNLOCK(kernel_pmap);
1694	UNLOCK_TABLE_WR();
1695
1696	if (error != 0 && error != ENOENT)
1697		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1698		    pa, error);
1699}
1700
1701void
1702moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1703{
1704
1705	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1706}
1707
1708/*
1709 * Extract the physical page address associated with the given kernel virtual
1710 * address.
1711 */
1712vm_paddr_t
1713moea64_kextract(mmu_t mmu, vm_offset_t va)
1714{
1715	struct		pvo_entry *pvo;
1716	vm_paddr_t pa;
1717
1718	/*
1719	 * Shortcut the direct-mapped case when applicable.  We never put
1720	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1721	 */
1722	if (va < VM_MIN_KERNEL_ADDRESS)
1723		return (va);
1724
1725	PMAP_LOCK(kernel_pmap);
1726	pvo = moea64_pvo_find_va(kernel_pmap, va);
1727	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1728	    va));
1729	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1730	PMAP_UNLOCK(kernel_pmap);
1731	return (pa);
1732}
1733
1734/*
1735 * Remove a wired page from kernel virtual address space.
1736 */
1737void
1738moea64_kremove(mmu_t mmu, vm_offset_t va)
1739{
1740	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1741}
1742
1743/*
1744 * Map a range of physical addresses into kernel virtual address space.
1745 *
1746 * The value passed in *virt is a suggested virtual address for the mapping.
1747 * Architectures which can support a direct-mapped physical to virtual region
1748 * can return the appropriate address within that region, leaving '*virt'
1749 * unchanged.  We cannot and therefore do not; *virt is updated with the
1750 * first usable address after the mapped region.
1751 */
1752vm_offset_t
1753moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1754    vm_paddr_t pa_end, int prot)
1755{
1756	vm_offset_t	sva, va;
1757
1758	sva = *virt;
1759	va = sva;
1760	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1761		moea64_kenter(mmu, va, pa_start);
1762	*virt = va;
1763
1764	return (sva);
1765}
1766
1767/*
1768 * Returns true if the pmap's pv is one of the first
1769 * 16 pvs linked to from this page.  This count may
1770 * be changed upwards or downwards in the future; it
1771 * is only necessary that true be returned for a small
1772 * subset of pmaps for proper page aging.
1773 */
1774boolean_t
1775moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1776{
1777        int loops;
1778	struct pvo_entry *pvo;
1779	boolean_t rv;
1780
1781	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1782	    ("moea64_page_exists_quick: page %p is not managed", m));
1783	loops = 0;
1784	rv = FALSE;
1785	LOCK_TABLE_RD();
1786	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1787		if (pvo->pvo_pmap == pmap) {
1788			rv = TRUE;
1789			break;
1790		}
1791		if (++loops >= 16)
1792			break;
1793	}
1794	UNLOCK_TABLE_RD();
1795	return (rv);
1796}
1797
1798/*
1799 * Return the number of managed mappings to the given physical page
1800 * that are wired.
1801 */
1802int
1803moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1804{
1805	struct pvo_entry *pvo;
1806	int count;
1807
1808	count = 0;
1809	if ((m->oflags & VPO_UNMANAGED) != 0)
1810		return (count);
1811	LOCK_TABLE_RD();
1812	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1813		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1814			count++;
1815	UNLOCK_TABLE_RD();
1816	return (count);
1817}
1818
1819static uintptr_t	moea64_vsidcontext;
1820
1821uintptr_t
1822moea64_get_unique_vsid(void) {
1823	u_int entropy;
1824	register_t hash;
1825	uint32_t mask;
1826	int i;
1827
1828	entropy = 0;
1829	__asm __volatile("mftb %0" : "=r"(entropy));
1830
1831	mtx_lock(&moea64_slb_mutex);
1832	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1833		u_int	n;
1834
1835		/*
1836		 * Create a new value by mutiplying by a prime and adding in
1837		 * entropy from the timebase register.  This is to make the
1838		 * VSID more random so that the PT hash function collides
1839		 * less often.  (Note that the prime casues gcc to do shifts
1840		 * instead of a multiply.)
