1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mbuf.h>
46#include <sys/mount.h>
47#include <sys/proc.h>
48#include <sys/rwlock.h>
49#include <sys/vmmeter.h>
50#include <sys/vnode.h>
51
52#include <vm/vm.h>
53#include <vm/vm_param.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_page.h>
56#include <vm/vm_object.h>
57#include <vm/vm_pager.h>
58#include <vm/vnode_pager.h>
59
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64#include <nfs/nfs_kdtrace.h>
65
66static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
67		    struct thread *td);
68static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
69			      struct ucred *cred, int ioflag);
70
71extern int nfs_directio_enable;
72extern int nfs_directio_allow_mmap;
73
74/*
75 * Vnode op for VM getpages.
76 */
77int
78nfs_getpages(struct vop_getpages_args *ap)
79{
80	int i, error, nextoff, size, toff, count, npages;
81	struct uio uio;
82	struct iovec iov;
83	vm_offset_t kva;
84	struct buf *bp;
85	struct vnode *vp;
86	struct thread *td;
87	struct ucred *cred;
88	struct nfsmount *nmp;
89	vm_object_t object;
90	vm_page_t *pages;
91	struct nfsnode *np;
92
93	vp = ap->a_vp;
94	np = VTONFS(vp);
95	td = curthread;				/* XXX */
96	cred = curthread->td_ucred;		/* XXX */
97	nmp = VFSTONFS(vp->v_mount);
98	pages = ap->a_m;
99	count = ap->a_count;
100
101	if ((object = vp->v_object) == NULL) {
102		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
103		return (VM_PAGER_ERROR);
104	}
105
106	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
107		mtx_lock(&np->n_mtx);
108		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
109			mtx_unlock(&np->n_mtx);
110			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
111			return (VM_PAGER_ERROR);
112		} else
113			mtx_unlock(&np->n_mtx);
114	}
115
116	mtx_lock(&nmp->nm_mtx);
117	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
118	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
119		mtx_unlock(&nmp->nm_mtx);
120		/* We'll never get here for v4, because we always have fsinfo */
121		(void)nfs_fsinfo(nmp, vp, cred, td);
122	} else
123		mtx_unlock(&nmp->nm_mtx);
124
125	npages = btoc(count);
126
127	/*
128	 * If the requested page is partially valid, just return it and
129	 * allow the pager to zero-out the blanks.  Partially valid pages
130	 * can only occur at the file EOF.
131	 */
132	VM_OBJECT_WLOCK(object);
133	if (pages[ap->a_reqpage]->valid != 0) {
134		for (i = 0; i < npages; ++i) {
135			if (i != ap->a_reqpage) {
136				vm_page_lock(pages[i]);
137				vm_page_free(pages[i]);
138				vm_page_unlock(pages[i]);
139			}
140		}
141		VM_OBJECT_WUNLOCK(object);
142		return (0);
143	}
144	VM_OBJECT_WUNLOCK(object);
145
146	/*
147	 * We use only the kva address for the buffer, but this is extremely
148	 * convienient and fast.
149	 */
150	bp = getpbuf(&nfs_pbuf_freecnt);
151
152	kva = (vm_offset_t) bp->b_data;
153	pmap_qenter(kva, pages, npages);
154	PCPU_INC(cnt.v_vnodein);
155	PCPU_ADD(cnt.v_vnodepgsin, npages);
156
157	iov.iov_base = (caddr_t) kva;
158	iov.iov_len = count;
159	uio.uio_iov = &iov;
160	uio.uio_iovcnt = 1;
161	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162	uio.uio_resid = count;
163	uio.uio_segflg = UIO_SYSSPACE;
164	uio.uio_rw = UIO_READ;
165	uio.uio_td = td;
166
167	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
168	pmap_qremove(kva, npages);
169
170	relpbuf(bp, &nfs_pbuf_freecnt);
171
172	if (error && (uio.uio_resid == count)) {
173		nfs_printf("nfs_getpages: error %d\n", error);
174		VM_OBJECT_WLOCK(object);
175		for (i = 0; i < npages; ++i) {
176			if (i != ap->a_reqpage) {
177				vm_page_lock(pages[i]);
178				vm_page_free(pages[i]);
179				vm_page_unlock(pages[i]);
180			}
181		}
182		VM_OBJECT_WUNLOCK(object);
183		return (VM_PAGER_ERROR);
184	}
185
186	/*
187	 * Calculate the number of bytes read and validate only that number
188	 * of bytes.  Note that due to pending writes, size may be 0.  This
189	 * does not mean that the remaining data is invalid!
190	 */
191
192	size = count - uio.uio_resid;
193	VM_OBJECT_WLOCK(object);
194	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
195		vm_page_t m;
196		nextoff = toff + PAGE_SIZE;
197		m = pages[i];
198
199		if (nextoff <= size) {
200			/*
201			 * Read operation filled an entire page
202			 */
203			m->valid = VM_PAGE_BITS_ALL;
204			KASSERT(m->dirty == 0,
205			    ("nfs_getpages: page %p is dirty", m));
206		} else if (size > toff) {
207			/*
208			 * Read operation filled a partial page.
209			 */
210			m->valid = 0;
211			vm_page_set_valid_range(m, 0, size - toff);
212			KASSERT(m->dirty == 0,
213			    ("nfs_getpages: page %p is dirty", m));
214		} else {
215			/*
216			 * Read operation was short.  If no error
217			 * occured we may have hit a zero-fill
218			 * section.  We leave valid set to 0, and page
219			 * is freed by vm_page_readahead_finish() if
220			 * its index is not equal to requested, or
221			 * page is zeroed and set valid by
222			 * vm_pager_get_pages() for requested page.
223			 */
224			;
225		}
226		if (i != ap->a_reqpage)
227			vm_page_readahead_finish(m);
228	}
229	VM_OBJECT_WUNLOCK(object);
230	return (0);
231}
232
233/*
234 * Vnode op for VM putpages.
235 */
236int
237nfs_putpages(struct vop_putpages_args *ap)
238{
239	struct uio uio;
240	struct iovec iov;
241	vm_offset_t kva;
242	struct buf *bp;
243	int iomode, must_commit, i, error, npages, count;
244	off_t offset;
245	int *rtvals;
246	struct vnode *vp;
247	struct thread *td;
248	struct ucred *cred;
249	struct nfsmount *nmp;
250	struct nfsnode *np;
251	vm_page_t *pages;
252
253	vp = ap->a_vp;
254	np = VTONFS(vp);
255	td = curthread;				/* XXX */
256	/* Set the cred to n_writecred for the write rpcs. */
257	if (np->n_writecred != NULL)
258		cred = crhold(np->n_writecred);
259	else
260		cred = crhold(curthread->td_ucred);	/* XXX */
261	nmp = VFSTONFS(vp->v_mount);
262	pages = ap->a_m;
263	count = ap->a_count;
264	rtvals = ap->a_rtvals;
265	npages = btoc(count);
266	offset = IDX_TO_OFF(pages[0]->pindex);
267
268	mtx_lock(&nmp->nm_mtx);
269	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
270	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
271		mtx_unlock(&nmp->nm_mtx);
272		(void)nfs_fsinfo(nmp, vp, cred, td);
273	} else
274		mtx_unlock(&nmp->nm_mtx);
275
276	mtx_lock(&np->n_mtx);
277	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
278	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
279		mtx_unlock(&np->n_mtx);
280		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
281		mtx_lock(&np->n_mtx);
282	}
283
284	for (i = 0; i < npages; i++)
285		rtvals[i] = VM_PAGER_ERROR;
286
287	/*
288	 * When putting pages, do not extend file past EOF.
