ip_fw.h revision 178673
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw.h 178673 2008-04-29 21:21:15Z rwatson $
26 */
27
28#ifndef _IPFW2_H
29#define _IPFW2_H
30
31/*
32 * The kernel representation of ipfw rules is made of a list of
33 * 'instructions' (for all practical purposes equivalent to BPF
34 * instructions), which specify which fields of the packet
35 * (or its metadata) should be analysed.
36 *
37 * Each instruction is stored in a structure which begins with
38 * "ipfw_insn", and can contain extra fields depending on the
39 * instruction type (listed below).
40 * Note that the code is written so that individual instructions
41 * have a size which is a multiple of 32 bits. This means that, if
42 * such structures contain pointers or other 64-bit entities,
43 * (there is just one instance now) they may end up unaligned on
44 * 64-bit architectures, so the must be handled with care.
45 *
46 * "enum ipfw_opcodes" are the opcodes supported. We can have up
47 * to 256 different opcodes. When adding new opcodes, they should
48 * be appended to the end of the opcode list before O_LAST_OPCODE,
49 * this will prevent the ABI from being broken, otherwise users
50 * will have to recompile ipfw(8) when they update the kernel.
51 */
52
53enum ipfw_opcodes {		/* arguments (4 byte each)	*/
54	O_NOP,
55
56	O_IP_SRC,		/* u32 = IP			*/
57	O_IP_SRC_MASK,		/* ip = IP/mask			*/
58	O_IP_SRC_ME,		/* none				*/
59	O_IP_SRC_SET,		/* u32=base, arg1=len, bitmap	*/
60
61	O_IP_DST,		/* u32 = IP			*/
62	O_IP_DST_MASK,		/* ip = IP/mask			*/
63	O_IP_DST_ME,		/* none				*/
64	O_IP_DST_SET,		/* u32=base, arg1=len, bitmap	*/
65
66	O_IP_SRCPORT,		/* (n)port list:mask 4 byte ea	*/
67	O_IP_DSTPORT,		/* (n)port list:mask 4 byte ea	*/
68	O_PROTO,		/* arg1=protocol		*/
69
70	O_MACADDR2,		/* 2 mac addr:mask		*/
71	O_MAC_TYPE,		/* same as srcport		*/
72
73	O_LAYER2,		/* none				*/
74	O_IN,			/* none				*/
75	O_FRAG,			/* none				*/
76
77	O_RECV,			/* none				*/
78	O_XMIT,			/* none				*/
79	O_VIA,			/* none				*/
80
81	O_IPOPT,		/* arg1 = 2*u8 bitmap		*/
82	O_IPLEN,		/* arg1 = len			*/
83	O_IPID,			/* arg1 = id			*/
84
85	O_IPTOS,		/* arg1 = id			*/
86	O_IPPRECEDENCE,		/* arg1 = precedence << 5	*/
87	O_IPTTL,		/* arg1 = TTL			*/
88
89	O_IPVER,		/* arg1 = version		*/
90	O_UID,			/* u32 = id			*/
91	O_GID,			/* u32 = id			*/
92	O_ESTAB,		/* none (tcp established)	*/
93	O_TCPFLAGS,		/* arg1 = 2*u8 bitmap		*/
94	O_TCPWIN,		/* arg1 = desired win		*/
95	O_TCPSEQ,		/* u32 = desired seq.		*/
96	O_TCPACK,		/* u32 = desired seq.		*/
97	O_ICMPTYPE,		/* u32 = icmp bitmap		*/
98	O_TCPOPTS,		/* arg1 = 2*u8 bitmap		*/
99
100	O_VERREVPATH,		/* none				*/
101	O_VERSRCREACH,		/* none				*/
102
103	O_PROBE_STATE,		/* none				*/
104	O_KEEP_STATE,		/* none				*/
105	O_LIMIT,		/* ipfw_insn_limit		*/
106	O_LIMIT_PARENT,		/* dyn_type, not an opcode.	*/
107
108	/*
109	 * These are really 'actions'.