1841		 */
1842		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1843		hash = moea64_vsidcontext & (NVSIDS - 1);
1844		if (hash == 0)		/* 0 is special, avoid it */
1845			continue;
1846		n = hash >> 5;
1847		mask = 1 << (hash & (VSID_NBPW - 1));
1848		hash = (moea64_vsidcontext & VSID_HASHMASK);
1849		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1850			/* anything free in this bucket? */
1851			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1852				entropy = (moea64_vsidcontext >> 20);
1853				continue;
1854			}
1855			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1856			mask = 1 << i;
1857			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1858			hash |= i;
1859		}
1860		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1861		    ("Allocating in-use VSID %#zx\n", hash));
1862		moea64_vsid_bitmap[n] |= mask;
1863		mtx_unlock(&moea64_slb_mutex);
1864		return (hash);
1865	}
1866
1867	mtx_unlock(&moea64_slb_mutex);
1868	panic("%s: out of segments",__func__);
1869}
1870
1871#ifdef __powerpc64__
1872void
1873moea64_pinit(mmu_t mmu, pmap_t pmap)
1874{
1875
1876	RB_INIT(&pmap->pmap_pvo);
1877
1878	pmap->pm_slb_tree_root = slb_alloc_tree();
1879	pmap->pm_slb = slb_alloc_user_cache();
1880	pmap->pm_slb_len = 0;
1881}
1882#else
1883void
1884moea64_pinit(mmu_t mmu, pmap_t pmap)
1885{
1886	int	i;
1887	uint32_t hash;
1888
1889	RB_INIT(&pmap->pmap_pvo);
1890
1891	if (pmap_bootstrapped)
1892		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1893		    (vm_offset_t)pmap);
1894	else
1895		pmap->pmap_phys = pmap;
1896
1897	/*
1898	 * Allocate some segment registers for this pmap.
1899	 */
1900	hash = moea64_get_unique_vsid();
1901
1902	for (i = 0; i < 16; i++)
1903		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1904
1905	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1906}
1907#endif
1908
1909/*
1910 * Initialize the pmap associated with process 0.
1911 */
1912void
1913moea64_pinit0(mmu_t mmu, pmap_t pm)
1914{
1915
1916	PMAP_LOCK_INIT(pm);
1917	moea64_pinit(mmu, pm);
1918	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1919}
1920
1921/*
1922 * Set the physical protection on the specified range of this map as requested.
1923 */
1924static void
1925moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1926{
1927	uintptr_t pt;
1928	struct	vm_page *pg;
1929	uint64_t oldlo;
1930
1931	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1932
1933	/*
1934	 * Grab the PTE pointer before we diddle with the cached PTE
1935	 * copy.
1936	 */
1937	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1938
1939	/*
1940	 * Change the protection of the page.
1941	 */
1942	oldlo = pvo->pvo_pte.lpte.pte_lo;
1943	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1944	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1945	if ((prot & VM_PROT_EXECUTE) == 0)
1946		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1947	if (prot & VM_PROT_WRITE)
1948		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1949	else
1950		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1951
1952	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1953
1954	/*
1955	 * If the PVO is in the page table, update that pte as well.
1956	 */
1957	if (pt != -1)
1958		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1959		    pvo->pvo_vpn);
1960	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1961	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1962		if ((pg->oflags & VPO_UNMANAGED) == 0)
1963			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1964		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1965		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1966	}
1967
1968	/*
1969	 * Update vm about the REF/CHG bits if the page is managed and we have
1970	 * removed write access.