289	 */
290	if (offset + count > np->n_size) {
291		count = np->n_size - offset;
292		if (count < 0)
293			count = 0;
294	}
295	mtx_unlock(&np->n_mtx);
296
297	/*
298	 * We use only the kva address for the buffer, but this is extremely
299	 * convienient and fast.
300	 */
301	bp = getpbuf(&nfs_pbuf_freecnt);
302
303	kva = (vm_offset_t) bp->b_data;
304	pmap_qenter(kva, pages, npages);
305	PCPU_INC(cnt.v_vnodeout);
306	PCPU_ADD(cnt.v_vnodepgsout, count);
307
308	iov.iov_base = (caddr_t) kva;
309	iov.iov_len = count;
310	uio.uio_iov = &iov;
311	uio.uio_iovcnt = 1;
312	uio.uio_offset = offset;
313	uio.uio_resid = count;
314	uio.uio_segflg = UIO_SYSSPACE;
315	uio.uio_rw = UIO_WRITE;
316	uio.uio_td = td;
317
318	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
319	    iomode = NFSV3WRITE_UNSTABLE;
320	else
321	    iomode = NFSV3WRITE_FILESYNC;
322
323	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
324	crfree(cred);
325
326	pmap_qremove(kva, npages);
327	relpbuf(bp, &nfs_pbuf_freecnt);
328
329	if (!error) {
330		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
331		if (must_commit) {
332			nfs_clearcommit(vp->v_mount);
333		}
334	}
335	return rtvals[0];
336}
337
338/*
339 * For nfs, cache consistency can only be maintained approximately.
340 * Although RFC1094 does not specify the criteria, the following is
341 * believed to be compatible with the reference port.
342 * For nfs:
343 * If the file's modify time on the server has changed since the
344 * last read rpc or you have written to the file,
345 * you may have lost data cache consistency with the
346 * server, so flush all of the file's data out of the cache.
347 * Then force a getattr rpc to ensure that you have up to date
348 * attributes.
349 * NB: This implies that cache data can be read when up to
350 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
351 * attributes this could be forced by setting n_attrstamp to 0 before
352 * the VOP_GETATTR() call.
353 */
354static inline int
355nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
356{
357	int error = 0;
358	struct vattr vattr;
359	struct nfsnode *np = VTONFS(vp);
360	int old_lock;
361	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
362
363	/*
364	 * Grab the exclusive lock before checking whether the cache is
365	 * consistent.
366	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
367	 * But for now, this suffices.
368	 */
369	old_lock = nfs_upgrade_vnlock(vp);
370	if (vp->v_iflag & VI_DOOMED) {
371		nfs_downgrade_vnlock(vp, old_lock);
372		return (EBADF);
373	}
374
375	mtx_lock(&np->n_mtx);
376	if (np->n_flag & NMODIFIED) {
377		mtx_unlock(&np->n_mtx);
378		if (vp->v_type != VREG) {
379			if (vp->v_type != VDIR)
380				panic("nfs: bioread, not dir");
381			(nmp->nm_rpcops->nr_invaldir)(vp);
382			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
383			if (error)
384				goto out;
385		}
386		np->n_attrstamp = 0;
387		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
388		error = VOP_GETATTR(vp, &vattr, cred);
389		if (error)
390			goto out;
391		mtx_lock(&np->n_mtx);
392		np->n_mtime = vattr.va_mtime;
393		mtx_unlock(&np->n_mtx);
394	} else {
395		mtx_unlock(&np->n_mtx);
396		error = VOP_GETATTR(vp, &vattr, cred);
397		if (error)
398			return (error);
399		mtx_lock(&np->n_mtx);
400		if ((np->n_flag & NSIZECHANGED)
401		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
402			mtx_unlock(&np->n_mtx);
403			if (vp->v_type == VDIR)
404				(nmp->nm_rpcops->nr_invaldir)(vp);
405			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
406			if (error)
407				goto out;
408			mtx_lock(&np->n_mtx);
409			np->n_mtime = vattr.va_mtime;
410			np->n_flag &= ~NSIZECHANGED;
411		}
412		mtx_unlock(&np->n_mtx);
413	}
414out:
415	nfs_downgrade_vnlock(vp, old_lock);
416	return error;
417}
418
419/*
420 * Vnode op for read using bio
421 */
422int
423nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
424{
425	struct nfsnode *np = VTONFS(vp);
426	int biosize, i;
427	struct buf *bp, *rabp;
428	struct thread *td;
429	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
430	daddr_t lbn, rabn;
431	off_t end;
432	int bcount;
433	int seqcount;
434	int nra, error = 0, n = 0, on = 0;
435
436	KASSERT(uio->uio_rw == UIO_READ, ("nfs_read mode"));
437	if (uio->uio_resid == 0)
438		return (0);
439	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
440		return (EINVAL);
441	td = uio->uio_td;
442
443	mtx_lock(&nmp->nm_mtx);
444	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
445	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
446		mtx_unlock(&nmp->nm_mtx);
447		(void)nfs_fsinfo(nmp, vp, cred, td);
448	} else
449		mtx_unlock(&nmp->nm_mtx);
450
451	end = uio->uio_offset + uio->uio_resid;
452	if (vp->v_type != VDIR &&
453	    (end > nmp->nm_maxfilesize || end < uio->uio_offset))
454		return (EFBIG);
455
456	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
457		/* No caching/ no readaheads. Just read data into the user buffer */
458		return nfs_readrpc(vp, uio, cred);
459
460	biosize = vp->v_bufobj.bo_bsize;
461	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
462
463	error = nfs_bioread_check_cons(vp, td, cred);
464	if (error)
465		return error;
466
467	do {
468	    u_quad_t nsize;
469
470	    mtx_lock(&np->n_mtx);
471	    nsize = np->n_size;
472	    mtx_unlock(&np->n_mtx);
473
474	    switch (vp->v_type) {
475	    case VREG:
476		nfsstats.biocache_reads++;
477		lbn = uio->uio_offset / biosize;
478		on = uio->uio_offset - (lbn * biosize);
479
480		/*
481		 * Start the read ahead(s), as required.
482		 */
483		if (nmp->nm_readahead > 0) {
484		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
485			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
486			rabn = lbn + 1 + nra;
487			if (incore(&vp->v_bufobj, rabn) == NULL) {
488			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
489			    if (!rabp) {
490				error = nfs_sigintr(nmp, td);
491				return (error ? error : EINTR);
492			    }
493			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
494				rabp->b_flags |= B_ASYNC;
495				rabp->b_iocmd = BIO_READ;
496				vfs_busy_pages(rabp, 0);
497				if (nfs_asyncio(nmp, rabp, cred, td)) {
498				    rabp->b_flags |= B_INVAL;
499				    rabp->b_ioflags |= BIO_ERROR;
500				    vfs_unbusy_pages(rabp);
501				    brelse(rabp);
502				    break;
503				}
504			    } else {
505				brelse(rabp);
506			    }
507			}
508		    }
509		}
510
511		/* Note that bcount is *not* DEV_BSIZE aligned. */
512		bcount = biosize;
513		if ((off_t)lbn * biosize >= nsize) {
514			bcount = 0;
515		} else if ((off_t)(lbn + 1) * biosize > nsize) {
516			bcount = nsize - (off_t)lbn * biosize;
517		}
518		bp = nfs_getcacheblk(vp, lbn, bcount, td);
519
520		if (!bp) {
521			error = nfs_sigintr(nmp, td);
522			return (error ? error : EINTR);
523		}
524
525		/*
526		 * If B_CACHE is not set, we must issue the read.  If this
527		 * fails, we return an error.