110	 */
111
112	O_LOG,			/* ipfw_insn_log		*/
113	O_PROB,			/* u32 = match probability	*/
114
115	O_CHECK_STATE,		/* none				*/
116	O_ACCEPT,		/* none				*/
117	O_DENY,			/* none 			*/
118	O_REJECT,		/* arg1=icmp arg (same as deny)	*/
119	O_COUNT,		/* none				*/
120	O_SKIPTO,		/* arg1=next rule number	*/
121	O_PIPE,			/* arg1=pipe number		*/
122	O_QUEUE,		/* arg1=queue number		*/
123	O_DIVERT,		/* arg1=port number		*/
124	O_TEE,			/* arg1=port number		*/
125	O_FORWARD_IP,		/* fwd sockaddr			*/
126	O_FORWARD_MAC,		/* fwd mac			*/
127	O_NAT,                  /* nope                         */
128
129	/*
130	 * More opcodes.
131	 */
132	O_IPSEC,		/* has ipsec history 		*/
133	O_IP_SRC_LOOKUP,	/* arg1=table number, u32=value	*/
134	O_IP_DST_LOOKUP,	/* arg1=table number, u32=value	*/
135	O_ANTISPOOF,		/* none				*/
136	O_JAIL,			/* u32 = id			*/
137	O_ALTQ,			/* u32 = altq classif. qid	*/
138	O_DIVERTED,		/* arg1=bitmap (1:loop, 2:out)	*/
139	O_TCPDATALEN,		/* arg1 = tcp data len		*/
140	O_IP6_SRC,		/* address without mask		*/
141	O_IP6_SRC_ME,		/* my addresses			*/
142	O_IP6_SRC_MASK,		/* address with the mask	*/
143	O_IP6_DST,
144	O_IP6_DST_ME,
145	O_IP6_DST_MASK,
146	O_FLOW6ID,		/* for flow id tag in the ipv6 pkt */
147	O_ICMP6TYPE,		/* icmp6 packet type filtering	*/
148	O_EXT_HDR,		/* filtering for ipv6 extension header */
149	O_IP6,
150
151	/*
152	 * actions for ng_ipfw
153	 */
154	O_NETGRAPH,		/* send to ng_ipfw		*/
155	O_NGTEE,		/* copy to ng_ipfw		*/
156
157	O_IP4,
158
159	O_UNREACH6,		/* arg1=icmpv6 code arg (deny)  */
160
161	O_TAG,   		/* arg1=tag number */
162	O_TAGGED,		/* arg1=tag number */
163
164	O_LAST_OPCODE		/* not an opcode!		*/
165};
166
167/*
168 * The extension header are filtered only for presence using a bit
169 * vector with a flag for each header.
170 */
171#define EXT_FRAGMENT	0x1
172#define EXT_HOPOPTS	0x2
173#define EXT_ROUTING	0x4
174#define EXT_AH		0x8
175#define EXT_ESP		0x10
176#define EXT_DSTOPTS	0x20
177#define EXT_RTHDR0		0x40
178#define EXT_RTHDR2		0x80
179
180/*
181 * Template for instructions.
182 *
183 * ipfw_insn is used for all instructions which require no operands,
184 * a single 16-bit value (arg1), or a couple of 8-bit values.
185 *
186 * For other instructions which require different/larger arguments
187 * we have derived structures, ipfw_insn_*.
188 *
189 * The size of the instruction (in 32-bit words) is in the low
190 * 6 bits of "len". The 2 remaining bits are used to implement
191 * NOT and OR on individual instructions. Given a type, you can
192 * compute the length to be put in "len" using F_INSN_SIZE(t)
193 *
194 * F_NOT	negates the match result of the instruction.
195 *
196 * F_OR		is used to build or blocks. By default, instructions
197 *		are evaluated as part of a logical AND. An "or" block
198 *		{ X or Y or Z } contains F_OR set in all but the last
199 *		instruction of the block. A match will cause the code
200 *		to skip past the last instruction of the block.
201 *
202 * NOTA BENE: in a couple of places we assume that
203 *	sizeof(ipfw_insn) == sizeof(u_int32_t)
204 * this needs to be fixed.
205 *
206 */
207typedef struct	_ipfw_insn {	/* template for instructions */
208	enum ipfw_opcodes	opcode:8;
209	u_int8_t	len;	/* numer of 32-byte words */
210#define	F_NOT		0x80
211#define	F_OR		0x40
212#define	F_LEN_MASK	0x3f
213#define	F_LEN(cmd)	((cmd)->len & F_LEN_MASK)
214
215	u_int16_t	arg1;
216} ipfw_insn;
217
218/*
219 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of
220 * a given type.