1971	 */
1972	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1973	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1974		if (pg != NULL) {
1975			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1976				vm_page_dirty(pg);
1977			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1978				vm_page_aflag_set(pg, PGA_REFERENCED);
1979		}
1980	}
1981}
1982
1983void
1984moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1985    vm_prot_t prot)
1986{
1987	struct	pvo_entry *pvo, *tpvo, key;
1988
1989	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1990	    sva, eva, prot);
1991
1992	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1993	    ("moea64_protect: non current pmap"));
1994
1995	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1996		moea64_remove(mmu, pm, sva, eva);
1997		return;
1998	}
1999
2000	LOCK_TABLE_RD();
2001	PMAP_LOCK(pm);
2002	key.pvo_vaddr = sva;
2003	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2004	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2005		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2006		moea64_pvo_protect(mmu, pm, pvo, prot);
2007	}
2008	UNLOCK_TABLE_RD();
2009	PMAP_UNLOCK(pm);
2010}
2011
2012/*
2013 * Map a list of wired pages into kernel virtual address space.  This is
2014 * intended for temporary mappings which do not need page modification or
2015 * references recorded.  Existing mappings in the region are overwritten.
2016 */
2017void
2018moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2019{
2020	while (count-- > 0) {
2021		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2022		va += PAGE_SIZE;
2023		m++;
2024	}
2025}
2026
2027/*
2028 * Remove page mappings from kernel virtual address space.  Intended for
2029 * temporary mappings entered by moea64_qenter.
2030 */
2031void
2032moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2033{
2034	while (count-- > 0) {
2035		moea64_kremove(mmu, va);
2036		va += PAGE_SIZE;
2037	}
2038}
2039
2040void
2041moea64_release_vsid(uint64_t vsid)
2042{
2043	int idx, mask;
2044
2045	mtx_lock(&moea64_slb_mutex);
2046	idx = vsid & (NVSIDS-1);
2047	mask = 1 << (idx % VSID_NBPW);
2048	idx /= VSID_NBPW;
2049	KASSERT(moea64_vsid_bitmap[idx] & mask,
2050	    ("Freeing unallocated VSID %#jx", vsid));
2051	moea64_vsid_bitmap[idx] &= ~mask;
2052	mtx_unlock(&moea64_slb_mutex);
2053}
2054
2055
2056void
2057moea64_release(mmu_t mmu, pmap_t pmap)
2058{
2059
2060	/*
2061	 * Free segment registers' VSIDs
2062	 */
2063    #ifdef __powerpc64__
2064	slb_free_tree(pmap);
2065	slb_free_user_cache(pmap->pm_slb);
2066    #else
2067	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2068
2069	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2070    #endif
2071}
2072
2073/*
2074 * Remove all pages mapped by the specified pmap
2075 */
2076void
2077moea64_remove_pages(mmu_t mmu, pmap_t pm)
2078{
2079	struct	pvo_entry *pvo, *tpvo;
2080
2081	LOCK_TABLE_WR();
2082	PMAP_LOCK(pm);
2083	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2084		if (!(pvo->pvo_vaddr & PVO_WIRED))
2085			moea64_pvo_remove(mmu, pvo);
2086	}
2087	UNLOCK_TABLE_WR();
2088	PMAP_UNLOCK(pm);
2089}
2090
2091/*
2092 * Remove the given range of addresses from the specified map.
2093 */
2094void
2095moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2096{
2097	struct	pvo_entry *pvo, *tpvo, key;
2098
2099	/*
2100	 * Perform an unsynchronized read.  This is, however, safe.
2101	 */
2102	if (pm->pm_stats.resident_count == 0)
2103		return;
2104
2105	LOCK_TABLE_WR();
2106	PMAP_LOCK(pm);
2107	key.pvo_vaddr = sva;
2108	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2109	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2110		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2111		moea64_pvo_remove(mmu, pvo);
2112	}
2113	UNLOCK_TABLE_WR();
2114	PMAP_UNLOCK(pm);
2115}
2116
2117/*
2118 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2119 * will reflect changes in pte's back to the vm_page.
2120 */
2121void
2122moea64_remove_all(mmu_t mmu, vm_page_t m)
2123{
2124	struct	pvo_entry *pvo, *next_pvo;
2125	pmap_t	pmap;
2126
2127	LOCK_TABLE_WR();
2128	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2129		pmap = pvo->pvo_pmap;
2130		PMAP_LOCK(pmap);
2131		moea64_pvo_remove(mmu, pvo);
2132		PMAP_UNLOCK(pmap);
2133	}
2134	UNLOCK_TABLE_WR();
2135	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2136		vm_page_dirty(m);
2137	vm_page_aflag_clear(m, PGA_WRITEABLE);
2138	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2139}
2140
2141/*
2142 * Allocate a physical page of memory directly from the phys_avail map.