528		 */
529
530		if ((bp->b_flags & B_CACHE) == 0) {
531		    bp->b_iocmd = BIO_READ;
532		    vfs_busy_pages(bp, 0);
533		    error = nfs_doio(vp, bp, cred, td);
534		    if (error) {
535			brelse(bp);
536			return (error);
537		    }
538		}
539
540		/*
541		 * on is the offset into the current bp.  Figure out how many
542		 * bytes we can copy out of the bp.  Note that bcount is
543		 * NOT DEV_BSIZE aligned.
544		 *
545		 * Then figure out how many bytes we can copy into the uio.
546		 */
547
548		n = 0;
549		if (on < bcount)
550			n = MIN((unsigned)(bcount - on), uio->uio_resid);
551		break;
552	    case VLNK:
553		nfsstats.biocache_readlinks++;
554		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
555		if (!bp) {
556			error = nfs_sigintr(nmp, td);
557			return (error ? error : EINTR);
558		}
559		if ((bp->b_flags & B_CACHE) == 0) {
560		    bp->b_iocmd = BIO_READ;
561		    vfs_busy_pages(bp, 0);
562		    error = nfs_doio(vp, bp, cred, td);
563		    if (error) {
564			bp->b_ioflags |= BIO_ERROR;
565			brelse(bp);
566			return (error);
567		    }
568		}
569		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
570		on = 0;
571		break;
572	    case VDIR:
573		nfsstats.biocache_readdirs++;
574		if (np->n_direofoffset
575		    && uio->uio_offset >= np->n_direofoffset) {
576		    return (0);
577		}
578		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
579		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
580		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
581		if (!bp) {
582		    error = nfs_sigintr(nmp, td);
583		    return (error ? error : EINTR);
584		}
585		if ((bp->b_flags & B_CACHE) == 0) {
586		    bp->b_iocmd = BIO_READ;
587		    vfs_busy_pages(bp, 0);
588		    error = nfs_doio(vp, bp, cred, td);
589		    if (error) {
590			    brelse(bp);
591		    }
592		    while (error == NFSERR_BAD_COOKIE) {
593			(nmp->nm_rpcops->nr_invaldir)(vp);
594			error = nfs_vinvalbuf(vp, 0, td, 1);
595			/*
596			 * Yuck! The directory has been modified on the
597			 * server. The only way to get the block is by
598			 * reading from the beginning to get all the
599			 * offset cookies.
600			 *
601			 * Leave the last bp intact unless there is an error.
602			 * Loop back up to the while if the error is another
603			 * NFSERR_BAD_COOKIE (double yuch!).
604			 */
605			for (i = 0; i <= lbn && !error; i++) {
606			    if (np->n_direofoffset
607				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
608				    return (0);
609			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
610			    if (!bp) {
611				error = nfs_sigintr(nmp, td);
612				return (error ? error : EINTR);
613			    }
614			    if ((bp->b_flags & B_CACHE) == 0) {
615				    bp->b_iocmd = BIO_READ;
616				    vfs_busy_pages(bp, 0);
617				    error = nfs_doio(vp, bp, cred, td);
618				    /*
619				     * no error + B_INVAL == directory EOF,
620				     * use the block.
621				     */
622				    if (error == 0 && (bp->b_flags & B_INVAL))
623					    break;
624			    }
625			    /*
626			     * An error will throw away the block and the
627			     * for loop will break out.  If no error and this
628			     * is not the block we want, we throw away the
629			     * block and go for the next one via the for loop.
630			     */
631			    if (error || i < lbn)
632				    brelse(bp);
633			}
634		    }
635		    /*
636		     * The above while is repeated if we hit another cookie
637		     * error.  If we hit an error and it wasn't a cookie error,
638		     * we give up.
639		     */
640		    if (error)
641			    return (error);
642		}
643
644		/*
645		 * If not eof and read aheads are enabled, start one.
646		 * (You need the current block first, so that you have the
647		 *  directory offset cookie of the next block.)
648		 */
649		if (nmp->nm_readahead > 0 &&
650		    (bp->b_flags & B_INVAL) == 0 &&
651		    (np->n_direofoffset == 0 ||
652		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
653		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
654			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
655			if (rabp) {
656			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
657				rabp->b_flags |= B_ASYNC;
658				rabp->b_iocmd = BIO_READ;
659				vfs_busy_pages(rabp, 0);
660				if (nfs_asyncio(nmp, rabp, cred, td)) {
661				    rabp->b_flags |= B_INVAL;
662				    rabp->b_ioflags |= BIO_ERROR;
663				    vfs_unbusy_pages(rabp);
664				    brelse(rabp);
665				}
666			    } else {
667				brelse(rabp);
668			    }
669			}
670		}
671		/*
672		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
673		 * chopped for the EOF condition, we cannot tell how large
674		 * NFS directories are going to be until we hit EOF.  So
675		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
676		 * it just so happens that b_resid will effectively chop it
677		 * to EOF.  *BUT* this information is lost if the buffer goes
678		 * away and is reconstituted into a B_CACHE state ( due to
679		 * being VMIO ) later.  So we keep track of the directory eof
680		 * in np->n_direofoffset and chop it off as an extra step
681		 * right here.
682		 */
683		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
684		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
685			n = np->n_direofoffset - uio->uio_offset;
686		break;
687	    default:
688		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
689		bp = NULL;
690		break;
691	    };
692
693	    if (n > 0) {
694		    error = uiomove(bp->b_data + on, (int)n, uio);
695	    }
696	    if (vp->v_type == VLNK)
697		n = 0;
698	    if (bp != NULL)
699		brelse(bp);
700	} while (error == 0 && uio->uio_resid > 0 && n > 0);
701	return (error);
702}
703
704/*
705 * The NFS write path cannot handle iovecs with len > 1. So we need to
706 * break up iovecs accordingly (restricting them to wsize).
707 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
708 * For the ASYNC case, 2 copies are needed. The first a copy from the
709 * user buffer to a staging buffer and then a second copy from the staging
710 * buffer to mbufs. This can be optimized by copying from the user buffer
711 * directly into mbufs and passing the chain down, but that requires a
712 * fair amount of re-working of the relevant codepaths (and can be done
713 * later).