221 */
222#define	F_INSN_SIZE(t)	((sizeof (t))/sizeof(u_int32_t))
223
224#define MTAG_IPFW	1148380143	/* IPFW-tagged cookie */
225
226/*
227 * This is used to store an array of 16-bit entries (ports etc.)
228 */
229typedef struct	_ipfw_insn_u16 {
230	ipfw_insn o;
231	u_int16_t ports[2];	/* there may be more */
232} ipfw_insn_u16;
233
234/*
235 * This is used to store an array of 32-bit entries
236 * (uid, single IPv4 addresses etc.)
237 */
238typedef struct	_ipfw_insn_u32 {
239	ipfw_insn o;
240	u_int32_t d[1];	/* one or more */
241} ipfw_insn_u32;
242
243/*
244 * This is used to store IP addr-mask pairs.
245 */
246typedef struct	_ipfw_insn_ip {
247	ipfw_insn o;
248	struct in_addr	addr;
249	struct in_addr	mask;
250} ipfw_insn_ip;
251
252/*
253 * This is used to forward to a given address (ip).
254 */
255typedef struct  _ipfw_insn_sa {
256	ipfw_insn o;
257	struct sockaddr_in sa;
258} ipfw_insn_sa;
259
260/*
261 * This is used for MAC addr-mask pairs.
262 */
263typedef struct	_ipfw_insn_mac {
264	ipfw_insn o;
265	u_char addr[12];	/* dst[6] + src[6] */
266	u_char mask[12];	/* dst[6] + src[6] */
267} ipfw_insn_mac;
268
269/*
270 * This is used for interface match rules (recv xx, xmit xx).
271 */
272typedef struct	_ipfw_insn_if {
273	ipfw_insn o;
274	union {
275		struct in_addr ip;
276		int glob;
277	} p;
278	char name[IFNAMSIZ];
279} ipfw_insn_if;
280
281/*
282 * This is used for storing an altq queue id number.
283 */
284typedef struct _ipfw_insn_altq {
285	ipfw_insn	o;
286	u_int32_t	qid;
287} ipfw_insn_altq;
288
289/*
290 * This is used for limit rules.
291 */
292typedef struct	_ipfw_insn_limit {
293	ipfw_insn o;
294	u_int8_t _pad;
295	u_int8_t limit_mask;	/* combination of DYN_* below	*/
296#define	DYN_SRC_ADDR	0x1
297#define	DYN_SRC_PORT	0x2
298#define	DYN_DST_ADDR	0x4
299#define	DYN_DST_PORT	0x8
300
301	u_int16_t conn_limit;
302} ipfw_insn_limit;
303
304/*
305 * This is used for log instructions.
306 */
307typedef struct  _ipfw_insn_log {
308        ipfw_insn o;
309	u_int32_t max_log;	/* how many do we log -- 0 = all */
310	u_int32_t log_left;	/* how many left to log 	*/
311} ipfw_insn_log;
312
313/*
314 * Data structures required by both ipfw(8) and ipfw(4) but not part of the
315 * management API are protected by IPFW_INTERNAL.