2143 * Can only be called from moea64_bootstrap before avail start and end are
2144 * calculated.
2145 */
2146vm_offset_t
2147moea64_bootstrap_alloc(vm_size_t size, u_int align)
2148{
2149	vm_offset_t	s, e;
2150	int		i, j;
2151
2152	size = round_page(size);
2153	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2154		if (align != 0)
2155			s = (phys_avail[i] + align - 1) & ~(align - 1);
2156		else
2157			s = phys_avail[i];
2158		e = s + size;
2159
2160		if (s < phys_avail[i] || e > phys_avail[i + 1])
2161			continue;
2162
2163		if (s + size > platform_real_maxaddr())
2164			continue;
2165
2166		if (s == phys_avail[i]) {
2167			phys_avail[i] += size;
2168		} else if (e == phys_avail[i + 1]) {
2169			phys_avail[i + 1] -= size;
2170		} else {
2171			for (j = phys_avail_count * 2; j > i; j -= 2) {
2172				phys_avail[j] = phys_avail[j - 2];
2173				phys_avail[j + 1] = phys_avail[j - 1];
2174			}
2175
2176			phys_avail[i + 3] = phys_avail[i + 1];
2177			phys_avail[i + 1] = s;
2178			phys_avail[i + 2] = e;
2179			phys_avail_count++;
2180		}
2181
2182		return (s);
2183	}
2184	panic("moea64_bootstrap_alloc: could not allocate memory");
2185}
2186
2187static int
2188moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2189    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2190    uint64_t pte_lo, int flags, int8_t psind __unused)
2191{
2192	struct	 pvo_entry *pvo;
2193	uintptr_t pt;
2194	uint64_t vsid;
2195	int	 first;
2196	u_int	 ptegidx;
2197	int	 i;
2198	int      bootstrap;
2199
2200	/*
2201	 * One nasty thing that can happen here is that the UMA calls to
2202	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2203	 * which calls UMA...
2204	 *
2205	 * We break the loop by detecting recursion and allocating out of
2206	 * the bootstrap pool.
2207	 */
2208
2209	first = 0;
2210	bootstrap = (flags & PVO_BOOTSTRAP);
2211
2212	if (!moea64_initialized)
2213		bootstrap = 1;
2214
2215	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2216	rw_assert(&moea64_table_lock, RA_WLOCKED);
2217
2218	/*
2219	 * Compute the PTE Group index.
2220	 */
2221	va &= ~ADDR_POFF;
2222	vsid = va_to_vsid(pm, va);
2223	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2224
2225	/*
2226	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2227	 * there is a mapping.
2228	 */
2229	moea64_pvo_enter_calls++;
2230
2231	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2232		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2233			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2234			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2235			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2236				/*
2237				 * The physical page and protection are not
2238				 * changing.  Instead, this may be a request
2239				 * to change the mapping's wired attribute.
2240				 */
2241				pt = -1;
2242				if ((flags & PVO_WIRED) != 0 &&
2243				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2244					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2245					pvo->pvo_vaddr |= PVO_WIRED;
2246					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2247					pm->pm_stats.wired_count++;
2248				} else if ((flags & PVO_WIRED) == 0 &&
2249				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2250					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2251					pvo->pvo_vaddr &= ~PVO_WIRED;
2252					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2253					pm->pm_stats.wired_count--;
2254				}
2255			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2256					KASSERT(pt == -1,
2257					    ("moea64_pvo_enter: valid pt"));
2258					/* Re-insert if spilled */
2259					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2260					    &pvo->pvo_pte.lpte);
2261					if (i >= 0)
2262						PVO_PTEGIDX_SET(pvo, i);
2263					moea64_pte_overflow--;
2264				} else if (pt != -1) {
2265					/*
2266					 * The PTE's wired attribute is not a
2267					 * hardware feature, so there is no
2268					 * need to invalidate any TLB entries.