714 */
715static int
716nfs_directio_write(vp, uiop, cred, ioflag)
717	struct vnode *vp;
718	struct uio *uiop;
719	struct ucred *cred;
720	int ioflag;
721{
722	int error;
723	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
724	struct thread *td = uiop->uio_td;
725	int size;
726	int wsize;
727
728	mtx_lock(&nmp->nm_mtx);
729	wsize = nmp->nm_wsize;
730	mtx_unlock(&nmp->nm_mtx);
731	if (ioflag & IO_SYNC) {
732		int iomode, must_commit;
733		struct uio uio;
734		struct iovec iov;
735do_sync:
736		while (uiop->uio_resid > 0) {
737			size = MIN(uiop->uio_resid, wsize);
738			size = MIN(uiop->uio_iov->iov_len, size);
739			iov.iov_base = uiop->uio_iov->iov_base;
740			iov.iov_len = size;
741			uio.uio_iov = &iov;
742			uio.uio_iovcnt = 1;
743			uio.uio_offset = uiop->uio_offset;
744			uio.uio_resid = size;
745			uio.uio_segflg = UIO_USERSPACE;
746			uio.uio_rw = UIO_WRITE;
747			uio.uio_td = td;
748			iomode = NFSV3WRITE_FILESYNC;
749			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
750						      &iomode, &must_commit);
751			KASSERT((must_commit == 0),
752				("nfs_directio_write: Did not commit write"));
753			if (error)
754				return (error);
755			uiop->uio_offset += size;
756			uiop->uio_resid -= size;
757			if (uiop->uio_iov->iov_len <= size) {
758				uiop->uio_iovcnt--;
759				uiop->uio_iov++;
760			} else {
761				uiop->uio_iov->iov_base =
762					(char *)uiop->uio_iov->iov_base + size;
763				uiop->uio_iov->iov_len -= size;
764			}
765		}
766	} else {
767		struct uio *t_uio;
768		struct iovec *t_iov;
769		struct buf *bp;
770
771		/*
772		 * Break up the write into blocksize chunks and hand these
773		 * over to nfsiod's for write back.
774		 * Unfortunately, this incurs a copy of the data. Since
775		 * the user could modify the buffer before the write is
776		 * initiated.
777		 *
778		 * The obvious optimization here is that one of the 2 copies
779		 * in the async write path can be eliminated by copying the
780		 * data here directly into mbufs and passing the mbuf chain
781		 * down. But that will require a fair amount of re-working
782		 * of the code and can be done if there's enough interest
783		 * in NFS directio access.
784		 */
785		while (uiop->uio_resid > 0) {
786			size = MIN(uiop->uio_resid, wsize);
787			size = MIN(uiop->uio_iov->iov_len, size);
788			bp = getpbuf(&nfs_pbuf_freecnt);
789			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
790			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
791			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
792			t_iov->iov_len = size;
793			t_uio->uio_iov = t_iov;
794			t_uio->uio_iovcnt = 1;
795			t_uio->uio_offset = uiop->uio_offset;
796			t_uio->uio_resid = size;
797			t_uio->uio_segflg = UIO_SYSSPACE;
798			t_uio->uio_rw = UIO_WRITE;
799			t_uio->uio_td = td;
800			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
801			    uiop->uio_segflg == UIO_SYSSPACE,
802			    ("nfs_directio_write: Bad uio_segflg"));
803			if (uiop->uio_segflg == UIO_USERSPACE) {
804				error = copyin(uiop->uio_iov->iov_base,
805				    t_iov->iov_base, size);
806				if (error != 0)
807					goto err_free;
808			} else
809				/*
810				 * UIO_SYSSPACE may never happen, but handle
811				 * it just in case it does.
812				 */
813				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
814				    size);
815			bp->b_flags |= B_DIRECT;
816			bp->b_iocmd = BIO_WRITE;
817			if (cred != NOCRED) {
818				crhold(cred);
819				bp->b_wcred = cred;
820			} else
821				bp->b_wcred = NOCRED;
822			bp->b_caller1 = (void *)t_uio;
823			bp->b_vp = vp;
824			error = nfs_asyncio(nmp, bp, NOCRED, td);
825err_free:
826			if (error) {
827				free(t_iov->iov_base, M_NFSDIRECTIO);
828				free(t_iov, M_NFSDIRECTIO);
829				free(t_uio, M_NFSDIRECTIO);
830				bp->b_vp = NULL;
831				relpbuf(bp, &nfs_pbuf_freecnt);
832				if (error == EINTR)
833					return (error);
834				goto do_sync;
835			}
836			uiop->uio_offset += size;
837			uiop->uio_resid -= size;
838			if (uiop->uio_iov->iov_len <= size) {
839				uiop->uio_iovcnt--;
840				uiop->uio_iov++;
841			} else {
842				uiop->uio_iov->iov_base =
843					(char *)uiop->uio_iov->iov_base + size;
844				uiop->uio_iov->iov_len -= size;
845			}
846		}
847	}
848	return (0);
849}
850
851/*
852 * Vnode op for write using bio
853 */
854int
855nfs_write(struct vop_write_args *ap)
856{
857	int biosize;
858	struct uio *uio = ap->a_uio;
859	struct thread *td = uio->uio_td;
860	struct vnode *vp = ap->a_vp;
861	struct nfsnode *np = VTONFS(vp);
862	struct ucred *cred = ap->a_cred;
863	int ioflag = ap->a_ioflag;
864	struct buf *bp;
865	struct vattr vattr;
866	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
867	daddr_t lbn;
868	off_t end;
869	int bcount;
870	int n, on, error = 0;
871
872	KASSERT(uio->uio_rw == UIO_WRITE, ("nfs_write mode"));
873	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
874	    ("nfs_write proc"));
875	if (vp->v_type != VREG)
876		return (EIO);
877	mtx_lock(&np->n_mtx);
878	if (np->n_flag & NWRITEERR) {
879		np->n_flag &= ~NWRITEERR;
880		mtx_unlock(&np->n_mtx);
881		return (np->n_error);
882	} else
883		mtx_unlock(&np->n_mtx);
884	mtx_lock(&nmp->nm_mtx);
885	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
886	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
887		mtx_unlock(&nmp->nm_mtx);
888		(void)nfs_fsinfo(nmp, vp, cred, td);
889	} else
890		mtx_unlock(&nmp->nm_mtx);
891
892	/*
893	 * Synchronously flush pending buffers if we are in synchronous
894	 * mode or if we are appending.
895	 */
896	if (ioflag & (IO_APPEND | IO_SYNC)) {
897		mtx_lock(&np->n_mtx);
898		if (np->n_flag & NMODIFIED) {
899			mtx_unlock(&np->n_mtx);
900#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
901			/*
902			 * Require non-blocking, synchronous writes to
903			 * dirty files to inform the program it needs
904			 * to fsync(2) explicitly.
905			 */
906			if (ioflag & IO_NDELAY)
907				return (EAGAIN);
908#endif
909flush_and_restart:
910			np->n_attrstamp = 0;
911			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
912			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
913			if (error)
914				return (error);
915		} else
916			mtx_unlock(&np->n_mtx);
917	}
918
919	/*
920	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
921	 * get the append lock.