316 */
317#ifdef IPFW_INTERNAL
318/* Server pool support (LSNAT). */
319struct cfg_spool {
320	LIST_ENTRY(cfg_spool)   _next;          /* chain of spool instances */
321	struct in_addr          addr;
322	u_short                 port;
323};
324#endif
325
326/* Redirect modes id. */
327#define REDIR_ADDR      0x01
328#define REDIR_PORT      0x02
329#define REDIR_PROTO     0x04
330
331#ifdef IPFW_INTERNAL
332/* Nat redirect configuration. */
333struct cfg_redir {
334	LIST_ENTRY(cfg_redir)   _next;          /* chain of redir instances */
335	u_int16_t               mode;           /* type of redirect mode */
336	struct in_addr	        laddr;          /* local ip address */
337	struct in_addr	        paddr;          /* public ip address */
338	struct in_addr	        raddr;          /* remote ip address */
339	u_short                 lport;          /* local port */
340	u_short                 pport;          /* public port */
341	u_short                 rport;          /* remote port  */
342	u_short                 pport_cnt;      /* number of public ports */
343	u_short                 rport_cnt;      /* number of remote ports */
344	int                     proto;          /* protocol: tcp/udp */
345	struct alias_link       **alink;
346	/* num of entry in spool chain */
347	u_int16_t               spool_cnt;
348	/* chain of spool instances */
349	LIST_HEAD(spool_chain, cfg_spool) spool_chain;
350};
351#endif
352
353#define NAT_BUF_LEN     1024
354
355#ifdef IPFW_INTERNAL
356/* Nat configuration data struct. */
357struct cfg_nat {
358	/* chain of nat instances */
359	LIST_ENTRY(cfg_nat)     _next;
360	int                     id;                     /* nat id */
361	struct in_addr          ip;                     /* nat ip address */
362	char                    if_name[IF_NAMESIZE];   /* interface name */
363	int                     mode;                   /* aliasing mode */
364	struct libalias	        *lib;                   /* libalias instance */
365	/* number of entry in spool chain */
366	int                     redir_cnt;
367	/* chain of redir instances */
368	LIST_HEAD(redir_chain, cfg_redir) redir_chain;
369};
370#endif
371
372#define SOF_NAT         sizeof(struct cfg_nat)
373#define SOF_REDIR       sizeof(struct cfg_redir)
374#define SOF_SPOOL       sizeof(struct cfg_spool)
375
376/* Nat command. */
377typedef struct	_ipfw_insn_nat {
378 	ipfw_insn	o;
379 	struct cfg_nat *nat;
380} ipfw_insn_nat;
381
382/* Apply ipv6 mask on ipv6 addr */
383#define APPLY_MASK(addr,mask)                          \
384    (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
385    (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
386    (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
387    (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
388
389/* Structure for ipv6 */
390typedef struct _ipfw_insn_ip6 {
391       ipfw_insn o;
392       struct in6_addr addr6;
393       struct in6_addr mask6;
394} ipfw_insn_ip6;
395
396/* Used to support icmp6 types */
397typedef struct _ipfw_insn_icmp6 {
398       ipfw_insn o;
399       uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h
400                       *     define ICMP6_MAXTYPE
401                       *     as follows: n = ICMP6_MAXTYPE/32 + 1
402                        *     Actually is 203
403                       */
404} ipfw_insn_icmp6;
405
406/*
407 * Here we have the structure representing an ipfw rule.
408 *
409 * It starts with a general area (with link fields and counters)
410 * followed by an array of one or more instructions, which the code
411 * accesses as an array of 32-bit values.
412 *
413 * Given a rule pointer  r:
414 *
415 *  r->cmd		is the start of the first instruction.
416 *  ACTION_PTR(r)	is the start of the first action (things to do
417 *			once a rule matched).
418 *
419 * When assembling instruction, remember the following:
420 *
421 *  + if a rule has a "keep-state" (or "limit") option, then the
422 *	first instruction (at r->cmd) MUST BE an O_PROBE_STATE
423 *  + if a rule has a "log" option, then the first action
424 *	(at ACTION_PTR(r)) MUST be O_LOG
425 *  + if a rule has an "altq" option, it comes after "log"
426 *  + if a rule has an O_TAG option, it comes after "log" and "altq"
427 *
428 * NOTE: we use a simple linked list of rules because we never need
429 * 	to delete a rule without scanning the list. We do not use
430 *	queue(3) macros for portability and readability.
431 */
432
433struct ip_fw {
434	struct ip_fw	*next;		/* linked list of rules		*/
435	struct ip_fw	*next_rule;	/* ptr to next [skipto] rule	*/
436	/* 'next_rule' is used to pass up 'set_disable' status		*/
437
438	u_int16_t	act_ofs;	/* offset of action in 32-bit units */
439	u_int16_t	cmd_len;	/* # of 32-bit words in cmd	*/
440	u_int16_t	rulenum;	/* rule number			*/
441	u_int8_t	set;		/* rule set (0..31)		*/
442#define	RESVD_SET	31	/* set for default and persistent rules */
443	u_int8_t	_pad;		/* padding			*/
444
445	/* These fields are present in all rules.			*/
446	u_int64_t	pcnt;		/* Packet counter		*/
447	u_int64_t	bcnt;		/* Byte counter			*/
448	u_int32_t	timestamp;	/* tv_sec of last match		*/
449
450	ipfw_insn	cmd[1];		/* storage for commands		*/
451};
452
453#define ACTION_PTR(rule)				\
454	(ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) )
455
456#define RULESIZE(rule)  (sizeof(struct ip_fw) + \
457	((struct ip_fw *)(rule))->cmd_len * 4 - 4)
458
459/*
460 * This structure is used as a flow mask and a flow id for various
461 * parts of the code.