2269					 */
2270					MOEA64_PTE_CHANGE(mmu, pt,
2271					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2272				}
2273				return (0);
2274			}
2275			moea64_pvo_remove(mmu, pvo);
2276			break;
2277		}
2278	}
2279
2280	/*
2281	 * If we aren't overwriting a mapping, try to allocate.
2282	 */
2283	if (bootstrap) {
2284		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2285			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2286			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2287			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2288		}
2289		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2290		moea64_bpvo_pool_index++;
2291		bootstrap = 1;
2292	} else {
2293		pvo = uma_zalloc(zone, M_NOWAIT);
2294	}
2295
2296	if (pvo == NULL)
2297		return (ENOMEM);
2298
2299	moea64_pvo_entries++;
2300	pvo->pvo_vaddr = va;
2301	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2302	    | (vsid << 16);
2303	pvo->pvo_pmap = pm;
2304	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2305	pvo->pvo_vaddr &= ~ADDR_POFF;
2306
2307	if (flags & PVO_WIRED)
2308		pvo->pvo_vaddr |= PVO_WIRED;
2309	if (pvo_head != NULL)
2310		pvo->pvo_vaddr |= PVO_MANAGED;
2311	if (bootstrap)
2312		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2313	if (flags & PVO_LARGE)
2314		pvo->pvo_vaddr |= PVO_LARGE;
2315
2316	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2317	    (uint64_t)(pa) | pte_lo, flags);
2318
2319	/*
2320	 * Add to pmap list
2321	 */
2322	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2323
2324	/*
2325	 * Remember if the list was empty and therefore will be the first
2326	 * item.
2327	 */
2328	if (pvo_head != NULL) {
2329		if (LIST_FIRST(pvo_head) == NULL)
2330			first = 1;
2331		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2332	}
2333
2334	if (pvo->pvo_vaddr & PVO_WIRED) {
2335		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2336		pm->pm_stats.wired_count++;
2337	}
2338	pm->pm_stats.resident_count++;
2339
2340	/*
2341	 * We hope this succeeds but it isn't required.
2342	 */
2343	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2344	if (i >= 0) {
2345		PVO_PTEGIDX_SET(pvo, i);
2346	} else {
2347		panic("moea64_pvo_enter: overflow");
2348		moea64_pte_overflow++;
2349	}
2350
2351	if (pm == kernel_pmap)
2352		isync();
2353
2354#ifdef __powerpc64__
2355	/*
2356	 * Make sure all our bootstrap mappings are in the SLB as soon
2357	 * as virtual memory is switched on.
2358	 */
2359	if (!pmap_bootstrapped)
2360		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2361#endif
2362
2363	return (first ? ENOENT : 0);
2364}
2365
2366static void
2367moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2368{
2369	struct	vm_page *pg;
2370	uintptr_t pt;
2371
2372	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2373	rw_assert(&moea64_table_lock, RA_WLOCKED);
2374
2375	/*
2376	 * If there is an active pte entry, we need to deactivate it (and
2377	 * save the ref & cfg bits).
2378	 */
2379	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2380	if (pt != -1) {
2381		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2382		PVO_PTEGIDX_CLR(pvo);
2383	} else {
2384		moea64_pte_overflow--;
2385	}
2386
2387	/*
2388	 * Update our statistics.
2389	 */
2390	pvo->pvo_pmap->pm_stats.resident_count--;
2391	if (pvo->pvo_vaddr & PVO_WIRED)
2392		pvo->pvo_pmap->pm_stats.wired_count--;
2393
2394	/*
2395	 * Remove this PVO from the pmap list.
2396	 */
2397	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2398
2399	/*
2400	 * Remove this from the overflow list and return it to the pool
2401	 * if we aren't going to reuse it.
2402	 */
2403	LIST_REMOVE(pvo, pvo_olink);
2404
2405	/*
2406	 * Update vm about the REF/CHG bits if the page is managed.