922	 */
923	if (ioflag & IO_APPEND) {
924		np->n_attrstamp = 0;
925		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
926		error = VOP_GETATTR(vp, &vattr, cred);
927		if (error)
928			return (error);
929		mtx_lock(&np->n_mtx);
930		uio->uio_offset = np->n_size;
931		mtx_unlock(&np->n_mtx);
932	}
933
934	if (uio->uio_offset < 0)
935		return (EINVAL);
936	end = uio->uio_offset + uio->uio_resid;
937	if (end > nmp->nm_maxfilesize || end < uio->uio_offset)
938		return (EFBIG);
939	if (uio->uio_resid == 0)
940		return (0);
941
942	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
943		return nfs_directio_write(vp, uio, cred, ioflag);
944
945	/*
946	 * Maybe this should be above the vnode op call, but so long as
947	 * file servers have no limits, i don't think it matters
948	 */
949	if (vn_rlimit_fsize(vp, uio, td))
950		return (EFBIG);
951
952	biosize = vp->v_bufobj.bo_bsize;
953	/*
954	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
955	 * would exceed the local maximum per-file write commit size when
956	 * combined with those, we must decide whether to flush,
957	 * go synchronous, or return error.  We don't bother checking
958	 * IO_UNIT -- we just make all writes atomic anyway, as there's
959	 * no point optimizing for something that really won't ever happen.
960	 */
961	if (!(ioflag & IO_SYNC)) {
962		int nflag;
963
964		mtx_lock(&np->n_mtx);
965		nflag = np->n_flag;
966		mtx_unlock(&np->n_mtx);
967		int needrestart = 0;
968		if (nmp->nm_wcommitsize < uio->uio_resid) {
969			/*
970			 * If this request could not possibly be completed
971			 * without exceeding the maximum outstanding write
972			 * commit size, see if we can convert it into a
973			 * synchronous write operation.
974			 */
975			if (ioflag & IO_NDELAY)
976				return (EAGAIN);
977			ioflag |= IO_SYNC;
978			if (nflag & NMODIFIED)
979				needrestart = 1;
980		} else if (nflag & NMODIFIED) {
981			int wouldcommit = 0;
982			BO_LOCK(&vp->v_bufobj);
983			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
984				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
985				    b_bobufs) {
986					if (bp->b_flags & B_NEEDCOMMIT)
987						wouldcommit += bp->b_bcount;
988				}
989			}
990			BO_UNLOCK(&vp->v_bufobj);
991			/*
992			 * Since we're not operating synchronously and
993			 * bypassing the buffer cache, we are in a commit
994			 * and holding all of these buffers whether
995			 * transmitted or not.  If not limited, this
996			 * will lead to the buffer cache deadlocking,
997			 * as no one else can flush our uncommitted buffers.
998			 */
999			wouldcommit += uio->uio_resid;
1000			/*
1001			 * If we would initially exceed the maximum
1002			 * outstanding write commit size, flush and restart.
1003			 */
1004			if (wouldcommit > nmp->nm_wcommitsize)
1005				needrestart = 1;
1006		}
1007		if (needrestart)
1008			goto flush_and_restart;
1009	}
1010
1011	do {
1012		nfsstats.biocache_writes++;
1013		lbn = uio->uio_offset / biosize;
1014		on = uio->uio_offset - (lbn * biosize);
1015		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1016again:
1017		/*
1018		 * Handle direct append and file extension cases, calculate
1019		 * unaligned buffer size.
1020		 */
1021		mtx_lock(&np->n_mtx);
1022		if (uio->uio_offset == np->n_size && n) {
1023			mtx_unlock(&np->n_mtx);
1024			/*
1025			 * Get the buffer (in its pre-append state to maintain
1026			 * B_CACHE if it was previously set).  Resize the
1027			 * nfsnode after we have locked the buffer to prevent
1028			 * readers from reading garbage.
1029			 */
1030			bcount = on;
1031			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1032
1033			if (bp != NULL) {
1034				long save;
1035
1036				mtx_lock(&np->n_mtx);
1037				np->n_size = uio->uio_offset + n;
1038				np->n_flag |= NMODIFIED;
1039				vnode_pager_setsize(vp, np->n_size);
1040				mtx_unlock(&np->n_mtx);
1041
1042				save = bp->b_flags & B_CACHE;
1043				bcount += n;
1044				allocbuf(bp, bcount);
1045				bp->b_flags |= save;
1046			}
1047		} else {
1048			/*
1049			 * Obtain the locked cache block first, and then
1050			 * adjust the file's size as appropriate.
1051			 */
1052			bcount = on + n;
1053			if ((off_t)lbn * biosize + bcount < np->n_size) {
1054				if ((off_t)(lbn + 1) * biosize < np->n_size)
1055					bcount = biosize;
1056				else
1057					bcount = np->n_size - (off_t)lbn * biosize;
1058			}
1059			mtx_unlock(&np->n_mtx);
1060			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1061			mtx_lock(&np->n_mtx);
1062			if (uio->uio_offset + n > np->n_size) {
1063				np->n_size = uio->uio_offset + n;
1064				np->n_flag |= NMODIFIED;
1065				vnode_pager_setsize(vp, np->n_size);
1066			}
1067			mtx_unlock(&np->n_mtx);
1068		}
1069
1070		if (!bp) {
1071			error = nfs_sigintr(nmp, td);
1072			if (!error)
1073				error = EINTR;
1074			break;
1075		}
1076
1077		/*
1078		 * Issue a READ if B_CACHE is not set.  In special-append
1079		 * mode, B_CACHE is based on the buffer prior to the write
1080		 * op and is typically set, avoiding the read.  If a read
1081		 * is required in special append mode, the server will
1082		 * probably send us a short-read since we extended the file
1083		 * on our end, resulting in b_resid == 0 and, thusly,
1084		 * B_CACHE getting set.
1085		 *
1086		 * We can also avoid issuing the read if the write covers
1087		 * the entire buffer.  We have to make sure the buffer state
1088		 * is reasonable in this case since we will not be initiating
1089		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1090		 * more information.
1091		 *
1092		 * B_CACHE may also be set due to the buffer being cached
1093		 * normally.
1094		 */
1095
1096		if (on == 0 && n == bcount) {
1097			bp->b_flags |= B_CACHE;
1098			bp->b_flags &= ~B_INVAL;
1099			bp->b_ioflags &= ~BIO_ERROR;
1100		}
1101
1102		if ((bp->b_flags & B_CACHE) == 0) {
1103			bp->b_iocmd = BIO_READ;
1104			vfs_busy_pages(bp, 0);
1105			error = nfs_doio(vp, bp, cred, td);
1106			if (error) {
1107				brelse(bp);
1108				break;
1109			}
1110		}
1111		if (bp->b_wcred == NOCRED)
1112			bp->b_wcred = crhold(cred);
1113		mtx_lock(&np->n_mtx);
1114		np->n_flag |= NMODIFIED;
1115		mtx_unlock(&np->n_mtx);
1116
1117		/*
1118		 * If dirtyend exceeds file size, chop it down.  This should
1119		 * not normally occur but there is an append race where it
1120		 * might occur XXX, so we log it.
1121		 *
1122		 * If the chopping creates a reverse-indexed or degenerate
1123		 * situation with dirtyoff/end, we 0 both of them.
1124		 */
1125
1126		if (bp->b_dirtyend > bcount) {
1127			nfs_printf("NFS append race @%lx:%d\n",
1128			    (long)bp->b_blkno * DEV_BSIZE,
1129			    bp->b_dirtyend - bcount);
1130			bp->b_dirtyend = bcount;
1131		}
1132
1133		if (bp->b_dirtyoff >= bp->b_dirtyend)
1134			bp->b_dirtyoff = bp->b_dirtyend = 0;
1135
1136		/*
1137		 * If the new write will leave a contiguous dirty
1138		 * area, just update the b_dirtyoff and b_dirtyend,
1139		 * otherwise force a write rpc of the old dirty area.