462 */
463struct ipfw_flow_id {
464	u_int32_t	dst_ip;
465	u_int32_t	src_ip;
466	u_int16_t	dst_port;
467	u_int16_t	src_port;
468	u_int8_t	proto;
469	u_int8_t	flags;	/* protocol-specific flags */
470	uint8_t		addr_type; /* 4 = ipv4, 6 = ipv6, 1=ether ? */
471	struct in6_addr dst_ip6;	/* could also store MAC addr! */
472	struct in6_addr src_ip6;
473	u_int32_t	flow_id6;
474	u_int32_t	frag_id6;
475};
476
477#define IS_IP6_FLOW_ID(id)	((id)->addr_type == 6)
478
479/*
480 * Dynamic ipfw rule.
481 */
482typedef struct _ipfw_dyn_rule ipfw_dyn_rule;
483
484struct _ipfw_dyn_rule {
485	ipfw_dyn_rule	*next;		/* linked list of rules.	*/
486	struct ip_fw *rule;		/* pointer to rule		*/
487	/* 'rule' is used to pass up the rule number (from the parent)	*/
488
489	ipfw_dyn_rule *parent;		/* pointer to parent rule	*/
490	u_int64_t	pcnt;		/* packet match counter		*/
491	u_int64_t	bcnt;		/* byte match counter		*/
492	struct ipfw_flow_id id;		/* (masked) flow id		*/
493	u_int32_t	expire;		/* expire time			*/
494	u_int32_t	bucket;		/* which bucket in hash table	*/
495	u_int32_t	state;		/* state of this rule (typically a
496					 * combination of TCP flags)
497					 */
498	u_int32_t	ack_fwd;	/* most recent ACKs in forward	*/
499	u_int32_t	ack_rev;	/* and reverse directions (used	*/
500					/* to generate keepalives)	*/
501	u_int16_t	dyn_type;	/* rule type			*/
502	u_int16_t	count;		/* refcount			*/
503};
504
505/*
506 * Definitions for IP option names.
507 */
508#define	IP_FW_IPOPT_LSRR	0x01
509#define	IP_FW_IPOPT_SSRR	0x02
510#define	IP_FW_IPOPT_RR		0x04
511#define	IP_FW_IPOPT_TS		0x08
512
513/*
514 * Definitions for TCP option names.
515 */
516#define	IP_FW_TCPOPT_MSS	0x01
517#define	IP_FW_TCPOPT_WINDOW	0x02
518#define	IP_FW_TCPOPT_SACK	0x04
519#define	IP_FW_TCPOPT_TS		0x08
520#define	IP_FW_TCPOPT_CC		0x10
521
522#define	ICMP_REJECT_RST		0x100	/* fake ICMP code (send a TCP RST) */
523#define	ICMP6_UNREACH_RST	0x100	/* fake ICMPv6 code (send a TCP RST) */
524
525/*
526 * These are used for lookup tables.
527 */
528typedef struct	_ipfw_table_entry {
529	in_addr_t	addr;		/* network address		*/
530	u_int32_t	value;		/* value			*/
531	u_int16_t	tbl;		/* table number			*/
532	u_int8_t	masklen;	/* mask length			*/
533} ipfw_table_entry;
534
535typedef struct	_ipfw_table {
536	u_int32_t	size;		/* size of entries in bytes	*/
537	u_int32_t	cnt;		/* # of entries			*/
538	u_int16_t	tbl;		/* table number			*/
539	ipfw_table_entry ent[0];	/* entries			*/
540} ipfw_table;
541
542#define IP_FW_TABLEARG	65535
543
544/*
545 * Main firewall chains definitions and global var's definitions.