2407	 */
2408	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2409
2410	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2411		LIST_REMOVE(pvo, pvo_vlink);
2412		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2413			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2414				vm_page_dirty(pg);
2415			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2416				vm_page_aflag_set(pg, PGA_REFERENCED);
2417			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2418				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2419		}
2420		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2421			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2422	}
2423
2424	moea64_pvo_entries--;
2425	moea64_pvo_remove_calls++;
2426
2427	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2428		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2429		    moea64_upvo_zone, pvo);
2430}
2431
2432static struct pvo_entry *
2433moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2434{
2435	struct pvo_entry key;
2436
2437	key.pvo_vaddr = va & ~ADDR_POFF;
2438	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2439}
2440
2441static boolean_t
2442moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2443{
2444	struct	pvo_entry *pvo;
2445	uintptr_t pt;
2446
2447	LOCK_TABLE_RD();
2448	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2449		/*
2450		 * See if we saved the bit off.  If so, return success.
2451		 */
2452		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2453			UNLOCK_TABLE_RD();
2454			return (TRUE);
2455		}
2456	}
2457
2458	/*
2459	 * No luck, now go through the hard part of looking at the PTEs
2460	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2461	 * the PTEs.
2462	 */
2463	powerpc_sync();
2464	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2465
2466		/*
2467		 * See if this pvo has a valid PTE.  if so, fetch the
2468		 * REF/CHG bits from the valid PTE.  If the appropriate
2469		 * ptebit is set, return success.
2470		 */
2471		PMAP_LOCK(pvo->pvo_pmap);
2472		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2473		if (pt != -1) {
2474			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2475			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2476				PMAP_UNLOCK(pvo->pvo_pmap);
2477				UNLOCK_TABLE_RD();
2478				return (TRUE);
2479			}
2480		}
2481		PMAP_UNLOCK(pvo->pvo_pmap);
2482	}
2483
2484	UNLOCK_TABLE_RD();
2485	return (FALSE);
2486}
2487
2488static u_int
2489moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2490{
2491	u_int	count;
2492	struct	pvo_entry *pvo;
2493	uintptr_t pt;
2494
2495	/*
2496	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2497	 * we can reset the right ones).  note that since the pvo entries and
2498	 * list heads are accessed via BAT0 and are never placed in the page
2499	 * table, we don't have to worry about further accesses setting the
2500	 * REF/CHG bits.
2501	 */
2502	powerpc_sync();
2503
2504	/*
2505	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2506	 * valid pte clear the ptebit from the valid pte.
2507	 */
2508	count = 0;
2509	LOCK_TABLE_RD();
2510	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2511		PMAP_LOCK(pvo->pvo_pmap);
2512		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2513		if (pt != -1) {
2514			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2515			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2516				count++;
2517				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2518				    pvo->pvo_vpn, ptebit);
2519			}
2520		}
2521		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2522		PMAP_UNLOCK(pvo->pvo_pmap);
2523	}
2524
2525	UNLOCK_TABLE_RD();
2526	return (count);
2527}
2528
2529boolean_t
2530moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2531{
2532	struct pvo_entry *pvo, key;
2533	vm_offset_t ppa;
2534	int error = 0;
2535
2536	PMAP_LOCK(kernel_pmap);
2537	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2538	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2539	    ppa < pa + size; ppa += PAGE_SIZE,
2540	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2541		if (pvo == NULL ||
2542		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2543			error = EFAULT;
2544			break;
2545		}
2546	}
2547	PMAP_UNLOCK(kernel_pmap);
2548
2549	return (error);
2550}
2551
2552/*
2553 * Map a set of physical memory pages into the kernel virtual
2554 * address space. Return a pointer to where it is mapped. This
2555 * routine is intended to be used for mapping device memory,
2556 * NOT real memory.