1140		 *
1141		 * While it is possible to merge discontiguous writes due to
1142		 * our having a B_CACHE buffer ( and thus valid read data
1143		 * for the hole), we don't because it could lead to
1144		 * significant cache coherency problems with multiple clients,
1145		 * especially if locking is implemented later on.
1146		 *
1147		 * as an optimization we could theoretically maintain
1148		 * a linked list of discontinuous areas, but we would still
1149		 * have to commit them separately so there isn't much
1150		 * advantage to it except perhaps a bit of asynchronization.
1151		 */
1152
1153		if (bp->b_dirtyend > 0 &&
1154		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1155			if (bwrite(bp) == EINTR) {
1156				error = EINTR;
1157				break;
1158			}
1159			goto again;
1160		}
1161
1162		error = uiomove((char *)bp->b_data + on, n, uio);
1163
1164		/*
1165		 * Since this block is being modified, it must be written
1166		 * again and not just committed.  Since write clustering does
1167		 * not work for the stage 1 data write, only the stage 2
1168		 * commit rpc, we have to clear B_CLUSTEROK as well.
1169		 */
1170		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1171
1172		if (error) {
1173			bp->b_ioflags |= BIO_ERROR;
1174			brelse(bp);
1175			break;
1176		}
1177
1178		/*
1179		 * Only update dirtyoff/dirtyend if not a degenerate
1180		 * condition.
1181		 */
1182		if (n) {
1183			if (bp->b_dirtyend > 0) {
1184				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1185				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1186			} else {
1187				bp->b_dirtyoff = on;
1188				bp->b_dirtyend = on + n;
1189			}
1190			vfs_bio_set_valid(bp, on, n);
1191		}
1192
1193		/*
1194		 * If IO_SYNC do bwrite().
1195		 *
1196		 * IO_INVAL appears to be unused.  The idea appears to be
1197		 * to turn off caching in this case.  Very odd.  XXX
1198		 */
1199		if ((ioflag & IO_SYNC)) {
1200			if (ioflag & IO_INVAL)
1201				bp->b_flags |= B_NOCACHE;
1202			error = bwrite(bp);
1203			if (error)
1204				break;
1205		} else if ((n + on) == biosize) {
1206			bp->b_flags |= B_ASYNC;
1207			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1208		} else {
1209			bdwrite(bp);
1210		}
1211	} while (uio->uio_resid > 0 && n > 0);
1212
1213	return (error);
1214}
1215
1216/*
1217 * Get an nfs cache block.
1218 *
1219 * Allocate a new one if the block isn't currently in the cache
1220 * and return the block marked busy. If the calling process is
1221 * interrupted by a signal for an interruptible mount point, return
1222 * NULL.
1223 *
1224 * The caller must carefully deal with the possible B_INVAL state of
1225 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1226 * indirectly), so synchronous reads can be issued without worrying about
1227 * the B_INVAL state.  We have to be a little more careful when dealing
1228 * with writes (see comments in nfs_write()) when extending a file past
1229 * its EOF.
1230 */
1231static struct buf *
1232nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1233{
1234	struct buf *bp;
1235	struct mount *mp;
1236	struct nfsmount *nmp;
1237
1238	mp = vp->v_mount;
1239	nmp = VFSTONFS(mp);
1240
1241	if (nmp->nm_flag & NFSMNT_INT) {
1242 		sigset_t oldset;
1243
1244 		nfs_set_sigmask(td, &oldset);
1245		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1246 		nfs_restore_sigmask(td, &oldset);
1247		while (bp == NULL) {
1248			if (nfs_sigintr(nmp, td))
1249				return (NULL);
1250			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1251		}
1252	} else {
1253		bp = getblk(vp, bn, size, 0, 0, 0);
1254	}
1255
1256	if (vp->v_type == VREG)
1257		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1258	return (bp);
1259}
1260
1261/*
1262 * Flush and invalidate all dirty buffers. If another process is already
1263 * doing the flush, just wait for completion.
1264 */
1265int
1266nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1267{
1268	struct nfsnode *np = VTONFS(vp);
1269	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1270	int error = 0, slpflag, slptimeo;
1271 	int old_lock = 0;
1272
1273	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1274
1275	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1276		intrflg = 0;
1277	if (intrflg) {
1278		slpflag = PCATCH;
1279		slptimeo = 2 * hz;
1280	} else {
1281		slpflag = 0;
1282		slptimeo = 0;
1283	}
1284
1285	old_lock = nfs_upgrade_vnlock(vp);
1286	if (vp->v_iflag & VI_DOOMED) {
1287		/*
1288		 * Since vgonel() uses the generic vinvalbuf() to flush
1289		 * dirty buffers and it does not call this function, it
1290		 * is safe to just return OK when VI_DOOMED is set.
1291		 */
1292		nfs_downgrade_vnlock(vp, old_lock);
1293		return (0);
1294	}
1295
1296	/*
1297	 * Now, flush as required.
1298	 */
1299	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1300		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1301		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1302		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1303		/*
1304		 * If the page clean was interrupted, fail the invalidation.
1305		 * Not doing so, we run the risk of losing dirty pages in the
1306		 * vinvalbuf() call below.
1307		 */
1308		if (intrflg && (error = nfs_sigintr(nmp, td)))
1309			goto out;
1310	}
1311
1312	error = vinvalbuf(vp, flags, slpflag, 0);
1313	while (error) {
1314		if (intrflg && (error = nfs_sigintr(nmp, td)))
1315			goto out;
1316		error = vinvalbuf(vp, flags, 0, slptimeo);
1317	}
1318	mtx_lock(&np->n_mtx);
1319	if (np->n_directio_asyncwr == 0)
1320		np->n_flag &= ~NMODIFIED;
1321	mtx_unlock(&np->n_mtx);
1322out:
1323	nfs_downgrade_vnlock(vp, old_lock);
1324	return error;
1325}
1326
1327/*
1328 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1329 * This is mainly to avoid queueing async I/O requests when the nfsiods
1330 * are all hung on a dead server.
1331 *
1332 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1333 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1334 */
1335int
1336nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1337{
1338	int iod;
1339	int gotiod;
1340	int slpflag = 0;
1341	int slptimeo = 0;
1342	int error, error2;
1343
1344	/*
1345	 * Commits are usually short and sweet so lets save some cpu and
1346	 * leave the async daemons for more important rpc's (such as reads
1347	 * and writes).
1348	 *
1349	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1350	 * in the directory in order to update attributes. This can deadlock
1351	 * with another thread that is waiting for async I/O to be done by
1352	 * an nfsiod thread while holding a lock on one of these vnodes.
1353	 * To avoid this deadlock, don't allow the async nfsiod threads to
1354	 * perform Readdirplus RPCs.