546 */
547#ifdef _KERNEL
548
549/* Return values from ipfw_chk() */
550enum {
551	IP_FW_PASS = 0,
552	IP_FW_DENY,
553	IP_FW_DIVERT,
554	IP_FW_TEE,
555	IP_FW_DUMMYNET,
556	IP_FW_NETGRAPH,
557	IP_FW_NGTEE,
558	IP_FW_NAT,
559};
560
561/* flags for divert mtag */
562#define	IP_FW_DIVERT_LOOPBACK_FLAG	0x00080000
563#define	IP_FW_DIVERT_OUTPUT_FLAG	0x00100000
564
565/*
566 * Structure for collecting parameters to dummynet for ip6_output forwarding
567 */
568struct _ip6dn_args {
569       struct ip6_pktopts *opt_or;
570       struct route_in6 ro_or;
571       int flags_or;
572       struct ip6_moptions *im6o_or;
573       struct ifnet *origifp_or;
574       struct ifnet *ifp_or;
575       struct sockaddr_in6 dst_or;
576       u_long mtu_or;
577       struct route_in6 ro_pmtu_or;
578};
579
580/*
581 * Arguments for calling ipfw_chk() and dummynet_io(). We put them
582 * all into a structure because this way it is easier and more
583 * efficient to pass variables around and extend the interface.
584 */
585struct ip_fw_args {
586	struct mbuf	*m;		/* the mbuf chain		*/
587	struct ifnet	*oif;		/* output interface		*/
588	struct sockaddr_in *next_hop;	/* forward address		*/
589	struct ip_fw	*rule;		/* matching rule		*/
590	struct ether_header *eh;	/* for bridged packets		*/
591
592	struct ipfw_flow_id f_id;	/* grabbed from IP header	*/
593	u_int32_t	cookie;		/* a cookie depending on rule action */
594	struct inpcb	*inp;
595
596	struct _ip6dn_args	dummypar; /* dummynet->ip6_output */
597	struct sockaddr_in hopstore;	/* store here if cannot use a pointer */
598};
599
600/*
601 * Function definitions.
602 */
603
604/* Firewall hooks */
605struct sockopt;
606struct dn_flow_set;
607
608int ipfw_check_in(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp);
609int ipfw_check_out(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp);
610
611int ipfw_chk(struct ip_fw_args *);
612
613int ipfw_init(void);
614void ipfw_destroy(void);
615
616typedef int ip_fw_ctl_t(struct sockopt *);
617extern ip_fw_ctl_t *ip_fw_ctl_ptr;
618extern int fw_one_pass;
619extern int fw_enable;
620#ifdef INET6
621extern int fw6_enable;
622#endif
623
624/* For kernel ipfw_ether and ipfw_bridge. */
625typedef	int ip_fw_chk_t(struct ip_fw_args *args);
626extern	ip_fw_chk_t	*ip_fw_chk_ptr;
627#define	IPFW_LOADED	(ip_fw_chk_ptr != NULL)
628
629#ifdef IPFW_INTERNAL
630
631#define	IPFW_TABLES_MAX		128
632struct ip_fw_chain {
633	struct ip_fw	*rules;		/* list of rules */
634	struct ip_fw	*reap;		/* list of rules to reap */
635	LIST_HEAD(, cfg_nat) nat;       /* list of nat entries */
636	struct radix_node_head *tables[IPFW_TABLES_MAX];
637	struct rwlock	rwmtx;
638};
639#define	IPFW_LOCK_INIT(_chain) \
640	rw_init(&(_chain)->rwmtx, "IPFW static rules")
641#define	IPFW_LOCK_DESTROY(_chain)	rw_destroy(&(_chain)->rwmtx)
642#define	IPFW_WLOCK_ASSERT(_chain)	rw_assert(&(_chain)->rwmtx, RA_WLOCKED)
643
644#define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
645#define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
646#define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
647#define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
648
649#define LOOKUP_NAT(l, i, p) do {					\
650		LIST_FOREACH((p), &(l.nat), _next) {			\
651			if ((p)->id == (i)) {				\
652				break;					\
653			} 						\
654		}							\
655	} while (0)
656
657typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *);
658typedef int ipfw_nat_cfg_t(struct sockopt *);
659#endif
660
661#endif /* _KERNEL */
662#endif /* _IPFW2_H */
663