2557 */
2558void *
2559moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2560{
2561	vm_offset_t va, tmpva, ppa, offset;
2562
2563	ppa = trunc_page(pa);
2564	offset = pa & PAGE_MASK;
2565	size = roundup2(offset + size, PAGE_SIZE);
2566
2567	va = kva_alloc(size);
2568
2569	if (!va)
2570		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2571
2572	for (tmpva = va; size > 0;) {
2573		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2574		size -= PAGE_SIZE;
2575		tmpva += PAGE_SIZE;
2576		ppa += PAGE_SIZE;
2577	}
2578
2579	return ((void *)(va + offset));
2580}
2581
2582void *
2583moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2584{
2585
2586	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2587}
2588
2589void
2590moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2591{
2592	vm_offset_t base, offset;
2593
2594	base = trunc_page(va);
2595	offset = va & PAGE_MASK;
2596	size = roundup2(offset + size, PAGE_SIZE);
2597
2598	kva_free(base, size);
2599}
2600
2601void
2602moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2603{
2604	struct pvo_entry *pvo;
2605	vm_offset_t lim;
2606	vm_paddr_t pa;
2607	vm_size_t len;
2608
2609	PMAP_LOCK(pm);
2610	while (sz > 0) {
2611		lim = round_page(va);
2612		len = MIN(lim - va, sz);
2613		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2614		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2615			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2616			    (va & ADDR_POFF);
2617			moea64_syncicache(mmu, pm, va, pa, len);
2618		}
2619		va += len;
2620		sz -= len;
2621	}
2622	PMAP_UNLOCK(pm);
2623}
2624
2625vm_offset_t
2626moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2627    vm_size_t *sz)
2628{
2629	if (md->md_vaddr == ~0UL)
2630	    return (md->md_paddr + ofs);
2631	else
2632	    return (md->md_vaddr + ofs);
2633}
2634
2635struct pmap_md *
2636moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2637{
2638	static struct pmap_md md;
2639	struct pvo_entry *pvo;
2640	vm_offset_t va;
2641
2642	if (dumpsys_minidump) {
2643		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2644		if (prev == NULL) {
2645			/* 1st: kernel .data and .bss. */
2646			md.md_index = 1;
2647			md.md_vaddr = trunc_page((uintptr_t)_etext);
2648			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2649			return (&md);
2650		}
2651		switch (prev->md_index) {
2652		case 1:
2653			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2654			md.md_index = 2;
2655			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2656			md.md_size = round_page(msgbufp->msg_size);
2657			break;
2658		case 2:
2659			/* 3rd: kernel VM. */
2660			va = prev->md_vaddr + prev->md_size;
2661			/* Find start of next chunk (from va). */
2662			while (va < virtual_end) {
2663				/* Don't dump the buffer cache. */
2664				if (va >= kmi.buffer_sva &&
2665				    va < kmi.buffer_eva) {
2666					va = kmi.buffer_eva;
2667					continue;
2668				}
2669				pvo = moea64_pvo_find_va(kernel_pmap,
2670				    va & ~ADDR_POFF);
2671				if (pvo != NULL &&
2672				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2673					break;
2674				va += PAGE_SIZE;
2675			}
2676			if (va < virtual_end) {
2677				md.md_vaddr = va;
2678				va += PAGE_SIZE;
2679				/* Find last page in chunk. */
2680				while (va < virtual_end) {
2681					/* Don't run into the buffer cache. */
2682					if (va == kmi.buffer_sva)
2683						break;
2684					pvo = moea64_pvo_find_va(kernel_pmap,
2685					    va & ~ADDR_POFF);
2686					if (pvo == NULL ||
2687					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2688						break;
2689					va += PAGE_SIZE;
2690				}
2691				md.md_size = va - md.md_vaddr;
2692				break;
2693			}
2694			md.md_index = 3;
2695			/* FALLTHROUGH */
2696		default:
2697			return (NULL);
2698		}
2699	} else { /* minidumps */
2700		if (prev == NULL) {
2701			/* first physical chunk. */
2702			md.md_paddr = pregions[0].mr_start;
2703			md.md_size = pregions[0].mr_size;
2704			md.md_vaddr = ~0UL;
2705			md.md_index = 1;
2706		} else if (md.md_index < pregions_sz) {
2707			md.md_paddr = pregions[md.md_index].mr_start;
2708			md.md_size = pregions[md.md_index].mr_size;
2709			md.md_vaddr = ~0UL;
2710			md.md_index++;
2711		} else {
2712			/* There's no next physical chunk. */
2713			return (NULL);
2714		}
2715	}
2716
2717	return (&md);
2718}
2719