1355	 */
1356	mtx_lock(&nfs_iod_mtx);
1357	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1358	     (nmp->nm_bufqiods > nfs_numasync / 2)) ||
1359	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1360		mtx_unlock(&nfs_iod_mtx);
1361		return(EIO);
1362	}
1363again:
1364	if (nmp->nm_flag & NFSMNT_INT)
1365		slpflag = PCATCH;
1366	gotiod = FALSE;
1367
1368	/*
1369	 * Find a free iod to process this request.
1370	 */
1371	for (iod = 0; iod < nfs_numasync; iod++)
1372		if (nfs_iodwant[iod] == NFSIOD_AVAILABLE) {
1373			gotiod = TRUE;
1374			break;
1375		}
1376
1377	/*
1378	 * Try to create one if none are free.
1379	 */
1380	if (!gotiod)
1381		nfs_nfsiodnew();
1382	else {
1383		/*
1384		 * Found one, so wake it up and tell it which
1385		 * mount to process.
1386		 */
1387		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1388		    iod, nmp));
1389		nfs_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1390		nfs_iodmount[iod] = nmp;
1391		nmp->nm_bufqiods++;
1392		wakeup(&nfs_iodwant[iod]);
1393	}
1394
1395	/*
1396	 * If none are free, we may already have an iod working on this mount
1397	 * point.  If so, it will process our request.
1398	 */
1399	if (!gotiod) {
1400		if (nmp->nm_bufqiods > 0) {
1401			NFS_DPF(ASYNCIO,
1402		("nfs_asyncio: %d iods are already processing mount %p\n",
1403				 nmp->nm_bufqiods, nmp));
1404			gotiod = TRUE;
1405		}
1406	}
1407
1408	/*
1409	 * If we have an iod which can process the request, then queue
1410	 * the buffer.
1411	 */
1412	if (gotiod) {
1413		/*
1414		 * Ensure that the queue never grows too large.  We still want
1415		 * to asynchronize so we block rather then return EIO.
1416		 */
1417		while (nmp->nm_bufqlen >= 2 * nfs_numasync) {
1418			NFS_DPF(ASYNCIO,
1419		("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1420			nmp->nm_bufqwant = TRUE;
1421 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1422					   slpflag | PRIBIO,
1423 					   "nfsaio", slptimeo);
1424			if (error) {
1425				error2 = nfs_sigintr(nmp, td);
1426				if (error2) {
1427					mtx_unlock(&nfs_iod_mtx);
1428					return (error2);
1429				}
1430				if (slpflag == PCATCH) {
1431					slpflag = 0;
1432					slptimeo = 2 * hz;
1433				}
1434			}
1435			/*
1436			 * We might have lost our iod while sleeping,
1437			 * so check and loop if nescessary.
1438			 */
1439			goto again;
1440		}
1441
1442		/* We might have lost our nfsiod */
1443		if (nmp->nm_bufqiods == 0) {
1444			NFS_DPF(ASYNCIO,
1445("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1446			goto again;
1447		}
1448
1449		if (bp->b_iocmd == BIO_READ) {
1450			if (bp->b_rcred == NOCRED && cred != NOCRED)
1451				bp->b_rcred = crhold(cred);
1452		} else {
1453			if (bp->b_wcred == NOCRED && cred != NOCRED)
1454				bp->b_wcred = crhold(cred);
1455		}
1456
1457		if (bp->b_flags & B_REMFREE)
1458			bremfreef(bp);
1459		BUF_KERNPROC(bp);
1460		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1461		nmp->nm_bufqlen++;
1462		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1463			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1464			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1465			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1466			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1467		}
1468		mtx_unlock(&nfs_iod_mtx);
1469		return (0);
1470	}
1471
1472	mtx_unlock(&nfs_iod_mtx);
1473
1474	/*
1475	 * All the iods are busy on other mounts, so return EIO to
1476	 * force the caller to process the i/o synchronously.
1477	 */
1478	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1479	return (EIO);
1480}
1481
1482void
1483nfs_doio_directwrite(struct buf *bp)
1484{
1485	int iomode, must_commit;
1486	struct uio *uiop = (struct uio *)bp->b_caller1;
1487	char *iov_base = uiop->uio_iov->iov_base;
1488	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1489
1490	iomode = NFSV3WRITE_FILESYNC;
1491	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1492	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1493	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1494	free(iov_base, M_NFSDIRECTIO);
1495	free(uiop->uio_iov, M_NFSDIRECTIO);
1496	free(uiop, M_NFSDIRECTIO);
1497	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1498		struct nfsnode *np = VTONFS(bp->b_vp);
1499		mtx_lock(&np->n_mtx);
1500		np->n_directio_asyncwr--;
1501		if (np->n_directio_asyncwr == 0) {
1502			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1503			if ((np->n_flag & NFSYNCWAIT)) {
1504				np->n_flag &= ~NFSYNCWAIT;
1505				wakeup((caddr_t)&np->n_directio_asyncwr);
1506			}
1507		}
1508		mtx_unlock(&np->n_mtx);
1509	}
1510	bp->b_vp = NULL;
1511	relpbuf(bp, &nfs_pbuf_freecnt);
1512}
1513
1514/*
1515 * Do an I/O operation to/from a cache block. This may be called
1516 * synchronously or from an nfsiod.
1517 */
1518int
1519nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1520{
1521	struct uio *uiop;
1522	struct nfsnode *np;
1523	struct nfsmount *nmp;
1524	int error = 0, iomode, must_commit = 0;
1525	struct uio uio;
1526	struct iovec io;
1527	struct proc *p = td ? td->td_proc : NULL;
1528	uint8_t	iocmd;
1529
1530	np = VTONFS(vp);
1531	nmp = VFSTONFS(vp->v_mount);
1532	uiop = &uio;
1533	uiop->uio_iov = &io;
1534	uiop->uio_iovcnt = 1;
1535	uiop->uio_segflg = UIO_SYSSPACE;
1536	uiop->uio_td = td;
1537
1538	/*
1539	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1540	 * do this here so we do not have to do it in all the code that
1541	 * calls us.
1542	 */
1543	bp->b_flags &= ~B_INVAL;
1544	bp->b_ioflags &= ~BIO_ERROR;
1545
1546	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1547	iocmd = bp->b_iocmd;
1548	if (iocmd == BIO_READ) {
1549	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1550	    io.iov_base = bp->b_data;
1551	    uiop->uio_rw = UIO_READ;
1552
1553	    switch (vp->v_type) {
1554	    case VREG:
1555		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1556		nfsstats.read_bios++;
1557		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1558
1559		if (!error) {
1560		    if (uiop->uio_resid) {
1561			/*
1562			 * If we had a short read with no error, we must have
1563			 * hit a file hole.  We should zero-fill the remainder.
1564			 * This can also occur if the server hits the file EOF.
1565			 *
1566			 * Holes used to be able to occur due to pending
1567			 * writes, but that is not possible any longer.
1568			 */
1569			int nread = bp->b_bcount - uiop->uio_resid;
1570			int left  = uiop->uio_resid;
1571
1572			if (left > 0)
1573				bzero((char *)bp->b_data + nread, left);
1574			uiop->uio_resid = 0;
1575		    }
1576		}
1577		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1578		if (p && (vp->v_vflag & VV_TEXT)) {
1579			mtx_lock(&np->n_mtx);
1580			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1581				mtx_unlock(&np->n_mtx);
1582				PROC_LOCK(p);
1583				killproc(p, "text file modification");
1584				PROC_UNLOCK(p);
1585			} else
1586				mtx_unlock(&np->n_mtx);
1587		}
1588		break;
1589	    case VLNK:
1590		uiop->uio_offset = (off_t)0;
1591		nfsstats.readlink_bios++;
1592		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1593		break;
1594	    case VDIR:
1595		nfsstats.readdir_bios++;
1596		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1597		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1598			error = nfs_readdirplusrpc(vp, uiop, cr);
1599			if (error == NFSERR_NOTSUPP)
1600				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1601		}
1602		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1603			error = nfs_readdirrpc(vp, uiop, cr);
1604		/*
1605		 * end-of-directory sets B_INVAL but does not generate an
1606		 * error.
1607		 */
1608		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1609			bp->b_flags |= B_INVAL;
1610		break;
1611	    default:
1612		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1613		break;
1614	    };
1615	    if (error) {
1616		bp->b_ioflags |= BIO_ERROR;
1617		bp->b_error = error;
1618	    }
1619	} else {
1620	    /*
1621	     * If we only need to commit, try to commit
1622	     */
1623	    if (bp->b_flags & B_NEEDCOMMIT) {
1624		    int retv;
1625		    off_t off;
1626
1627		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1628		    retv = (nmp->nm_rpcops->nr_commit)(
1629				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1630				bp->b_wcred, td);
1631		    if (retv == 0) {
1632			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1633			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1634			    bp->b_resid = 0;
1635			    bufdone(bp);
1636			    return (0);
1637		    }
1638		    if (retv == NFSERR_STALEWRITEVERF) {
1639			    nfs_clearcommit(vp->v_mount);
1640		    }
1641	    }
1642
1643	    /*
1644	     * Setup for actual write
1645	     */
1646	    mtx_lock(&np->n_mtx);
1647	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1648		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1649	    mtx_unlock(&np->n_mtx);
1650
1651	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1652		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1653		    - bp->b_dirtyoff;
1654		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1655		    + bp->b_dirtyoff;
1656		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1657		uiop->uio_rw = UIO_WRITE;
1658		nfsstats.write_bios++;
1659
1660		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1661		    iomode = NFSV3WRITE_UNSTABLE;
1662		else
1663		    iomode = NFSV3WRITE_FILESYNC;
1664
1665		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1666
1667		/*
1668		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1669		 * to cluster the buffers needing commit.  This will allow
1670		 * the system to submit a single commit rpc for the whole
1671		 * cluster.  We can do this even if the buffer is not 100%
1672		 * dirty (relative to the NFS blocksize), so we optimize the
1673		 * append-to-file-case.
1674		 *
1675		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1676		 * cleared because write clustering only works for commit
1677		 * rpc's, not for the data portion of the write).
1678		 */
1679
1680		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1681		    bp->b_flags |= B_NEEDCOMMIT;
1682		    if (bp->b_dirtyoff == 0
1683			&& bp->b_dirtyend == bp->b_bcount)
1684			bp->b_flags |= B_CLUSTEROK;
1685		} else {
1686		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1687		}
1688
1689		/*
1690		 * For an interrupted write, the buffer is still valid
1691		 * and the write hasn't been pushed to the server yet,
1692		 * so we can't set BIO_ERROR and report the interruption
1693		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1694		 * is not relevant, so the rpc attempt is essentially
1695		 * a noop.  For the case of a V3 write rpc not being
1696		 * committed to stable storage, the block is still
1697		 * dirty and requires either a commit rpc or another
1698		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1699		 * the block is reused. This is indicated by setting
1700		 * the B_DELWRI and B_NEEDCOMMIT flags.
1701		 *
1702		 * If the buffer is marked B_PAGING, it does not reside on
1703		 * the vp's paging queues so we cannot call bdirty().  The
1704		 * bp in this case is not an NFS cache block so we should
1705		 * be safe. XXX
1706		 *
1707		 * The logic below breaks up errors into recoverable and
1708		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1709		 * and keep the buffer around for potential write retries.
1710		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1711		 * and save the error in the nfsnode. This is less than ideal
1712		 * but necessary. Keeping such buffers around could potentially
1713		 * cause buffer exhaustion eventually (they can never be written
1714		 * out, so will get constantly be re-dirtied). It also causes
1715		 * all sorts of vfs panics. For non-recoverable write errors,
1716		 * also invalidate the attrcache, so we'll be forced to go over
1717		 * the wire for this object, returning an error to user on next
1718		 * call (most of the time).
1719		 */
1720    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1721		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1722			int s;
1723
1724			s = splbio();
1725			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1726			if ((bp->b_flags & B_PAGING) == 0) {
1727			    bdirty(bp);
1728			    bp->b_flags &= ~B_DONE;
1729			}
1730			if (error && (bp->b_flags & B_ASYNC) == 0)
1731			    bp->b_flags |= B_EINTR;
1732			splx(s);
1733	    	} else {
1734		    if (error) {
1735			bp->b_ioflags |= BIO_ERROR;
1736			bp->b_flags |= B_INVAL;
1737			bp->b_error = np->n_error = error;
1738			mtx_lock(&np->n_mtx);
1739			np->n_flag |= NWRITEERR;
1740			np->n_attrstamp = 0;
1741			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1742			mtx_unlock(&np->n_mtx);
1743		    }
1744		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1745		}
1746	    } else {
1747		bp->b_resid = 0;
1748		bufdone(bp);
1749		return (0);
1750	    }
1751	}
1752	bp->b_resid = uiop->uio_resid;
1753	if (must_commit)
1754	    nfs_clearcommit(vp->v_mount);
1755	bufdone(bp);
1756	return (error);
1757}
1758
1759/*
1760 * Used to aid in handling ftruncate() operations on the NFS client side.
1761 * Truncation creates a number of special problems for NFS.  We have to
1762 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1763 * we have to properly handle VM pages or (potentially dirty) buffers
1764 * that straddle the truncation point.
1765 */
1766
1767int
1768nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1769{
1770	struct nfsnode *np = VTONFS(vp);
1771	u_quad_t tsize;
1772	int biosize = vp->v_bufobj.bo_bsize;
1773	int error = 0;
1774
1775	mtx_lock(&np->n_mtx);
1776	tsize = np->n_size;
1777	np->n_size = nsize;
1778	mtx_unlock(&np->n_mtx);
1779
1780	if (nsize < tsize) {
1781		struct buf *bp;
1782		daddr_t lbn;
1783		int bufsize;
1784
1785		/*
1786		 * vtruncbuf() doesn't get the buffer overlapping the
1787		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1788		 * buffer that now needs to be truncated.
1789		 */
1790		error = vtruncbuf(vp, cred, nsize, biosize);
1791		lbn = nsize / biosize;
1792		bufsize = nsize - (lbn * biosize);
1793		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1794 		if (!bp)
1795 			return EINTR;
1796		if (bp->b_dirtyoff > bp->b_bcount)
1797			bp->b_dirtyoff = bp->b_bcount;
1798		if (bp->b_dirtyend > bp->b_bcount)
1799			bp->b_dirtyend = bp->b_bcount;
1800		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1801		brelse(bp);
1802	} else {
1803		vnode_pager_setsize(vp, nsize);
1804	}
1805	return(error);
1806}
1807
1808